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Abstract

In this paper we present a techmique for acquisi-
tion and tracking of the pose of a mobile robot with
a laser scanner. The position and orientation of the
walls are the basis for estimating the pose of the robot.
Validation gates filter out data that is believed to be-
long to the walls. For finding the parameters of the
walls a two stage process with a local Range Weighted
Hough Transform and a least squares method are im-
plemented. FExperimental results are shown to argue
for the performance of the method.

1 Introduction

Robots operating in a real world setting are sub-
ject to wheel slippage, drift in orientation etc. which
implies that localization cannot only be based on odo-
metric feedback. There is a need for feedback in terms
of sensing of structures in the environment. The pur-
pose of the feedback is twofold: i) localization and ii)
detection of unexpected objects like obstacles. The
sensing of structures in the environment can be done
in a number of different ways as for example described
in [2].

The most frequently used sensor for environmen-
tal mapping is the sonar sensor, due to its low price
and ease of interpretation of the information. A major
disadvantage of sonars is the slow sampling frequency
and poor spatial resolution in its standard configura-
tion. Good examples of use of sonars for mapping can
be found in [9, 3, 6, 13]. For applications that require
high spatial accuracy and/or higher temporal updat-
ing it is convenient to use a laser scanner as it offers
higher resolution and improved sampling frequency.

In this paper an outline of how landmarks can be
extracted from laser data and how such information
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can be tracked over time to provide continuous local-
ization information is presented.

In the first section we will describe the sensor that
is used in the work. In Section 3 a short summary
of previous work in this filed will be given. Sections 4
and 5 describe in more detail absolute localization and
position tracking respectively. In Section 6 results are
presented and the last section concludes and discusses
different paths for future research.

2 The Sensor system

Localization in a real world setting requires feed-
back regarding the position and orientation of struc-
tures in the environment. This can be achieved in
a number of different ways using active (e.g. laser,
sonar, IR, ...) or passive (e.g. vision sensors, gyros,
wheel encoders) sensors. In this work we study the
use of a laser scanner for localization.

2.1 The Laser Scanner

Compared to the widely used ultrasonic sonar sen-
sor, the laser scanner is much more expensive and one
has to weight price against performance when decid-
ing for or against using the laser scanner. In many
applications a laser scanner of this kind might be too
expensive (e.g. powered wheel chairs and domestic
vacuum cleaners), whereas other applications are less
sensitive to the price (e.g. mining trucks). Laser range
finders has been used by many researcher, both in the
2D scanning version [12, 5, 4, 10, 17] and in the range
image version [1, 18, 15, 8, 16].

There are many advantages with laser scanners:
high sampling rate, high angular resolution, fair range
resolution, etc. Some of the drawbacks are: the in-
formation is restricted to a plane, the sensor is quite



expensive, some material appear as (almost) transpar-
ent, for the laser (such as glass), etc.

2.2 Characteristics of the sensor

In our setup the laser sensor is a proximity laser
scanner, the PLS 200 from SICK Electro-Optics. The
SICK sensor can scan the environment at a rate of
25Hz. At this sampling frequency data are delivered
at 333 kBaud on the serial port. Due to hardware
limitations (max serial speed 38.4 kBaud) we use a
sampling speed of 3Hz.

The SICK scanner uses a Time of Flight (TOF)
ranging principle that is driven by a 6 GHz clock which
provides a ranging resolution of 50 mm. The laser
scanning is performed using a rotating mirror that ro-
tates at 25Hz. In practice the sensor provides a polar
range map of the form (#,7), where # is the angle
from 0° - 180° discretized into 0.5° bins. Analyzing
the output from the sensor it is apparent that the un-
certainty of the data is uniformly distributed over the
ranges [—25,25] mm and [—0.25°,0.25°], respective.
Converting the polar data into a Cartesian frame of

reference we get:
cosf
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Let Ar and A8 define the size of the area over
which the parameters r and 6 is distributed. The
density functions can be written as f,(r) = 5
for r € [F—Ar,i+ Ar] and fy(0) = 3x; for 8 €
[9 — AG,0 + AG]. The variance in the x and y direc-
tion can be derived with straight forward calculation

assuming that r and 8 are independent. The result is:
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This conversion of uncertainties was judged to be too
messy and in the experiments the points were assumed
to have an Gaussian distribution with a standard de-
viation of 50 mm both in x and y. This is a pessimistic
approximation, but it has turned out to be adequate
for our purposes.

3 Localization

As mentioned in Section 1, localization and navi-
gation are the bases for solving many tasks. In this
section there will be a brief overview of existing tech-
niques and after that the method used in this paper
will be described. The main emphasis will be put on
the position tracking module. This module assumes
that the position of the platform is known approxi-
mately. We will use a simple model of the environ-
ment where the room is modeled as a rectangle and
the only available information is the length and width
of the rectangle/room.

3.1 Previous Work

Localization has been studied extensively in the
literature. Two main approaches are identified in
[2], landmark-based and map-based localization. The
landmark-based approach can be further split into
three groups, depending on if the landmarks are ac-
tive artificial landmarks, passive artificial landmarks
or natural landmarks. An example of active artificial
landmarks is the GPS system. Passive landmark sys-
tems are very widely used in industry, e.g., line mark-
ings on the floor and signs on the walls. The natural
landmarks are those that have not been put there for
the purpose of aiding the navigation task: walls, doors,
corners, etc. Among the map-based techniques the
occupancy-grip technique has been widely used since
it was introduced by Moravec and Elfes [14]. The map-
based technique tries to match a local map acquired
through the use of some sensor(s).

Introducing odometric feedback in the above men-
tioned approaches will improve their performance, in
some cases significantly. By using odometry, more or
less accurate predictions of the movement of the plat-
form can be used to reduce the area in which to look
for landmarks or the possible movements when match-
ing maps. Using odometry also provides a means for
keeping track of the position when no sensor data is
available. When using odometry it is important to
realize that there are situations in which the odome-
try will give very bad results, e.g., when passing over
thresholds or when driving in uneven terrain. In those
situations the system must be robust enough to realize
the failure of the odometry.

4 Absolute localization

Localization can be divided into two parts: i) ini-
tialization and ii) maintenance. The initialization is



responsible for providing an initial position estimate
when the robot is turned on. Based on an approxi-
mate model of the environment and a data set, the
translation and rotation (the pose) of the robot must
be estimated. Once the system has been properly ini-
tialized, the maintenance part is responsible for online
updating of the position estimate. In this work it will
be assumed that the robot only operates in a single
room, which can be approximated by a rectangle. The
reason being that we want to use the simplest possible
map of a room and then determine how well the sys-
tem can be initialize and maintain a robust estimate
of its pose.

We have chosen to use the Angle Histogram [11] to
do absolute localization. The angle histogram will give
two possible locations of the robot as the rectangular
room is symmetric as described in the next section.

4.1 The Angle Histogram

The angle histogram methods was introduced
n [11]. The idea behind the angle histogram is simple.
The main characteristic of a regular office environment
room is that there are straight walls and that the walls
are either parallel or perpendicular. The algorithm
assumes that data is available from a full 360° scan
of the room. Therefore two scan are taken and the
data is transformed into the same coordinate system
(a robot fixed coordinate system). Let x;, i=1...N
be the vector containing the measurements in Carte-
sian coordinates (see Figure 1). The angle histogram
algorithm method we used can be described as follows:

1. The first step is to try and find the orientation
of the walls, by studying the angle between con-
secutive data points. Using points next to each
other turns out to give a very noisy response so
it is better to look at the angle between points
with L points in between them, in our case we
use L = 20. Let us call the consecutive angles
i, i=1...N-L.

2. A histogram over «; is then created over the range
0°-180°. In a normal room, there will be two
distinct peaks in the histogram corresponding to
the two main orientations of the walls. Note that
by taking modulo 180°, parallel walls are mapped
to the same angle. Figure 2 shows an example
histogram. Assuming that the maximum peak
corresponds to an angle [, this means that the
orientation of the robot must be 3 + i % 90°, i =
0,...,3.

3. The original data is then rotated by the angle
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Figure 4: Histogram over the x-values and y-values in the
rotated data set.

corresponding to the maximum peak. If the algo-
rithm is successful, the walls should now be ori-
ented parallel to the coordinate axis of the robot
(see Figure 3).

4. By analyzing the histogram for the x and y-
distribution (see Figure 4) in the rotated data the
position of the robot can be narrowed down to two
possible cases. A voting scheme is used to deter-
mine what histogram to match with which pair
of walls. The two hypotheses are i) histogram 1
belongs to wall pair 1 and 4i) histogram 2 belongs
to wall pair 1. Each peak in the histogram vote
for a certain position relative to a wall. The more
peaks that agree on the same position the higher
the vote. Each peak vote with the strength of
that peak, i.e. strong wall responses carry much
weight. In order to decide whether the robot is at
position (z,y) or (Zize — T, Ysize —y) ' more infor-
mation has to be used. One way to solve it is to
assume that the approximate orientation (with an
error less than 90°) of the robot is known a-priori
(for example from a compass). Another solution
would be to try to use information about the lo-
cation of other structures in the environment such
as doors. In our case we assume the existence of
a compass that can give us information that can
be trusted enough to pick one of two hypotheses
that differ in orientation by 180°.

5 Position Tracking

5.1 Idea

Doing an absolute localization is a computationally
costly process. But even more important is maybe the
fact that it also requires control of the movement of
the platform or, to be exact, the movement of the sen-
sor. Therefore the idea is to do the absolute localiza-

2 gize and ys;.e is the size of the room
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Figure 1: The original SICK data.

tion only once and after that track the position of the
robot using odometry and laser data. Since we use a
map that only consists of two numbers, the length and
width of the room, we only have information about the
location of the walls. Therefore only the walls can be
tracked. It is however relatively easy to extend the
method to track n structures in the environment.

In this paper we will present a Kalman filter based
technique. An important property of the Kalman filter
is the lack of ability to revise the use of measurements
in the past, that later turn out to have been erro-
neously associated with a certain feature 2. Therefore
it is of importance that the risk of making a mistake,
when associating data with a feature, be as small as
possible. With the use of the odometry the location of
the robot can, in most cases, be predicted with a high
accuracy, and by using validation gates for the data,
the risk is kept small, but not negligible.

The pose of the robot will be represented by xx =
(x,y,0)T. The system can be described by

Xkt1]k = Xkjk + 8k + Wk (5)

where gy is the input from the odometry and wy rep-
resents the process noise. The measurement equation
can be described by

zii = hi(xk) + vk, i=1,... N (6)

where h; represents a possibly nonlinear measurement
function and vk is the corresponding measurement
noise.

5.2 The Filtering of Data

The filtering of data is performed as follows (see
dashed rectangle in Figure 5).

2This can of course in principle be solve by saving all the
data from the past.
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Figure 2: Angle histogram.
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Figure 3: The data after the rotation.
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Figure 5: Signal flow in the localization module.

1. Data is run through four validation gates, one for
each wall. This could be extended to be n walls
instead as well as other features.

2. Perform a local Range Weighted
Hough Transform® [10] on the validated data,
only allowing parameters close to the predicted.

3. Run the raw data through another validation gate
with parameters adjusted according to the result
of the local RWHT.

4. Do a Least Squares fit.

This will give us between 0 and 4 walls. Each wall
will have an uncertainty attached, which depends on
the data that was used to hypothesize the location of
the wall. We have used the implementation from [7]
for the least square algorithm which also provides es-
timates of the uncertainty in the line parameters. The
representation of the walls is (p, @) where p € [0, 00)
and ¢ € [0,360°).

3Tike a standard Hough transform except that the vote of
a point far away carries more weight than a point close to the
sensor. The idea is that points close to the sensor tend to be
closer together and therefore they will influence more unless a
range weight is introduced.



5.2.1 The Validation Gates

Given an initial estimate of the pose of the robot, it
is possible to predict where the wall(s) will be in the
data. The uncertainty in the pose as well as the quality
of the data will determine the size of the validation
gates. The locations of the validation gates is based
on the prediction of the pose of the robot and the map
of the current room.

‘ ~——— Robot

Figure 6: Each validation gate is defined by two parame-
ters, the size of the waist, § and the opening angle, 7. Note
that the error in the predication of the wall and the size of
the validation gate were scaled for illustration purposes.

Experience indicate that the opening angle « should
be set to zero or at least be kept very small indepen-
dent of the uncertainty in orientation. This is moti-
vated by the use of the Range Weighted Hough Trans-
form (RWHT) [10] which will be effected more by out-
liers the further away they are.

5.3 Pose Tracking

In each cycle of the tracking loop the information
from the odometry and the laser scanner is fused into
an estimate of the pose of the robot. Odometry data is
available at a higher sampling rate than the laser data
and can be used alone to update the pose of the robot
in between laser scans. As the robot in our experi-
ments has been moving on a largely planar floor with
a high coefficient of friction, the process noise (wy in
(5)) is small compared to the measurement noise. This
means that we will have a filter that will have a very
hard time handling errors in the odometry readings.
Typical situations in which this might occur are when
the robot: i)touches a wall and the platform is rotated,
ii) drives over some obstacle (cable, threshold, etc.).

In order to handle this problem it is necessary to
introduce some kind of condition on the success of the
matching process. If no walls are matched for some
time, it is a strong indication that the estimate of the
position might be wrong. In such a case the estimate
must be re-initialized by doing a new absolute localiza-
tion (the last pose estimate could potentially be used

x| Az Y Ay 0 A6
Posl | 3420 | -30 | 7650 60 | 119 | -0.2
Pos2 | 2470 | 120 | 6440 -30 | 119 -2
Pos3 | 1380 | 10 | 7870 | -7070 | 118 | +0.8
Pos3b | 1380 | 10 | 7870 -50 | 118 | +0.8
Pos4 | 3940 | -50 | 3900 10 | 116 | -0.8
Posdb | 3940 | -50 | 3900 10 | 116 | -0.8

Table 1: Results of the absolute localization. Four differ-
ent locations have been tested and in two of the locations
two different environmental settings were tested. The only
time the routine failed (Pos3) was when it was placed close
to one of the short wall and had three chairs lined up in
front of it. In this case the algorithm could not distin-
guish the back of the chairs from a wall. Az, Ay and A6
represent the errors in the three different components.

as a starting point for this). Alternatively one could
increase the size of the validation gates, correspond-
ing to an increased uncertainty in the state estimate,
so one might also add a deterministic amount of noise
to P in case of bad matching data. Care has to been
taken to make sure that the gates do not become too
big since the chance for erroneous matches increase
with the size of the gates. This has not been imple-
mented yet.

The pose is updated with the information from each
wall sequentially, using (6). It is assumed that the
covariance between the parameters of the walls are
uncorrelated, to simplify computations.

6 Experimental Results

In this section the result of several experiments, de-
signed to verify the performance of the system, will be
presented. The presentation will be divided into two
parts: one for absolute localization and one for pose
tracking. The experiments were carried out in our
robot lab that has been furnished like a living room in
order to insure that relevant questions are being an-
swered, i.e. the system has to be able to operate in a
normal house environment. Figures 7 and 8 show the
living room from two different view points.

6.1 Absolute Localization

In this test the robot was placed at different loca-
tions in a room and the algorithm was run to estimate
the pose of the robot. To be able to evaluate the result



Figure 7: View 1 of the living room.

of these experiments it is necessary to know the reso-
lution of the histograms used to estimate orientation
and position of the robot. When estimating the angle
of the robot, the histogram had a resolution of 1.8°
and the histogram giving the position had a resolu-
tion of 200 mm. At each point five experiments were
performed. As the resolution of the histograms were
low, the position that was estimated by the absolute
localization algorithm was more or less the same in
all five experiments at all locations. More or less in
this case means that when the robot was placed close
to the middle of two histogram cells, the estimated
position shifted between those two positions.

6.2 Position Tracking

To verify the performance in the case of position
tracking, the true position at each time instant should
ideally be known. This is in practice not possible.

The questions we want to answer with the experi-
ments are: 1) is the method robust over time, IT) how
does it compare with the odometry, III) repeatabil-
ity, IV) how accurate is it and V) how important is
the choice of walls to “look” at. The following two
experiments were done:

6.2.1 Experiment 1

In this experiment the robot was given a chain of goal
points to which it had go. The robot is not forced to
come exactly to every goal point, only within 100 mm
of it. At the end position though, the requirements
are harder and the robot is told to stop within 5mm
of the start/end point. As the test was constructed
to test the robustness over time as well as to make

Figure 8: View 2 of the living room.

a comparison with the odometry, the test took about
15-20 minutes to perform. By calculating the distance
between the goal points in the chain and multiplying
by the number of laps around the chain, the theoretical
distance the robot had to travel was found to be 180
m.

The robot was driven totally autonomous and an
avoid behavior was active during execution to make
sure that the robot did not run into any obstacles. We
let the start and the end position be the same to make
the calculations easier. The outline of the experiment
is:

1. Place the robot at the desired start/end position.
2. Zero the robot, i.e. reset the odometry.

Measure the pose of the robot

-

Do absolute localization

5. Let the tracking unit run until the uncertainty in
the position has decreased under a certain thresh-
old (in this case both ¢, and o, has to be less
than 25 mm). This is to give the system a good
estimate of the starting position to which it is
supposed to go back.

6. Let the robot make the trip around the chain of
goal points back to the start/end point, run for
approximately 18 minutes.

7. Read the result of the odometry.
8. Measure the pose of the robot.

As the robot moved around in the room for almost
20 minutes when completing the chain of goal points



Run 1 Run 2
start stop | start stop
T 2976 | 2960 | 3054 | 3053
Az 15 42 14 6
Azyq - 723 - | 1220
Y 7276 | 7288 | 7300 | 7282
Ay 42 39 44 49
Ayod - 48 - 39
0 91.96 | 120.0 | 73.64 | 102.1
A6 1.85 2.1 2.33 | 2.12
Time 1074 sec 1125 sec
Dist 181 m 181 m
Speed 0.17 m/s 0.16 m/s

Table 2: Results of Experiment 1, designed to test ro-
bustness over time, repeatability and make a comparison
with odometry. = denotes the true x-coordinate, Az is the
error in the tracking units estimate, Az,q error in odom-
etry based estimate, etc ... The total time for the tests is
given along with the theoretical distance traveled and the
average speed.

and was able to keep track of its position, robustness
can be argued for. Even better performance would
have been achieved by actively controlling the direc-
tion in which the sensor was looking. Table 2 shows
that the repeatability was fairly good since the robot
returned to almost the same position. The odometry
was helpless when the platform drifted for about 30°
during each test. This was due to a badly calibrated
wheel system on our robot. A bias can be noted in
the results. In the y direction the bias was almost
the same in all in the four measurements that were
made (about 40 mm), and in the x direction the bias
was at least always positive. The source of this bias
was believed to be an offset in the laser data and poor
measurements of the position and orientation of the
sensor in relation to the platform.

6.2.2 Experiment 2

In this experiment the robot was placed at an arbi-
trary position in the room. It did absolute localiza-
tion, headed for a specific goal point and stopped when
within a certain radius of the point (in this case 5 mm).
To test the effects of the direction of attention, the sen-
sor was facing different directions in the tests. During
the execution of each test the sensor was facing in the
same direction except when the robot did the absolute

localization. In our setting one of the long walls was
covered with book shelves and the visible part of the
more than 8 meter long wall was only about a meter.

The result of this experiment showed that the
method provided means to position the robot at
a given location with an accuracy of (og,0,) =
(19,18)mm. A small bias was still present in the data
(about 10 mm in both x and y), but most of it had
been removed by refining the parameters. When it
comes to the choice of walls to direct attention to, the
question does not have a simple answer. As long as
the sensor can pick up enough points from a wall to
form an estimate of the position of the wall it does not
matter much if the wall is occluded in parts by book-
shelves, waste bins, etc, as long as long as the estimate
of the position is good enough to make the validation
gate so small that only data that comes from the ac-
tual wall is used. A more thorough investigation of
the effects of the choice of direction of attention has
to been done to answer the question in more detail.

Due to the fact that the odometry is very good over
short distances, especially when there is compensation
for the drift in orientation, it was found that it was not
necessary for the sensor to see the wall at all times and
still keep accurate track of the position and orientation
of the robot.

7 Conclusion and the Future

This paper has presented a method for tracking the
pose of a mobile robot using a laser scanner. In princi-
ple any scanning sensor with about the same angular
resolution can be used in its place. It has been shown
that the method provides good positioning accuracy
and robustness. A more accurately calibrated system
and more accurate ground truth measurements are re-
quired to establish exactly how good it is.

The reader should keep in mind that one of the
driving issues of this research is to see how far one
can come with a very simple model of the world. A
model that in our case consist only of the length and
width of rooms that are modeled as being rectangular.
The performance will of course improve by introducing
information from other features and structure, but the
aim is to minimize the need for detailed information.

In the future the method will be extended to a sit-
uation with many rooms, and potentially also with
rooms of different shapes than rectangular. To extend
the position tracking technique to handle rooms of dif-
ferent shapes as long as they can be represented with
line segments is straight forward. It will only change
the measurement equation (the h-function) in (6).



There are still many open field for further investi-
gations, e.g.:

e How much occlusion of the wall can the method
handle?

e How to direct the attention of the sensor?

e How to discover and recover from larger error in
odometric data?

e How would more advanced estimation methods
perform?
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