
Laser Based Position Acquisition and Tracking in an IndoorEnvironmentPatric Jensfelt Henrik I. ChristensenSignal, Sensors & Systems Autonomous SystemsRoyal Institute of Technology Royal Institute of TechnologySE-100 44 Stockholm SE-100 44 StockholmAbstractIn this paper we present a technique for acquisi-tion and tracking of the pose of a mobile robot witha laser scanner. The position and orientation of thewalls are the basis for estimating the pose of the robot.Validation gates �lter out data that is believed to be-long to the walls. For �nding the parameters of thewalls a two stage process with a local Range WeightedHough Transform and a least squares method are im-plemented. Experimental results are shown to arguefor the performance of the method.1 IntroductionRobots operating in a real world setting are sub-ject to wheel slippage, drift in orientation etc. whichimplies that localization cannot only be based on odo-metric feedback. There is a need for feedback in termsof sensing of structures in the environment. The pur-pose of the feedback is twofold: i) localization and ii)detection of unexpected objects like obstacles. Thesensing of structures in the environment can be donein a number of di�erent ways as for example describedin [2].The most frequently used sensor for environmen-tal mapping is the sonar sensor, due to its low priceand ease of interpretation of the information. A majordisadvantage of sonars is the slow sampling frequencyand poor spatial resolution in its standard con�gura-tion. Good examples of use of sonars for mapping canbe found in [9, 3, 6, 13]. For applications that requirehigh spatial accuracy and/or higher temporal updat-ing it is convenient to use a laser scanner as it o�ershigher resolution and improved sampling frequency.In this paper an outline of how landmarks can beextracted from laser data and how such information

can be tracked over time to provide continuous local-ization information is presented.In the �rst section we will describe the sensor thatis used in the work. In Section 3 a short summaryof previous work in this �led will be given. Sections 4and 5 describe in more detail absolute localization andposition tracking respectively. In Section 6 results arepresented and the last section concludes and discussesdi�erent paths for future research.2 The Sensor systemLocalization in a real world setting requires feed-back regarding the position and orientation of struc-tures in the environment. This can be achieved ina number of di�erent ways using active (e.g. laser,sonar, IR, ...) or passive (e.g. vision sensors, gyros,wheel encoders) sensors. In this work we study theuse of a laser scanner for localization.2.1 The Laser ScannerCompared to the widely used ultrasonic sonar sen-sor, the laser scanner is much more expensive and onehas to weight price against performance when decid-ing for or against using the laser scanner. In manyapplications a laser scanner of this kind might be tooexpensive (e.g. powered wheel chairs and domesticvacuum cleaners), whereas other applications are lesssensitive to the price (e.g. mining trucks). Laser range�nders has been used by many researcher, both in the2D scanning version [12, 5, 4, 10, 17] and in the rangeimage version [1, 18, 15, 8, 16].There are many advantages with laser scanners:high sampling rate, high angular resolution, fair rangeresolution, etc. Some of the drawbacks are: the in-formation is restricted to a plane, the sensor is quite



expensive, some material appear as (almost) transpar-ent for the laser (such as glass), etc.2.2 Characteristics of the sensorIn our setup the laser sensor is a proximity laserscanner, the PLS 200 from SICK Electro-Optics. TheSICK sensor can scan the environment at a rate of25Hz. At this sampling frequency data are deliveredat 333 kBaud on the serial port. Due to hardwarelimitations (max serial speed 38.4 kBaud) we use asampling speed of 3Hz.The SICK scanner uses a Time of Flight (TOF)ranging principle that is driven by a 6 GHz clock whichprovides a ranging resolution of 50 mm. The laserscanning is performed using a rotating mirror that ro-tates at 25Hz. In practice the sensor provides a polarrange map of the form (�; r), where � is the anglefrom 0� - 180� discretized into 0:5� bins. Analyzingthe output from the sensor it is apparent that the un-certainty of the data is uniformly distributed over theranges [�25; 25] mm and [�0:25�; 0:25�], respective.Converting the polar data into a Cartesian frame ofreference we get:~c = � xy � = r � cos �sin � � : (1)Let �r and �� de�ne the size of the area overwhich the parameters r and � is distributed. Thedensity functions can be written as fr(r) = 12�rfor r 2 [�r ��r; �r +�r] and f�(�) = 12�� for � 2��� ���; �� +���. The variance in the x and y direc-tion can be derived with straight forward calculationassuming that r and � are independent. The result is:�xx = 12 (�r2 + 13�r2)�1 + cos(2��) cos(��) sin(��)�� ���r2 cos2(��)� sin(��)�� �2 (2)�yy = 12 (�r2 + 13�r2)�1� cos(2��) cos(��) sin(��)�� ���r2 sin2(��)� sin(��)�� �2 (3)�xy = 14 (�r2 + 13�r2) cos(2��) cos(��) sin(��)����r2 sin(��) cos(��)� sin(��)�� �2 (4)This conversion of uncertainties was judged to be toomessy and in the experiments the points were assumedto have an Gaussian distribution with a standard de-viation of 50 mm both in x and y. This is a pessimisticapproximation, but it has turned out to be adequatefor our purposes.

3 LocalizationAs mentioned in Section 1, localization and navi-gation are the bases for solving many tasks. In thissection there will be a brief overview of existing tech-niques and after that the method used in this paperwill be described. The main emphasis will be put onthe position tracking module. This module assumesthat the position of the platform is known approxi-mately. We will use a simple model of the environ-ment where the room is modeled as a rectangle andthe only available information is the length and widthof the rectangle/room.3.1 Previous WorkLocalization has been studied extensively in theliterature. Two main approaches are identi�ed in[2], landmark-based and map-based localization. Thelandmark-based approach can be further split intothree groups, depending on if the landmarks are ac-tive arti�cial landmarks, passive arti�cial landmarksor natural landmarks. An example of active arti�ciallandmarks is the GPS system. Passive landmark sys-tems are very widely used in industry, e.g., line mark-ings on the 
oor and signs on the walls. The naturallandmarks are those that have not been put there forthe purpose of aiding the navigation task: walls, doors,corners, etc. Among the map-based techniques theoccupancy-grip technique has been widely used sinceit was introduced by Moravec and Elfes [14]. The map-based technique tries to match a local map acquiredthrough the use of some sensor(s).Introducing odometric feedback in the above men-tioned approaches will improve their performance, insome cases signi�cantly. By using odometry, more orless accurate predictions of the movement of the plat-form can be used to reduce the area in which to lookfor landmarks or the possible movements when match-ing maps. Using odometry also provides a means forkeeping track of the position when no sensor data isavailable. When using odometry it is important torealize that there are situations in which the odome-try will give very bad results, e.g., when passing overthresholds or when driving in uneven terrain. In thosesituations the system must be robust enough to realizethe failure of the odometry.4 Absolute localizationLocalization can be divided into two parts: i) ini-tialization and ii) maintenance. The initialization is



responsible for providing an initial position estimatewhen the robot is turned on. Based on an approxi-mate model of the environment and a data set, thetranslation and rotation (the pose) of the robot mustbe estimated. Once the system has been properly ini-tialized, the maintenance part is responsible for onlineupdating of the position estimate. In this work it willbe assumed that the robot only operates in a singleroom, which can be approximated by a rectangle. Thereason being that we want to use the simplest possiblemap of a room and then determine how well the sys-tem can be initialize and maintain a robust estimateof its pose.We have chosen to use the Angle Histogram [11] todo absolute localization. The angle histogram will givetwo possible locations of the robot as the rectangularroom is symmetric as described in the next section.4.1 The Angle HistogramThe angle histogram methods was introducedin [11]. The idea behind the angle histogram is simple.The main characteristic of a regular o�ce environmentroom is that there are straight walls and that the wallsare either parallel or perpendicular. The algorithmassumes that data is available from a full 360� scanof the room. Therefore two scan are taken and thedata is transformed into the same coordinate system(a robot �xed coordinate system). Let xi; i = 1 : : :Nbe the vector containing the measurements in Carte-sian coordinates (see Figure 1). The angle histogramalgorithm method we used can be described as follows:1. The �rst step is to try and �nd the orientationof the walls, by studying the angle between con-secutive data points. Using points next to eachother turns out to give a very noisy response soit is better to look at the angle between pointswith L points in between them, in our case weuse L = 20. Let us call the consecutive angles�i; i = 1 : : :N� L.2. A histogram over �i is then created over the range0�-180�. In a normal room, there will be twodistinct peaks in the histogram corresponding tothe two main orientations of the walls. Note thatby taking modulo 180�, parallel walls are mappedto the same angle. Figure 2 shows an examplehistogram. Assuming that the maximum peakcorresponds to an angle �, this means that theorientation of the robot must be � + i � 90�; i =0; : : : ; 3.3. The original data is then rotated by the angle �
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Figure 4: Histogram over the x-values and y-values in therotated data set.corresponding to the maximum peak. If the algo-rithm is successful, the walls should now be ori-ented parallel to the coordinate axis of the robot(see Figure 3).4. By analyzing the histogram for the x and y-distribution (see Figure 4) in the rotated data theposition of the robot can be narrowed down to twopossible cases. A voting scheme is used to deter-mine what histogram to match with which pairof walls. The two hypotheses are i) histogram 1belongs to wall pair 1 and ii) histogram 2 belongsto wall pair 1. Each peak in the histogram votefor a certain position relative to a wall. The morepeaks that agree on the same position the higherthe vote. Each peak vote with the strength ofthat peak, i.e. strong wall responses carry muchweight. In order to decide whether the robot is atposition (x; y) or (xsize�x; ysize�y) 1 more infor-mation has to be used. One way to solve it is toassume that the approximate orientation (with anerror less than 90�) of the robot is known a-priori(for example from a compass). Another solutionwould be to try to use information about the lo-cation of other structures in the environment suchas doors. In our case we assume the existence ofa compass that can give us information that canbe trusted enough to pick one of two hypothesesthat di�er in orientation by 180�.5 Position Tracking5.1 IdeaDoing an absolute localization is a computationallycostly process. But even more important is maybe thefact that it also requires control of the movement ofthe platform or, to be exact, the movement of the sen-sor. Therefore the idea is to do the absolute localiza-1xsize and ysize is the size of the room
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Figure 1: The original SICK data. Figure 2: Angle histogram. Figure 3: The data after the rotation.tion only once and after that track the position of therobot using odometry and laser data. Since we use amap that only consists of two numbers, the length andwidth of the room, we only have information about thelocation of the walls. Therefore only the walls can betracked. It is however relatively easy to extend themethod to track n structures in the environment.In this paper we will present a Kalman �lter basedtechnique. An important property of the Kalman �lteris the lack of ability to revise the use of measurementsin the past, that later turn out to have been erro-neously associated with a certain feature 2. Thereforeit is of importance that the risk of making a mistake,when associating data with a feature, be as small aspossible. With the use of the odometry the location ofthe robot can, in most cases, be predicted with a highaccuracy, and by using validation gates for the data,the risk is kept small, but not negligible.The pose of the robot will be represented by xk =(x;y; �)T. The system can be described byxk+1jk = xkjk + gk +wk (5)where gk is the input from the odometry and wk rep-resents the process noise. The measurement equationcan be described byzk;i = hi(xk) + vk;i; i = 1; : : : ;N (6)where hi represents a possibly nonlinear measurementfunction and vk;i is the corresponding measurementnoise.5.2 The Filtering of DataThe �ltering of data is performed as follows (seedashed rectangle in Figure 5).2This can of course in principle be solve by saving all thedata from the past.
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ow in the localization module.1. Data is run through four validation gates, one foreach wall. This could be extended to be n wallsinstead as well as other features.2. Perform a local Range WeightedHough Transform3 [10] on the validated data,only allowing parameters close to the predicted.3. Run the raw data through another validation gatewith parameters adjusted according to the resultof the local RWHT.4. Do a Least Squares �t.This will give us between 0 and 4 walls. Each wallwill have an uncertainty attached, which depends onthe data that was used to hypothesize the location ofthe wall. We have used the implementation from [7]for the least square algorithm which also provides es-timates of the uncertainty in the line parameters. Therepresentation of the walls is (�; ') where � 2 [0;1)and ' 2 [0; 360�).3Like a standard Hough transform except that the vote ofa point far away carries more weight than a point close to thesensor. The idea is that points close to the sensor tend to becloser together and therefore they will in
uence more unless arange weight is introduced.



5.2.1 The Validation GatesGiven an initial estimate of the pose of the robot, itis possible to predict where the wall(s) will be in thedata. The uncertainty in the pose as well as the qualityof the data will determine the size of the validationgates. The locations of the validation gates is basedon the prediction of the pose of the robot and the mapof the current room.
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Figure 6: Each validation gate is de�ned by two parame-ters, the size of the waist, � and the opening angle, 
. Notethat the error in the predication of the wall and the size ofthe validation gate were scaled for illustration purposes.Experience indicate that the opening angle 
 shouldbe set to zero or at least be kept very small indepen-dent of the uncertainty in orientation. This is moti-vated by the use of the Range Weighted Hough Trans-form (RWHT) [10] which will be e�ected more by out-liers the further away they are.5.3 Pose TrackingIn each cycle of the tracking loop the informationfrom the odometry and the laser scanner is fused intoan estimate of the pose of the robot. Odometry data isavailable at a higher sampling rate than the laser dataand can be used alone to update the pose of the robotin between laser scans. As the robot in our experi-ments has been moving on a largely planar 
oor witha high coe�cient of friction, the process noise (wk in(5)) is small compared to the measurement noise. Thismeans that we will have a �lter that will have a veryhard time handling errors in the odometry readings.Typical situations in which this might occur are whenthe robot: i)touches a wall and the platform is rotated,ii) drives over some obstacle (cable, threshold, etc.).In order to handle this problem it is necessary tointroduce some kind of condition on the success of thematching process. If no walls are matched for sometime, it is a strong indication that the estimate of theposition might be wrong. In such a case the estimatemust be re-initialized by doing a new absolute localiza-tion (the last pose estimate could potentially be used

x �x y �y � ��Pos1 3420 -30 7650 60 119 -0.2Pos2 2470 120 6440 -30 119 -2Pos3 1380 10 7870 -7070 118 +0.8Pos3b 1380 10 7870 -50 118 +0.8Pos4 3940 -50 3900 10 116 -0.8Pos4b 3940 -50 3900 10 116 -0.8Table 1: Results of the absolute localization. Four di�er-ent locations have been tested and in two of the locationstwo di�erent environmental settings were tested. The onlytime the routine failed (Pos3) was when it was placed closeto one of the short wall and had three chairs lined up infront of it. In this case the algorithm could not distin-guish the back of the chairs from a wall. �x, �y and ��represent the errors in the three di�erent components.as a starting point for this). Alternatively one couldincrease the size of the validation gates, correspond-ing to an increased uncertainty in the state estimate,so one might also add a deterministic amount of noiseto P in case of bad matching data. Care has to beentaken to make sure that the gates do not become toobig since the chance for erroneous matches increasewith the size of the gates. This has not been imple-mented yet.The pose is updated with the information from eachwall sequentially, using (6). It is assumed that thecovariance between the parameters of the walls areuncorrelated, to simplify computations.6 Experimental ResultsIn this section the result of several experiments, de-signed to verify the performance of the system, will bepresented. The presentation will be divided into twoparts: one for absolute localization and one for posetracking. The experiments were carried out in ourrobot lab that has been furnished like a living room inorder to insure that relevant questions are being an-swered, i.e. the system has to be able to operate in anormal house environment. Figures 7 and 8 show theliving room from two di�erent view points.6.1 Absolute LocalizationIn this test the robot was placed at di�erent loca-tions in a room and the algorithm was run to estimatethe pose of the robot. To be able to evaluate the result



Figure 7: View 1 of the living room. Figure 8: View 2 of the living room.of these experiments it is necessary to know the reso-lution of the histograms used to estimate orientationand position of the robot. When estimating the angleof the robot, the histogram had a resolution of 1:8�and the histogram giving the position had a resolu-tion of 200 mm. At each point �ve experiments wereperformed. As the resolution of the histograms werelow, the position that was estimated by the absolutelocalization algorithm was more or less the same inall �ve experiments at all locations. More or less inthis case means that when the robot was placed closeto the middle of two histogram cells, the estimatedposition shifted between those two positions.6.2 Position TrackingTo verify the performance in the case of positiontracking, the true position at each time instant shouldideally be known. This is in practice not possible.The questions we want to answer with the experi-ments are: I) is the method robust over time, II) howdoes it compare with the odometry, III) repeatabil-ity, IV) how accurate is it and V) how important isthe choice of walls to \look" at. The following twoexperiments were done:6.2.1 Experiment 1In this experiment the robot was given a chain of goalpoints to which it had go. The robot is not forced tocome exactly to every goal point, only within 100 mmof it. At the end position though, the requirementsare harder and the robot is told to stop within 5mmof the start/end point. As the test was constructedto test the robustness over time as well as to make

a comparison with the odometry, the test took about15-20 minutes to perform. By calculating the distancebetween the goal points in the chain and multiplyingby the number of laps around the chain, the theoreticaldistance the robot had to travel was found to be 180m.The robot was driven totally autonomous and anavoid behavior was active during execution to makesure that the robot did not run into any obstacles. Welet the start and the end position be the same to makethe calculations easier. The outline of the experimentis:1. Place the robot at the desired start/end position.2. Zero the robot, i.e. reset the odometry.3. Measure the pose of the robot4. Do absolute localization5. Let the tracking unit run until the uncertainty inthe position has decreased under a certain thresh-old (in this case both �x and �y has to be lessthan 25 mm). This is to give the system a goodestimate of the starting position to which it issupposed to go back.6. Let the robot make the trip around the chain ofgoal points back to the start/end point, run forapproximately 18 minutes.7. Read the result of the odometry.8. Measure the pose of the robot.As the robot moved around in the room for almost20 minutes when completing the chain of goal points



Run 1 Run 2start stop start stopx 2976 2960 3054 3053�x 15 42 14 6�xod - 723 - 1220y 7276 7288 7300 7282�y 42 39 44 49�yod - 48 - 39� 91.96 120.0 73.64 102.1�� 1.85 2.1 2.33 2.12Time 1074 sec 1125 secDist 181 m 181 mSpeed 0.17 m/s 0.16 m/sTable 2: Results of Experiment 1, designed to test ro-bustness over time, repeatability and make a comparisonwith odometry. x denotes the true x-coordinate, �x is theerror in the tracking units estimate, �xod error in odom-etry based estimate, etc ... The total time for the tests isgiven along with the theoretical distance traveled and theaverage speed.and was able to keep track of its position, robustnesscan be argued for. Even better performance wouldhave been achieved by actively controlling the direc-tion in which the sensor was looking. Table 2 showsthat the repeatability was fairly good since the robotreturned to almost the same position. The odometrywas helpless when the platform drifted for about 30�during each test. This was due to a badly calibratedwheel system on our robot. A bias can be noted inthe results. In the y direction the bias was almostthe same in all in the four measurements that weremade (about 40 mm), and in the x direction the biaswas at least always positive. The source of this biaswas believed to be an o�set in the laser data and poormeasurements of the position and orientation of thesensor in relation to the platform.6.2.2 Experiment 2In this experiment the robot was placed at an arbi-trary position in the room. It did absolute localiza-tion, headed for a speci�c goal point and stopped whenwithin a certain radius of the point (in this case 5 mm).To test the e�ects of the direction of attention, the sen-sor was facing di�erent directions in the tests. Duringthe execution of each test the sensor was facing in thesame direction except when the robot did the absolute

localization. In our setting one of the long walls wascovered with book shelves and the visible part of themore than 8 meter long wall was only about a meter.The result of this experiment showed that themethod provided means to position the robot ata given location with an accuracy of (�x; �y) =(19; 18)mm. A small bias was still present in the data(about 10 mm in both x and y), but most of it hadbeen removed by re�ning the parameters. When itcomes to the choice of walls to direct attention to, thequestion does not have a simple answer. As long asthe sensor can pick up enough points from a wall toform an estimate of the position of the wall it does notmatter much if the wall is occluded in parts by book-shelves, waste bins, etc, as long as long as the estimateof the position is good enough to make the validationgate so small that only data that comes from the ac-tual wall is used. A more thorough investigation ofthe e�ects of the choice of direction of attention hasto been done to answer the question in more detail.Due to the fact that the odometry is very good overshort distances, especially when there is compensationfor the drift in orientation, it was found that it was notnecessary for the sensor to see the wall at all times andstill keep accurate track of the position and orientationof the robot.7 Conclusion and the FutureThis paper has presented a method for tracking thepose of a mobile robot using a laser scanner. In princi-ple any scanning sensor with about the same angularresolution can be used in its place. It has been shownthat the method provides good positioning accuracyand robustness. A more accurately calibrated systemand more accurate ground truth measurements are re-quired to establish exactly how good it is.The reader should keep in mind that one of thedriving issues of this research is to see how far onecan come with a very simple model of the world. Amodel that in our case consist only of the length andwidth of rooms that are modeled as being rectangular.The performance will of course improve by introducinginformation from other features and structure, but theaim is to minimize the need for detailed information.In the future the method will be extended to a sit-uation with many rooms, and potentially also withrooms of di�erent shapes than rectangular. To extendthe position tracking technique to handle rooms of dif-ferent shapes as long as they can be represented withline segments is straight forward. It will only changethe measurement equation (the h-function) in (6).
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