
UNIVERSITY OF CALIFORNIA, SAN DIEGOLessons Learned from Applying HCI Techniquesto the Redesign of a User InterfaceA thesis submitted in partial satisfaction of therequirements for the degree Master of Sciencein Computer SciencebyJenny Lynne CabanissCommittee in charge:Professor William G. Griswold, ChairpersonProfessor Paul R. KubeProfessor Ramamohan Paturi 1997

CopyrightJenny Lynne Cabaniss, 1997All rights reserved.

The thesis of Jenny Lynne Cabaniss approved:
ChairUniversity of California, San Diego1997

iii

To my parents

iv

TABLE OF CONTENTSSignature Page : iiiDedication : ivTable of Contents : vList of Figures : viiAcknowledgements : viiiAbstract : ixI Introduction : 1A. Background on the Star Diagram : 2B. Problems with the Interface Design : : : : : : : : : : : : : : : : : : 3C. Our New Design : 5D. Overview of the Thesis : 5II Discussion of HCI Methods : 7A. Interface Design Principles : 7B. Consistency : 8C. Visibility : 9D. Language : 10E. User Scenarios : 10F. The Engineering Model and User Model : : : : : : : : : : : : : : : : 11III Analysis of the Existing Interface : 12A. Description of the Star Diagram : 12B. Detailed Description of the Interface : : : : : : : : : : : : : : : : : : 15C. Problems with the Interface Design : : : : : : : : : : : : : : : : : : 241. Problems Getting Started : 242. Problems Finding the Objects Variable : : : : : : : : : : : : : : 253. Problems Creating a Star Diagram : : : : : : : : : : : : : : : : : 264. Problems with the Trimming Capabilities : : : : : : : : : : : : : 275. General Problems with the Tool : : : : : : : : : : : : : : : : : : 28IV Redesign of the Interface Based on HCI methods : : : : : : : : : : : : : 30A. Our Initial Approach : 30B. The User Model and Engineering Model : : : : : : : : : : : : : : : : 31C. Tool-Speci�c Design Techniques : 321. Button-Based Windows : 322. Consolidation of Functionality : : : : : : : : : : : : : : : : : : : 323. Window Layout and Tiling : 33v

4. Graying : 345. Streamlining Work Flow : 34D. The Redesigned Interface : 351. Redesigning the Main Window : : : : : : : : : : : : : : : : : : : 352. Redesigning the Text Window : : : : : : : : : : : : : : : : : : : 433. Redesigning the String Search Windows : : : : : : : : : : : : : : 444. Redesigning the Star Diagram Window : : : : : : : : : : : : : : 46V Experiment and Results : 52A. Experiment : 531. Study Subjects : 532. Setup : 543. Instructions : 544. Known Issues and Problems : 55B. Results : 571. Loading the Project File : 572. Finding the Objects Variable : 573. Selecting Variables and Creating a Star Diagram : : : : : : : : : 584. Star Diagram Understanding : 595. Elision Capabilities : 596. Restructuring Planning : 607. Annotating and Trimming Star Arms : : : : : : : : : : : : : : : 608. The Restructuring Process : 61C. Interview : 611. General Comments : 612. Project Window : 623. Search Windows : 624. Text Window : 63D. Analysis of Results : 641. Determining Successes and Failures : : : : : : : : : : : : : : : : 642. Project Window : 653. Star Diagram Window : 654. Text Window : 665. Auxiliary Windows : 67E. Summary of Results : 67VI Conclusion : 69A. Contributions of the Research : 70B. Lessons Learned : 70C. Future Work : 71Bibliography : 74vi

LIST OF FIGURESIII.1 An Example of the Original Star Diagram Interface. : : : : : : : : 13III.2 Main Window. : 16III.3 Selecting a File To Display. : 17III.4 The Single File Search Utility. : 17III.5 The Text Window. : 18III.6 The Star Diagram Window. : 19III.7 Changing The Font Of A Star Diagram Display. : : : : : : : : : : 20III.8 AST Nodes In The Text. : 21III.9 The Show Arm Window. : 21III.10 The Elision Pop-Up Window. : 22III.11 The Star Diagram Manager Window. : : : : : : : : : : : : : : : : 23IV.1 The Project Window. : 36IV.2 Loading A File Into The Project Window. : : : : : : : : : : : : : 37IV.3 Saving Project Information. : 38IV.4 Adding The Omega Directory To A Project. : : : : : : : : : : : : 39IV.5 Adding Files To A Project Based On The Omega Directory. : : : 40IV.6 A Text Window. : 41IV.7 Searching For A String In A Single File. : : : : : : : : : : : : : : : 45IV.8 Searching For A String In All Files. : : : : : : : : : : : : : : : : : 45IV.9 A Complete Star Diagram Window. : : : : : : : : : : : : : : : : : 47IV.10 A Large Star Diagram Without the Side Panel Display. : : : : : : 47IV.11 Changing The Font Size Of A Star Diagram. : : : : : : : : : : : : 49IV.12 The Show Arm Window. : 50IV.13 Looking At Corresponding Code Based On A Star Node. : : : : : 50
vii

AcknowledgementsI would like to thank my advisor, Bill Griswold, for teaching and guidingme. His experience and insights had a great impact on the re-design of the interface.I also want to thank him for his patience and encouragement.I would like to thank Morrison Chen for creating the C Star Diagramrestructuring planning tool. The amount of work involved in creating the originaltool is amazing. Re-designing the interface was an iterative process. I would liketo thank all the user participants for providing useful feedback and suggestions forimproving interactions with the interface. I would also like to thank Van Nguyenfor helping to motivate me to �nish my thesis.I would especially like to thank my parents for their support, I could nothave done it without them. Their attitude towards academia was a great sourceof inspiration. I would also like to thank my mom for helping me with the writingprocess by listening to my endless hours of explanations.

viii

ABSTRACT OF THE THESISLessons Learned from Applying HCI Techniquesto the Redesign of a User InterfacebyJenny Lynne CabanissMaster of Science in Computer ScienceUniversity of California, San Diego, 1997Professor William G. Griswold, ChairIn the last decade, the power of computers has risen, while the costshave rapidly declined. With the abundance of software products currently beingdeveloped, users are less likely to spend time learning a complex interface. It isimportant that software developers not only create bene�cial services, but alsocreate usable systems. There has been much research in the area of Human Com-puter Interface (HCI), yet there are still programs that su�er from poor interfacedesigns. Chen's C Star Diagram restructuring planning tool is an example of auseful program that can bene�t from an improved interface design. Chen's user-studies revealed many problems with the interface design. We looked to the HCIprinciples of consistency, visibility, the use of language, and work-
ow scenarios toexplain the problems seen in this interface. In this research, we have redesignedthe C Star Diagram restructuring planning tool interface with the help of HCIprinciples and methods. We found that, many of the issues we faced involvedtrade-o�s between the di�erent principles of HCI design as well as the limitationsof current technology. We have created a set of domain-speci�c rules of design toaddress these problems and help us redesign the interface. Our research providesan iterative approach to the redesign of an existing interface.ix

Chapter IIntroductionIn the last decade, the power of computers has risen, while their costs haverapidly declined. Computers have in�ltrated the work place and the average useris not as likely to understand the technical issues behind software as a computeruser did a decade ago. As software is made available to a wider group of users,usability becomes extremely important. With the abundance of software productscurrently being developed, users have less of an understanding of the underlyingstructure and mechanics of a product and are less likely to spend time learninga complex interface. Software developers not only have a responsibility to createbene�cial services, but to also create usable systems.Although there has been much research in the area of Human ComputerInteraction (HCI), there are still programs that su�er from poor interface designs.Many of these programs provide useful functionality, but are di�cult to understandbecause of inconsistent and confusing interfaces.The C Star Diagram restructuring planning tool is an example of a usefulprogram that can bene�t from an improved interface design. The C Star Diagramrestructuring planning tool is used to assist programmers plan the restructuringof large C programs. The tool builds a graphical representation of a programbased on elements in the program that need to be modi�ed. This tool helpsprogrammers see the impact of their proposed changes before any modi�cations1

2occur. It also eases the restructuring process by helping programmers break downtheir task into easily manageable subtasks. Although this tool provides a usefulservice to programmers of large systems, user studies revealed problems with theinterface design. Programmers are confused by the use of esoteric language, hiddenfunctionality and inconsistent window design.Our goal has been to re-design the C Star Diagram restructuring planningtool interface. We hypothesized that Human Computer Interface (HCI) principlesand methodologies could direct us in creating a new interface. We learned that,although these methods are helpful, many of the issues we faced involved trade-o�sbetween the di�erent principles of HCI design as well as fundamental characteris-tics of the problems and limitations of current technology. Studying the existinginterface and using HCI methodologies to address these trade-o�s, we were able todesign an improved interface.I.A Background on the Star DiagramAs a large legacy system is maintained, its internal structure deteriorates.This makes further maintenance and enhancements di�cult and costly. It eventu-ally becomes necessary to restructure the system. Unfortunately, restructuring alarge system is a di�cult and error prone activity.Chen's C Star Diagram restructuring planning tool was created to helpprogrammers plan the restructuring of large systems. Many times, large C pro-grams have globally accessible data. If the structure of this data changes, it can bevery time consuming to modify all references throughout the code. By restructur-ing the program to access this data through a module, later changes to its structurewill be localized and easier to implement.The star diagram is a tree-like graphical representation of variable's def-initions and uses in the system. The programmer can plan the restructuring ofa system by addressing each unique use of the variable as presented in the star

3diagram. The tool allows the user to make remarks about each kind of use of thevariable. This support enables the programmer to comment on all planned changesto the system. The user can create multiple star diagrams based on di�erent vari-ables, and can also create a single star diagram based on multiple variables. Thesefeatures can help the programmer visualize the interactions between a group ofvariables and their uses throughout a program. The tool allows users to navigateto the source code from the star diagram to explore details as necessary. The toolis made up of 5 kinds of interacting windows: the main window, the star dia-gram window, the star diagram manager window, the text window, and the searchwindows.With very large systems, it is impossible to see a complete star diagram ona single screen. Nguyen created an advanced elision capability that can temporarilyremove irrelevant or extraneous information from the graphical view of the program[Nguyen, 1997]. This capability allows users to customize the star diagram displayand disregard certain aspects of the system representations based on the user'sspeci�c task. This added complexity, in part, motivated the interface re-design.I.B Problems with the Interface DesignChen's C Star Diagram restructuring planning tool is a working proto-type. Although there is much useful functionality in the tool, user studies [Chen,1996] revealed many problems with the interface's design. The interface has prob-lems with consistency, visibility, the use of esoteric language, and poor work-
owscenarios.The C Star Diagram restructuring planning tool interface has problemswith consistency across windows. For example, some windows provide function-ality with buttons, while other windows use buttons and pull-down menus. Thisinconsistency causes problems when windows have a common function, but it is

4placed in di�erent areas of each window. The Dismiss1 option is in the top righthand corner of all windows with buttons, but is in the top left hand corner of allwindows with pull-down menus.Many functions are not easily visible to users. Users can be unaware offunctionality because it is hidden in pull-down menus that are not labeled sugges-tively. An example of this is the string search capability in the text window. For auser to search text for a certain string, they must choose the option, Search ForString under the misc menu option. It is common for users to forget that stringsearching is considered a \miscellaneous" function.The tool also makes use of esoteric and inconsistent language on buttonsand pull-down menus. The initial window prompts the user to Add AST Files.This button mentions Abstract Syntax Trees (ASTs) because the tool reads in text�les and creates an AST representation of the program. This button is promptingthe user to add all �les to the tool that make up the user program. Users expressworry that they are adding incorrect �les.Users have di�culty with some tasks because they take multiple repetitivesteps, or the steps are not obvious to the user. These are problems with work-
owscenarios. An example of this is the elision capabilities in the star diagram window.The user must perform multiple steps that involve selecting a node twice to removeit from a star diagram.There are many times that these problems overlap. An example of con-
icts between visibility and work
ow is the inherent problem of window prolifer-ation. As a user explores the system, many windows are created to examine stardiagrams and program text. The user wants to see all the windows they have dis-played, but there is only so much screen space. Our challenge has been to resolvethese con
icts.1Button names are in bold font to distinguish them from the regular text.

5I.C Our New DesignAfter looking at the user study conducted by Chen [Chen, 1996], we seethat the existing interface design has some shortcomings and the users can bene�tfrom an improved interface design. When designing a user interface, one tries tofollow general user interface design principles. But following these guidelines is notenough to create a good interface. The guidelines are quite general and do not sayhow they should �t together in an overall design. Each system has its own complexinteractions and constraints that are not accounted for in general methodologies.Our �rst attempts at using HCI principles for improving the interfacewere inadequate. Because we began with an existing interface design, we startedby trying to look at the individual problems and �x them in isolation. We realizedthat this was not the right approach and we turned to the concept of the usermodel to help direct us in creating a more uni�ed, comprehensible system.By looking to the user model to help guide us, we were able to resolvecon
icts between the principles and create a tool with better work
ow and betteruser understanding of the capabilities of the tool. Our approach to redesigningthe star diagram's interface was a multi-step process. We studied the existing stardiagram tool's functionality and the introduction of Nguyen's elision functionality.With the help of the user model, we were able to come up with an interface thattook into account many engineering trade-o�s. To evaluate our new design andshow improvements in user interaction, we compare user studies performed by usand Chen.I.D Overview of the ThesisFollowing this introduction, section 2 describes the principles and meth-ods currently in place for interface design. Section 3 analyzes the problems withChen's interface design along with the added complication of the elision features.Section 4 explains our process and solution for redesigning the interface. Section 5

6presents our �ndings from user studies conducted on our new design. Conclusionsare reported in section 6, in which we summarize our research and discuss ideasfor further research in this area.

Chapter IIDiscussion of HCI MethodsIn this chapter we review the Human Computer Interaction (HCI) prin-ciples, theories, and methods that have helped guide us in improving the stardiagram's interface. In particular, we examine the principles of consistency, visi-bility, use of language, and work
ow scenarios. We will also look at the di�erencesbetween the engineering model and the user model and how the user model conceptis applicable to our interface design.II.A Interface Design PrinciplesTheories are formed from a group of failures and successes. As we ap-proached the redesign of the star diagram we looked to the principles and theoriesof HCI as a way of explaining how the star diagram is successful or unsuccessful.We read a considerable body of HCI literature, and found the principles of con-sistency, visibility, use of clear language, and work
ow scenarios to be the mosthelpful in creating a new interface design for a tool like ours. Although these prin-ciples are extremely general, they have helped us explain many of the problemsseen in Chen's interface, and directed us in creating an improved interface.7

8II.B ConsistencyWhen creating a user interface, consistency is one of the most obviousyet ambiguous goals. Webster's Dictionary de�nes consistency as the \harmonyof parts or features to one another or a whole." As a user works with a system,a mental model is created. When a user encounters a new interaction with thesystem, previously knowledge is used to guess at how this new functionality willwork. If there is no consistency between activities, the user must create a morecomplex view of the system, or try to remember the multiple models needed towork with the system [Brown, 1988, page 9].When trying to implement a consistent interface, it is important to makesure that consistency is correctly applied to the interface [Brown, 1988, pages 21{24]. Aspects of the system that behave similarly should look similar. By havingsimilar aspects of the system look and react similarly, the user can make assump-tions about newly encountered functionality in the system or simply improve theuser's recall regarding infrequently used features. This helps to create better un-derstanding of the system.Consistent Window Layout. The issue of consistency amongst similar itemsis pertinent to the lay-out of windows in the tool. There should be conceptualintegrity amongst all windows in an interface. Similar functionality amongst win-dows should be consistently placed. For example, if all windows have a Dismiss,it should be in the same place in all windows [Brown, 1988, page 32].The interface should also have a consistent way for users to interact withall windows of the tool. If some windows use pull-down menus, then all windowsshould use pull-down menus. Likewise, if many windows are created with buttons,all windows should have this form of interaction. It is confusing to have somewindows with very visible functionality yet other windows have their functionalityhidden in pull-down menus.

9Consistent Language. There should be consistent use of language betweeninteracting windows. If the user chooses an option from one window, the followingwindow should have a title with a similar name to the option selected. This helpsreassure users that the window being displayed is correct based on their selection[Brown, 1988, page 101].Also, all windows should use the same word choice for the same function-ality. It is distracting to use di�erent words such as Dismiss, Exit, and Cancelin di�erent windows, when they all mean the same thing.Although consistency is a crucial principle in any interface design, it isimportant to remember that creating a system where everything looks similarcan lead to confusion. Functions that behave similarly should look similar, whilefunctions that behave di�erently should look di�erent [MacLennan, 1987].II.C VisibilityIt is important to give users enough information about their current taskthat they can make an informed decision about how to proceed. This has beencalled the Answer-Question Paradigm [Owen, 1986]. It addresses issues of (1) wheninformation is presented, (2) what type of information is presented (3) how it isrepresented. This paradigm relies on the fact that recognition is more powerfulthan recall [Preece, 1994, pages 118{119]. The user should receive suggestions fromthe tool as to what their next activity can be. The information should not be toointrusive and interfere with a user's activities, but it should also be easily obtainedif the user needs it.Status Information. Many times, programs have status information. This in-formation should be easily available and visible to the user, but should not beintrusive. One alternative is to display the status information on the perimetersof a window. Many times users are not aware that status information is availableand will not actively search for it.

10II.D LanguageWhen deciding on word choice one should follow general principles ofconciseness, clarity, and consistency [Brown, 1988, pages 21{24]. A designer shouldalso avoid the use of technical jargon because it can confuse or intimidate users.The designer should look at the audience of a user interface to determine what typesof terms will be clear and meaningful. Users brings a certain amount of knowledgeto their interactions with the interface. It is important for the developer of thetool to look at the common knowledge of the user-community.II.E User ScenariosScenarios are personalized, �ctional stories with characters, and events[Carroll, 1991, page 81]. They are extremely useful in helping the developer an-ticipate how users will interact with the tool. They help designers understand therami�cations that certain design decisions will have on user interaction with thetool. It is important to examine di�erent scenarios to get a variety of viewpointsof a system. Scenarios can bring out new requirements of the system and see pos-sible problem spots in the interface [Preece, 1994, page 462] [Carroll, 1991, pages293{295].Common Scenarios. It is important to include especially common scenarios.When interface designers recognize common scenarios, they can streamline them,helping to lessen the user's frustration and mistakes and increase productivity.Unusual scenarios can have slightly more complicated interactions.It is important, however, to not create a system that is based solely ona list of standard scenarios. Users continually surprise developers and use a toolin unanticipated ways. If a tool is only usable with a certain set of scenarios, itwould be very limiting [Carroll, 1991, pages 293{295].

11II.F The Engineering Model and User ModelHCI methodology recognizes two distinct models of a given system, theengineering model and the user model [Norman, 1986]. The engineering modelrepresents the way in which the system engineer conceptualizes and realizes thetool. The user model represents the way in which a user conceptualizes the tool.When designing a system, an engineer wants easy access to the internals of thesystem and wants all functionality made available in the interface. Exposure tothe internals of the system aid in testing but can make it di�cult for the typicaluser to understand the system. Users can adapt to any user interface, and as engi-neers create a model of a system, they are adapting to their own model, loweringawareness of its inadequacies for its intended users. The engineering model canconfuse a typical user, who has no knowledge of the internals of the system.The user model characterizes how a user conceptualizes a tool. As userswork with a tool, they are creating a model of the tool based on the work they areperforming and on the way in which the tool presents functionality. In creatingscenarios that stress user interaction with a tool, it is possible to create a muchmore user-centered interface design.Although individual users create their own model of the system, it ispossible to de�ne traits of the \typical" user to help create a more user-centereddesign. When creating a user image, it is important to consider the audience'slevel of education and the types of tasks they will be performing with the tool. Aspart of creating a more user-centered model, functionality should be hidden if ithas little meaning to the user or can be dangerous if used incorrectly.

Chapter IIIAnalysis of the Existing InterfaceIn this chapter we discuss the original Star Diagram. We describe the CStar Diagram restructuring planning tool and its original interface. We examinesome of the problems seen with the interface based on personal observation andthe user studies conducted by Chen [Chen, 1996]. We also look at the added elisionfunctionality introduced by Nguyen [Nguyen, 1997] and the e�ect this has had onthe interface design.III.A Description of the Star DiagramThe Original Star Diagram Restructuring Tool. Bowdidge's star diagramis a graphical tool to assist in understanding and restructuring C programs [Bow-didge, 1995]. The star diagram builds a tree-like graphical representation of a datastructure and its de�nition and uses in a program (Figure III.1). The root nodeof a star diagram represents a data structure to be modi�ed. The children of theroot node represent language constructs in the program that directly reference thedata structure. The children of the next level represent references to the previouslevel of nodes, and so on. The references to the root node are expanded out to thefunction level. A node having a \stacked" appearance (see the list-ref node in�gure III.1) indicates there are at least two statements that use the parent node12

13

Figure III.1: An Example of the Original Star Diagram Interface.and have the same language constructs.To allow for a better understanding of the star diagram display, each nodein the star diagram is linked to a text view. In the case of \stacked" nodes, theuser can choose from a list of single-line text entries that are connected to the textviews. To perform a meaning-preserving restructuring transformation on theprogram, the user selects a node and applies a transformation to it. The toolchecks to make sure the change will leave the program's functionality unchanged,and applies the transformation. The types of transformations a user can performinclude creating a function from a group of statements, renaming an existing func-tion, and inlining a function.Bowdidge's tool is useful for planning and carrying out small restructuringtasks, but has problems when dealing with large systems. Examination of star

14diagrams for large C programs reveals that viewing a star diagram for widely usedvariables in a large program is problematic [Griswold et al., 1996] because the stardiagram can be quite large, compromising comprehension. Also, for very largeprograms, transformations can be too time consuming.The C Star Diagram restructuring planning tool. To make the tool usefulwith large programs, Chen modi�ed the star diagram by removing the meaning-preserving restructuring capabilities and turned it into a planning restructuringtool [Chen, 1996] [Griswold et al., 1996]. By replacing the tool's transformationalcapabilities with a plan-recording capability, Chen minimized the computation-intensive activities of the tool, allowing it to be used on larger programs withbetter performance.Additionally, to help users see more of the program representation on asingle screen, Chen modi�ed the tool to allow temporary removal of nodes fromthe star diagram. Users can perform vertical and horizontal elisions to removeextraneous information. A vertical elision removes a node and all paths that runthrough it. An elided path can be displayed in isolation in a smaller star diagramwindow. Once the node and its paths are removed, the remaining star diagram ismuch smaller and the layout is more compact. Horizontal elision removes nodesfrom the right-hand side of the screen after a certain depth, leaving the functionand �le nodes. In one of Bowdidge's and Chen's user studies [Griswold et al.,1996], it was observed that users work from left to right in the star diagram, andmuch of the time the nodes on the right-hand side of the screen can temporarilybe removed.Nguyen has continued to enhance the C Star Diagram restructuring plan-ning tool's capability for displaying large programs by creating a more advancedway for users to remove extraneous nodes from a star diagram [Nguyen, 1997].Users can now elide a node based on the kind of node it is or a user speci�edstring. For example, the user can trim all nodes that are \case" statements or the

15user can trim all nodes that have a user speci�ed string, such as \LHS." The toolcontinues to support horizontal and vertical elisions.The C Star Diagram restructuring planning tool is a prototype devel-oped to determine if planning restructuring without automated transformationsis helpful to programmers. The tool is useful, but it has been observed that thetool has user interaction problems. Chen's interface is an example of an engineer-ing model. The tool provides useful functionality, but is di�cult to understandfor users not familiar with the interface. The interface is implemented in Tcl/Tk[Ousterhout, 1994]. One of the driving factors in creating this interface was theease of implementation based on the intrinsic properties of Tcl/Tk. For example,there are places in the interface where design decisions were based on the way thatTk handles events such as selecting and unselecting items. Once an action hasbeen performed on a selection, it is unselected and the user must reselect the item.When creating the prototype, it was important for the designers to have access tothe internals of the program when designing and testing the system. For the sys-tem to be useful to a broad range of users, we need to create a more user-centereddesign of the interface.III.B Detailed Description of the InterfaceThe interface primarily consists of �ve interacting windows. In this sec-tion we will look at a general scenario and describe a typical user's interactionswith the tool.Selecting Files. The �rst activity the user must perform is to add �les to thetool. The main window consists of �ve buttons (Figure III.2). The user selectsthe �rst option, Add AST File(s), to add the �les that make up their project.The Add AST Files pop-up window allows the user to make selections (FigureIII.3). The user can highlight �les and add them to the project, or add all �les in adirectory by choosing the Add ALL Files to AST option. As the �les are read

16
Figure III.2: Main Window.in to the tool, they are processed. This can take a few minutes for large programs.Looking Through Project Files. Once all �les are read in, the user can beginto search through the �les to �nd the variable(s) of interest. A �le can be viewedthe second option on the main window, Display AST File(s). This option bringsup another window that will display the list of �les that have been loaded into thetool and the user can select one of these �les to be displayed. Each �le is displayedin a text window that has pull down menus for exiting the window, creating a stardiagram, and searching the �le for a certain string (Figure III.5).Selecting Star Roots. To �nd the variable of interest, the user looks throughthe �les, utilizing the Search for a string option under the Misc menu on thetext window. This option brings up a separate window that will search througha �le (Figure III.4). In this search window, a user enters the text to search for,and either presses return or the Highlight button. All instances are highlightedin the corresponding text window. The user can use the First, Next, Previous,and Last buttons to navigate through the �le.Once the variable is found, the user double-clicks on the item to selectit as part of the root set. The use of color helps the user distinguish betweenvariables and non-variables. When selected, a variable is highlighted in red withblue lettering, while a non-variable is highlighted in red with black lettering. Theuser can select multiple star roots by continuing to double click on variables in thetext view. Once a variable is added, it may not be removed from the root set.

17

Figure III.3: Selecting a File To Display.
Figure III.4: The Single File Search Utility.

18

Figure III.5: The Text Window.Creating a Star Diagram. When the user selects the Create Star Diagramoption, the root set is displayed and the user con�rms they are creating a stardiagram with the listed roots. This con�rmation was added because users do notrealize they are adding variables to the root set by double-clicking on them. Userscan end up with a star diagram that is impossible to understand because of thenumerous variables in the root set. If the user has added too many roots, theymay clear the complete collection of roots with the Clear Roots option and startthe process over again.Viewing and Manipulating a Star Diagram. The star diagram window isequipped with a side panel that will display elision information (Figure III.6). Thisside panel can be hidden temporarily to gain more screen space when displayinglarge star diagrams. Once a user creates a star diagram, they can begin planningthe restructuring of their program.

19

Figure III.6: The Star Diagram Window.Status Information. When a star diagram is displayed, the user can �nd outhow large it is by selecting the Number of Nodes option under the Bu�ermenu. This creates a pop-up window that displays the number of nodes in thestar diagram and how many distinct paths are being displayed. This helps theuser get an idea of how large a star diagram is if they can not see the whole stardiagram on one screen.Adjusting the Font for a Star Diagram. After a star diagram is created,the user can adjust the font size for the nodes in the star diagram with theFont option on the star diagram window. The user is allowed to enter in a fontname, such as -Adobe-Helvetica-Medium-R-Normal{*-180-* or choose fromSmall, Medium, Large and Huge buttons (Figure III.7).Corresponding Source Code. A user can look at the corresponding text fora node in the star diagram by selecting the node, and then choosing the Show

20
Figure III.7: Changing The Font Of A Star Diagram Display.Corresponding Source Code option under the Source Code menu item. Ifthe the node is a stacked node, a window displaying all text examples is displayed(Figure III.8). If the node is not stacked, it will bring up a text window with thecorresponding text highlighted in red. A short cut for displaying the associatedtext is to double click on the node in the star diagram.Annotating Star Nodes. As a user explores the star diagram a node can beannotated to help understand the functionality of that star arm in the tree. Onceannotated, the information about the arm is displayed in the side panel, TrimmedStar Arms And Remarks. Once in this side panel, an arm can be displayed byitself in a smaller star diagram window (Figure III.9). This smaller star diagramwindow has a subset of the original star diagram's functionality. One cannot makefurther annotations or elisions on this window.Trimming Star Arms Eliding a star arm is a multi-step process. The user mustclick on a node and select the Select Star Arm option to highlight the arm. Theuser then selects the node again and chooses theTrim Selected Star Arm optionto elide the highlighted arm. Horizontal elision is similar to annotation in that anode can be selected for further description, but the arm is also removed from the

21
Figure III.8: AST Nodes In The Text.

Figure III.9: The Show Arm Window.

22
Figure III.10: The Elision Pop-Up Window.star diagram. This helps when the user knows that a path is not relevant to therestructuring process or the path has already been considered.Advanced Elision Capabilities. For performance reasons and the addition ofnew elision functionality, the star diagram is now created with only the root nodedisplayed. The user selects the Elision function from one of the star diagramwindow menus and gets a pop-up window containing the types of nodes a user canexclude (Figure III.10). The user can then look at the elision capabilities andspecify which nodes should not be displayed before the star diagram is drawn thefor the �rst time.Creating Multiple Star Diagrams. To better understand the impact of changeon the program, a user may create multiple star diagrams. To look at previous stardiagrams a user refers to the Star Diagram Manager window (Figure III.11).This window lists a description of all star diagrams created. Each star diagramentry has the list of root nodes used to create the star diagram and an annotation�eld for describing what the star diagram is used for. The star diagram's annota-

23
Figure III.11: The Star Diagram Manager Window.tion �eld can be modi�ed from the manager window. Each time a star diagram iscreated, it is added to this master list.Display Star Diagram(s). After a star diagram has been created and dismissedfrom the display, it can be displayed again at a later time. Since the managerwindow keeps track of all star diagrams created, the user can select the star diagramand display it again from this window. This also allows users to have multiple stardiagrams being displayed at any given time.Combining Star Diagrams. From the star diagram manager window, a usercan join two star diagrams to create a new star diagram whose root set is theunion of the two star diagrams. This is useful when the user needs to take a lookat interactions between two sets of variables.Destroying Star Diagrams. If a star diagram is no longer relevant to theuser's task, the star diagram can be destroyed permanently from the star diagrammanager window. The user is asked for con�rmation that the star diagram is beingdestroyed and there is no longer a record for the star diagram.Chen's tool provides rich functionality, but was not designed based on the

24HCI principles we described in chapter 2. By explaining the problems observedwith the interface in terms of HCI principles, we hope to improve the interfacedesign.III.C Problems with the Interface DesignChen's user studies of the C Star Diagram restructuring planning toolrevealed many problems with the interface [Chen, 1996]. Three groups of partic-ipants were used to see the variant interactions users have with the tool. Eachexperiment had a group of two users working together to encapsulate the Objectsvariable in the C program, Omega. All groups were given a brief tutorial of thetool to help them start the task. These studies have been very helpful in revealingproblems with the interface design. In the following sections we will focus on thecommon problems users experienced with this tool.III.C.1 Problems Getting StartedVisibility and Use of Language. The users had di�culty with the initialstages of using the tool. The main window consists of �ve buttons that are di�cultto understand for initial tool users. This confusion can be attributed to visibilityand language problems. First time users were puzzled by the �rst button on themain window, labeled Add AST File(s). All subjects were unclear on the termAST File. Chen used the term AST Files because once the �les are read into the tool, they are used to form an abstract syntax tree (AST) representationof the program. This use of language is esoteric. It is too closely related to theengineering model, revealing the underlying implementations to the user. Thereal meaning this button needs to convey is for the user to add all �les to therestructuring planning tool that make up the user's program.

25III.C.2 Problems Finding the Objects VariableWork Flow. Once �les have been selected, the users can begin looking throughthe �les using the text windows. Their task was to look for the Objects variable.In order to have a star diagram based on this variable, they had to �nd the variablein one of the text windows and select the variable. The groups began lookingthrough the text windows for the variable, utilizing the Search for a stringfunction under the Misc menu option in the text window. Since there was noSearch All Files option in the tool it was di�cult to search the whole programfor the variable. In the end, all three groups resorted to the UNIX utility, grep, tosee which �les the variable was in. Since all groups initially had di�culties �ndingthe Objects variable, it suggests that this type of work
ow scenario had not beenanticipated. The tool needs to be modi�ed to handle this scenario successfully.Visibility. When looking at the text windows for a search capability, one group�rst went to the File menu to �nd a grep-like utility. The group then searchedthrough the menu options until they found the Search For String function underthe right most menu option, Misc. The placement of this option is not consistentwith other software products and caused some degree of confusion in all groups.Use of Language. Two of the three groups had di�culties using the SearchFor String window. The options for searching the text areHighlight and Clear.Once lines containing the search string are displayed, a user can use buttons forlooking at the First, Next, Previous, and Last entries. When using this win-dow, two of the groups seemed confused about how to initiate the search. Thetool searches for the string if the user hits return in the text entry portion of thewindow, or selects the Highlight button. All groups were unclear on what theHighlight button did. The Highlight button is an example of poor word choiceand would be more clear if the button was labeled as OK or Search instead ofHighlight.

26III.C.3 Problems Creating a Star DiagramColor. Once the Objects variable was found, the subjects needed to create astar diagram. To select the variable as a root, they double-clicked on the element.All groups questioned the use of color in the text window. After clicking on afew variables and non-variables, all groups realized what the use of color meansin the text window. When a variable is selected, the lettering remains blue afteranother selection is made. Groups found it di�cult to distinguish between selectedvariables, which have dark blue lettering, and unselected variables, which haveblack lettering, based on these subtle color di�erences.The use of color also caused other problems. When the subjects tried toselect root variables, they were confused by the text highlighting from a Searchfor a string command. The search for string window highlights all occurrences ofa string in the text window. They assumed that since a variable was highlighted,it was selected as a root node. When they tried to create a star diagram based onthis selection, the tool returned an error saying they must select an identi�er togenerate a star diagram. After this error message the subjects realized that theymust double-click a variable to select it.Work Flow. One group crashed the tool because they added bad roots to thestar diagram. Other groups realized they had unexpectedly added roots before theydisplayed the star diagram. It was common practice for groups to indiscriminatelydouble-click on variables in the text window, not realizing that by doing so theywere adding these elements to the root set for a new star diagram.Language. The font window was not heavily used by Chen's subjects, but otherusers have noticed problems with this window. Although this window gives theuser great
exibility in creating a star diagram with any font. It is an example ofwhere the engineering model is showing through the design. By allowing the userto enter in a font name, the tool is allowing for the maximum
exibility, but this

27functionality is not very meaningful when the font names are esoteric and too longto remember for the typical user.III.C.4 Problems with the Trimming CapabilitiesUsers seem pleased with the layout of the information in the main portionof the star diagram window. Much research has already been devoted to thiswindow [Chen, 1996] [Bowdidge, 1995]. But there are still some problems with theoperations on the star diagram.Use of Language. In Chen's tool, there is esoteric language in the star diagramwindow. When a star diagram is displayed, the user can remove certain paths orarms of the star diagram that are of no interest or have already been processedby the user. The menu option that is used to remove these paths says, elide stararm. To elide something is to omit it from consideration, which is exactly whatis happening in the tool, but it was observed that many tool users do not knowwhat the word `elide' means.Work Flow. Users were frustrated by the multi-step process of eliding a stararm. All groups had problems with this task and a member of one group questionedaloud why they had to take so many steps to trim an arm. This was a commonscenario seen with all groups, which indicates we need to modify the tool to provideeasier user interaction for this process.Visibility. Two groups initially hid the side panel to look at large star diagrams.Once they had removed the side panel, they were not sure how to get it back.Because the functions are hidden in menus, the Show Panel option was noteasily seen by the users. After looking through most of the menu options on thestar diagram window they were able to �nd the Show Panel option. This optionneeds to be more visible.

28While trying to look for uses of the Objects variables, one group per-formed simple elisions, such as eliding all de�nition paths from the star diagram.Another group wanted very speci�c functionality from the tool. The group wantedthe capability to look at just the uses of the variable on the right-hand side of anequation, but no functionality was provided for this type of elision. Nguyen addedelision capabilities to handle situations like this one.Visibility and Work Flow. The addition of Nguyen's advanced elision capa-bilities has caused confusion for users. With these additions, the work
ow of thestar diagram window has changed. When �rst time users look at the star dia-gram they are puzzled by the fact that their star diagram has only one node (theroot node) in it. We observed a group of reactions to this new feature and no�rst time user could �gure out how to get the rest of the star diagram displayed.When implementing this feature, it was easier to add the functionality to the bot-tom of an existing menu than create a new menu. This is an example of ease ofimplementation taking precedence over user understandability.III.C.5 General Problems with the ToolAll groups were frustrated when functions took longer than a few seconds.One group wanted a stop watch displayed and all groups wanted some way of tellingthem that the system was still working on their last request. An example of thisis when users �rst loaded their �les into the tool. As the tool reads in a �le, itprocesses it and adds it to the tool's internal representation. This operation cantake a few minutes for large systems. All groups wondered if they were using thetool incorrectly because of the delay time. They felt much better when they sawthe window that displays debug messages, showing them that the �les were beingprocessed. The subjects said they did not mind waiting, but it was important totell them that this pause in activity is expected by the tool and is not a problem.There was also a general feeling of confusion by one group that remained

29with them for the entire experiment. After working with the tool for an hour, onemember of the group commented that they still had very little understanding ofhow the tool works. After an hour of experimenting with a system, users shouldfeel more con�dent about their understanding of the tool.After looking at these user studies it is obvious that there are problemswith user understanding of the tool. Now that we understand why some of thetool's functionality is di�cult to use, we must look at how we can �x these problemsusing HCI methodologies.

Chapter IVRedesign of the Interface Basedon HCI methodsIn this chapter we will discuss our redesign of the interface based onHuman Computer Interaction (HCI) principles and methods. We discuss how ourinitial approach, based on HCI principles, was not adequate for redesigning theinterface. We look at the principles used in our design and what techniques weapplied to our design, as well as describe our new interface.IV.A Our Initial ApproachOur initial approach involved looking at isolated problems explained bythe HCI principles of consistency, visibility, language, and scenarios. Four exam-ples follow.Creating Consistency. One of our initial changes was to have consistent place-ment of the dismiss button in all windows. In the original interface, some windowshave a pull-down menu labeled File in the top left corner that has a Dismissoption, while other windows use a Dismiss button placed in the top right cornerof the windows. To create consistency, one of our new design decisions requires30

31all windows to have a Dismiss button in the top right hand corner of the mainwindows in the interface.Using Clear and Concise Language. Two examples of esoteric language were�xed in our �rst stages of redesign. We immediately �xed the right most buttonon the main window of the tool by removing the AST acronym, replacing thetext Add AST Files with Add Files. There was also a problem with userunderstanding of the word `elision' in the tool. In the star diagram window wereplaced the text Elide Star Arm with Trim Star Arm.Scenarios We knew that the process of trimming star arms is a time consum-ing activity. We tried to streamline this process. We removed the need for �rstselecting a star arm before annotating or trimming it. In our interface, the userdouble-clicks on a node, selecting and highlighting the arm, and then chooses thetrim or annotate buttons.Although these modi�cations are useful for our end product, we came torealize it was a shallow approach to coping with the problems of the star diagraminterface. We did not have an overall theme to our redesign. Many times we wouldmake changes and later justify them with HCI principles. These principles wereapplied in isolation. This initial phase had no clear unifying approach and we werenot making any real progress on the redesign of the interface.IV.B The User Model and Engineering ModelA turning point in our design process was the realization that we wereworking with an existing engineering model when in fact what we wanted wasa user model (see section II.F). This realization led us to question all designdecisions in the original interface and create a more uni�ed model that is closer tothe user model.In most of our solutions, one can see aspects of consistency, use of clear

32language and visibility in harmony. Unfortunately, there were also times these HCIprinciples con
icted with each other and caused complex design trade-o�s. Oneof the most pressing trade-o�s occurred between issues of screen real estate andvisibility. When looking for a solution to these problems, we consulted the usermodel and looked at work
ow scenarios to determine the best way to handle theseissues. Although the user model is only a concept, we were able to operationalizeit by creating tool-speci�c rules of design. These rules help unify the di�erent HCIprinciples and resolve con
icts to create a more user-centered interface design.IV.C Tool-Speci�c Design TechniquesThe new design is based on a combination of HCI principles and carefullymanaged design trade-o�s. These design rules re
ect our best understanding ofthe user model.IV.C.1 Button-Based WindowsBecause it is di�cult to remember where functionality is located in theoriginal tool, we replaced all menu options with buttons for a completely button-based windowing system. Also, to enforce consistent placement of similar func-tionality and streamline scenarios, we determined that all main windows will havea Dismiss button placed in the top right corner. As we began applying this con-sistency and visibility technique to our design, we discovered that there was toomuch functionality in some windows' menus for a simple expansion to buttons.IV.C.2 Consolidation of FunctionalityIn the original design, similar functionality for an interface item can bespread out across multiple windows making it di�cult for users to �nd and un-derstand certain functionality. An example of this is the Make Star Diagram

33function in the text window. Making a star diagram is not related to a text win-dow, and should be grouped with other star diagram functionality. To improvevisibility, as much as possible, we enforce the rule that the functionality only actson the window it is placed in. This will help users �nd functionality more easily.This design decision has also helped reduce the number of functions in windows,enabling us to move to a strictly button-based interface. This problem made usre-evaluate the placement of all functionality.IV.C.3 Window Layout and TilingA big concern when redesigning the interface was the trade-o� betweenvisibility in a single window, screen real estate and the proliferation of windows,which can cause one window to hide others. This problem was especially prominentin the star diagram window. One way of alleviating the problem of window prolif-eration was to create a quick and consistent way to dismiss all windows (IV.C.1).Another way we minimized the number of windows on the screen was throughtiling. Although this does not reduce the demand for screen space, related sub-windows can be raised and lowered together, easing scenarios involving windowmanagement. Tiling is especially useful in the star diagram window. In the origi-nal tool, this window has a side panel for the trimmed arms along with a pop-upwindow for the elision capabilities. The pop-up window causes problems becauseit either interferes with the display of the star diagram or is hidden by other win-dows. If a window requires related sub-windows, we tiled the large window toinclude these extra windows.When creating the layout of tiled windows, we used scenarios to assistus in ordering the functionality and related data based on how people processinformation in a left-to-right, top-down manner and on the order in which theusers will need the functionality.Even though tiling is useful, we had to be careful not to create windowswith too much information in them. A user can comprehend only a certain amount

34of information at one time and a window with too much functionality becomescluttered and incomprehensible [Brown, 1988, page 37]. We did not create windowswith more than four tiled sub-windows.There has also been a visibility trade-o� with the use of tiling. Althoughtiling helps a large window and its sub-windows become more visible, it interfereswith the ability to see other windows. We realized the window tiling might be aproblem with the star diagram window and have tried to minimize the problem byallowing the user to temporarily remove tiled portions of the window.IV.C.4 GrayingThere are many times in the original interface where users are allowed toselect a function but receive an error message if they cannot perform the function.These error messages explain what the user did wrong. A user must acknowledgethe error message by selecting the OK button before they can continue. To avoidincorrect usage or the tool and increase visibility of viable options, we gray out allbuttons that can cause error pop-ups at a given stage in the user's activities.IV.C.5 Streamlining Work FlowThe original tool has many repetitive multi-step processes. We stream-lined these work
ow scenarios to eliminate extraneous steps and increase userwork
ow.Short cuts are important to expert tool users. We have not created aformal way of designing short cuts. They were implemented after basic interfacefunctionality was implemented. We observed common usages of the tool and foundways to expedite the activities.

35IV.D The Redesigned InterfaceIn the following sections we describe the windows for the redesigned in-terface. The redesigned tool has four main windows along with other sub-windowsthat will be described here.IV.D.1 Redesigning the Main WindowWe began with redesigning the main window. We used a new metaphorfor this window, the project (Figure IV.1). The project is not the program beingrestructured, but the task of planning the restructuring of the program. Thiswindow displays all project-related information.Project Window Layout. The project window is an example of a tiled window.We combined the pop-up windows from the original main window into a single,tiled project window. This window is made up of four distinct sections, generalproject information, a directory listing, a �le listing, and a star diagram listing.All functionality in the Project Window is laid out in a top-to-bottom, left-to-rightorder based on the typical user's need for functionality. The caption is placed inthe top left corner to encourage users to enter a caption for their restructuring task.The other buttons along the top of the window are the Load, Save, Help, andExit. Although help is not implemented in this version of the tool, we providedthe button so that help functionality can easily be added to the interface at alater time. Users must select a directory before they can select �les. After thedirectories are added, �les must be added. And after directories and �les havebeen added to the project, the user can begin creating star diagrams and will needthe star diagram manager options, which are placed at the bottom of the projectwindow.Project Window Graying. The project window utilizes graying. When theproject window is �rst displayed, the only available options are Set Caption,

36

Figure IV.1: The Project Window.

37

Figure IV.2: Loading A File Into The Project Window.Load, Save, Exit, and Add Directories. As the user enters more informationabout a project, more options become available. Once there is at least one directoryin the directory box, the Add Files option becomes available to the user. After�les are added to the project, the Display File and Search For A String InAll Files buttons become available to the user. After a star diagram is created,the star diagram manager functions are ungrayed.Caption. The caption can be entered by either selecting the button Set Cap-tion or double-clicking on the caption entry box. The original interface designdoes not have a caption �eld. This was a simple addition to help the user de�netheir task. This can also help a user understand a previous restructuring projectwhen using the Load option.

38

Figure IV.3: Saving Project Information.Load a Project. The user can load the caption, directory and �le informationwith the Load option from the project window. A pop-up window is brought upthat gives the user a choice as to what �le they load from (Figure IV.2). Tohelp users identify previous planning �les we have the naming convention that allproject �les ending with the .sdp (Star Diagram Planning) su�x are automaticallyrecognized by the tool.Save a Project. The user can save caption, directory and �le information withthe Save option from the main window. A window is brought up that gives theuser a choice as to what �le they save to (Figure IV.3).Add Directories. Many times with large programs, the source code is dividedbetween multiple directories. The directory portion of the project window allows

39
Figure IV.4: Adding The Omega Directory To A Project.the user to add a collection of directories. A pop-up window is used to select thedirectories. The user can browse through the directory hierarchy and select anddeselect directories with the >> and << buttons, respectively (Figure IV.4).Add Files. After selecting the directories needed, the user selects the �les tobe used in restructuring planning. When the user selects the Add Files option,a pop-up window is displayed, similar to the directory selection process (FigureIV.5). If there are multiple directories, the user must �rst select a directory andthen add �les from that directory. The process must be repeated for all projectdirectories.Display File. Once �les are added to the tool, the user can display the �les.Only the �les from a single directory are displayed in the project window at anygiven time. The user selects a directory and the �le box changes to display the�les from the selected directory. To look at a �le, the user selects the �le andthe Display File button (Figure IV.6), or simply double-click on the desired �leentry as a short cut.

40
Figure IV.5: Adding Files To A Project Based On The Omega Directory.Search for a String in all Files. If a user is not sure where a variable is locatedthey can search for the variable in all �les using the Search For A String InAll Files button. This is new functionality. We had di�culty deciding where toplace this functionality. If the search function was placed in the text windows,users would assume that it acts on a single text window. But placing the searchfunction above the �le list in the project window also has its problems. TheDisplay Files button in the project window acts on a single �le and it is easy forusers to assume that if the search function is also placed above the list of �les, ittoo should act on a single �le. We placed the function on the project window forvisibility and consistency reasons, and since the function is slightly out of place inthis window, we clari�ed the meaning of the function by labeling it with slightlymore verbose language. The Search For A String In All Files button creates apop-up window that prompts the user for a string (Figure IV.8). The string doesnot need to be a complete variable name, it can be any sequence of characters.Star Diagram Manager Functionality. For visibility reasons, we moved thestar diagram manager functionality to the project window. The manager function-ality includes displaying star diagrams, annotating a star diagram, combining star

41
Figure IV.6: A Text Window.diagrams, deselecting star diagrams, and destroying star diagrams.Consolidation of Functionality. Because of our consolidation of functionalitytechnique, we were able to combine two functions behind a single button in theproject window. Both the process of creating a star diagram for the �rst time anddisplaying an existing star diagram result in the display of a star diagram. Weremoved theCreate Star Diagram function from the text window and combinedit with the Display Star Diagram function at the bottom of the project window.We modi�ed this function to perform a simple check and if the star diagram hasnot already been created, it creates the star diagram and then displays it. Wealso added the ability to display star diagrams by double-clicking over the entry inthe project window. This short cut seems to have two uses. The �rst use is thatit helps the advanced user quickly create a star diagram. The other use was notapparent in the design phase. When the screen becomes crowded with windows,the user needs to only see the bottom of the project window in order to double-clickon the highlighted star diagram selection.

42We created a short cut for displaying star diagrams. Instead of selectinga star diagram and then choosing the Display Star Diagram button, the usercan just double-click on the star diagram entry. This short cut seems to have twouses. The �rst use is that it helps the advanced user quickly create a star diagram.The other use was not apparent in the design phase. When the screen becomescrowded with windows, the user does not need to bring the project window to theforefront in order to �nd the Display Star Diagram function. They need tosee only the bottom portion of the window to double-click on the highlighted stardiagram selection.Use of Language. We changed the text used in some of the buttons in the stardiagram manager section of the project window because of spatial constraints.Many of the options contained the redundant use of the phrase `Star Diagram,'such as Annotate Star Diagram and Destroy Star Diagram(s). When wemoved these functions to the project window, space was limited by the width of theproject window. Also, because these functions are logically grouped together andplaced above the star diagram entries, the user understands that these functionswill act on the star diagram entries and the phrase `Star Diagram' is redundantand unnecessary.We also modi�ed the language in some buttons to clarify the meaningof the underlying functionality and minimize the screen space needed for thesebuttons. We changed the text for the Clear Selection(s) button to Deselect.This function removes all selection highlighting from the star diagram managerportion of the project window. This change had two positive aspects. The buttontakes up less screen real estate now, as well as creating better user understanding,as users were unsure of the meaning of Clear.

43IV.D.2 Redesigning the Text WindowOur �rst step in redesigning the text window was to remove all pull-downmenus and replace them with buttons (Figure IV.6). We were able to createenough space for buttons by moving most of the star diagram functionality to theproject window and completely removing the transformational functionality thatwas left over from the original star diagram tool.The text window kept some of the star diagram functionality by havingthe ability to select roots for a star diagram. We had di�culty deciding where thisfunctionality should be placed and tried to resolve the problem with user scenarios.This functionality is kept in the text window because it indirectly acts on the textwindow by using the text selections from this window. It was also kept in the textwindow because the selection process has become more complex with Nguyen'saddition functionality [Nguyen, 1997]. Star Diagrams can now be created basedon the types of variables. We had to change the interface to allow the user toselect a variable to be part of a root set based on its name or its type. We changedthe interaction with this window such that a user can no longer double-click on avariable to select it as part of the root set. For a variable to be added to a rootset, the user must select the variable and use one of the buttons, Select NameOf Var or Select Type Of Var. This modi�ed interaction with the text windowalso has the advantage that users will not mistakenly add too many roots to a stardiagram by randomly clicking in the text window. To further add to the users'understanding of the star diagram being created, the tool creates a star diagramentry and lists the roots of the star diagram before it is actually built.Text Window Tiling. Another modi�cation to the text window was the ad-dition of a side panel that displays the same text in a very small font. This sidepanel was added because a team of users in one of our informal studies complainedthat they did not know enough information about where they were in the �le.They also wanted to know how large the �le was. To match up the two versions of

44the �le, all highlighting that occurs in the larger text window is replicated in thissmaller side panel.Text Window Graying. We used graying for the Select Name Of Var andSelect Type Of Var buttons in the text window because of a shortcoming inthe underlying functionality of the tool. The tool does not have the functionalityto create a star diagram based on a combination of variable types and names.When creating a star diagram the user can create a star diagram based on thetypes of a group of variables or based on the names of a group of variables. In ourdesign, when the user selects the �rst variable to be added to a root set by usingSelect Name Of Var, the Use Type of Var button is grayed out until thestar diagram is displayed and a new star diagram can be created. The oppositefunctionality occurs when the user begins to create a type star diagram. Whenthe underlying functionality is added to enable combination star diagrams, it willbe easy to change the graying capabilities to allow selection of both options whencreating a single star diagram.IV.D.3 Redesigning the String Search WindowsWe provide a single search utility (Figure IV.7) as well as and a project-wide search utility (Figure IV.8). These windows have the same look except forthe window title and the colors used to highlight the search strings. Each type ofsearch window has its own set of colors. The set of colors consists of light and darkuses of the same color. In the Search All Files window, all matches of the stringare highlighted in light blue and the current instance of the string is highlightedin blue. In the Search A Single File window, all matches of the string arehighlighted in light orange and the current instance of the string highlights inorange. The design of the string search windows are based on the original tool'sAST node text display (Figure IV.13). The use of language was the biggest

45
Figure IV.7: Searching For A String In A Single File.

Figure IV.8: Searching For A String In All Files.

46problem with the original single-�le search window. Since users did not understandthe meaning of theHighlight button in the search window, we changed the text ofthis button to be more consistent with other user interfaces designs and renamedit to OK.IV.D.4 Redesigning the Star Diagram WindowAs with other windows originally containing pull-down menus, we movedto an all-button design with the star diagram window (see Figure IV.9). Weinitially had too many options to place them all at the top of the screen in abutton format. To create a single row of buttons, we shortened some phrases andremoved extraneous steps from certain tasks. For infrequently used tasks, such asthe fonts window, we kept them as pop-up windows.Star Diagram Window Tiling. The star diagram uses tiling. With the in-troduction of more advanced elision capabilities [Nguyen, 1997] a
oating windowwas initially created to handle these elision capabilities. Often, this elision windowgets hidden or takes up prime screen real estate. To �x this problem we added theelision panel to the side panel of the star diagram window. We placed the elisionpanel just above the trimmed panel. We placed it in the top left corner to helpwith streamlining work
ow. Typically, users work in a left-to-right, top-down, or-der and this placement will remind the user how to create a complete star diagramdisplay. Both the trimmed panel and the elision panel can be temporarily hidden(Figure IV.10).Star Window Graying. The main activities with the star diagram window thatcan cause incorrect use of the tool are the ability to trim arms and annotate nodesin the star diagram display. When an annotated entry in the trimmed star armpanel is selected, the path in the star diagram is highlighted. The path cannot behighlighted if it has been trimmed by another entry in the trimmed star arm panel.

47

Figure IV.9: A Complete Star Diagram Window.

Figure IV.10: A Large Star Diagram Without the Side Panel Display.

48To avoid this problem, when a user selects any node on an already annotated path,the Trim Arm button is grayed. Annotating and trimming can occur in both thestar diagram and the trimmed panel portions of the window, and the same grayinglogic is placed in both sub-windows.Streamlined Work Flow in the Star Diagram Window. We experiencedsome problems implementing the graying functions due to the way Tk handlesselections. Once an event occurs based on a selection, the \selected" status isremoved. Unfortunately, there are many times when a user wants to performmultiple functions on a selected entity, such as annotating and then trimming anarm. This is a case where the engineering model does not readily support theuser model. When the tool is done with a selection, it must arti�cially select theelement again.Work
ow scenarios have been very helpful in eliminating repetitivemulti-step process from the star diagram tool. In the original interface, users are frus-trated with the number of steps needed to elide a star arm. We eliminated theneed toHighlight Star Arm before eliding the star arm: When the user selects anode, the tool automatically highlights the arm. So now the user selects the nodeand uses the Trim Arm button to elide the star arm. Shortening this work
owalso helped eliminate functionality from the star diagram menus allowing easiermigration to buttons.Status Information. Instead of using a pop-up window to retrieve informationabout how many nodes are displayed in the star diagram and how many distinctpaths are displayed, we place this information on a single line at the bottom ofthe star diagram window (Figure IV.9). This change was based on the visibilityprinciple. The information is always displayed but does not interfere with theuser's interactions with the star diagram window.

49
Figure IV.11: Changing The Font Size Of A Star Diagram.Font Information. We changed the star diagram font window to have Tiny,Small, Medium, Large, Huge or the Default option(Figure IV.11). Ourimplementation loses
exibility because the user can no longer specify an exactfont name, but this functionality is di�cult to use, and is not be used by thetypical user. The addition of default helps the user �nd the original font size if ithas been forgotten or was never known.Displaying AST Node Text. We removed the option, Show CorrespondingSource Code, from the star diagram window and just kept the short cut of double-clicking on a node to display the source code. Many users begin by double-clickingon star nodes and never utilized the Show Corresponding Source Code menuoption in the original tool. We also changed the window for displaying a stackednode's text (Figure IV.13) to look similar to the search windows. The maindi�erence with this window is the change in color. To have the same look andfeel as the search windows, this window also uses a two tone color approach. Allmatches are highlighted in pink and the current instance is highlighted in red.Elision Panel. We also changed some of the language used in the elision panelof the star diagram window. Many users do not understand the term `elision.' Wechanged the header for this sub-window to be Types Of Nodes To Exclude.By placing the elision panel in the top right corner of the window, users are more

50
Figure IV.12: The Show Arm Window.

Figure IV.13: Looking At Corresponding Code Based On A Star Node.

51likely to remember that they must Clear Selections and Apply in the elisionpanel to initially display a complete star diagram.To improve understandability, we also removed some of the types of nodesa user can exclude. We removed the capability to trim Unary and Binary nodesbecause these options are not meaningful or useful in most situations.TrimmedStar Arms and Remarks. We changed the content of theTrimmedStar Arms And Remarks panel to move the address of the node out of thewindow and display an example of the text associated with the node. The memoryaddress of the node is meaningful to the tool developer, but is of no importanceto users. We added the code example to help remind the user which node wasannotated or excluded. In our design, the information kept about a trimmed orannotated star arm is the name of the node, a code example, an annotation andwhether the arm is trimmed or merely annotated.We modi�ed the Trimmed Star Arm And Remark panel to �x prob-lems with language and window size. To save space, we removed the use of theword Star from all buttons. To have better user understanding, we replaced Elidewith Trim on the Elide Star Arm button.Displaying a Star Arm. We modi�ed the star arm display window to have thesame look as the other windows by removing all pull-down menus and providinga Dismiss button in the top right corner (Figure IV.12). Like the larger stardiagram window, we provide a status message at the bottom of the window.

Chapter VExperiment and ResultsIn this section, we present a user study and an evaluation of our techniquesand design for the C Star Diagram restructuring planning tool. We conducted theuser study to observe user interaction with the tool. We explain the study andpresent the results followed by a brief analysis.When analyzing the results of our experiment, we must be aware thatthere has been added functional complexity to the tool since the creation andevaluation of Chen's tool. For example, in the original interface, users can onlytrim star arms, whereas in our tool, the user can either trim or annotate stararms. Also, users can now build star diagrams based on the types of variablesor based on the names of variables. The Nodes To Exclude side panel andit's functionality are also additions to our interface. These new functions havecreated new user interactions. Although the functionality of Chen's tool and ourtool are not exactly the same, we can still gain qualitative results about changes tothe interface by comparing user interactions with our interface design and Chen'sinterface design.
52

53V.A ExperimentWe conducted the user study to observe how users' interactions havechanged with our new design. As part of our iterative development process, weconducted informal user studies prior to the formal user study.We used Chen's user study format [Chen, 1996] for our study becauseit was inexpensive to use an existing experiment. Also, by using Chen's userstudy format, we are better able to compare our results with Chen's results. It isimportant to note that these results are qualitative. Our goal has been to look forchanges and improvements in user interaction with our new interface design.V.A.1 Study SubjectsOne of the problems with this type of study is that it is not quantitative.It is di�cult to prove the success of a new design with these types of results. Wealso recognize that we have few data points by only conducting one formal userstudy. To be consistent with the prior studies, we select a team of programmersconsisting of two fellow graduate students. Both subjects were �rst time users ofthe tool. They are familiar with the concepts of object-oriented programming andmodularization, but have not had a lot of experience with object-oriented pro-gramming. Although there is no average user, we believe these subjects exemplifytypical behavior and are helpful in creating meaningful, though initial data points.The subjects participated in this study on a voluntary basis and neither receivedmonetary compensation.For the study, we had the team of programmers working together. Thistechnique, known as constructive interaction [Miyake, 1986] [Belady and Lehman,1976], is used in our study because it provides a natural way for programmers todiscuss the problem they are solving, enabling us to observe how programmersaddress problems and their solutions by studying the programmers' dialogue.

54V.A.2 SetupWe conducted the study in a laboratory setting to limit interruptionsand ease video recording for later analysis. The two subjects worked together ona single monitor. We used a video camera to record the programmer discussionand gestures. We used keystroke capturing of computer actions for later analysis.Each subject had a clip-on microphone to get separate voice data. We recordedkey strokes in all the windows used by the subjects. We video taped the com-puter screen to observe their activities and how their focus changes through mousemovements and selections. This also helped us see where there are pauses in theprogrammers' work
ow. Only the subjects and experimenter were present in thelaboratory during the session. The experimenter did not interact with the sub-jects during the video taping session, except in cases where the tool crashed or theinstruction manual was incorrect.V.A.3 InstructionsTo observe the di�erences between Chen's star diagram interface designand our interface design, we provide the same setup and instructions as were givenin Chen's user studies [Chen, 1996]. This was also done to determine how ourinterface design has improved user understanding of and interaction with the tool.We �rst had the subjects sign a standard consent form. We then gavethe subjects a copy of the instructions for the task, a ten-minute quick demonstra-tion of the C star diagram tool and a short manual describing some of the tool'sfunctions. We told the subjects they had 2 hours to �nish their task but wouldbe allowed to go over this time if they were close to �nishing at that time. At theend of the experiment, each subject was asked to �ll out a questionnaire abouttheir background and experience in program restructuring and their knowledge ofmodularization. After �lling out these questionnaires, they were allowed to discussin free format their experience with the tool.

55We gave the programmers an adventure program, Omega, written inroughly 31,000 lines of C. Omega is a rogue-like game of dungeon explorationwritten and freely distributed by Lawrence Brothers [Lawrence, 1989]. We askedthe subjects to perform data encapsulation on the global variable Objects. Thismodi�cation requires examining all the functions in which the Objects variableis used and performing several global changes. We instructed subjects to �rstencapsulate the data structure storing the internal representation of Objects (anarray of struct object). They had to create a new module that hides theObjectsvariable behind a set of functions. We also asked that they not change any of theprogram's running behavior. To provide us with enough information about thetool's usage, the instructions asked the subjects to perform the restructuring astheir last step.In order to encourage use of the tool and ease analysis, there were noprinted listings of the code. The subjects had to view all code on the screen. Thisalso focused activity on the computer screen in direct view of the video camera.V.A.4 Known Issues and ProblemsIn conducting informal user studies, we observed problems with user in-teractions with our tool. We were aware that these interactions could also causeproblems for our formal user study participants.Abundance of Color in the Text Window. Although we use color to createassociations amongst windows, subjects in our informal user studies were distractedby the abundance of color in text windows that had been used by a string searchwindow. The users assumed that if text was highlighted, it was selected. Whenthey tried to make a star diagram based on the highlighted variables, they wouldreceive an an error message saying that no variable was selected. We implementedthe graying features to force the user to select text before they choose the UseName Of Var button or the Use Type Of Var button. Although this has

56helped, the abundance of color still makes it di�cult to see which variable isactually selected.Replicating Buttons. Because we followed the rule that functionality only actson the window it is placed in, we had a problem with replicated functionality inthe star diagram window. Both the Star Diagram panel and the Trimmed StarArms And Remarks panel have Trim Arm and Annotate Arm functionality.When looking at user scenarios, we realized this replicated functionality mightcause confusion.Graying. Graying was one of the last items we added. We created graying toavoid adverse conditions and the proliferation of pop-up error windows. Althoughgraying is useful in directing users to perform successfully, it also has its problems.When functionality is grayed out, the user is not really sure why they cannotperform the function, whereas with the pop-up example, the user receives an ex-planation of why they cannot perform the function and is usually directed to asuccessful scenario. Before the study we were unsure what impact this change inerror handling would have on user interactions with the tool.There were also some bugs in the graying functionality at the time theuser study was conducted. By conducting the user study with this problem, weknew we would not get a completely accurate view of the subjects' perception ofthe graying functionality.Status Information. Many operations can take several seconds to perform.Users of the original tool wanted status information for functions that take longerthan a few seconds. Status functionality has not been fully implemented in ourdesign and we know the users might express a need for this type of functionality.Problems Adding Files and Directories. Many users have di�culty under-standing the relationship between the directory and �le sub-windows in the project

57window. Users do not realize they must select a directory from the directory listbefore they can see the list of associated �les and they become confused when all oftheir �les are not displayed at a single time. They also have di�culty trying to add�les from di�erent directories because they have to perform an Add Files func-tion for each directory. We know these interactions are a problem and we modi�edthe experiment to have the subjects load the �les from a prede�ned project �le,omega.sdp.V.B ResultsIn this section we describe the subjects' interactions with the tool.V.B.1 Loading the Project FileThe subjects began by loading the project �le, omega.sdp, into the tool.The Omega program is composed of 47 �les and takes a few minutes to load. Inthe tutorial, the experimenter told the subjects that this process can take sometime. As they were waiting, the subjects watched the debug window to see thetool process their �les.V.B.2 Finding the Objects VariableAfter loading the �les into the project, they used the Search For AString In All Files option. The subjects searched on Object to look for theObjects variable. After receiving all uses of the Objects variable, they beganlooking for the de�nition of the Objects variable. In the tutorial, the ex-perimenter did not clarify that the subjects only needed to �nd an instance of thevariable and not the de�nition of the variable in order to create a star diagram.They had problems �nding the de�nition ofObjects in the search windowbecause the search window returns all instances of the variable in all �les. Theyused the UNIX tool, grep, to �nd the de�nition. Once they found the de�nition

58�le, they displayed the corresponding text window and used the Search For AString window to locate the de�nition in that text window.V.B.3 Selecting Variables and Creating a Star DiagramThe subjects had di�culty with the process of creating a star diagram.After �nding the Objects variable in the text window, they double-clicked on thevariable, highlighting it. They were not sure whether they wanted a type or namestar diagram. They selected the Use Type Of Var button, which grayed out theUse Name Of Var button.They were not sure what should happen after they selected a variable aspart of the root set. The project window was covered up by the search windowsand they did not see a new entry added to the star diagram manager portion of theproject window. When no star diagram was created, they began dismissing searchwindows hoping that the project window would have some information that wouldhelp them proceed. They found the highlighted star diagram entry and selectedthe Display Star Diagram button.After successfully creating the star diagram based on Objects's type,they performed a Clear Selections and Apply To Star Diagram from theelision panel. Because the star diagram was so large, it took a while to refreshthe display with the full star diagram. As this was going on, the subjects realizedthis star diagram was not what they wanted. In the initial explanation of the tool,they were not told that they could create multiple star diagrams. So, before thetype star diagram was �nished displaying, they quit the tool to begin again andcreate a name-based star diagram.The second time they began the tool, they understood the steps involvedin creating a star diagram. As the subjects explored the text window, they double-clicked on both variables and non-variables without adding them to the root set.As part of their exploration process, they understood when and why the UseName Of Var and Use Type Of Var buttons were grayed and activated.

59V.B.4 Star Diagram UnderstandingThe users quickly understood the star diagram representation of theirprogram. They began by looking at the corresponding source code for many of thenodes to match the tree-like display of their program to the actual text of theirprogram. They also used the text editor vi to look at the di�erences between thepreprocessed �le in the text window and the actual .c �le. As they were lookingat the star diagram they noticed the status bar at the bottom of the window thatdescribed how many distinct nodes and paths were in the star diagram.V.B.5 Elision CapabilitiesThe advanced elision capabilities were explained to the subjects so theywould not be confused when they initially only saw the root node of the star di-agram displayed. The subjects were also told that some nodes can be excludedimmediately if they know a star diagram is going to be large. Once their stardiagram was displayed, one subject recommended that because it was probablygoing to be large, they should display only the File Nodes at �rst. After theydetermined how many �les referenced the Objects variable, they cleared all selec-tions in the Nodes To Exclude panel and displayed the complete star diagram.The subjects easily understood this panel and its relationship to the star diagramportion of the window.Later, they came back to theNodes To Exclude window to experimentwith the types of nodes they can exclude and how it will a�ect the display of thestar diagram. The Stacked Nodes and Unstacked Nodes options initiallycaused some confusion with the subjects. All other types of nodes to exclude arebased on the text inside the node, where as these options are based on the visualpresentation of the node. After trying these two options, they quickly understoodtheir meaning.

60V.B.6 Restructuring PlanningOnce they felt they had a good understanding of the star diagram repre-sentation, they began to discuss their plans for restructuring the program. Theydid not spend time trying to discover what made up the Objects array, and justconcentrated on hiding the structure behind a set of functions. They attempteda simplistic object-oriented approach, where they would have an Init() functionalong with Get() and Set() functions1.They worked in a top-down fashion, looking at each arm in the stardiagram. The �rst node they encountered was the node denoting the externalde�nitions of the variable. To get rid of this node and its associated �le nodes,they �rst tried to trim the �le nodes connected to the external de�nition. Theytried to remove the �le nodes associated with the external de�nition, but were notable to. File nodes are special nodes because they have multiple paths leading intothem, and hence do not uniquely identify a path to be trimmed. The subjects were�nally able to remove these nodes based on the Declaration node connected tothe �le nodes.V.B.7 Annotating and Trimming Star ArmsThe subjects had di�culty with the annotation and trimming functions.This was partly due to the explanation they received in the beginning of theexperiment. They were not told that once a node on a path is annotated, the pathcannot be trimmed. They did not understand why they could not trim the nodeand tried to annotate other elements on the same path in the hopes that one ofthe nodes would let them trim the entire arm. The documentation was incorrectfor this activity, telling the users to trim an already annotated path from the stardiagram window instead of from the trimmed arm panel. The experimenter hadto intervene and correct the documentation in order to allow the experiment to1Although this design satis�es the minimal requirements of the instructions, it is not neces-sarily the best design [Griswold et al., 1996].

61continue. Once the correct trim functionality was explained the subjects were ableto continue with their restructuring planning.Once they had �gured out how to annotate and then trim an arm, theywere able to work through the star arms very quickly. For each star arm they wentthrough the same motions for annotating the arm. They would annotate the arm,trim the arm, and then have to adjust the star diagram display.V.B.8 The Restructuring ProcessWhen the subjects began the process of restructuring the code, theyundertook restructuring in the same order they processed star nodes. For eachentry in the trimmed panel, they displayed the arm with the Show Arm button.They looked at the corresponding code for the star arm and found the same codein the original text �le, and began making modi�cations. Time ran out beforethey could �nish the restructuring process, but they described the rest of theirprocess to be similar to the �rst modi�cation, saying they would have modi�edeach instance in the order they annotated the paths.V.C InterviewAfter the experiment, we had the subjects �ll out a short questionnaire.It asked them questions about their experience with program restructuring aswell as their general level of experience and understanding of concepts such asmodularization. We then conducted an open-ended interview with the subjects,asking them for their reactions to the tool's interface.V.C.1 General CommentsThe interviewer began by asking the subjects their general feelings aboutthe tool. They were then asked about problems they experience with the individualwindows.

62Status Information. As we guessed, the subjects did complain there was nostatus information for functions that take several seconds. They said they didnot mind waiting for a function but wanted reassurance that the tool was stillprocessing their request.Graying. Because the experimenter warned them of possible problems with thegraying capabilities, they did not know which graying functionality was a bugand which graying functionality was intended. Many times they assumed thatthe graying functionality was an error, when in fact, it was correct. They saidthey understood the gray-toggling between the Trim Arm and Put Back Armfunctions on the Trimmed Star Arms And Remarks panel of the star diagramwindow. When the experimenter explained that the graying was implemented toavoid pop-up error-message windows. Both subjects agreed that they prefer gray-ing functionality over pop-up error messages in tools.V.C.2 Project WindowFor the most part, the subjects were satis�ed with the project window,but they did have some problem knowing when they could use the star diagramfunctions. They were confused by the process of creating a star diagram andwere not sure when they could begin to utilize the star diagram functions on theproject window. This confusion can be partially attributed to the star diagramfunctionality left in the text window.V.C.3 Search WindowsThey did not feel the search windows were especially helpful but did nothave any problems with them either. Because of the subjects' misunderstandingabout the process of selecting the de�nition of a variable instead of just any instance

63of a variable, they wanted the de�nition to be highlighted in a di�erent color thanthe other entries in a search window.V.C.4 Text WindowThey liked the side panel on the text window. They also understood whyonly certain parts of the text are highlightable, and why the Use Name Of Varand Use Type Of Var buttons gray out.They were disturbed by the use of red in the text window. When theylooked at a star node's corresponding text, there were times when the node cor-responded to a large portion of text and most of the text display was highlightedin red. They commented that, in most tools, the color red usually means danger,which is not the case in this tool.Star Diagram Window. Both subjects said they had problems understandingthe signi�cance of color in the star diagramwindow. They had problems identifyingwhich node was the selected node, even though when a node is selected, the pathhighlights in red and the node turns blue. One subject said the selected node shouldbe a much brighter color, such as bright green. As another way of distinguishingthe current selection, they wanted the ancestors of the selected node to be one colorand its descendants to be another color. They said it was di�cult to di�erentiateblue, selected nodes from black, unselected nodes.The process of trimming a star arm frustrated the subjects. They had toadjust the display of the star diagram every time they trimmed a star arm becausethe star diagram would always be redrawn further down on the screen. In ourre-design, we did not address this problem, and left the functionality unchangedfrom the original tool.The subjects did not like the display for the Trimmed Star Arms AndRemarks entries. They said it was too much information in too small of a space.They described the data as too scattered and poorly formatted. This layout was

64compact because of the decrease in space the trimmed panel has due to the additionof the elision panel.V.D Analysis of ResultsIn this section we discuss the experiment and its results as well as evalu-ating our design techniques and how they have a�ected user interactions with thetool.V.D.1 Determining Successes and FailuresWhen analyzing qualitative results, it is di�cult to clearly demonstratesuccesses and failures. We tried to analyze the quality of the subjects' interactionsbased on the amount of training they received as well as their verbal reactions tothe tool and the ease in which they performed their activities.Amount of Training. When analyzing subjects' usage of a tool, it is importantto take into account the type of training they received. While we realize it iscrucial to give subjects some training, it is di�cult to establish how much trainingis necessary. Because we wanted to determine if users could easily navigate throughthe interface, we provided minimal training. After the study was performed, weconcluded our training was inadequate for certain scenarios. There was a clearcorrelation between the lack of training for certain activities and the problemspots in the subjects' work
ow.Verbal Reactions. Although users �nd it easy to criticize aspects of an inter-face, they rarely comment on the ease of use of an interface. In some sense, asuccessful interface is \invisible" to the subject. It is still possible to gain verbalcon�rmation of the success of an interface by observing how the subjects integratethe language of the interface into their discussions.

65Work-
ow. Success can be seen in the lack of complaints from the subjects, rel-ative to the previous studies. Also if a subject is able to quickly perform activitieswith little discussion as well as expeditiously recover from a confusing scenario, wecan say this is a successful use of the tool. Likewise, if there is a great pause inactivity or the user has di�culty �nding to a successful scenario, we know there isa problem with our work-
ow scenarios.V.D.2 Project WindowOn the whole, the project window concept has proven successful for ourtool. There were no verbal complaints about this window, along with no confusionor great pause in activity when using the window. The window also providesbene�ts that were unrealized in our design phase. We observed that whenever thesubjects became confused and were not sure how to proceed with their current task,they would refer to the project window in the hopes that it would help direct them.An example of this is when they initially had problems creating a star diagramand referred to the project window to �nd the Display Star Diagram button.Likewise, when the subjects were looking for a save function, they immediatelywent to the project window and found the Save button.V.D.3 Star Diagram WindowOur modi�cations to the language in the star diagram window haveproven useful. When the subjects discussed the Nodes to Exclude functions,their sentences included language from the interface, \Let's exclude the stackednodes," showing the interface language is meaningful and useful. The users had ini-tial problems understanding the meaning of the Stacked Nodes and UnstackedNodes options in the Nodes To Exclude panel, but through exploring the func-tionality, were quickly able to learn what these options meant and continue theplanning process.

66There were problems with the tiling in the star diagram window. In ourinterface, the Trimmed Star Arms And Remarks panel is half as big as it isin the original tool. We realize this is a visibility problem within the sub-windowand have tried to compact the information about each entry so more entries canbe seen at one time. The users expressed confusion over the format of the entriesand said it was too crowded.Because of our rule of consolidating functionality, the subjects were con-fused by the duplicate functionality in the star diagram sub-windows. The subjectshad di�culty making the association that both sets of annotate and trim functionsact on star diagram information. This di�culty can also be attributed to incorrecttraining and instructions. Once the experimenter stepped in and told the sub-jects the correct process for annotating and trimming an arm, they were able tosuccessfully continue.By telling the users there were problems with some of the graying func-tionality, we biased their understanding of why functions are grayed in the stardiagram window. When the subjects did not understand why a button was grayedout, they assumed it was one of the problems the experimenter had warned themabout, when in fact, the only valid problem they experienced was a graying a prob-lem in the Trimmed Star Arm And Remarks panel with the Put Back andTrim Arm functions.V.D.4 Text WindowThe side panel on the text window was well liked by the subjects anddid not cause any confusion. Also, the change from pull-down menus to buttons,enabled the subjects to quickly and easily utilize the Search For A String buttonin the �rst text window they encountered.The subjects had problems with the process of creating a star diagram.This partly can be attributed to the fact that there is still some star diagramfunctionality in the text window. The subjects became confused when they had

67to move from the text window to the project window to continue the process ofcreating a star diagram. Most windows in the tool are associated by a \derives"relationship, where one window creates the next window the user needs. The send-back relationship between the text window and the star diagram manager portionof the project window is not as apparent. After selecting the root set from the textwindow, it is the user's responsibility to bring up the project window.V.D.5 Auxiliary WindowsOur modi�cations to the auxiliary windows helped to create smootherwork
ow. The main changes in these windows involved clarifying the use oflanguage. The subjects were easily able to navigate through the Load, Save, andAnnotate windows. The subjects did not utilize the Zoom window, so we do nothave data points on this window.V.E Summary of ResultsAlthough these results are based on a single pair of participants, theresults proved useful. The subjects' high-level behavior, (such as the designs theychose), were similar to the high-level behavior of subjects in our informal userstudies, implying that these are not unusual subjects. By analyzing the resultswe realized the impact our training had on the activities of the users. This studyhas also been helpful in con�rming that our techniques were useful in creatingimproved interactions with the tool. We realized that, for the most part, our tilingtechnique improved visibility as well as eased window management. Our changesto the language of the tool have proven successful based on our observations ofthe subjects' conformity to the tool's language. We also noticed improvements inwork
ow due to the button-based window lay-out.Our user study was also helpful in determining areas where our designtechniques have not been inadequate in creating a completely successful interface.

68The use of tiling improves visibility in a single window, but hinders the visibilityof other, potentially useful windows, as we saw in the case of the hidden projectwindow. Also, our rule for consolidation of functionality caused problems whena function did not have an obvious association to a single window. We havethe problem of duplicate functionality in the star diagram window as well as theproblem that some functionality does not easily belong to a single window, suchas the Search For A String In All Files function in the project window andthe Use Name Of Var and Use Type Of Var functions in the text window.

Chapter VIConclusionWith the complexity of software products on the market, users are un-likely to understand the internals of a tool. It is important for software developersto create both useful and usable systems. Chen created a planning restructuringtool to aid programmers in restructuring large legacy systems. Although the toolis useful, user studies revealed problems with user interactions.There has been much research in the area of HCI in the last decade.User interface design is not a mechanical process, but a domain-speci�c processthat utilizes HCI methods. We hypothesized that the HCI methods could helpus in redesigning the C Star Diagram restructuring planning tool interface. Westarted with the basic principles of consistency, visibility, the use of clear, conciselanguage, and work
ow scenarios. Because we began with an existing interface,our initial approach did not utilize all aspects of the methodologies. After readingadditional HCI literature, we were introduced to the user-model and engineeringmodel concepts. This was a turning point in our design. We began questioningall aspects of the interface and were able to develop an improved interface design.We developed a user model in terms of a set of tool speci�c design rules that weapplied to our tool. 69

70VI.A Contributions of the ResearchThis work provides a number of speci�c contributions including the useof a user model, engineering trade-o�s and our learning experiences.The Engineering Model and User Model. The most important aspect increating a new interface design was the realization of the user model. The useof the user model implies an iterative approach to interface development and wasapplied to our design because we began with an engineering model. Instead ofimproving small problems in isolation, the user model helped us to question all de-sign decisions in the engineering model and develop a more user-centered interfacedesign.Trade-O�s. There were many times the HCI principles con
ict with each other.We had di�cult engineering trade-o�s such as visibility and the proliferation ofwindows. These principles could not be applied one at a time, but rather all atonce as seen in our design rules.Case Study. Since a case study is not algorithmic, its relevance cannot be clearlymeasured. Our case study provides a useful example of the process involved indeveloping domain-speci�c design techniques. Also, our learning experiences canbe useful to other interface developers by warning them of some of the problemsexperienced with creating and using domain-speci�c design techniques.VI.B Lessons LearnedAlthough our techniques were useful in creating improved user interac-tions with the tool, there were also some unanticipated problems with our design.Use of Graying. We introduced the concept of graying a button when under-lying function could cause an error or cause problems with later tool interactions.

71After removing the error message windows, we realized that both types of errorhandling have their merits. Error messages are able to explain why a user cannotperform a function and direct the user to a successful scenario. On the other hand,it is bothersome for users to stop their activities and dismiss the error message.Graying is good because it does not allow incorrect activity, and there is no needto dismiss extra windows. On the other hand, when buttons are grayed out, usersdo not always know why they cannot perform functions and receive no help inmoving on to a successful scenario.Visibility and Expansion. By creating a button-based window layout we haveimproved visibility, but have limited the extensibility of the tool. In a menu-basedwindow system, it is easy to add functionality to the bottom of an existing pull-down menu. Many of the tool's windows do not have space for additional buttons.Adding functionality to the tool might involve redesigning a window.Separation of Functionality. We tried to localize functionality. This causesproblems when windows are closely inter-related. Most windows are associated bya \derives" relationship, where one window creates another as part of directingthe user to the next activity in a scenario. Cases where there is a send-backrelationship between windows result in user confusion. Because of separation offunctionality, the text window has a send-back relationship to the project window.After a user selects variables from the text window, they then must move back tothe project window to create a star diagram. First time users have problems withthese interactions and we have found it di�cult to make them aware of this typeof relationship.VI.C Future WorkOur research has left some unanswered questions and led us to new ques-tions with respect to the C Star Diagram restructuring planning tool interface.

72Use of Color. We added more color to the star diagram, but were not sure ifthe signi�cance of the colors would be understood. Our user studies revealed thatcolor is a distraction in many cases. Because we did not know the impact the useof color would have on user interactions, it has been modularized and can be easilychanged to re
ect new �ndings.Status Information. Many users want the tool to display a status bar for func-tions that take longer than a few seconds. To implement this type of status barrequires complicated communication between the interface software, implementedin Tk, and the underlying C++ functionality.Short Cuts. We did not have a methodical way of implementing short cuts. Weknow it is important to provide short cuts for expert tool users and know there isa need for a formal approach to creating short cuts in our tool.Interrelated Functionality. User studies reveal problems with user under-standing of window relationships and interactions. The replicated annotation andtrimming functionality in the star diagram window needs to be modi�ed by ei-ther connecting the functionality behind these buttons, or only having one set ofbuttons. The separated star diagram functionality in the text window needs tobe better connected to the rest of the star diagram functions. In creating theserelations, a developer might need to modify our design techniques.Saving Star Diagram Information. Some users have articulated scenariosthat span many days due to the careful and incremental process of restructuringa large program. Currently the C Star Diagram restructuring planning tool onlysaves caption, directory and �le information. Based on the underlying implementa-tion, storing the star diagram representations pose many problems. Currently, thestar diagram uses memory addresses as identi�ers for the star nodes. There needsto be some way of removing this system dependence. Also, there are questions of

73how to display a star diagram if the preprocessed �les that make up a star diagramhave changed. These issues need to be addressed before all tool information canbe saved.Selecting Multiple Star Nodes to Annotate or Remove. The ability toperform a function based on the selection of multiple star nodes has been requestedby users in both our and Chen's user studies. To allow this type of behavior, weneed to create a new design rule to enforce a standard user interaction with respectto multiple selections in all windows of the tool.

Bibliography[Belady and Lehman, 1976] Belady, L. A. and Lehman, M. M. (1976). A model oflarge program development. IBM Systems Journal, 15(3):225{253.[Bowdidge, 1995] Bowdidge, R. W. (1995). Supporting the Restructuring of DataAbstractions through Manipulation of a Program Visualization. PhD thesis, Uni-versity of California, San Diego, Department of Computer Science & Engineer-ing. Technical Report CS95-457.[Brown, 1988] Brown, C. M. (1988). Human-Copmuter Interface Design Guide-lines. Ablex Publishing Corporation, Norwood, New Jersey.[Carroll, 1991] Carroll, J. (1991). Design Interaction: Psychology at the Human-Computer Interface. Ambridge University Press, New York, New York.[Chen, 1996] Chen, M. I. (1996). A tool for planning the restructuring of dataabstractions in large systems. Masters Thesis, University of California, SanDiego, Department of Computer Science and Engineering. Technical ReportCS96-472.[Griswold et al., 1996] Griswold, W. G., Chen, M. I., Bowdidge, R. W., and Mor-genthaler, J. D. (1996). Tool support for planning the restructuring of dataabstractions in large systems. In ACM SIGSOFT '96 Symposium on the Foun-dations of Software Engineering.[Lawrence, 1989] Lawrence, B. (1989). Omega [A complex, rogue-like game of dun-geon exploration written and freely distributed by Lawrence Brothers.]. Copy-right 1989. Available from Lawrence Brothers at brothers@paul.rutgers.edu.[MacLennan, 1987] MacLennan, B. J. (1987). Principles of Programming Lan-guages: Design, Evaluation, and Implementation. Holt, Rinehart, and Winston,New York, 2nd edition.[Miyake, 1986] Miyake, N. (1986). Constructive interaction and the iterative pro-cess of understanding. Cognitive Science, 10(2):151{177.[Nguyen, 1997] Nguyen, V. B. (1997). Impact of adding customizability on soft-ware architecture: A case study. Masters Thesis, University of California, San74

75Diego, Department of Computer Science and Engineering. Technical ReportCS97-523.[Norman, 1986] Norman, D. A. (1986). Cognitive engineering. In Norman, D. A.and Draper, S. W., editors, User Centered System Design: New Perspectives onHuman-Computer Interaction, chapter 3. Lawrence Erlbaum Associates, Inc.[Ousterhout, 1994] Ousterhout, J. (1994). Tcl and the Tk Toolkit. Addison-Wesley,Reading, MA.[Owen, 1986] Owen, D. (1986). Answers �rst, then questions. In Norman, D. A.and Draper, S. W., editors, User Centered System Design: New Perspectives onHuman-Computer Interaction, chapter 17. Lawrence Erlbaum Associates, Inc.[Preece, 1994] Preece, J. (1994). Human Computer Interaction. Addison-WesleyPublishing Company, Menlo Park, California.

