UNIVERSITY OF CALIFORNIA, SAN DIEGO

Lessons Learned from Applying HCI Techniques
to the Redesign of a User Interface

A thesis submitted in partial satisfaction of the
requirements for the degree Master of Science

in Computer Science

Jenny Lynne Cabaniss

Committee in charge:
Professor William G. Griswold, Chairperson
Professor Paul R. Kube

Professor Ramamohan Paturi

1997

Copyright
Jenny Lynne Cabaniss, 1997
All rights reserved.

The thesis of Jenny Lynne Cabaniss approved:

Chair

University of California, San Diego

1997

i1

To my parents

v

IT

I1I

IV

TABLE OF CONTENTS

Signature Page L o L i
Dedication s, v
Table of Contents v
List of Figures vii
Acknowledgements oL viii
Abstract s, X
Introduction 1
A. Background on the Star Diagram 2
B. Problems with the Interface Design 3
C. Our New Design o 5
D. Overview of the Thesis 5
Discussion of HCI Methods 7
A. Interface Design Principles 0oL 7
B. Consistency 8
C. Visibility o o 9
D. Language 10
E. User Scenarios e 10
F. The Engineering Model and User Model 11
Analysis of the Existing Interface 12
A. Description of the Star Diagram 12
B. Detailed Description of the Interface 15
C. Problems with the Interface Design 24

1. Problems Getting Started oL 24

2. Problems Finding the Objects Variable 25

3. Problems Creating a Star Diagram 26

4. Problems with the Trimming Capabilities 27

5. General Problems with the Tool 28
Redesign of the Interface Based on HCI methods 30
A. Our Initial Approach 30
B. The User Model and Engineering Model 31
C. Tool-Specific Design Techniques 32

1. Button-Based Windows 32

2. Consolidation of Functionality 32

3. Window Layout and Tiling 33

VI

A0 Graying . . . o oo o e e 34

5. Streamlining Work Flow oo o000 34
D. The Redesigned Interface 35
1. Redesigning the Main Window 35
2. Redesigning the Text Window 43
3. Redesigning the String Search Windows 44
4. Redesigning the Star Diagram Window 46
Experiment and Results o 0 0o 52
A, Experimento 53
1. Study Subjectso 53
2. Setup ..o 54
3. Instructionso 54
4. Known Issues and Problems. 55
B. Results o 57
1. Loading the Project File. 57
2. Finding the Objects Variable 57
3. Selecting Variables and Creating a Star Diagram 58
4. Star Diagram Understanding 59
5. Elision Capabilities oo 59
6. Restructuring Planning 60
7. Annotating and Trimming Star Arms 60
8. The Restructuring Process 61
C. Interview 61
1. General Comments. oL 61
2. Project Window oo 62
3. Search Windows Lo 62
4. Text Window oo 63
D. Analysisof Results oo 64
1. Determining Successes and Failures 64
2. Project Window oo 65
3. Star Diagram Window Lo 65
4. Text Window oo 66
5. Auxiliary Windows oL oo 67
E. Summary of Results o oo 67
Conclusion 69
A. Contributions of the Research 70
B. Lessons Learned oo 70
C. Future Work 71
Bibliographyo T4

vi

1.1
I11.2
I11.3
I11.4
I1L.5
I11.6
1.7
I11.8
I11.9
I11.10
II.11

V.1
V.2
IV.3
V.4
IV.5
IV.6
V.7
IV.8
IV.9
IV.10
V.11
V.12
IV.13

LIST OF FIGURES

An Example of the Original Star Diagram Interface. 13
Main Window. oL L 16
Selecting a File To Display. 17
The Single File Search Utility. 17
The Text Window. 18
The Star Diagram Window. 19
Changing The Font Of A Star Diagram Display. 20
AST Nodes In The Text. 21
The Show Arm Window. 21
The Elision Pop-Up Window. 22
The Star Diagram Manager Window. 23
The Project Window. oo 36
Loading A File Into The Project Window. 37
Saving Project Information.o 38
Adding The Omega Directory To A Project. 39
Adding Files To A Project Based On The Omega Directory. . . . 40
A Text Window.o oo 41
Searching For A String In A Single File. 45
Searching For A String In All Files. 45
A Complete Star Diagram Window. 47
A Large Star Diagram Without the Side Panel Display. 47
Changing The Font Size Of A Star Diagram. 49
The Show Arm Window. 50
Looking At Corresponding Code Based On A Star Node. 50

vii

Acknowledgements

I would like to thank my advisor, Bill Griswold, for teaching and guiding
me. His experience and insights had a great impact on the re-design of the interface.
I also want to thank him for his patience and encouragement.

I would like to thank Morrison Chen for creating the C Star Diagram
restructuring planning tool. The amount of work involved in creating the original
tool is amazing. Re-designing the interface was an iterative process. 1 would like
to thank all the user participants for providing useful feedback and suggestions for
improving interactions with the interface. I would also like to thank Van Nguyen
for helping to motivate me to finish my thesis.

I would especially like to thank my parents for their support, I could not
have done it without them. Their attitude towards academia was a great source
of inspiration. I would also like to thank my mom for helping me with the writing

process by listening to my endless hours of explanations.

viii

ABSTRACT OF THE THESIS

Lessons Learned from Applying HCI Techniques
to the Redesign of a User Interface
by

Jenny Lynne Cabaniss
Master of Science in Computer Science
University of California, San Diego, 1997
Professor William G. Griswold, Chair

In the last decade, the power of computers has risen, while the costs
have rapidly declined. With the abundance of software products currently being
developed, users are less likely to spend time learning a complex interface. It is
important that software developers not only create beneficial services, but also
create usable systems. There has been much research in the area of Human Com-
puter Interface (HCI), yet there are still programs that suffer from poor interface
designs. Chen’s C Star Diagram restructuring planning tool is an example of a
useful program that can benefit from an improved interface design. Chen’s user-
studies revealed many problems with the interface design. We looked to the HCI
principles of consistency, visibility, the use of language, and work-flow scenarios to
explain the problems seen in this interface. In this research, we have redesigned
the C Star Diagram restructuring planning tool interface with the help of HCI
principles and methods. We found that, many of the issues we faced involved
trade-offs between the different principles of HCI design as well as the limitations
of current technology. We have created a set of domain-specific rules of design to
address these problems and help us redesign the interface. Our research provides

an iterative approach to the redesign of an existing interface.

X

Chapter 1

Introduction

In the last decade, the power of computers has risen, while their costs have
rapidly declined. Computers have infiltrated the work place and the average user
is not as likely to understand the technical issues behind software as a computer
user did a decade ago. As software is made available to a wider group of users,
usability becomes extremely important. With the abundance of software products
currently being developed, users have less of an understanding of the underlying
structure and mechanics of a product and are less likely to spend time learning
a complex interface. Software developers not only have a responsibility to create
beneficial services, but to also create usable systems.

Although there has been much research in the area of Human Computer
Interaction (HCI), there are still programs that suffer from poor interface designs.
Many of these programs provide useful functionality, but are difficult to understand
because of inconsistent and confusing interfaces.

The C Star Diagram restructuring planning tool is an example of a useful
program that can benefit from an improved interface design. The C Star Diagram
restructuring planning tool is used to assist programmers plan the restructuring
of large C programs. The tool builds a graphical representation of a program
based on elements in the program that need to be modified. This tool helps

programmers see the impact of their proposed changes before any modifications

occur. It also eases the restructuring process by helping programmers break down
their task into easily manageable subtasks. Although this tool provides a useful
service to programmers of large systems, user studies revealed problems with the
interface design. Programmers are confused by the use of esoteric language, hidden
functionality and inconsistent window design.

Our goal has been to re-design the C Star Diagram restructuring planning
tool interface. We hypothesized that Human Computer Interface (HCI) principles
and methodologies could direct us in creating a new interface. We learned that,
although these methods are helpful, many of the issues we faced involved trade-offs
between the different principles of HCI design as well as fundamental characteris-
tics of the problems and limitations of current technology. Studying the existing
interface and using HCI methodologies to address these trade-offs, we were able to

design an improved interface.

I.A Background on the Star Diagram

As a large legacy system is maintained, its internal structure deteriorates.
This makes further maintenance and enhancements difficult and costly. It eventu-
ally becomes necessary to restructure the system. Unfortunately, restructuring a
large system is a difficult and error prone activity.

Chen’s C Star Diagram restructuring planning tool was created to help
programmers plan the restructuring of large systems. Many times, large C pro-
grams have globally accessible data. If the structure of this data changes, it can be
very time consuming to modify all references throughout the code. By restructur-
ing the program to access this data through a module, later changes to its structure
will be localized and easier to implement.

The star diagram is a tree-like graphical representation of variable’s def-
initions and uses in the system. The programmer can plan the restructuring of

a system by addressing each unique use of the variable as presented in the star

diagram. The tool allows the user to make remarks about each kind of use of the
variable. This support enables the programmer to comment on all planned changes
to the system. The user can create multiple star diagrams based on different vari-
ables, and can also create a single star diagram based on multiple variables. These
features can help the programmer visualize the interactions between a group of
variables and their uses throughout a program. The tool allows users to navigate
to the source code from the star diagram to explore details as necessary. The tool
is made up of 5 kinds of interacting windows: the main window, the star dia-
gram window, the star diagram manager window, the text window, and the search
windows.

With very large systems, it is impossible to see a complete star diagram on
a single screen. Nguyen created an advanced elision capability that can temporarily
remove irrelevant or extraneous information from the graphical view of the program
[Nguyen, 1997]. This capability allows users to customize the star diagram display
and disregard certain aspects of the system representations based on the user’s

specific task. This added complexity, in part, motivated the interface re-design.

I.B Problems with the Interface Design

Chen’s C Star Diagram restructuring planning tool is a working proto-
type. Although there is much useful functionality in the tool, user studies [Chen,
1996] revealed many problems with the interface’s design. The interface has prob-
lems with consistency, visibility, the use of esoteric language, and poor work-flow
scenarios.

The C Star Diagram restructuring planning tool interface has problems
with consistency across windows. For example, some windows provide function-
ality with buttons, while other windows use buttons and pull-down menus. This

inconsistency causes problems when windows have a common function, but it is

placed in different areas of each window. The Dismiss® option is in the top right
hand corner of all windows with buttons, but is in the top left hand corner of all
windows with pull-down menus.

Many functions are not easily visible to users. Users can be unaware of
functionality because it is hidden in pull-down menus that are not labeled sugges-
tively. An example of this is the string search capability in the text window. For a
user to search text for a certain string, they must choose the option, Search For
String under the misc menu option. It is common for users to forget that string
searching is considered a “miscellaneous” function.

The tool also makes use of esoteric and inconsistent language on buttons
and pull-down menus. The initial window prompts the user to Add AST Files.
This button mentions Abstract Syntax Trees (ASTs) because the tool reads in text
files and creates an AST representation of the program. This button is prompting
the user to add all files to the tool that make up the user program. Users express
worry that they are adding incorrect files.

Users have difficulty with some tasks because they take multiple repetitive
steps, or the steps are not obvious to the user. These are problems with work-flow
scenarios. An example of this is the elision capabilities in the star diagram window.
The user must perform multiple steps that involve selecting a node twice to remove
it from a star diagram.

There are many times that these problems overlap. An example of con-
flicts between visibility and work flow is the inherent problem of window prolifer-
ation. As a user explores the system, many windows are created to examine star
diagrams and program text. The user wants to see all the windows they have dis-
played, but there is only so much screen space. Our challenge has been to resolve

these conflicts.

!Button names are in bold font to distinguish them from the regular text.

I.C Owur New Design

After looking at the user study conducted by Chen [Chen, 1996], we see
that the existing interface design has some shortcomings and the users can benefit
from an improved interface design. When designing a user interface, one tries to
follow general user interface design principles. But following these guidelines is not
enough to create a good interface. The guidelines are quite general and do not say
how they should fit together in an overall design. Each system has its own complex
interactions and constraints that are not accounted for in general methodologies.

Our first attempts at using HCI principles for improving the intertace
were inadequate. Because we began with an existing interface design, we started
by trying to look at the individual problems and fix them in isolation. We realized
that this was not the right approach and we turned to the concept of the user
model to help direct us in creating a more unified, comprehensible system.

By looking to the user model to help guide us, we were able to resolve
conflicts between the principles and create a tool with better work flow and better
user understanding of the capabilities of the tool. Our approach to redesigning
the star diagram’s interface was a multi-step process. We studied the existing star
diagram tool’s functionality and the introduction of Nguyen’s elision functionality.
With the help of the user model, we were able to come up with an interface that
took into account many engineering trade-offs. To evaluate our new design and

show improvements in user interaction, we compare user studies performed by us

and Chen.

I.D Overview of the Thesis

Following this introduction, section 2 describes the principles and meth-
ods currently in place for interface design. Section 3 analyzes the problems with
Chen’s interface design along with the added complication of the elision features.

Section 4 explains our process and solution for redesigning the interface. Section 5

presents our findings from user studies conducted on our new design. Conclusions
are reported in section 6, in which we summarize our research and discuss ideas

for further research in this area.

Chapter 11

Discussion of HCI Methods

In this chapter we review the Human Computer Interaction (HCI) prin-
ciples, theories, and methods that have helped guide us in improving the star
diagram’s interface. In particular, we examine the principles of consistency, visi-
bility, use of language, and work flow scenarios. We will also look at the differences
between the engineering model and the user model and how the user model concept

is applicable to our interface design.

II.A Interface Design Principles

Theories are formed from a group of failures and successes. As we ap-
proached the redesign of the star diagram we looked to the principles and theories
of HCI as a way of explaining how the star diagram is successful or unsuccessful.
We read a considerable body of HCI literature, and found the principles of con-
sistency, visibility, use of clear language, and work flow scenarios to be the most
helpful in creating a new interface design for a tool like ours. Although these prin-
ciples are extremely general, they have helped us explain many of the problems

seen in Chen’s interface, and directed us in creating an improved interface.

II.B Consistency

When creating a user interface, consistency is one of the most obvious
yet ambiguous goals. Webster’s Dictionary defines consistency as the “harmony

7 As a user works with a system,

of parts or features to one another or a whole.
a mental model is created. When a user encounters a new interaction with the
system, previously knowledge is used to guess at how this new functionality will
work. If there is no consistency between activities, the user must create a more
complex view of the system, or try to remember the multiple models needed to
work with the system [Brown, 1988, page 9].

When trying to implement a consistent interface, it is important to make
sure that consistency is correctly applied to the interface [Brown, 1988, pages 21—
24]. Aspects of the system that behave similarly should look similar. By having
similar aspects of the system look and react similarly, the user can make assump-
tions about newly encountered functionality in the system or simply improve the

user’s recall regarding infrequently used features. This helps to create better un-

derstanding of the system.

Consistent Window Layout. The issue of consistency amongst similar items
is pertinent to the lay-out of windows in the tool. There should be conceptual
integrity amongst all windows in an interface. Similar functionality amongst win-
dows should be consistently placed. For example, if all windows have a Dismiss,
it should be in the same place in all windows [Brown, 1988, page 32].

The interface should also have a consistent way for users to interact with
all windows of the tool. If some windows use pull-down menus, then all windows
should use pull-down menus. Likewise, if many windows are created with buttons,
all windows should have this form of interaction. It is confusing to have some
windows with very visible functionality yet other windows have their functionality

hidden in pull-down menus.

Consistent Language. There should be consistent use of language between
interacting windows. If the user chooses an option from one window, the following
window should have a title with a similar name to the option selected. This helps
reassure users that the window being displayed is correct based on their selection
[Brown, 1988, page 101].

Also, all windows should use the same word choice for the same function-
ality. It is distracting to use different words such as Dismiss, Exit, and Cancel
in different windows, when they all mean the same thing.

Although consistency is a crucial principle in any interface design, it is
important to remember that creating a system where everything looks similar
can lead to confusion. Functions that behave similarly should look similar, while

functions that behave differently should look different [MacLennan, 1987].

II.C Visibility

It is important to give users enough information about their current task
that they can make an informed decision about how to proceed. This has been
called the Answer-Question Paradigm [Owen, 1986]. It addresses issues of (1) when
information is presented, (2) what type of information is presented (3) how it is
represented. This paradigm relies on the fact that recognition is more powerful
than recall [Preece, 1994, pages 118-119]. The user should receive suggestions from
the tool as to what their next activity can be. The information should not be too
intrusive and interfere with a user’s activities, but it should also be easily obtained

if the user needs it.

Status Information. Many times, programs have status information. This in-
formation should be easily available and visible to the user, but should not be
intrusive. One alternative is to display the status information on the perimeters
of a window. Many times users are not aware that status information is available

and will not actively search for it.

10

II.D Language

When deciding on word choice one should follow general principles of
conciseness, clarity, and consistency [Brown, 1988, pages 21-24]. A designer should
also avoid the use of technical jargon because it can confuse or intimidate users.
The designer should look at the audience of a user interface to determine what types
of terms will be clear and meaningful. Users brings a certain amount of knowledge
to their interactions with the interface. It is important for the developer of the

tool to look at the common knowledge of the user-community.

II.E User Scenarios

Scenarios are personalized, fictional stories with characters, and events
[Carroll, 1991, page 81]. They are extremely useful in helping the developer an-
ticipate how users will interact with the tool. They help designers understand the
ramifications that certain design decisions will have on user interaction with the
tool. It is important to examine different scenarios to get a variety of viewpoints
of a system. Scenarios can bring out new requirements of the system and see pos-
sible problem spots in the interface [Preece, 1994, page 462] [Carroll, 1991, pages
293-295].

Common Scenarios. It is important to include especially common scenarios.
When interface designers recognize common scenarios, they can streamline them,
helping to lessen the user’s frustration and mistakes and increase productivity.
Unusual scenarios can have slightly more complicated interactions.

It is important, however, to not create a system that is based solely on
a list of standard scenarios. Users continually surprise developers and use a tool
in unanticipated ways. If a tool is only usable with a certain set of scenarios, it

would be very limiting [Carroll, 1991, pages 293-295].

11

II.F The Engineering Model and User Model

HCI methodology recognizes two distinct models of a given system, the
engineering model and the user model [Norman, 1986]. The engineering model
represents the way in which the system engineer conceptualizes and realizes the
tool. The user model represents the way in which a user conceptualizes the tool.
When designing a system, an engineer wants easy access to the internals of the
system and wants all functionality made available in the interface. Exposure to
the internals of the system aid in testing but can make it difficult for the typical
user to understand the system. Users can adapt to any user interface, and as engi-
neers create a model of a system, they are adapting to their own model, lowering
awareness of its inadequacies for its intended users. The engineering model can
confuse a typical user, who has no knowledge of the internals of the system.

The user model characterizes how a user conceptualizes a tool. As users
work with a tool, they are creating a model of the tool based on the work they are
performing and on the way in which the tool presents functionality. In creating
scenarios that stress user interaction with a tool, it is possible to create a much
more user-centered interface design.

Although individual users create their own model of the system, it is
possible to define traits of the “typical” user to help create a more user-centered
design. When creating a user image, it is important to consider the audience’s
level of education and the types of tasks they will be performing with the tool. As
part of creating a more user-centered model, functionality should be hidden if it

has little meaning to the user or can be dangerous if used incorrectly.

Chapter 111

Analysis of the Existing Interface

In this chapter we discuss the original Star Diagram. We describe the C
Star Diagram restructuring planning tool and its original interface. We examine
some of the problems seen with the interface based on personal observation and
the user studies conducted by Chen [Chen, 1996]. We also look at the added elision
functionality introduced by Nguyen [Nguyen, 1997] and the effect this has had on

the interface design.

III.A Description of the Star Diagram

The Original Star Diagram Restructuring Tool. Bowdidge’s star diagram
is a graphical tool to assist in understanding and restructuring C programs [Bow-
didge, 1995]. The star diagram builds a tree-like graphical representation of a data
structure and its definition and uses in a program (Figure IIL.1). The root node
of a star diagram represents a data structure to be modified. The children of the
root node represent language constructs in the program that directly reference the
data structure. The children of the next level represent references to the previous
level of nodes, and so on. The references to the root node are expanded out to the
function level. A node having a “stacked” appearance (see the list-ref node in

figure IIL.1) indicates there are at least two statements that use the parent node

12

13

‘homerar /Tt
Picasso | File | Unde | Search || Views | Options | Experimental

Idle

((= lineno rumlines) nil)
ST R I (1 cingth (list-ref +line- e+ Lineno))
{do {(wordno 0 (1+ wordna))
{(= wordno mumwords) nil)
(vector-set! *circ-index* cslineno (list lineno wordno))
(set! cslinens (1+ cslinenc)}}}})})

Star diagram for variable *LINE- STORAGE*

Window | Options | Help

Remove I Extract Function | | | Turn into call |

altwords

[Fne-storage" §
in def. cssetup

in def. cswords

binding: wrdcnt

setl reves []

list—ref

reverse

in def. csline

Figure III.1: An Example of the Original Star Diagram Interface.

and have the same language constructs.

To allow for a better understanding of the star diagram display, each node
in the star diagram is linked to a text view. In the case of “stacked” nodes, the
user can choose from a list of single-line text entries that are connected to the text
Views.

To perform a meaning-preserving restructuring transformation on the
program, the user selects a node and applies a transformation to it. The tool
checks to make sure the change will leave the program’s functionality unchanged,
and applies the transformation. The types of transformations a user can perform
include creating a function from a group of statements, renaming an existing func-
tion, and inlining a function.

Bowdidge’s tool is useful for planning and carrying out small restructuring

tasks, but has problems when dealing with large systems. Examination of star

14

diagrams for large C programs reveals that viewing a star diagram for widely used
variables in a large program is problematic [Griswold et al., 1996] because the star
diagram can be quite large, compromising comprehension. Also, for very large

programs, transformations can be too time consuming.

The C Star Diagram restructuring planning tool. To make the tool useful
with large programs, Chen modified the star diagram by removing the meaning-
preserving restructuring capabilities and turned it into a planning restructuring
tool [Chen, 1996] [Griswold et al., 1996]. By replacing the tool’s transformational
capabilities with a plan-recording capability, Chen minimized the computation-
intensive activities of the tool, allowing it to be used on larger programs with
better performance.

Additionally, to help users see more of the program representation on a
single screen, Chen modified the tool to allow temporary removal of nodes from
the star diagram. Users can perform vertical and horizontal elisions to remove
extraneous information. A vertical elision removes a node and all paths that run
through it. An elided path can be displayed in isolation in a smaller star diagram
window. Once the node and its paths are removed, the remaining star diagram is
much smaller and the layout is more compact. Horizontal elision removes nodes
from the right-hand side of the screen after a certain depth, leaving the function
and file nodes. In one of Bowdidge’s and Chen’s user studies [Griswold et al.,
1996], it was observed that users work from left to right in the star diagram, and
much of the time the nodes on the right-hand side of the screen can temporarily
be removed.

Nguyen has continued to enhance the C Star Diagram restructuring plan-
ning tool’s capability for displaying large programs by creating a more advanced
way for users to remove extraneous nodes from a star diagram [Nguyen, 1997].
Users can now elide a node based on the kind of node it is or a user specified

string. For example, the user can trim all nodes that are “case” statements or the

15

user can trim all nodes that have a user specified string, such as “LHS.” The tool
continues to support horizontal and vertical elisions.

The C Star Diagram restructuring planning tool is a prototype devel-
oped to determine if planning restructuring without automated transformations
is helpful to programmers. The tool is useful, but it has been observed that the
tool has user interaction problems. Chen’s interface is an example of an engineer-
ing model. The tool provides useful functionality, but is difficult to understand
for users not familiar with the interface. The interface is implemented in Tcl/Tk
[Ousterhout, 1994]. One of the driving factors in creating this interface was the
ease of implementation based on the intrinsic properties of Tcl/Tk. For example,
there are places in the interface where design decisions were based on the way that
Tk handles events such as selecting and unselecting items. Once an action has
been performed on a selection, it is unselected and the user must reselect the item.
When creating the prototype, it was important for the designers to have access to
the internals of the program when designing and testing the system. For the sys-
tem to be useful to a broad range of users, we need to create a more user-centered

design of the interface.

III.B Detailed Description of the Interface

The interface primarily consists of five interacting windows. In this sec-
tion we will look at a general scenario and describe a typical user’s interactions

with the tool.

Selecting Files. The first activity the user must perform is to add files to the
tool. The main window consists of five buttons (Figure II1.2). The user selects
the first option, Add AST File(s), to add the files that make up their project.
The Add AST Files pop-up window allows the user to make selections (Figure
II1.3). The user can highlight files and add them to the project, or add all files in a
directory by choosing the Add ALL Files to AST option. As the files are read

16

C Program Restructuring Tool

Add AST File(s) Display AST File(s) Star Diagram Manager Information Exit

Figure I11.2: Main Window.

in to the tool, they are processed. This can take a few minutes for large programs.

Looking Through Project Files. Once all files are read in, the user can begin
to search through the files to find the variable(s) of interest. A file can be viewed
the second option on the main window, Display AST File(s). This option brings
up another window that will display the list of files that have been loaded into the
tool and the user can select one of these files to be displayed. Each file is displayed
in a text window that has pull down menus for exiting the window, creating a star

diagram, and searching the file for a certain string (Figure I11.5).

Selecting Star Roots. To find the variable of interest, the user looks through
the files, utilizing the Search for a string option under the Misc menu on the
text window. This option brings up a separate window that will search through
a file (Figure IIL.4). In this search window, a user enters the text to search for,
and either presses return or the Highlight button. All instances are highlighted
in the corresponding text window. The user can use the First, Next, Previous,
and Last buttons to navigate through the file.

Once the variable is found, the user double-clicks on the item to select
it as part of the root set. The use of color helps the user distinguish between
variables and non-variables. When selected, a variable is highlighted in red with
blue lettering, while a non-variable is highlighted in red with black lettering. The
user can select multiple star roots by continuing to double click on variables in the

text view. Once a variable is added, it may not be removed from the root set.

17

Display AST File

Files in AST:

fixstr.c.cpp
0.c.cpp
oabyss.c.cpp

s

oauxl.c.cpp
caux2.c.cpp
oaux3.c.cpp
ochar.c.cpp
ocity.c.cpp
ocomi.c.cpp
ocCOm2.c.cpp

-«

Display AST File|

Cancel |

AST file name: |uabyss.c.cpp

Figure I11.3: Selecting a File To Display.

Search and Highlight for AST file: oabyss.c.cpp

Search string: |Objects

Highlight | Clear | Dismiss |

FindFirst | Find Next

| Find Previous | Find Last

Figure I1I1.4: The Single File Search Utility.

18

AST File: ocity.c.cpp

File StarDiagram Actions Transformations Misc Help

int check_sacrilege(l:

wold load_country(y, load_dlair(), load_speak(), load_mislel(), losd_templel():

wold make_high_priest(), random_temple_site():

wold load_willage(), make_horsell, make_sheepll:

wold make_zuard(), make_sheep(), make_merchanti?,. make_food_bin(i:

wolid assign_willage functioni),. special_wvillage sitel):

extern struct monster MonstersC{C{CO(C00(0 + 9 + 220 + 14 + 15) + 18! +
14y + 13y + 15 + 12} + 8 + 1031:

extern struct spell SpellsC4l + 11:

extern struct object h[((((((((((((@ﬁ + 1682 + 24 + 13 + 41 + 17 +
81 + 7+ 7y o+ 10 + 17y + 24) + 13 + 131;

extern int CitySitelist[261L03]:

extern struct player Player:

extern int LENGTH:

extern imt WIDTH:

extern int Game3Status:

extern int ScreenLength:

extern struct terrain Countryl64]10564]1:

extern struct lewvel =City:

extern struct level =TemplLewel:

extern struct level =Dungeon:

extern struct level =Lewvel:

extern int Current_Dungeon:

extern int Yillagenum:

Figure I11.5: The Text Window.

Creating a Star Diagram. When the user selects the Create Star Diagram
option, the root set is displayed and the user confirms they are creating a star
diagram with the listed roots. This confirmation was added because users do not
realize they are adding variables to the root set by double-clicking on them. Users
can end up with a star diagram that is impossible to understand because of the
numerous variables in the root set. If the user has added too many roots, they
may clear the complete collection of roots with the Clear Roots option and start

the process over again.

Viewing and Manipulating a Star Diagram. The star diagram window is
equipped with a side panel that will display elision information (Figure II1.6). This
side panel can be hidden temporarily to gain more screen space when displaying
large star diagrams. Once a user creates a star diagram, they can begin planning

the restructuring of their program.

19

C-Star Diagram #0

Put Back|Show Arm|Annotate|| Buffer SourceCode Edit Font Panel Help

Trimmed Star Arms & [ArrayRefl =={1—irtest(1

Remarks:

call. PrintDescription(@){1H—ifthenf1

[call: PrintDescription(@){1 }—itelse{1

ifelse{z}ﬁ—|wfthar\{2}ﬁ—|ifel§e{2
T r \ r if:al

Freld. desc(al
TR

call: farintf{@ "I
——————
————

IJ [zail:_printii@i1 }—{rthen{1}—{Forbody(1}]

[Field dir{z1@—|ArrayRef{21 .
o call: forintfiE@)f itthen{l *defOr: PrintRy
\addressOﬂET:aH fscant(@)1 J—F orbody[}——

{eai: printi@)(}—irthen{t }—{Farbodyiz}———

Figure I11.6: The Star Diagram Window.

Status Information. When a star diagram is displayed, the user can find out
how large it is by selecting the Number of Nodes option under the Buffer
menu. This creates a pop-up window that displays the number of nodes in the
star diagram and how many distinct paths are being displayed. This helps the
user get an idea of how large a star diagram is if they can not see the whole star

diagram on one screen.

Adjusting the Font for a Star Diagram. After a star diagram is created,
the user can adjust the font size for the nodes in the star diagram with the
Font option on the star diagram window. The user is allowed to enter in a font
name, such as -Adobe-Helvetica-Medium-R-Normal—*-180-* or choose from

Small, Medium, Large and Huge buttons (Figure IIL.7).

Corresponding Source Code. A user can look at the corresponding text for

a node in the star diagram by selecting the node, and then choosing the Show

20

Font & Size Selector for Star Diagram #0

Please select one of the font sizes listed
below or enter a suitable font at the
bottom entry blank. (You can use the
program “xlIsfonts™ to find out exactly
which fonts are available in your
environment.)

Small Medium Large Huge
Font: |- adobe- helvetica-medium-r-normal--12-*

Clear Entry Apply Dismiss

Figure II1.7: Changing The Font Of A Star Diagram Display.

Corresponding Source Code option under the Source Code menu item. If
the the node is a stacked node, a window displaying all text examples is displayed
(Figure II1.8). If the node is not stacked, it will bring up a text window with the
corresponding text highlighted in red. A short cut for displaying the associated

text is to double click on the node in the star diagram.

Annotating Star Nodes. As a user explores the star diagram a node can be
annotated to help understand the functionality of that star arm in the tree. Once
annotated, the information about the arm is displayed in the side panel, Trimmed
Star Arms And Remarks. Once in this side panel, an arm can be displayed by
itself in a smaller star diagram window (Figure II1.9). This smaller star diagram
window has a subset of the original star diagram’s functionality. One cannot make

further annotations or elisions on this window.

Trimming Star Arms Eliding a star arm is a multi-step process. The user must
click on a node and select the Select Star Arm option to highlight the arm. The
user then selects the node again and chooses the Trim Selected Star Arm option
to elide the highlighted arm. Horizontal elision is similar to annotation in that a

node can be selected for further description, but the arm is also removed from the

21

Show Corresponding Text

Previous Selection | Next Selection Clear Selection Dismiss I
Filename Line# Text |
filen,c.cpp #208 rooms[il,desc = GetAString{file. 240); 4
filen.c.cpp #210 printfi"Room: %s %d %d %d %¥d %d #%dsn". fFoomslil.desc. rooms[il.dir[0].
printn.c.cpp #119 fprintf{f. "Room %d: ¥%s%n". roomNumber. froomsCroomNumberl.desc?:
printn.c.cpp #1286 fprintff, "%s". jroomslroomMumber],desc):
printn.c.cpp #213 fprintf(f, commandStringlcmd — 521, [Foomslrooml.desc. room):
printn.c.cpp #237 obj. froomslrooml,desc. room:
saadvn.c.cpp #182 if ([(roomslcurrentRoom].desc) (0] == "="} £
saadvn.c.cpp #183 PrintDescription(jroomslcurrentRoom].desc + 1):
saadvn.c.cpp #1687 PrintDescription{roomslcurrentRoom].desc):

A

Figure I11.8: AST Nodes In The Text.

Trimmed Star Arm

Buffer SourceCode

Help

defOf: DescribeRoom

RHS of assnl H—itelse(l —irelse(l defOf DOGOAD

|rc|c|m5{21J—FITMrrayRef{ZUPTFiE\d: dir{ZW}FITMrrayHef{h
T = = T o™~ call: fprintfi@)i{1 f—ifthen{1 defOf. PrintRoom

\\IaddressOY{B E—| call: fscanfi@ {1 J—{Forbady1

call: printf@){1—— ifthen{i }—]For:body{1

def

Figure I11.9: The Show Arm Window.

22

Type of nodes

M File

M Function
Unary Expr
Binary Expr
Stacked
Unstacked

W All Statements
For Statement
Do Statement
While Statement
If Statement
Switch Statement
Case Statement
Depth - |[Jo +
String

CK Cancel

Figure II1.10: The Elision Pop-Up Window.

star diagram. This helps when the user knows that a path is not relevant to the

restructuring process or the path has already been considered.

Advanced Elision Capabilities. For performance reasons and the addition of
new elision functionality, the star diagram is now created with only the root node
displayed. The user selects the Elision function from one of the star diagram
window menus and gets a pop-up window containing the types of nodes a user can
exclude (Figure II1.10). The user can then look at the elision capabilities and
specify which nodes should not be displayed before the star diagram is drawn the
for the first time.

Creating Multiple Star Diagrams. To better understand the impact of change
on the program, a user may create multiple star diagrams. To look at previous star
diagrams a user refers to the Star Diagram Manager window (Figure II1.11).
This window lists a description of all star diagrams created. Each star diagram
entry has the list of root nodes used to create the star diagram and an annotation

field for describing what the star diagram is used for. The star diagram’s annota-

23

Star Diagrams Info & Remarks

Show Star Diagram(s)| Annotate Star Diagram|Combine Star Diagrams |Destroy Star Diagram(s) Clear Selection|Dismiss

Star Diagram #0

Star Root(s):

Identifier: FQOMS from file: filen.c.cpp
Remark: <{none>

Star Diagram #1

Star Root(s):

Identifier: currentRoom from file: saadvn.c.cpp
Remark: <{none>

Star Diagram #2

Star Root(s):

Identifier: items from file: saadwn.c.cpp
Remark: <{none>

Figure III.11: The Star Diagram Manager Window.

tion field can be modified from the manager window. Each time a star diagram is

created, it is added to this master list.

Display Star Diagram(s). After a star diagram has been created and dismissed
from the display, it can be displayed again at a later time. Since the manager
window keeps track of all star diagrams created, the user can select the star diagram
and display it again from this window. This also allows users to have multiple star

diagrams being displayed at any given time.

Combining Star Diagrams. From the star diagram manager window, a user
can join two star diagrams to create a new star diagram whose root set is the
union of the two star diagrams. This is useful when the user needs to take a look

at interactions between two sets of variables.

Destroying Star Diagrams. If a star diagram is no longer relevant to the
user’s task, the star diagram can be destroyed permanently from the star diagram
manager window. The user is asked for confirmation that the star diagram is being
destroyed and there is no longer a record for the star diagram.

Chen’s tool provides rich functionality, but was not designed based on the

24

HCI principles we described in chapter 2. By explaining the problems observed
with the interface in terms of HCI principles, we hope to improve the interface

design.

III.C Problems with the Interface Design

Chen’s user studies of the C Star Diagram restructuring planning tool
revealed many problems with the interface [Chen, 1996]. Three groups of partic-
ipants were used to see the variant interactions users have with the tool. Each
experiment had a group of two users working together to encapsulate the Objects
variable in the C program, Omega. All groups were given a brief tutorial of the
tool to help them start the task. These studies have been very helpful in revealing
problems with the interface design. In the following sections we will focus on the

common problems users experienced with this tool.

III.C.1 Problems Getting Started

Visibility and Use of Language. The users had difficulty with the initial
stages of using the tool. The main window consists of five buttons that are difficult
to understand for initial tool users. This confusion can be attributed to visibility
and language problems. First time users were puzzled by the first button on the
main window, labeled Add AST File(s). All subjects were unclear on the term
AST File. Chen used the term AST Files because once the files are read in
to the tool, they are used to form an abstract syntax tree (AST) representation
of the program. This use of language is esoteric. It is too closely related to the
engineering model, revealing the underlying implementations to the user. The
real meaning this button needs to convey is for the user to add all files to the

restructuring planning tool that make up the user’s program.

25

III.C.2 Problems Finding the Objects Variable

Work Flow. Once files have been selected, the users can begin looking through
the files using the text windows. Their task was to look for the Objects variable.
In order to have a star diagram based on this variable, they had to find the variable
in one of the text windows and select the variable. The groups began looking
through the text windows for the variable, utilizing the Search for a string
function under the Misc menu option in the text window. Since there was no
Search All Files option in the tool it was difficult to search the whole program
for the variable. In the end, all three groups resorted to the UNIX utility, grep, to
see which files the variable was in. Since all groups initially had difficulties finding
the Objects variable, it suggests that this type of work flow scenario had not been

anticipated. The tool needs to be modified to handle this scenario successfully.

Visibility. When looking at the text windows for a search capability, one group
first went to the File menu to find a grep-like utility. The group then searched
through the menu options until they found the Search For String function under
the right most menu option, Misc. The placement of this option is not consistent

with other software products and caused some degree of confusion in all groups.

Use of Language. Two of the three groups had difficulties using the Search
For String window. The options for searching the text are Highlight and Clear.
Once lines containing the search string are displayed, a user can use buttons for
looking at the First, Next, Previous, and Last entries. When using this win-
dow, two of the groups seemed confused about how to initiate the search. The
tool searches for the string if the user hits return in the text entry portion of the
window, or selects the Highlight button. All groups were unclear on what the
Highlight button did. The Highlight button is an example of poor word choice
and would be more clear if the button was labeled as OK or Search instead of

Highlight.

26

III.C.3 Problems Creating a Star Diagram

Color. Once the Objects variable was found, the subjects needed to create a
star diagram. To select the variable as a root, they double-clicked on the element.
All groups questioned the use of color in the text window. After clicking on a
few variables and non-variables, all groups realized what the use of color means
in the text window. When a variable is selected, the lettering remains blue after
another selection is made. Groups found it difficult to distinguish between selected
variables, which have dark blue lettering, and unselected variables, which have
black lettering, based on these subtle color differences.

The use of color also caused other problems. When the subjects tried to
select root variables, they were confused by the text highlighting from a Search
for a string command. The search for string window highlights all occurrences of
a string in the text window. They assumed that since a variable was highlighted,
it was selected as a root node. When they tried to create a star diagram based on
this selection, the tool returned an error saying they must select an identifier to
generate a star diagram. After this error message the subjects realized that they

must double-click a variable to select it.

Work Flow. One group crashed the tool because they added bad roots to the
star diagram. Other groups realized they had unexpectedly added roots before they
displayed the star diagram. It was common practice for groups to indiscriminately
double-click on variables in the text window, not realizing that by doing so they

were adding these elements to the root set for a new star diagram.

Language. The font window was not heavily used by Chen’s subjects, but other
users have noticed problems with this window. Although this window gives the
user great flexibility in creating a star diagram with any font. It is an example of
where the engineering model is showing through the design. By allowing the user

to enter in a font name, the tool is allowing for the maximum flexibility, but this

27

functionality is not very meaningful when the font names are esoteric and too long

to remember for the typical user.

III.C.4 Problems with the Trimming Capabilities

Users seem pleased with the layout of the information in the main portion
of the star diagram window. Much research has already been devoted to this
window [Chen, 1996] [Bowdidge, 1995]. But there are still some problems with the

operations on the star diagram.

Use of Language. In Chen’s tool, there is esoteric language in the star diagram
window. When a star diagram is displayed, the user can remove certain paths or
arms of the star diagram that are of no interest or have already been processed
by the user. The menu option that is used to remove these paths says, elide star
arm. To elide something is to omit it from consideration, which is exactly what
is happening in the tool, but it was observed that many tool users do not know

what the word ‘elide’ means.

Work Flow. Users were frustrated by the multi-step process of eliding a star
arm. All groups had problems with this task and a member of one group questioned
aloud why they had to take so many steps to trim an arm. This was a common
scenario seen with all groups, which indicates we need to modify the tool to provide

easier user interaction for this process.

Visibility. Two groups initially hid the side panel to look at large star diagrams.
Once they had removed the side panel, they were not sure how to get it back.
Because the functions are hidden in menus, the Show Panel option was not
easily seen by the users. After looking through most of the menu options on the
star diagram window they were able to find the Show Panel option. This option

needs to be more visible.

28

While trying to look for uses of the Objects variables, one group per-
formed simple elisions, such as eliding all definition paths from the star diagram.
Another group wanted very specific functionality from the tool. The group wanted
the capability to look at just the uses of the variable on the right-hand side of an
equation, but no functionality was provided for this type of elision. Nguyen added

elision capabilities to handle situations like this one.

Visibility and Work Flow. The addition of Nguyen’s advanced elision capa-
bilities has caused confusion for users. With these additions, the work flow of the
star diagram window has changed. When first time users look at the star dia-
gram they are puzzled by the fact that their star diagram has only one node (the
root node) in it. We observed a group of reactions to this new feature and no
first time user could figure out how to get the rest of the star diagram displayed.
When implementing this feature, it was easier to add the functionality to the bot-
tom of an existing menu than create a new menu. This is an example of ease of

implementation taking precedence over user understandability.

ITI.C.5 General Problems with the Tool

All groups were frustrated when functions took longer than a few seconds.
One group wanted a stop watch displayed and all groups wanted some way of telling
them that the system was still working on their last request. An example of this
is when users first loaded their files into the tool. As the tool reads in a file, it
processes it and adds it to the tool’s internal representation. This operation can
take a few minutes for large systems. All groups wondered if they were using the
tool incorrectly because of the delay time. They felt much better when they saw
the window that displays debug messages, showing them that the files were being
processed. The subjects said they did not mind waiting, but it was important to
tell them that this pause in activity is expected by the tool and is not a problem.

There was also a general feeling of confusion by one group that remained

29

with them for the entire experiment. After working with the tool for an hour, one
member of the group commented that they still had very little understanding of
how the tool works. After an hour of experimenting with a system, users should
feel more confident about their understanding of the tool.

After looking at these user studies it is obvious that there are problems
with user understanding of the tool. Now that we understand why some of the
tool’s functionality is difficult to use, we must look at how we can fix these problems

using HCI methodologies.

Chapter IV

Redesign of the Interface Based
on HCI methods

In this chapter we will discuss our redesign of the interface based on
Human Computer Interaction (HCI) principles and methods. We discuss how our
initial approach, based on HCI principles, was not adequate for redesigning the
interface. We look at the principles used in our design and what techniques we

applied to our design, as well as describe our new interface.

IV.A Our Initial Approach

Our initial approach involved looking at isolated problems explained by
the HCI principles of consistency, visibility, language, and scenarios. Four exam-

ples follow.

Creating Consistency. One of our initial changes was to have consistent place-
ment of the dismiss button in all windows. In the original interface, some windows
have a pull-down menu labeled File in the top left corner that has a Dismiss
option, while other windows use a Dismiss button placed in the top right corner

of the windows. To create consistency, one of our new design decisions requires

30

31

all windows to have a Dismiss button in the top right hand corner of the main

windows in the interface.

Using Clear and Concise Language. Two examples of esoteric language were
fixed in our first stages of redesign. We immediately fixed the right most button
on the main window of the tool by removing the AST acronym, replacing the
text Add AST Files with Add Files. There was also a problem with user
understanding of the word ‘elision’ in the tool. In the star diagram window we

replaced the text Elide Star Arm with Trim Star Arm.

Scenarios We knew that the process of trimming star arms is a time consum-
ing activity. We tried to streamline this process. We removed the need for first
selecting a star arm before annotating or trimming it. In our interface, the user
double-clicks on a node, selecting and highlighting the arm, and then chooses the
trim or annotate buttons.

Although these modifications are usetul for our end product, we came to
realize it was a shallow approach to coping with the problems of the star diagram
interface. We did not have an overall theme to our redesign. Many times we would
make changes and later justify them with HCI principles. These principles were
applied in isolation. This initial phase had no clear unifying approach and we were

not making any real progress on the redesign of the interface.

IV.B The User Model and Engineering Model

A turning point in our design process was the realization that we were
working with an existing engineering model when in fact what we wanted was
a user model (see section ILF). This realization led us to question all design
decisions in the original interface and create a more unified model that is closer to
the user model.

In most of our solutions, one can see aspects of consistency, use of clear

32

language and vistbility in harmony. Unfortunately, there were also times these HCI
principles conflicted with each other and caused complex design trade-offs. One
of the most pressing trade-offs occurred between issues of screen real estate and
visibility. When looking for a solution to these problems, we consulted the user
model and looked at work flow scenarios to determine the best way to handle these
issues.

Although the user model is only a concept, we were able to operationalize
it by creating tool-specific rules of design. These rules help unify the different HCI

principles and resolve conflicts to create a more user-centered interface design.

IV.C Tool-Specific Design Techniques

The new design is based on a combination of HCI principles and carefully
managed design trade-offs. These design rules reflect our best understanding of

the user model.

IV.C.1 Button-Based Windows

Because it is difficult to remember where functionality is located in the
original tool, we replaced all menu options with buttons for a completely button-
based windowing system. Also, to enforce consistent placement of similar func-
tionality and streamline scenarios, we determined that all main windows will have
a Dismiss button placed in the top right corner. As we began applying this con-
sistency and wvisibility technique to our design, we discovered that there was too

much functionality in some windows” menus for a simple expansion to buttons.

IV.C.2 Consolidation of Functionality

In the original design, similar functionality for an interface item can be
spread out across multiple windows making it difficult for users to find and un-

derstand certain functionality. An example of this is the Make Star Diagram

33

function in the text window. Making a star diagram is not related to a text win-
dow, and should be grouped with other star diagram functionality. To improve
visibility, as much as possible, we enforce the rule that the functionality only acts
on the window it is placed in. This will help users find functionality more easily.
This design decision has also helped reduce the number of functions in windows,
enabling us to move to a strictly button-based interface. This problem made us

re-evaluate the placement of all functionality.

IV.C.3 Window Layout and Tiling

A big concern when redesigning the interface was the trade-off between
visibility in a single window, screen real estate and the proliferation of windows,
which can cause one window to hide others. This problem was especially prominent
in the star diagram window. One way of alleviating the problem of window prolif-
eration was to create a quick and consistent way to dismiss all windows (IV.C.1).
Another way we minimized the number of windows on the screen was through
tiling. Although this does not reduce the demand for screen space, related sub-
windows can be raised and lowered together, easing scenarios involving window
management. Tiling is especially useful in the star diagram window. In the origi-
nal tool, this window has a side panel for the trimmed arms along with a pop-up
window for the elision capabilities. The pop-up window causes problems because
it either interferes with the display of the star diagram or is hidden by other win-
dows. If a window requires related sub-windows, we tiled the large window to
include these extra windows.

When creating the layout of tiled windows, we used scenarios to assist
us in ordering the functionality and related data based on how people process
information in a left-to-right, top-down manner and on the order in which the
users will need the functionality.

Even though tiling is useful, we had to be careful not to create windows

with too much information in them. A user can comprehend only a certain amount

34

of information at one time and a window with too much functionality becomes
cluttered and incomprehensible [Brown, 1988, page 37]. We did not create windows
with more than four tiled sub-windows.

There has also been a wvisibility trade-off with the use of tiling. Although
tiling helps a large window and its sub-windows become more visible, it interferes
with the ability to see other windows. We realized the window tiling might be a
problem with the star diagram window and have tried to minimize the problem by

allowing the user to temporarily remove tiled portions of the window.

IV.C.4 Graying

There are many times in the original interface where users are allowed to
select a function but receive an error message if they cannot perform the function.
These error messages explain what the user did wrong. A user must acknowledge
the error message by selecting the OK button before they can continue. To avoid
incorrect usage or the tool and increase visibility of viable options, we gray out all

buttons that can cause error pop-ups at a given stage in the user’s activities.

IV.C.5 Streamlining Work Flow

The original tool has many repetitive multi-step processes. We stream-
lined these work flow scenarios to eliminate extraneous steps and increase user
work flow.

Short cuts are important to expert tool users. We have not created a
formal way of designing short cuts. They were implemented after basic interface
functionality was implemented. We observed common usages of the tool and found

ways to expedite the activities.

35

IV.D The Redesigned Interface

In the following sections we describe the windows for the redesigned in-
terface. The redesigned tool has four main windows along with other sub-windows

that will be described here.

IV.D.1 Redesigning the Main Window

We began with redesigning the main window. We used a new metaphor
for this window, the project (Figure IV.1). The project is not the program being
restructured, but the task of planning the restructuring of the program. This

window displays all project-related information.

Project Window Layout. The project window is an example of a tiled window.
We combined the pop-up windows from the original main window into a single,
tiled project window. This window is made up of four distinct sections, general
project information, a directory listing, a file listing, and a star diagram listing.
All functionality in the Project Window is laid out in a top-to-bottom, left-to-right
order based on the typical user’s need for functionality. The caption is placed in
the top left corner to encourage users to enter a caption for their restructuring task.
The other buttons along the top of the window are the Load, Save, Help, and
Exit. Although help is not implemented in this version of the tool, we provided
the button so that help functionality can easily be added to the interface at a
later time. Users must select a directory before they can select files. After the
directories are added, files must be added. And after directories and files have
been added to the project, the user can begin creating star diagrams and will need
the star diagram manager options, which are placed at the bottom of the project

window.

Project Window Graying. The project window utilizes graying. When the

project window is first displayed, the only available options are Set Caption,

36

C Program Restructuring Tool

Set Caption | Encapsulating the Objects Variable Load | Save |

| Exit

Add Directories |

fnet’franck/disk1/jcabanis/Cstruct/Omega

Add Files Display File Search For A 5tring In All Files

oabyss.i
oauxl.i
oaux2.i
oaux3.i
ochar.i

Display Star Diagram Annotate Deselect

Destroy

Star Diagram #0

Using Mame{s) of Rootis)

Star Diagram Rooti(s):

Wariable: ObjECTS from file; oauxZ,i
Remark: <none>

Star Diagram #1

Using Mame{s} of Rootis)

Star Diagram Rooti{sl:

variable: Player from file: oauxZ,i

Remark:; <none>

el

Figure IV.1: The Project Window.

37

Load File and Directory Information
Filter:
|fnetffranu:kfdisk1fjcabaniststrucmu:If".sdp
Directories: Files:
‘net/franck/disk1/jcabanis/Cstruct/tcl/. Ay Cmega.sdp |I
/net/franck/disk1/jcabanis/Cstruct/tcl/.. SmallOmega.sdp
/net/franck/disk1/jcabanis/Cstruct/tcl/bak SAA sdp
2 P VN = — = V]
Selection:
|metffranckfdisk‘lfjcabaniststrucmcImeega.sdp

OK | Filter | Cancel | |

Figure IV.2: Loading A File Into The Project Window.

Load, Save, Exit, and Add Directories. As the user enters more information
about a project, more options become available. Once there is at least one directory
in the directory box, the Add Files option becomes available to the user. After
files are added to the project, the Display File and Search For A String In
All Files buttons become available to the user. After a star diagram is created,

the star diagram manager functions are ungrayed.

Caption. The caption can be entered by either selecting the button Set Cap-
tion or double-clicking on the caption entry box. The original interface design
does not have a caption field. This was a simple addition to help the user define
their task. This can also help a user understand a previous restructuring project

when using the Load option.

38

Save File and Directory Information
Filter:
|fnetffranu:kfdisk1fju:ahaniststructHclf“.sdp
Directories: Files:
inet/franck/disk1/jcabanis/Cstructitcl/. iy Cmega.sdp |I
fnet/franck/disk1/jcabanis/Cstruct/tcl/.. SmallOmega.sdp
fnet/franck/disk1/jcabanis/Cstruct/tcl/bak SAA sdp
= =) N = P]
Selection:
|fnetffranckfdisk1fjcabaniststructﬁclmeega.sdp

OK | Filter | Cancel | |

Figure IV.3: Saving Project Information.

Load a Project. The user can load the caption, directory and file information
with the Load option from the project window. A pop-up window is brought up
that gives the user a choice as to what file they load from (Figure 1V.2). To
help users identify previous planning files we have the naming convention that all
project files ending with the .sdp (Star Diagram Planning) suffix are automatically
recognized by the tool.

Save a Project. The user can save caption, directory and file information with
the Save option from the main window. A window is brought up that gives the

user a choice as to what file they save to (Figure IV.3).

Add Directories. Many times with large programs, the source code is divided

between multiple directories. The directory portion of the project window allows

39

Add Directories
Add Directories:
A iy Cmega/ iy
CVS/
ScottAdamsAdventure/ > |
L |
All »>= |

a << All | a

4 |
Directory: Examples/ Ok Cancel

Figure IV.4: Adding The Omega Directory To A Project.

the user to add a collection of directories. A pop-up window is used to select the
directories. The user can browse through the directory hierarchy and select and

deselect directories with the >> and << buttons, respectively (Figure 1V.4).

Add Files. After selecting the directories needed, the user selects the files to
be used in restructuring planning. When the user selects the Add Files option,
a pop-up window is displayed, similar to the directory selection process (Figure
IV.5). If there are multiple directories, the user must first select a directory and
then add files from that directory. The process must be repeated for all project

directories.

Display File. Once files are added to the tool, the user can display the files.
Only the files from a single directory are displayed in the project window at any
given time. The user selects a directory and the file box changes to display the
files from the selected directory. To look at a file, the user selects the file and
the Display File button (Figure IV.6), or simply double-click on the desired file

entry as a short cut.

40

Add Files from /net/franck/disk1/cstar/Cstruct/Examples/Omega
Available Files: Selected Files:
ocom3.i | o.i
ocountry.i oabyss.i
oeffectl.i > oauxl.i
oeffect2.i oaux2.i
oeffectd.i oaux3.i
oenVy.i ochar.i
oetc.i All == ocity.i
ofile.i ocom.i
ogent.i e All ocom2.i
ogen2.i

Ck Cancel

Figure IV.5: Adding Files To A Project Based On The Omega Directory.

Search for a String in all Files. If a user is not sure where a variable is located
they can search for the variable in all files using the Search For A String In
All Files button. This is new functionality. We had difficulty deciding where to
place this functionality. If the search function was placed in the text windows,
users would assume that it acts on a single text window. But placing the search
function above the file list in the project window also has its problems. The
Display Files button in the project window acts on a single file and it is easy for
users to assume that if the search function is also placed above the list of files, it
too should act on a single file. We placed the function on the project window for
visibility and consistency reasons, and since the function is slightly out of place in
this window, we clarified the meaning of the function by labeling it with slightly
more verbose language. The Search For A String In All Files button creates a
pop-up window that prompts the user for a string (Figure 1V.8). The string does

not need to be a complete variable name, it can be any sequence of characters.

Star Diagram Manager Functionality. For wvisibility reasons, we moved the
star diagram manager functionality to the project window. The manager function-

ality includes displaying star diagrams, annotating a star diagram, combining star

41

Processed File: /net/franck/disk1/cstar/Cstruct/Examples/Omega/ocom2.i

Use Name of Var Use Type of Var Search for a String | Dismiss “

print3{"You can’t see a trap therel"): -S
else {
if (random_range(50 + difficultyl) =« 5) < Player.dex = 2 + Player,level

3 + Player,rank[3] = 10) £
printl{"You disarmed the trap!"):
if {random_range(l00} < Player.dex + FPlayer.,rank[3] = 10} £

o = ({pobimallocisizeaf (objtypell’:

switch (Level-»sitelx]1lyl.p_locf) £

case 89:
o0 = IEEEEEC0 + 171:
break:

case 963 —
#0 = Objects[0 + 23]:
break:

case 97
#0 = Objects[O + 22]1:
break:

case 95:
#0 = Objects[0 + 217:
break:

case 100;
#0 = Objects[0 + 247:
break: £

Figure IV.6: A Text Window.

diagrams, deselecting star diagrams, and destroying star diagrams.

Consolidation of Functionality. Because of our consolidation of functionality
technique, we were able to combine two functions behind a single button in the
project window. Both the process of creating a star diagram for the first time and
displaying an existing star diagram result in the display of a star diagram. We
removed the Create Star Diagram function from the text window and combined
it with the Display Star Diagram function at the bottom of the project window.
We modified this function to perform a simple check and if the star diagram has
not already been created, it creates the star diagram and then displays it. We
also added the ability to display star diagrams by double-clicking over the entry in
the project window. This short cut seems to have two uses. The first use is that
it helps the advanced user quickly create a star diagram. The other use was not
apparent in the design phase. When the screen becomes crowded with windows,
the user needs to only see the bottom of the project window in order to double-click

on the highlighted star diagram selection.

42

We created a short cut for displaying star diagrams. Instead of selecting
a star diagram and then choosing the Display Star Diagram button, the user
can just double-click on the star diagram entry. This short cut seems to have two
uses. The first use is that it helps the advanced user quickly create a star diagram.
The other use was not apparent in the design phase. When the screen becomes
crowded with windows, the user does not need to bring the project window to the
forefront in order to find the Display Star Diagram function. They need to
see only the bottom portion of the window to double-click on the highlighted star

diagram selection.

Use of Language. We changed the text used in some of the buttons in the star
diagram manager section of the project window because of spatial constraints.
Many of the options contained the redundant use of the phrase ‘Star Diagram,’
such as Annotate Star Diagram and Destroy Star Diagram(s). When we
moved these functions to the project window, space was limited by the width of the
project window. Also, because these functions are logically grouped together and
placed above the star diagram entries, the user understands that these functions
will act on the star diagram entries and the phrase ‘Star Diagram’ is redundant
and unnecessary.

We also modified the language in some buttons to clarify the meaning
of the underlying functionality and minimize the screen space needed for these
buttons. We changed the text for the Clear Selection(s) button to Deselect.
This function removes all selection highlighting from the star diagram manager
portion of the project window. This change had two positive aspects. The button
takes up less screen real estate now, as well as creating better user understanding,

as users were unsure of the meaning of Clear.

43

IV.D.2 Redesigning the Text Window

Our first step in redesigning the text window was to remove all pull-down
menus and replace them with buttons (Figure 1V.6). We were able to create
enough space for buttons by moving most of the star diagram functionality to the
project window and completely removing the transformational functionality that
was left over from the original star diagram tool.

The text window kept some of the star diagram functionality by having
the ability to select roots for a star diagram. We had difficulty deciding where this
functionality should be placed and tried to resolve the problem with user scenarios.
This functionality is kept in the text window because it indirectly acts on the text
window by using the text selections from this window. It was also kept in the text
window because the selection process has become more complex with Nguyen’s
addition functionality [Nguyen, 1997]. Star Diagrams can now be created based
on the types of variables. We had to change the interface to allow the user to
select a variable to be part of a root set based on its name or its type. We changed
the interaction with this window such that a user can no longer double-click on a
variable to select it as part of the root set. For a variable to be added to a root
set, the user must select the variable and use one of the buttons, Select Name
Of Var or Select Type Of Var. This modified interaction with the text window
also has the advantage that users will not mistakenly add too many roots to a star
diagram by randomly clicking in the text window. To further add to the users’
understanding of the star diagram being created, the tool creates a star diagram

entry and lists the roots of the star diagram before it is actually built.

Text Window Tiling. Another modification to the text window was the ad-
dition of a side panel that displays the same text in a very small font. This side
panel was added because a team of users in one of our informal studies complained
that they did not know enough information about where they were in the file.

They also wanted to know how large the file was. To match up the two versions of

44

the file, all highlighting that occurs in the larger text window is replicated in this

smaller side panel.

Text Window Graying. We used graying for the Select Name Of Var and
Select Type Of Var buttons in the text window because of a shortcoming in
the underlying functionality of the tool. The tool does not have the functionality
to create a star diagram based on a combination of variable types and names.
When creating a star diagram the user can create a star diagram based on the
types of a group of variables or based on the names of a group of variables. In our
design, when the user selects the first variable to be added to a root set by using
Select Name Of Var, the Use Type of Var button is grayed out until the
star diagram is displayed and a new star diagram can be created. The opposite
functionality occurs when the user begins to create a type star diagram. When
the underlying functionality is added to enable combination star diagrams, it will
be easy to change the graying capabilities to allow selection of both options when

creating a single star diagram.

IV.D.3 Redesigning the String Search Windows

We provide a single search utility (Figure IV.7) as well as and a project-
wide search utility (Figure I1V.8). These windows have the same look except for
the window title and the colors used to highlight the search strings. Each type of
search window has its own set of colors. The set of colors consists of light and dark
uses of the same color. In the Search All Files window, all matches of the string
are highlighted in light blue and the current instance of the string is highlighted
in blue. In the Search A Single File window, all matches of the string are
highlighted in light orange and the current instance of the string highlights in
orange.

The design of the string search windows are based on the original tool’s

AST node text display (Figure 1V.13). The use of language was the biggest

45

Search String Display: Show Corresponding Text In Single File

Search string: |object

CK

Clear Search |

First Selection | Next Selection

Previous Selection

| Last Selection Dismiss

Filename Line # Text

/rnets/franck/diskl/cstar/Cetruct/Examples/Omegas/ocomz, i
+ 18} + 41} + 17) +

/met/franck/diskl/cetar/Cetruct/Examples/Omegas/ocom?, i
/met/franckr/diskl/cestar/Cetruct/Examples/Omegas/ocomZ, i
snet/franck/diskl/cstar/Cstruct/Examples/Omega/ocomz. i
/net/franck/diskl/cstar/Cstruct/Examples/Omega/ocom2. i
/met/franck/diskl/cetar/Cetruct/Examples/Omegas/ocomZ, i
/met/franck/diskl/cetar/Cetruct/Examples/Omegas/ocomZ, i
snet/franck/diskl/cstar/Cstruct/Examples/Omega/ocom2. i
snet/franck/diskl/cstar/Cstruct/Examples/Omega/ocomz. i
/net/franck/diskl/cstar/Cstruct/Examples/Omegas/ocom2. i
/met/franck/diskl/cetar/Cetruct/Examples/Omegas/ocom?, i

#4467

#3879
#3882
#8083
#8886
#3891
#3894
#3097
#3900
#908
#1193

extern struct object Objectsl(((0L CII(20 + 16 + 24)

«0 = Dbjects[O + 231:
«0 = Dbjects[D + 221
#i Objectslo + 211:
0 Objects[O + 241:
«0 = Dbjects[O + 20]:
«0 = Dbjects[O + 19]:
=0 = Objects[0 + 18]1:
#0 = Objects[0 + 25]1:

Objects[o—>id] . known = 1:
Obgjectslobj—>idl.objstr = salloci(obj—>objstr):

X

Figure IV.7: Searching For A String In A Single File.

Search String Display: Show Corresponding Text In All Files

Search string: |Cject

OK

Clear Search |

First Selection | MNext Selection

Previous Selection |

Last Selection Dismiss

Filename Line # Text

Snetsfrancks/diskl/cstar/Cstruct/Examples/Omega/0aux3. i
/net/franck/diskl/cstar/Cstruct/Examples/Omegasochar. i
+ 18) + 41) + 17) +
/net/franck/diskl/cetar/Cstruct/Examples/Onegasocity. i
+ 18) + 41) + 17)
snetsfrancksdiskl/cstar/Cetruct/Examples/Omegasocoml . i
+ 18) + 41) + 17) +
/net/francks/diskl/cstar/Cstruct/Examples/Omegasocom2. i
+ 18) + 41) + 17) +

Snet/franck/diskl/cetar/Cestruct/Examples/Omega/ocom?, i
snetsfrancksdiskl/cstar/Cetruct/Examples/Omegasocom2. i
Snetsfrancks/diskl/cstar/Cstruct/Examples/Omega/ocom2. i
/net/francksdiskl/cstar/Cstruct/Examples/Omegasocom2. i
/net/franck/diskl/cetar/Cstruct/Examples/Onegas/ocom2, i
/net/franck/diskl/cetar/Cstruct/Examples/Onegas/ocom2, i
Snet/franck/diskl/cetar/Cstruct/Examples/Omega/ocon?, i
Snetsfrancks/diskl/cstar/Cstruct/Examples/Omega/ocom2. i
Snetsfrancks/diskl/cstar/Cstruct/Examples/Omega/ocom2. i
/net/francks/diskl/cstar/Cstruct/Examples/Omegasocom2. i

#719
#467

H4B7
#4467

#467

#3879
#8082
#8839
#8586
#891
#3894
#B897
#900
#9058
#1193

#ob = Objectsl2e + 11:
extern struct object ObgectsCi{{e((({{({{26 + 16) + 24}
extern struct object ObjectsC({{CC{(({CI{{26 + 16) + 24}
extern struct object DbjectsCi{{eC({C({(26 + 1B} + 24}
extern struct object ObgectsCi{{ti{(({{({{26 + 16) + 24}

«0 = Objects(0 + 23]:
*0 Objects[0 + 22]:
*O Objects[0 + 21]1:
*0 Objectsl0 + 241:
x0 = Dbjects[0 + 201:
x0 = Dbjects[0 + 191;:
*0 Objects[O + 181:
#0 = Objectsl0 + 23]1:

Objectslo->idl.known = 1:
Objectslobj->id]l.objstr = salloc(obj—>objstr):

Figure IV.8: Searching For A String In All Files.

46

problem with the original single-file search window. Since users did not understand
the meaning of the Highlight button in the search window, we changed the text of

this button to be more consistent with other user interfaces designs and renamed

it to OK.

IV.D.4 Redesigning the Star Diagram Window

As with other windows originally containing pull-down menus, we moved
to an all-button design with the star diagram window (see Figure IV.9). We
initially had too many options to place them all at the top of the screen in a
button format. To create a single row of buttons, we shortened some phrases and
removed extraneous steps from certain tasks. For infrequently used tasks, such as

the fonts window, we kept them as pop-up windows.

Star Diagram Window Tiling. The star diagram uses tiling. With the in-
troduction of more advanced elision capabilities [Nguyen, 1997] a floating window
was initially created to handle these elision capabilities. Often, this elision window
gets hidden or takes up prime screen real estate. To fix this problem we added the
elision panel to the side panel of the star diagram window. We placed the elision
panel just above the trimmed panel. We placed it in the top left corner to help
with streamlining work flow. Typically, users work in a left-to-right, top-down, or-
der and this placement will remind the user how to create a complete star diagram

display. Both the trimmed panel and the elision panel can be temporarily hidden
(Figure 1V.10).

Star Window Graying. The main activities with the star diagram window that
can cause incorrect use of the tool are the ability to trim arms and annotate nodes
in the star diagram display. When an annotated entry in the trimmed star arm
panel is selected, the path in the star diagram is highlighted. The path cannot be
highlighted if it has been trimmed by another entry in the trimmed star arm panel.

47

C-Star Diagram #0

Types of Nodes to Exclude | | D (PR | oo | BT

|

_1 All Statements [Deciaration(5)]
LEI _I Stacked Nodes =||
,Else
_| Switch) U el (oetss File: saveFilenifi}
_I Function
_| Case
_| File

_| For, While, Do

_| Depth - 0 +
| String More Strings

Clear Selections | Apply to Star Diagram |

[addressOfE call: fscani@){l —{Forbody{ls}——
[call: printr@){t —{irthen{i}—{Forbogyi}———

‘ Trimmed Star Arms And Remarks:

IJ

call: fprintf(@ 4y

iftestfl}

call: FrintDescription(@)(1 {—{ifthenfil }————————————————

X

= = | '

[total of 91 nodets) and a total of 20 distinct star paths in Star Diagram #0

Figure IV.9: A Complete Star Diagram Window.

C-Star Diagram #0

| | Show Panel | Zoom | | Dismiss ﬂ
[EEEEEIRj i

File: saveFilen.if1}

LHS of assnil}

[addressonE call: fscanf@){1 }—{Forbadyi11]

Jcan: printii@) 1 —{irthen{i}—]Forbody{13}

defOf. ReadDataFile File: filer

LaefOr. PrintRoom |

defOf DoGoAction

File: saadvn.if1}

[EEGEED |

ifthen{l itelse{1—]else{l—{itelse{i}——{Forbody{i}—
\fe\se(Z)-H—|lnhan(E)ﬂ—| if.8lse{z
L ¢ ¢ iTelse[l irthengi}—{relsefis}—{etsei]—{feiser—{Forba

ArrayRef[1 iftest{1}
call: PrintDescription(@){1H—{ifthen{13} defOf: DescribeRoom |
Tran- Printnesn 1H—Tireisartl 4
I~ 1 =

[A total of 91 node(s) and a total of 20 distinct star paths in Star Diagram #0

Figure IV.10: A Large Star Diagram Without the Side Panel Display.

48

To avoid this problem, when a user selects any node on an already annotated path,
the Trim Arm button is grayed. Annotating and trimming can occur in both the
star diagram and the trimmed panel portions of the window, and the same graying

logic is placed in both sub-windows.

Streamlined Work Flow in the Star Diagram Window. We experienced
some problems implementing the graying functions due to the way Tk handles
selections. Once an event occurs based on a selection, the “selected” status is
removed. Unfortunately, there are many times when a user wants to perform
multiple functions on a selected entity, such as annotating and then trimming an
arm. This is a case where the engineering model does not readily support the
user model. When the tool is done with a selection, it must artificially select the
element again.

Work flow scenarios have been very helpful in eliminating repetitive multi-
step process from the star diagram tool. In the original interface, users are frus-
trated with the number of steps needed to elide a star arm. We eliminated the
need to Highlight Star Arm before eliding the star arm: When the user selects a
node, the tool automatically highlights the arm. So now the user selects the node
and uses the Trim Arm button to elide the star arm. Shortening this work flow
also helped eliminate functionality from the star diagram menus allowing easier

migration to buttons.

Status Information. Instead of using a pop-up window to retrieve information
about how many nodes are displayed in the star diagram and how many distinct
paths are displayed, we place this information on a single line at the bottom of
the star diagram window (Figure IV.9). This change was based on the wvisibility
principle. The information is always displayed but does not interfere with the

user’s interactions with the star diagram window.

49

Diagram Size

~ Tiny -~ Large
~ Small ~ Huge
~ Medium @& Default

Apply Dismiss

Figure IV.11: Changing The Font Size Of A Star Diagram.

Font Information. We changed the star diagram font window to have Tiny,
Small, Medium, Large, Huge or the Default option(Figure IV.11). Our
implementation loses flexibility because the user can no longer specify an exact
font name, but this functionality is difficult to use, and is not be used by the
typical user. The addition of default helps the user find the original font size if it

has been forgotten or was never known.

Displaying AST Node Text. We removed the option, Show Corresponding
Source Code, from the star diagram window and just kept the short cut of double-
clicking on a node to display the source code. Many users begin by double-clicking
on star nodes and never utilized the Show Corresponding Source Code menu
option in the original tool. We also changed the window for displaying a stacked
node’s text (Figure 1V.13) to look similar to the search windows. The main
difference with this window is the change in color. To have the same look and
feel as the search windows, this window also uses a two tone color approach. All

matches are highlighted in pink and the current instance is highlighted in red.

Elision Panel. We also changed some of the language used in the elision panel
of the star diagram window. Many users do not understand the term ‘elision.” We

changed the header for this sub-window to be Types Of Nodes To Exclude.

By placing the elision panel in the top right corner of the window, users are more

30

Trimmed Star Arm normal "ArrayRef" S0x724da0 S0x7391d8

Dismiss “

X

call: printi{@){1}—itthent}—{Forbody{1H

call: frintf(@){1H—irthen{1H ["dEfOf: Frin

JaddressOf{BT call: fscanf{@){1 H——{Forbody{1H

|ruums{21}erayRef{ZuﬁTﬁield: dir{ZUﬂTMrrayRef{m :
I| I| I| I|

s iflest{l Forbody{1} E
=={1 ifelse{1}
[RHS of assn{1H+—ifelse{1H— ifelse{11
~l ! =

|ﬁ total of 33 nodeis!) and a total of 6 distinct star paths in Star Diagram #030x724dad

Figure IV.12: The Show Arm Window.

AST Node Display: Show Corresponding Text In All Files

md — 521, items[objl.desc.

Next Selection Previous Selection Last Selection Dismiss “
Jnetsfrancks/diskl/ jcabanis/Cstruct/ScottAdamsAdventure/printn. i #166 fprintf{f. "Room %d: %sn". roomMumber. room S
sLroomMumber].desc)
/net/francks/diskls jeabanis/Cstructs/ScottAdansAdventures/printn, i #1723 fprintf{f, "#s", roomslroomMumber],desc):
Jnet/franck/diskl/ jocabanis/Cstruct/ScottAdansAdventure/printn, i #260 fprintf(f. commandStringlcmd
- 521, roomslrooml.desc. room):
snets/franck/diskl/ jcabanis/Cstruct/ScottAdamsAdventure/printn. i #283 fprintf(f,. commandStringlc

obj. rooms[room],desc. room)

Figure IV.13: Looking At Corresponding Code Based On A Star Node.

51

likely to remember that they must Clear Selections and Apply in the elision
panel to initially display a complete star diagram.

To improve understandability, we also removed some of the types of nodes
a user can exclude. We removed the capability to trim Unary and Binary nodes

because these options are not meaningful or useful in most situations.

Trimmed Star Arms and Remarks. We changed the content of the Trimmed
Star Arms And Remarks panel to move the address of the node out of the
window and display an example of the text associated with the node. The memory
address of the node is meaningful to the tool developer, but is of no importance
to users. We added the code example to help remind the user which node was
annotated or excluded. In our design, the information kept about a trimmed or
annotated star arm is the name of the node, a code example, an annotation and
whether the arm is trimmed or merely annotated.

We modified the Trimmed Star Arm And Remark panel to fix prob-
lems with language and window size. To save space, we removed the use of the
word Star from all buttons. To have better user understanding, we replaced Elide

with Trim on the Elide Star Arm button.

Displaying a Star Arm. We modified the star arm display window to have the
same look as the other windows by removing all pull-down menus and providing
a Dismiss button in the top right corner (Figure 1V.12). Like the larger star

diagram window, we provide a status message at the bottom of the window.

Chapter V

Experiment and Results

In this section, we present a user study and an evaluation of our techniques
and design for the C Star Diagram restructuring planning tool. We conducted the
user study to observe user interaction with the tool. We explain the study and
present the results followed by a brief analysis.

When analyzing the results of our experiment, we must be aware that
there has been added functional complexity to the tool since the creation and
evaluation of Chen’s tool. For example, in the original interface, users can only
trim star arms, whereas in our tool, the user can either trim or annotate star
arms. Also, users can now build star diagrams based on the types of variables
or based on the names of variables. The Nodes To Exclude side panel and
it’s functionality are also additions to our interface. These new functions have
created new user interactions. Although the functionality of Chen’s tool and our
tool are not exactly the same, we can still gain qualitative results about changes to
the interface by comparing user interactions with our interface design and Chen’s

interface design.

52

33

V.A Experiment

We conducted the user study to observe how users’ interactions have
changed with our new design. As part of our iterative development process, we
conducted informal user studies prior to the formal user study.

We used Chen’s user study format [Chen, 1996] for our study because
it was inexpensive to use an existing experiment. Also, by using Chen’s user
study format, we are better able to compare our results with Chen’s results. It is
important to note that these results are qualitative. Our goal has been to look for

changes and improvements in user interaction with our new interface design.

V.A.1 Study Subjects

One of the problems with this type of study is that it is not quantitative.
It is difficult to prove the success of a new design with these types of results. We
also recognize that we have few data points by only conducting one formal user
study. To be consistent with the prior studies, we select a team of programmers
consisting of two fellow graduate students. Both subjects were first time users of
the tool. They are familiar with the concepts of object-oriented programming and
modularization, but have not had a lot of experience with object-oriented pro-
gramming. Although there is no average user, we believe these subjects exemplify
typical behavior and are helpful in creating meaningful, though initial data points.
The subjects participated in this study on a voluntary basis and neither received
monetary compensation.

For the study, we had the team of programmers working together. This
technique, known as constructive interaction [Miyake, 1986] [Belady and Lehman,
1976], is used in our study because it provides a natural way for programmers to
discuss the problem they are solving, enabling us to observe how programmers

address problems and their solutions by studying the programmers’ dialogue.

o4

V.A.2 Setup

We conducted the study in a laboratory setting to limit interruptions
and ease video recording for later analysis. The two subjects worked together on
a single monitor. We used a video camera to record the programmer discussion
and gestures. We used keystroke capturing of computer actions for later analysis.
Each subject had a clip-on microphone to get separate voice data. We recorded
key strokes in all the windows used by the subjects. We video taped the com-
puter screen to observe their activities and how their focus changes through mouse
movements and selections. This also helped us see where there are pauses in the
programmers’ work flow. Only the subjects and experimenter were present in the
laboratory during the session. The experimenter did not interact with the sub-
jects during the video taping session, except in cases where the tool crashed or the

instruction manual was incorrect.

V.A.3 Instructions

To observe the differences between Chen’s star diagram interface design
and our interface design, we provide the same setup and instructions as were given
in Chen’s user studies [Chen, 1996]. This was also done to determine how our
interface design has improved user understanding of and interaction with the tool.

We first had the subjects sign a standard consent form. We then gave
the subjects a copy of the instructions for the task, a ten-minute quick demonstra-
tion of the C star diagram tool and a short manual describing some of the tool’s
functions. We told the subjects they had 2 hours to finish their task but would
be allowed to go over this time if they were close to finishing at that time. At the
end of the experiment, each subject was asked to fill out a questionnaire about
their background and experience in program restructuring and their knowledge of
modularization. After filling out these questionnaires, they were allowed to discuss

in free format their experience with the tool.

)

We gave the programmers an adventure program, Omega, written in
roughly 31,000 lines of C. Omega is a rogue-like game of dungeon exploration
written and freely distributed by Lawrence Brothers [Lawrence, 1989]. We asked
the subjects to perform data encapsulation on the global variable Objects. This
modification requires examining all the functions in which the Objects variable
is used and performing several global changes. We instructed subjects to first
encapsulate the data structure storing the internal representation of Objects (an
array of struct object). They had to create a new module that hides the Objects
variable behind a set of functions. We also asked that they not change any of the
program’s running behavior. To provide us with enough information about the
tool’s usage, the instructions asked the subjects to perform the restructuring as
their last step.

In order to encourage use of the tool and ease analysis, there were no
printed listings of the code. The subjects had to view all code on the screen. This

also focused activity on the computer screen in direct view of the video camera.

V.A.4 Known Issues and Problems

In conducting informal user studies, we observed problems with user in-
teractions with our tool. We were aware that these interactions could also cause

problems for our formal user study participants.

Abundance of Color in the Text Window. Although we use color to create
associations amongst windows, subjects in our informal user studies were distracted
by the abundance of color in text windows that had been used by a string search
window. The users assumed that if text was highlighted, it was selected. When
they tried to make a star diagram based on the highlighted variables, they would
receive an an error message saying that no variable was selected. We implemented

the graying features to force the user to select text before they choose the Use

Name Of Var button or the Use Type Of Var button. Although this has

56

helped, the abundance of color still makes it difficult to see which variable is

actually selected.

Replicating Buttons. Because we followed the rule that functionality only acts
on the window it is placed in, we had a problem with replicated functionality in
the star diagram window. Both the Star Diagram panel and the Trimmed Star
Arms And Remarks panel have Trim Arm and Annotate Arm functionality.
When looking at user scenarios, we realized this replicated functionality might

cause confusion.

Graying. Graying was one of the last items we added. We created graying to
avoid adverse conditions and the proliferation of pop-up error windows. Although
graying is useful in directing users to perform successfully, it also has its problems.
When functionality is grayed out, the user is not really sure why they cannot
perform the function, whereas with the pop-up example, the user receives an ex-
planation of why they cannot perform the function and is usually directed to a
successful scenario. Before the study we were unsure what impact this change in
error handling would have on user interactions with the tool.

There were also some bugs in the graying functionality at the time the
user study was conducted. By conducting the user study with this problem, we
knew we would not get a completely accurate view of the subjects’ perception of

the graying functionality.

Status Information. Many operations can take several seconds to perform.
Users of the original tool wanted status information for functions that take longer
than a few seconds. Status functionality has not been fully implemented in our

design and we know the users might express a need for this type of functionality.

Problems Adding Files and Directories. Many users have difficulty under-

standing the relationship between the directory and file sub-windows in the project

57

window. Users do not realize they must select a directory from the directory list
before they can see the list of associated files and they become confused when all of
their files are not displayed at a single time. They also have difficulty trying to add
files from different directories because they have to perform an Add Files func-
tion for each directory. We know these interactions are a problem and we modified
the experiment to have the subjects load the files from a predefined project file,

omega.sdp.

V.B Results

In this section we describe the subjects’ interactions with the tool.

V.B.1 Loading the Project File

The subjects began by loading the project file, omega.sdp, into the tool.
The Omega program is composed of 47 files and takes a few minutes to load. In
the tutorial, the experimenter told the subjects that this process can take some
time. As they were waiting, the subjects watched the debug window to see the

tool process their files.

V.B.2 Finding the Objects Variable

After loading the files into the project, they used the Search For A
String In All Files option. The subjects searched on Object to look for the
Objects variable. After receiving all uses of the Objects variable, they began
looking for the definition of the Objects variable. In the tutorial, the ex-
perimenter did not clarify that the subjects only needed to find an instance of the
variable and not the definition of the variable in order to create a star diagram.

They had problems finding the definition of Objects in the search window
because the search window returns all instances of the variable in all files. They

used the UNIX tool, grep, to find the definition. Once they found the definition

38

file, they displayed the corresponding text window and used the Search For A

String window to locate the definition in that text window.

V.B.3 Selecting Variables and Creating a Star Diagram

The subjects had difficulty with the process of creating a star diagram.
After finding the Objects variable in the text window, they double-clicked on the
variable, highlighting it. They were not sure whether they wanted a type or name
star diagram. They selected the Use Type Of Var button, which grayed out the
Use Name Of Var button.

They were not sure what should happen after they selected a variable as
part of the root set. The project window was covered up by the search windows
and they did not see a new entry added to the star diagram manager portion of the
project window. When no star diagram was created, they began dismissing search
windows hoping that the project window would have some information that would
help them proceed. They found the highlighted star diagram entry and selected
the Display Star Diagram button.

After successfully creating the star diagram based on Objects’s type,
they performed a Clear Selections and Apply To Star Diagram from the
elision panel. Because the star diagram was so large, it took a while to refresh
the display with the full star diagram. As this was going on, the subjects realized
this star diagram was not what they wanted. In the initial explanation of the tool,
they were not told that they could create multiple star diagrams. So, before the
type star diagram was finished displaying, they quit the tool to begin again and
create a name-based star diagram.

The second time they began the tool, they understood the steps involved
in creating a star diagram. As the subjects explored the text window, they double-
clicked on both variables and non-variables without adding them to the root set.
As part of their exploration process, they understood when and why the Use
Name Of Var and Use Type Of Var buttons were grayed and activated.

39

V.B.4 Star Diagram Understanding

The users quickly understood the star diagram representation of their
program. They began by looking at the corresponding source code for many of the
nodes to match the tree-like display of their program to the actual text of their
program. They also used the text editor vi to look at the differences between the
preprocessed file in the text window and the actual .c file. As they were looking
at the star diagram they noticed the status bar at the bottom of the window that

described how many distinct nodes and paths were in the star diagram.

V.B.5 Elision Capabilities

The advanced elision capabilities were explained to the subjects so they
would not be confused when they initially only saw the root node of the star di-
agram displayed. The subjects were also told that some nodes can be excluded
immediately if they know a star diagram is going to be large. Once their star
diagram was displayed, one subject recommended that because it was probably
going to be large, they should display only the File Nodes at first. After they
determined how many files referenced the Objects variable, they cleared all selec-
tions in the Nodes To Exclude panel and displayed the complete star diagram.
The subjects easily understood this panel and its relationship to the star diagram
portion of the window.

Later, they came back to the Nodes To Exclude window to experiment
with the types of nodes they can exclude and how it will affect the display of the
star diagram. The Stacked Nodes and Unstacked Nodes options initially
caused some confusion with the subjects. All other types of nodes to exclude are
based on the text inside the node, where as these options are based on the visual
presentation of the node. After trying these two options, they quickly understood

their meaning.

60

V.B.6 Restructuring Planning

Once they felt they had a good understanding of the star diagram repre-
sentation, they began to discuss their plans for restructuring the program. They
did not spend time trying to discover what made up the Objects array, and just
concentrated on hiding the structure behind a set of functions. They attempted
a simplistic object-oriented approach, where they would have an Init() function
along with Get() and Set() functions'.

They worked in a top-down fashion, looking at each arm in the star
diagram. The first node they encountered was the node denoting the external
definitions of the variable. To get rid of this node and its associated file nodes,
they first tried to trim the file nodes connected to the external definition. They
tried to remove the file nodes associated with the external definition, but were not
able to. File nodes are special nodes because they have multiple paths leading into
them, and hence do not uniquely identify a path to be trimmed. The subjects were

finally able to remove these nodes based on the Declaration node connected to

the file nodes.

V.B.7 Annotating and Trimming Star Arms

The subjects had difficulty with the annotation and trimming functions.
This was partly due to the explanation they received in the beginning of the
experiment. They were not told that once a node on a path is annotated, the path
cannot be trimmed. They did not understand why they could not trim the node
and tried to annotate other elements on the same path in the hopes that one of
the nodes would let them trim the entire arm. The documentation was incorrect
for this activity, telling the users to trim an already annotated path from the star
diagram window instead of from the trimmed arm panel. The experimenter had

to intervene and correct the documentation in order to allow the experiment to

! Although this design satisfies the minimal requirements of the instructions, it is not neces-
sarily the best design [Griswold et al.; 1996].

61

continue. Once the correct trim functionality was explained the subjects were able
to continue with their restructuring planning.

Once they had figured out how to annotate and then trim an arm, they
were able to work through the star arms very quickly. For each star arm they went
through the same motions for annotating the arm. They would annotate the arm,

trim the arm, and then have to adjust the star diagram display.

V.B.8 The Restructuring Process

When the subjects began the process of restructuring the code, they
undertook restructuring in the same order they processed star nodes. For each
entry in the trimmed panel, they displayed the arm with the Show Arm button.
They looked at the corresponding code for the star arm and found the same code
in the original text file, and began making modifications. Time ran out before
they could finish the restructuring process, but they described the rest of their
process to be similar to the first modification, saying they would have modified

each instance in the order they annotated the paths.

V.C Interview

After the experiment, we had the subjects fill out a short questionnaire.
It asked them questions about their experience with program restructuring as
well as their general level of experience and understanding of concepts such as
modularization. We then conducted an open-ended interview with the subjects,

asking them for their reactions to the tool’s intertace.

V.C.1 General Comments

The interviewer began by asking the subjects their general feelings about
the tool. They were then asked about problems they experience with the individual

windows.

62

Status Information. As we guessed, the subjects did complain there was no
status information for functions that take several seconds. They said they did
not mind waiting for a function but wanted reassurance that the tool was still

processing their request.

Graying. Because the experimenter warned them of possible problems with the
graying capabilities, they did not know which graying functionality was a bug
and which graying functionality was intended. Many times they assumed that
the graying functionality was an error, when in fact, it was correct. They said
they understood the gray-toggling between the Trim Arm and Put Back Arm
functions on the Trimmed Star Arms And Remarks panel of the star diagram
window.

When the experimenter explained that the graying was implemented to
avoid pop-up error-message windows. Both subjects agreed that they prefer gray-

ing functionality over pop-up error messages in tools.

V.C.2 Project Window

For the most part, the subjects were satisfied with the project window,
but they did have some problem knowing when they could use the star diagram
functions. They were confused by the process of creating a star diagram and
were not sure when they could begin to utilize the star diagram functions on the
project window. This confusion can be partially attributed to the star diagram

functionality left in the text window.

V.C.3 Search Windows

They did not feel the search windows were especially helpful but did not
have any problems with them either. Because of the subjects’ misunderstanding

about the process of selecting the definition of a variable instead of just any instance

63

of a variable, they wanted the definition to be highlighted in a different color than

the other entries in a search window.

V.C.4 Text Window

They liked the side panel on the text window. They also understood why
only certain parts of the text are highlightable, and why the Use Name Of Var
and Use Type Of Var buttons gray out.

They were disturbed by the use of red in the text window. When they
looked at a star node’s corresponding text, there were times when the node cor-
responded to a large portion of text and most of the text display was highlighted
in red. They commented that, in most tools, the color red usually means danger,

which is not the case in this tool.

Star Diagram Window. Both subjects said they had problems understanding
the significance of color in the star diagram window. They had problems identifying
which node was the selected node, even though when a node is selected, the path
highlights in red and the node turns blue. One subject said the selected node should
be a much brighter color, such as bright green. As another way of distinguishing
the current selection, they wanted the ancestors of the selected node to be one color
and its descendants to be another color. They said it was difficult to differentiate
blue, selected nodes from black, unselected nodes.

The process of trimming a star arm frustrated the subjects. They had to
adjust the display of the star diagram every time they trimmed a star arm because
the star diagram would always be redrawn further down on the screen. In our
re-design, we did not address this problem, and left the functionality unchanged
from the original tool.

The subjects did not like the display for the Trimmed Star Arms And
Remarks entries. They said it was too much information in too small of a space.

They described the data as too scattered and poorly formatted. This layout was

64

compact because of the decrease in space the trimmed panel has due to the addition

of the elision panel.

V.D Analysis of Results

In this section we discuss the experiment and its results as well as evalu-
ating our design techniques and how they have affected user interactions with the

tool.

V.D.1 Determining Successes and Failures

When analyzing qualitative results, it is difficult to clearly demonstrate
successes and failures. We tried to analyze the quality of the subjects’ interactions
based on the amount of training they received as well as their verbal reactions to

the tool and the ease in which they performed their activities.

Amount of Training. When analyzing subjects’ usage of a tool, it is important
to take into account the type of training they received. While we realize it is
crucial to give subjects some training, it is difficult to establish how much training
is necessary. Because we wanted to determine if users could easily navigate through
the interface, we provided minimal training. After the study was performed, we
concluded our training was inadequate for certain scenarios. There was a clear
correlation between the lack of training for certain activities and the problem

spots in the subjects’ work flow.

Verbal Reactions. Although users find it easy to criticize aspects of an inter-
face, they rarely comment on the ease of use of an interface. In some sense, a
successful interface is “invisible” to the subject. It is still possible to gain verbal
confirmation of the success of an interface by observing how the subjects integrate

the language of the interface into their discussions.

65

Work-flow. Success can be seen in the lack of complaints from the subjects, rel-
ative to the previous studies. Also if a subject is able to quickly perform activities
with little discussion as well as expeditiously recover from a confusing scenario, we
can say this is a successful use of the tool. Likewise, if there is a great pause in
activity or the user has difficulty finding to a successful scenario, we know there is

a problem with our work-flow scenarios.

V.D.2 Project Window

On the whole, the project window concept has proven successful for our
tool. There were no verbal complaints about this window, along with no confusion
or great pause in activity when using the window. The window also provides
benefits that were unrealized in our design phase. We observed that whenever the
subjects became confused and were not sure how to proceed with their current task,
they would refer to the project window in the hopes that it would help direct them.
An example of this is when they initially had problems creating a star diagram
and referred to the project window to find the Display Star Diagram button.
Likewise, when the subjects were looking for a save function, they immediately

went to the project window and found the Save button.

V.D.3 Star Diagram Window

Our modifications to the language in the star diagram window have
proven useful. When the subjects discussed the Nodes to Exclude functions,
their sentences included language from the interface, “Let’s exclude the stacked
nodes,” showing the interface language is meaningful and useful. The users had ini-
tial problems understanding the meaning of the Stacked Nodes and Unstacked
Nodes options in the Nodes To Exclude panel, but through exploring the func-
tionality, were quickly able to learn what these options meant and continue the

planning process.

66

There were problems with the tiling in the star diagram window. In our
interface, the Trimmed Star Arms And Remarks panel is half as big as it is
in the original tool. We realize this is a visibility problem within the sub-window
and have tried to compact the information about each entry so more entries can
be seen at one time. The users expressed confusion over the format of the entries
and said it was too crowded.

Because of our rule of consolidating functionality, the subjects were con-
fused by the duplicate functionality in the star diagram sub-windows. The subjects
had difficulty making the association that both sets of annotate and trim functions
act on star diagram information. This difficulty can also be attributed to incorrect
training and instructions. Once the experimenter stepped in and told the sub-
jects the correct process for annotating and trimming an arm, they were able to
successfully continue.

By telling the users there were problems with some of the graying func-
tionality, we biased their understanding of why functions are grayed in the star
diagram window. When the subjects did not understand why a button was grayed
out, they assumed it was one of the problems the experimenter had warned them
about, when in fact, the only valid problem they experienced was a graying a prob-
lem in the Trimmed Star Arm And Remarks panel with the Put Back and

Trim Arm functions.

V.D.4 Text Window

The side panel on the text window was well liked by the subjects and
did not cause any confusion. Also, the change from pull-down menus to buttons,
enabled the subjects to quickly and easily utilize the Search For A String button
in the first text window they encountered.

The subjects had problems with the process of creating a star diagram.
This partly can be attributed to the fact that there is still some star diagram

functionality in the text window. The subjects became confused when they had

67

to move from the text window to the project window to continue the process of
creating a star diagram. Most windows in the tool are associated by a “derives”
relationship, where one window creates the next window the user needs. The send-
back relationship between the text window and the star diagram manager portion
of the project window is not as apparent. After selecting the root set from the text

window, it is the user’s responsibility to bring up the project window.

V.D.5 Auxiliary Windows

Our modifications to the auxiliary windows helped to create smoother
work flow. The main changes in these windows involved clarifying the use of
language. The subjects were easily able to navigate through the Load, Save, and
Annotate windows. The subjects did not utilize the Zoom window, so we do not

have data points on this window.

V.E Summary of Results

Although these results are based on a single pair of participants, the
results proved useful. The subjects’ high-level behavior, (such as the designs they
chose), were similar to the high-level behavior of subjects in our informal user
studies, implying that these are not unusual subjects. By analyzing the results
we realized the impact our training had on the activities of the users. This study
has also been helpful in confirming that our techniques were useful in creating
improved interactions with the tool. We realized that, for the most part, our tiling
technique improved visibility as well as eased window management. Our changes
to the language of the tool have proven successful based on our observations of
the subjects’ conformity to the tool’s language. We also noticed improvements in
work flow due to the button-based window lay-out.

Our user study was also helpful in determining areas where our design

techniques have not been inadequate in creating a completely successful interface.

63

The use of tiling improves visibility in a single window, but hinders the visibility
of other, potentially useful windows, as we saw in the case of the hidden project
window. Also, our rule for consolidation of functionality caused problems when
a function did not have an obvious association to a single window. We have
the problem of duplicate functionality in the star diagram window as well as the
problem that some functionality does not easily belong to a single window, such
as the Search For A String In All Files function in the project window and
the Use Name Of Var and Use Type Of Var functions in the text window.

Chapter VI

Conclusion

With the complexity of software products on the market, users are un-
likely to understand the internals of a tool. It is important for software developers
to create both useful and usable systems. Chen created a planning restructuring
tool to aid programmers in restructuring large legacy systems. Although the tool
is useful, user studies revealed problems with user interactions.

There has been much research in the area of HCI in the last decade.
User interface design is not a mechanical process, but a domain-specific process
that utilizes HCI methods. We hypothesized that the HCI methods could help
us in redesigning the C Star Diagram restructuring planning tool interface. We
started with the basic principles of consistency, visibility, the use of clear, concise
language, and work flow scenarios. Because we began with an existing interface,
our initial approach did not utilize all aspects of the methodologies. After reading
additional HCI literature, we were introduced to the user-model and engineering
model concepts. This was a turning point in our design. We began questioning
all aspects of the interface and were able to develop an improved interface design.
We developed a user model in terms of a set of tool specific design rules that we

applied to our tool.

69

70

VI.A Contributions of the Research

This work provides a number of specific contributions including the use

of a user model, engineering trade-offs and our learning experiences.

The Engineering Model and User Model. The most important aspect in
creating a new interface design was the realization of the user model. The use
of the user model implies an iterative approach to interface development and was
applied to our design because we began with an engineering model. Instead of
improving small problems in isolation, the user model helped us to question all de-
sign decisions in the engineering model and develop a more user-centered interface

design.

Trade-Offs. There were many times the HCI principles conflict with each other.
We had difficult engineering trade-offs such as visibility and the proliferation of
windows. These principles could not be applied one at a time, but rather all at

once as seen in our design rules.

Case Study. Since a case study is not algorithmic, its relevance cannot be clearly
measured. Our case study provides a useful example of the process involved in
developing domain-specific design techniques. Also, our learning experiences can
be useful to other interface developers by warning them of some of the problems

experienced with creating and using domain-specific design techniques.

VI.B Lessons Learned

Although our techniques were useful in creating improved user interac-

tions with the tool, there were also some unanticipated problems with our design.

Use of Graying. We introduced the concept of graying a button when under-

lying function could cause an error or cause problems with later tool interactions.

71

After removing the error message windows, we realized that both types of error
handling have their merits. Error messages are able to explain why a user cannot
perform a function and direct the user to a successful scenario. On the other hand,
it is bothersome for users to stop their activities and dismiss the error message.
Graying is good because it does not allow incorrect activity, and there is no need
to dismiss extra windows. On the other hand, when buttons are grayed out, users
do not always know why they cannot perform functions and receive no help in

moving on to a successful scenario.

Visibility and Expansion. By creating a button-based window layout we have
improved visibility, but have limited the extensibility of the tool. In a menu-based
window system, it is easy to add functionality to the bottom of an existing pull-
down menu. Many of the tool’s windows do not have space for additional buttons.

Adding functionality to the tool might involve redesigning a window.

Separation of Functionality. We tried to localize functionality. This causes
problems when windows are closely inter-related. Most windows are associated by
a “derives” relationship, where one window creates another as part of directing
the user to the next activity in a scenario. Cases where there is a send-back
relationship between windows result in user confusion. Because of separation of
functionality, the text window has a send-back relationship to the project window.
After a user selects variables from the text window, they then must move back to
the project window to create a star diagram. First time users have problems with
these interactions and we have found it difficult to make them aware of this type

of relationship.

VI.C Future Work

Our research has left some unanswered questions and led us to new ques-

tions with respect to the C Star Diagram restructuring planning tool interface.

72

Use of Color. We added more color to the star diagram, but were not sure if
the significance of the colors would be understood. Our user studies revealed that
color is a distraction in many cases. Because we did not know the impact the use
of color would have on user interactions, it has been modularized and can be easily

changed to reflect new findings.

Status Information. Many users want the tool to display a status bar for func-
tions that take longer than a few seconds. To implement this type of status bar
requires complicated communication between the interface software, implemented

in Tk, and the underlying C++ functionality.

Short Cuts. We did not have a methodical way of implementing short cuts. We
know it is important to provide short cuts for expert tool users and know there is

a need for a formal approach to creating short cuts in our tool.

Interrelated Functionality. User studies reveal problems with user under-
standing of window relationships and interactions. The replicated annotation and
trimming functionality in the star diagram window needs to be modified by ei-
ther connecting the functionality behind these buttons, or only having one set of
buttons. The separated star diagram functionality in the text window needs to
be better connected to the rest of the star diagram functions. In creating these

relations, a developer might need to modify our design techniques.

Saving Star Diagram Information. Some users have articulated scenarios
that span many days due to the careful and incremental process of restructuring
a large program. Currently the C Star Diagram restructuring planning tool only
saves caption, directory and file information. Based on the underlying implementa-
tion, storing the star diagram representations pose many problems. Currently, the
star diagram uses memory addresses as identifiers for the star nodes. There needs

to be some way of removing this system dependence. Also, there are questions of

73

how to display a star diagram if the preprocessed files that make up a star diagram
have changed. These issues need to be addressed before all tool information can

be saved.

Selecting Multiple Star Nodes to Annotate or Remove. The ability to
perform a function based on the selection of multiple star nodes has been requested
by users in both our and Chen’s user studies. To allow this type of behavior, we
need to create a new design rule to enforce a standard user interaction with respect

to multiple selections in all windows of the tool.

Bibliography

[Belady and Lehman, 1976] Belady, L. A. and Lehman, M. M. (1976). A model of
large program development. IBM Systems Journal, 15(3):225-253.

[Bowdidge, 1995] Bowdidge, R. W. (1995). Supporting the Restructuring of Data
Abstractions through Manipulation of a Program Visualization. PhD thesis, Uni-
versity of California, San Diego, Department of Computer Science & Engineer-

ing. Technical Report C595-457.

[Brown, 1988] Brown, C. M. (1988). Human-Copmuter Interface Design Guide-
lines. Ablex Publishing Corporation, Norwood, New Jersey.

[Carroll, 1991] Carroll, J. (1991). Design Interaction: Psychology at the Human-
Computer Interface. Ambridge University Press, New York, New York.

[Chen, 1996] Chen, M. L. (1996). A tool for planning the restructuring of data
abstractions in large systems. Masters Thesis, University of California, San
Diego, Department of Computer Science and Engineering. Technical Report

CS596-472.

[Griswold et al., 1996] Griswold, W. G., Chen, M. L., Bowdidge, R. W., and Mor-
genthaler, J. D. (1996). Tool support for planning the restructuring of data
abstractions in large systems. In ACM SIGSOFT ’96 Symposium on the Foun-
dations of Software Engineering.

[Lawrence, 1989] Lawrence, B. (1989). Omega [A complex, rogue-like game of dun-
geon exploration written and freely distributed by Lawrence Brothers.]. Copy-
right 1989. Available from Lawrence Brothers at brothers@paul.rutgers.edu.

[MacLennan, 1987] MacLennan, B. J. (1987). Principles of Programming Lan-
guages: Design, Fvaluation, and Implementation. Holt, Rinehart, and Winston,
New York, 2nd edition.

[Miyake, 1986] Miyake, N. (1986). Constructive interaction and the iterative pro-
cess of understanding. Cognitive Science, 10(2):151-177.

[Nguyen, 1997] Nguyen, V. B. (1997). Impact of adding customizability on soft-
ware architecture: A case study. Masters Thesis, University of California, San

74

75

Diego, Department of Computer Science and Engineering. Technical Report

CS97-523.

[Norman, 1986] Norman, D. A. (1986). Cognitive engineering. In Norman, D. A.
and Draper, S. W., editors, User Centered System Design: New Perspectives on
Human-Computer Interaction, chapter 3. Lawrence Erlbaum Associates, Inc.

[Ousterhout, 1994] Ousterhout, J. (1994). T'¢l and the Tk Toolkit. Addison-Wesley,
Reading, MA.

[Owen, 1986] Owen, D. (1986). Answers first, then questions. In Norman, D. A.
and Draper, S. W., editors, User Centered System Design: New Perspectives on
Human-Computer Interaction, chapter 17. Lawrence Erlbaum Associates, Inc.

[Preece, 1994] Preece, J. (1994). Human Computer Interaction. Addison-Wesley
Publishing Company, Menlo Park, California.

