
Usability Issues
in Knowledge Representation Systems�

Deborah L. McGuinness
AT&T Labs—Research

180 Park Avenue
Florham Park, NJ 07932
dlm@research.att.com

Peter F. Patel-Schneider
Bell Labs Research

600 Mountain Avenue
Murray Hill, NJ 07974

pfps@research.bell-labs.com

Abstract

The amount of use a knowledge representation system re-
ceives depends on more than just the theoretical suitability
of the system. Some critical determiners of usage have to do
with issues related to the representation formalism of the sys-
tem, some have to do with non-representational issues of the
system itself, and some might be most appropriately labeled
public relations. We rely on over eight years of industrial ap-
plication experiences using a particular family of knowledge
representation systems based on description logics to iden-
tify and describe usability issues that were mandatory for our
application successes.

Introduction
Determining whether a knowledge representation system is
suitable for a particular use and, in fact, is used is driven by
a number of important issues including the standard issues
of expressive adequacy and computational complexity and
more general issues concerning usability. We believe that
while expressivity and computational aspects are criticalto
application success, usability issues play an equally impor-
tant role in determining whether a knowledge representation
system is suitable for a particular use, or, indeed, suitable for
any use at all. If a knowledge representation system does not
“sweat these details”, it will not be used in most domains.

The usability issues that we will consider in this paper fall
into three general categories. The first group has to do with
the access to the knowledge in the system. One element of
this access is the standard interface to the system, where new
information is told to the system and queries are asked of it.
Some foundational aspects of this have been well studied,
for example in work by Levesque[13]. In our work, we fo-
cus on the issues concerning the acquisition of knowledge
for the system, the presentation of the results of queries, the
explanation of these results, and recovery from inconsistent
states of knowledge. Although there has been some work on
these issues, they are much less studied than the standard in-
terface and, arguably, no implemented system has adequate
support in all of these areas.

The second group encompasses the general technical, but
non-representational aspects, of the system. One element�Proceedings of the Fifteenth National Conference on Artifi-
cial Intelligence, American Association for Artificial Intelligence,
Madison, Wisconsin, July 1998, pages 608–614.

of this group is the theoretical running time of the algo-
rithms used to process updates and queries. Again, this
element has been well-studied, particularly in description
logics where there are many papers describing algorithms
for description-logic inference and their theoretical running
times[8; 11]. Other non-representational aspects include the
actual response time to updates and queries experienced, the
programming interface that the system presents, and the pro-
saic, but important, issue of which platforms the system runs
on. Again, these issues have received much less study than
the theoretical running times of the algorithms. (One study
of actual response time, and the improvement thereof, was
performed by Baaderet al. [2].)

This paper would not be complete without mentioning the
most vital issues having to do with how much the system is
used. These issues are not typically considered part of the
field of knowledge representation, and are thus somewhat
outside the scope of a technical paper. The issues referred to
here are, of course, advertising and approvals. If a system is
unknown or not understood then it will not be used, and if a
system is not on the list of approved systems for a particular
organization then it will not be used in that organization.

We will describe and analyze these three groups of is-
sues with respect to the usability of knowledge representa-
tion systems. This will be done in the context of theCLAS-
SIC family of knowledge representation systems developed
at AT&T [3; 7; 21]. This family is based on expressively-
limited description logics (also called terminological log-
ics) [1]; expressively-limited to ensure good computational
properties, description-logic-based because of the desirable
representational properties of description logics. Thereare
two currently-supported members of the family,LISP CLAS-
SIC [24] and NEOCLASSIC [22], and one older memberC-
CLASSIC [26]. We will be referring to characteristics of both
of the current members in this paper, as currently neither
dominates the other in the characteristics we are concerned
with here.

Our experiences withCLASSIC may be of interest to
the community for two main reasons. First,CLASSIC
is the implemented system most similar to the descrip-
tion logic community-generated specification for descrip-
tion logics[23] and thus provides a representative basis for
description logics. Second, arguably,CLASSIC has had the
longest lived and most extensive industrial application his-



tory of any description logic-based system.
The CLASSIC family, and Description Logics in gen-

eral, have been used in a number of classes of applica-
tions. We will mention one here as a motivational exam-
ple for the some of the concerns we discuss. This class
of applications has to do with configuration[27; 25; 17;
18].

In a typical configuration problem, a user is interested in
entering a small number of constraints and obtaining a com-
plete, correct, and consistent parts list. Given a configura-
tion application’s domain knowledge and the base descrip-
tion logic inference system, the application can determine
if the user’s constraints are consistent. It can then calculate
the deductive closure of the user-stated knowledge and the
background domain knowledge to generate a more complete
description of the final parts list. For example, in a home
theater demonstration configuration system[17], user input
is solicited on the quality a user is willing to pay for and
the typical use (audio only, home theater only, or combina-
tion), and then the application deduces all applicable conse-
quences. This typically generates descriptions for 6-20 sub-
components which restrict properties such as price range,
television diagonal, power rating, etc. A user might then
inspect any of the individual components possibly adding
further requirements to it which may, in turn, cause further
constraints to appear on other components of the system.
Also, a user may ask the system to “complete” the configu-
ration task, completely specifying each component so that a
parts list is generated and an order may be completed.

This home theater configurator example is fairly simple
but it is motivated by real world application uses in con-
figuring very large pieces of transmission equipment where
objects may have thousands of parts and subparts and one
decision can easily have hundreds of ramifications. It was
complicated applications such as these that drove our work
on access to information.

Some of the above mentioned usability issues have been
discussed in separate papers, and they have played at promi-
nent role in at least one major presentation[6], but there
are new issues and new insights in this paper, springing
from five years of additional experience and evolution of the
CLASSIC family of applications. If some of these issues had
not been addressed, the family of applications would have
been discontinued commercially. This paper brings together
these issues in one place and directly comments on their role
in the usability of knowledge representation systems.

Knowledge Access Concerns

The first group of concerns addresses access to the knowl-
edge in the system. This is not the basic “tell-and-ask” ac-
cess, but instead is access to other knowledge, including how
the system produces knowledge, or control of the access to
knowledge. We also consider issues having to do with in-
formation overload, acquisition of domain knowledge, and
error handling.

Explanation
Many research areas which focus on deductive systems
(such as expert systems and theorem proving) have deter-
mined that explanation modules are required for even simple
deductive systems to be usable by people other than their de-
signers. Description Logics have at least as great a need for
explanation as other deductive systems since they typically
provide similar inferences to those found in other fields and
also support added inferences particular to description log-
ics. They provide a wide array of inferences[4] which can
be strung together to provide complicated chains of infer-
ences. Thus conclusions may be puzzling even to experts in
description logics when application domains are unfamiliar
or when chains of inference are long. Additionally, naive
users may require explanations for deductions which may
appear simple to knowledgeable users. Both sets of needs
became evident in work on a family of configuration appli-
cations and necessitated an automatic explanation facility.

The main inference in description logics is
subsumption—determining when membership in one
class necessitates membership in another class. For exam-
ple, PERSON is subsumed byMAMMAL since anything
that is a member of the classPERSON must be a member of
the classMAMMAL. Almost every inference in description
logics can be rewritten using subsumption relationships and
thus subsumption explanation forms the foundation of an
explanation module[16].

Although subsumption in most implemented description
logics is calculated procedurally, it is preferable to provide a
declarative presentation of the deductions because a proce-
dural trace typically is very long and is littered with details
of the implementation. We proposed and implemented a
declarative explanation mechanism which relies on a proof-
theoretic representation of the deductions. All the inferences
in a description logic system can be represented declar-
atively by a proof rules which state some (optional) an-
tecedent conditions and deduce some consequent relation-
ship. The subsumption rules may be written so that they
have a single subsumption relationship in the denominator.
For example, ifPERSON is subsumed byMAMMAL, then it
follows that something that has all of its children restricted
to bePERSONs must be subsumed by something that has
all of its children restricted to beMAMMALs. This can be
written more generally (withC representingPERSON, D
representingMAMMAL, andp representing
hild) as theall
restriction rule below:

All restriction `C)D`(all p C))(all p D)
Using a set of proof rules that represent description logic

inferences, it is possible to give a declarative explanation of
subsumption conclusions in terms of proof rule applications
and appropriate antecedent conditions. This basic founda-
tion can be applied to all of the inferences in description
logics, including all of the inferences for handling constraint
propagation and other individual inferences. There is a
wealth of techniques that one can employ to make this basic
approach more manageable and meaningful for users[14;
16].



In analyzing user needs and help desk query logs, al-
though we found explanation of all deductions to be impor-
tant, we found a small set of inferences which were the most
critical to be explained. Without some automatic support for
explaining this set, the system was not usable. These infer-
ences include inheritance (if A is an instance of B and B is
a subclass of C, then A “inherits” all the properties of C),
propagation (if A fills a role r on B, and B is an instance
of something which is known to restrict all of its fillers for
the r role to be instances of D, then A is an instance of D),
rule firing (if I is an instance of E and E has a rule associ-
ated with it that says that anything that is an E must also be
an F, then I is an instance of F), and contradiction detection
(e.g., I can not be an instance of something that has at least
3 children and at most 2 children). We believe at a mini-
mum, these inferences need to be explained for application
uses which exploit deductive closure such as configuration.
Application developers may also find it useful to do special
purpose handling of such inferences. In the initial develop-
ment version, explanation was only provided for these in-
ferences in an effort to minimize development costs. The
two current implementations contain complete explanation.
One demonstration system incorporates special handling for
the most heavily used inferences providing natural language
templates for presentations of explanations aimed at lay peo-
ple.

Error Handling

Since one common usage of deductive systems is for con-
tradiction detection, handling error reporting and expla-
nation is critical to usability. This usage is common in
applications where object descriptions can easily become
over-constrained. For example, one could generate a non-
contradictory request for a high quality home theater system
that costs under a certain amount. The description could
later become inconsistent as more information is added. For
example, a required large screen television could violate a
low total price constraint. Understanding evolving contra-
dictions such as this challenges many users and leads them
to request special error explanation support. Informal stud-
ies with internal users and external academic users indicate
that adequate error support is crucial to the usability of the
system.

Error handling could be viewed simply as a special case of
inference where the conclusion is that some object is found
to be described by the a special concept typically called bot-
tom or nothing. For example, a concept is incoherent if it
has conflicting bounds on some role:

Bounds Conflict `C)(atleast m r) `C)(atmost n r) n<m`C)NOTHING

If an explanation system is already implemented to ex-
plain proof theoretic inference rules, then explaining error
conditions isalmost a special case of explaining any in-
ference. There are two issues that are worth noting, how-
ever. The first is that information added to one object in
the knowledge base may cause another object to become in-
consistent. In fact, information about one object may impact
another series of objects before a contradiction is discovered

at some distant point along an inference chain. Typical de-
scription logic systems require consistent knowledge bases,
thus whenever they discover a contradiction, they use some
form of truth maintenance to revert to a consistent state of
knowledge, removing conclusions that depend on the infor-
mation removed from the knowledge base. Thus, it is pos-
sible, if not typical, for an error condition to depend upon
some conclusion that was later removed. A simple minded
explanation based solely on information that is currently in
the knowledge base would not be able to refer to these re-
moved conclusions. Thus, any explanation system capable
of explaining errors will need access to the current state of
the knowledge base as well as to its inconsistent state.

Because of the added complexity resulting from the dis-
tinction between the current (consistent) state and the in-
consistent state of the knowledge base and because of the
importance of error explanation, we believe system design-
ers will want to support special handling of error conditions.
For example, in most of the implementations, users typically
ask for explanations of a particular object property or re-
lationships between objects. Under error conditions, users
had more trouble identifying an appropriate query to ask,
thus we included a simple explanation command that finds
the last error encountered and generates an explanation of
the contradiction. This way the user requires no knowledge
(other than the explanation error command name) in order
to ask for help.

Another issue of importance to error handling is the com-
pleteness or incompleteness of the system. If a system is
incomplete then it may miss deductions. Thus, it is possible
for an object to be inconsistent if all of the logically implied
deductions were to be made but, because the system was
incomplete, it missed some of these deductions and thus the
object remains consistent in the knowledge base. In order for
users to be able to use a system that is incomplete, they may
need to be able to explain not only error deductions but de-
ductions that were missed because of incomplete reasoning.
An approach that completes the reasoning with respect to a
particular aspect of an object is described in[14]. Given the
completed information, the system can then explain missed
deductions.

Pruning
If a knowledge representation system makes it easy to gen-
erate and reason with complicated objects, users may find
naive object presentations to be much too complex to han-
dle. In order to make a system more usable, there needs
to be some way of limiting the amount of information pre-
sented about complicated objects. For example, in the stereo
demonstration application, a typical stereo system descrip-
tion may generate four pages of printout. The information
contained in the description may be clearly meaningful in-
formation such as price ranges and model numbers for com-
ponents but it may also contain descriptions of where the
component might be displayed in the rack and which super-
concepts are related to the object. In certain contexts it isde-
sirable to print just model numbers and prices, and in other
contexts it is desirable to print price ranges of components.
We believe it is critical to provide support for encoding do-



main independent and domain dependent information which
can be used along with contextual information to determine
what information to print or explain.

In CLASSIC there is a meta language for describing what
is interesting to either print or explain on a class by class
basis. Any subclass or instance of the class will then inherit
the meta description and thus will inherit “interestingness”
properties from its parent classes. The meta language essen-
tially captures the expressive power of the base description
logic with some carefully chosen epistemic operators to al-
low contextual information (such as known fillers or closed
roles) to impact decisions on what to print.

The meta language has been used to reduce object presen-
tation and explanation by an order of magnitude in at least
one application. This reduction was required for the appli-
cation to be able to include object presentation. The algo-
rithms of the basic approach are included in[14], the theory
of a generalized approach are presented in[5].

Knowledge Acquisition
If an application is expected to have a long life-cycle, then
acquisition and maintenance of knowledge become major is-
sues for usability. There are two kinds of knowledge acqui-
sition which are worth considering: (i) acquisition of addi-
tional knowledge once a knowledge base is in place, and (ii)
acquisition of original domain knowledge. A complete en-
vironment will address both concerns, however the original
acquisition of knowledge is a much more general and dif-
ficult problem and conveniently enough, is not the activity
that users will find themselves doing repeatedly while main-
taining a project.

We believe, with knowledge of the domain and appropri-
ate analysis of evolution, it is possible to build a knowl-
edge evolution environment suitable for extending knowl-
edge bases. In a fairly domain specific manner, we con-
sidered the evolution support environment for configura-
tors. We looked at the information that was typically added
and found generally only certain classes had new subclasses
added to them as product knowledge evolved. We also found
that instances were typically populated in particular patterns.
While CLASSIC provides no general support for such addi-
tions, one domain specific environment was produced in an
application family that supported specific subclass and in-
stance addition. Also, in related work, Gil[12] has analyzed
planning-based uses of another description logic-based sys-
tem and systematically supports knowledge base evolution
with respect to the known plan usage. The more general
problem that does not rely on domain or reasoning knowl-
edge has been addressed in the editor work[20] for the gen-
eral frame protocol. The general work, of course, is broader
yet shallower with respect to reasoning implications.

Other Technical Concerns
The computer science concerns that affect the suitability of a
knowledge representation system have to do with the behav-
ior of the system as a computer program or routine, ignoring
its status as a representer of knowledge. The most-studied
aspect of this collection of concerns has to do with the com-
putational analysis of the basic algorithms embodied in the

system, in particular their worst-case complexity. Because
this worst-case complexity has been so well studied, we will
not say anything about it further, except to state that itis
important in determining the suitability of a knowledge rep-
resentation system for particular task.

Efficiency
Although the worst-case complexity of knowledge repre-
sentation systems has been well-studied, there are other
resource-consumption issues that are important for deter-
mining the suitability of a knowledge representation system.
These concerns are generally more prosaic, but perhaps even
more important, than the concerns about worst-case com-
plexity. For example, it is necessary to know the usual re-
source consumption of the most-frequently called operations
of the knowledge representation system or those operations
that are called at critical time in the operation of the whole
system.

The CLASSIC family has been particularly aggressive in
ensuring that queries to the system are fast, working un-
der the assumption that the most-common operations are
queries. Most queries inCLASSIC are simply retrievals of
data stored by the system, asCLASSIC responds to the addi-
tion of knowledge by computing most of its consequences.
(There are other reasons to compute all consequences that
have been seen earlier.) Further, the performance of the ad-
dition of knowledge to the system is optimized over the re-
traction or change of knowledge.

CLASSIC achieves these characteristics of fastest queries,
fast additions, and slower retractions and changes by re-
taining data structures that record the current set of conse-
quences and also record, on a fairly granular level, which
knowledge affects other knowledge. This is not full truth-
maintenance data, which would be prohibitively expensive
to compute (and store), but is just enough to make additions
cheap. It also serves to make retractions and changes some-
what cheaper than they otherwise would be, but this effect
is much less than the change in the speed up additions of
knowledge.

Application Programming Interface
One other aspect of a knowledge representation system that
is vitally important for its suitability in any real application
is its application programming interface, or how it can be
accessed by other computer programs. In the vast major-
ity of applications, the knowledge representation system has
to serve as a tightly integrated component of a much larger
overall system. For this to be workable, the knowledge rep-
resentation system must provide a full-featured interfacefor
the use of the rest of the system.

The NEOCLASSIC system, which is programmed in C++,
and is expected to be part of a larger C++ program, pro-
vides a very wide application programming interface. (LISP
CLASSIC has a similar wide application programming inter-
face.) There are, of course, the usual calls to add and re-
tract knowledge and to query for the presence of particular
knowledge. In addition to this interface, there is a large in-
terface that lets the rest of the system receive and process the
actual data structures used inside NEOCLASSIC to represent



knowledge, but without allowing these structures to be mod-
ified outside of NEOCLASSIC.1 This interface allows for
much faster access to the knowledge stored by NEOCLAS-
SIC, as many accesses just retrieve fields from a data struc-
ture. Further, direct access to data structures allows the rest
of the system to keep track of knowledge from NEOCLAS-
SIC without having to keep track of a “name” for the knowl-
edge querying using this name. (In fact, it is in this way
possible to dispense with any notion of querying by name.)

There are also ways to obtain the data structures that are
used by NEOCLASSIC for other purposes, including expla-
nation. We have used this facility to write graphical user
interfaces to present explanations and other information.

A less-traditional interface that is provided by bothLISP
CLASSIC and NEOCLASSIC is a notification mechanism, or
hooks. This mechanism allows programmers to write func-
tions that are called when particular changes are made in
the knowledge stored in the system or when the system in-
fers new knowledge from other knowledge. Hooks for the
retraction of knowledge from the system are also provided.
These hooks allow, among other things, the creation of a
graphical user interface that mirrors (some portion or view
of) the knowledge stored in the representation system.

Others in the knowledge representation community have
recognized the need for common APIs, (e.g., the gen-
eral frame protocol[10] and the open knowledge base
connectivity[9]) and translators exist between the general
frame protocol API specification andCLASSIC.

Platforms
A third important aspect concerns the platforms on which
the knowledge representation system runs. This encom-
passes not only the machines and operating systems, but
also the language in which the system is written (if it is vis-
ible), the version of the libraries that the system uses, and
the mechanism for linking to the system. Many applications
have needs for a particular operating system or language,
and cannot utilize tools not available in this context.

CLASSIChas been made available on a reasonable number
of platforms. The underlying language of a member of the
CLASSIC family is visible, not just because of the applica-
tion programming interface which is, of necessity, language-
specific, but also because programmers can write functions
to extended the expressive power of the system, and these
functions have to be written in the underlying language of
the system.

CLASSIC is currently available in two different languages:
LISP and C++. The C++ member is the more recent, and
the reimplementation used C++ precisely to makeCLASSIC
available for a larger number of applications. This was done
even though C++ is not the ideal language in which to write
a representation system.

The members of theCLASSIC family have also been writ-
ten in a platform-independent manner. This has required
not using some of the nicer capabilities of the underlying

1Of course, as C++ does not have an inviolable type system,
there are mechanisms to modify these structures. It is just that any
well-typed access cannot.

language or of particular operating systems. For example,
NEOCLASSIC does not use C++ exceptions, partly because
few C++ compilers supported this extension to the language.
L ISP CLASSICruns on variousLISP implementations and on
various operating systems, including most versions of Unix,
MacOS, and Windows. NEOCLASSIC runs under four C++
compilers and on both Unix and Windows NT.

Public Relations Concerns
Researchers sometimes underestimate the varied public re-
lations aspects involved with making a system usable. Bar-
riers to usability come in many forms: potential users who
are unaware of a system’s existence will not use it; poten-
tial users who do not understand how a system can meet the
users needs are unlikely to use it; potential users who do
not have enough understanding to visualize an abstract so-
lution to their problem using a new system are unlikely to
depend on the new system over tools they understand and
can predict; and finally potential users who have a limited
set of approved tools which does not include the new sys-
tem are unlikely go to the effort of getting the new system
approved for their internal use. In order to address these is-
sues, description logic system designers need to devise ways
to make their systems known to likely users, educate those
users about the possible uses, provide support for teaching
users how to use them for some standard and leveragable
uses, and either obtain approval for their systems or provide
ammunition for users to gain approval.

In experiences withCLASSIC, the following tools have
been employed to overcome the above stated barriers to us-
ability.

Documentation: Beyond the standard research papers,
users demanded usage guidelines aimed at non-PhD re-
searchers. In an effort to educate people on when a descrip-
tion logic-based system might be useful, what its limitations
were, and how one might go about using one in a simple
application, a long paper was written with a running (exe-
cutable) example on how to use the system[7].

Demonstration Applications: Motivated by the need to
help users understand a simple reasoning paradigm and by
the need to have a quick prototyping domain for showing off
novel functionality which exploits the strengths of the under-
lying system, a few demonstration systems were developed.
The first developed was a simple application that captures
“typical” reasoning patterns in an accessible domain. This
one system has been used in dozens of universities as a ped-
agogical tool and test system. While this application was
appropriate for many students, an application more closely
resembling some actual applications was needed to (i) give
more meaningful demonstrations internally and to (ii) pro-
vide concrete suggestions of new functionality that develop-
ers might consider using in their applications. This led to
a more complex application with a fairly serious graphical
interface[17]. Both of these applications have been adapted
for the web.2

2The web version of our wines demonstration sys-
tem was provided by Chris Welty and is available at



It was only when a demonstration system that was clearly
isomorphic to the developer’s applications was available that
there could be effective providing of clear descriptions and
implemented examples of the functionality that we believed
should be incorporated into development applications.

Course Materials: Motivated by the need to grow a larger
community of people trained in knowledge representation in
general and description logics in particular, we collaborated
with a training center to generate a course. Independently,
at least one university developed a similar course and a set
of five running assignments to help students gain experience
using the system. We collaborated on the tutorial to support
the educators and to gather feedback from the students.

Talks: The value of personal introduction to topics can
not be underestimated. We have given numerous general
talks about knowledge representation, the use of description
logics, and some of their more successful application areas.
Many other colleagues have acted similarly and we now see
description logics being a topic of discussion in some related
technical communities such as databases and configuration.

Standard Tool Use: We believe it is imprudent to ignore
the business community’s demands of common standard im-
plementation languages, reasonable support, and standard
platform toolkits. The business world was accommodated
by providing a development version of the system written
in C. (Although the researchLISP implementation is still
the academic system of choice, all of the commercial ap-
plications could only use the C version, essentially because
it was written in a language that developers and their man-
agement felt comfortable with.) More recently, it has been
found difficult to develop extensions in one system and rely
on another organization to import those extensions into a de-
velopment system, so we decided to support one version of
CLASSIC for bothresearch and development use. This led to
the development of NEOCLASSIC which is written in C++.
This addresses the issue of maintaining an implementation
in a widely accepted language.

The issue of gettingCLASSIC included in the standard ap-
proved platform for application development remains out-
standing. One reason for this is that it entails providing evi-
dence of the equivalent of commercially competitive support
for the product.

Summary
Although a knowledge representation system must have
sufficient expressive power and appropriate computational
complexity to be considered for use in applications, there
are many other issues that also determine whether it will be
used. These issues involve access to the knowledge stored
in the system, such as explanation and presentation of the
knowledge, other technical issues, such as efficiency and
programming interfaces, and non-technical issues, such as

http://untangle.cs.vassar.edu/wines. We collaborated with
Charles Isbell, Matt Parker, and Chris Welty to produce the
web version of our stereo configurator, which is is availableat
http://taylor.vassar.edu/stereo-demo/.

publicity and demos. If these issues are not addressed ap-
propriately, a knowledge representation system will not be
used in real applications.

The majority of the efforts over the last several years of
development of theCLASSIC family have been spent on
these issues. Explanation and presentation components have
been built, efficiency has been improved, large application
programming interfaces have been constructed, and courses
and demos have been designed. The entire system has even
been reimplemented in C++. Together, these efforts have
made theCLASSIC family much more acceptable for use in
applications.

In fact, these issues were vitally important for the use of
CLASSIC in thePROSEconfiguration system in AT&T[27].
BeforePROSEcould be fielded, there had to be a version of
CLASSICwritten in C, with a large application programming
interface, that supported recovery from inconsistent states
of knowledge and the examination of these states. Before
PROSEcould be widely used, there had to be an explana-
tion component, and considerable promotion had to be done.
Without the development of a special purpose knowledge
acquisition tool, the project would not have been continued.
Arguably, it is precisely because of the work presented in
this paper that we have maintained some of, if notthelongest
lived3 commercial applications of description logics.

Acknowledgments
We are indebted to the rest of theCLASSIC group for their
contributions in the design, implementation, and applica-
tions ofCLASSIC. Major contributors in all aspects ofCLAS-
SIC include Alex Borgida and Lori Alperin Resnick. Others
who have impacted portions of this work include Merryll
Abrahams, Ron Brachman, Charles Foster, Charles Isbell,
Elia Weixelbaum, and Jon Wright.

References
[1] Franz Baader, Hans-Jürgen Bürckert, Jochen Hein-

sohn, Bernhard Hollunder, Jürgen Müller, Bernhard
Nebel, Werner Nutt, and Hans-Jürgen Profitlich. Ter-
minological knowledge representation: A proposal for
a terminological logic. German Research Center for
Artificial Intelligence (DFKI), Saarbrücken, Germany,
1991.

[2] Franz Baader, Bernhard Hollunder, Bernhard Nebel,
Hans-Jürgen Profitlich, and Enrico Franconi. An em-
pirical analysis of optimization techniques for termino-
logical representation systems, or, making KRIS get a
move on. In Nebel et al.[19], pages 270–281.

[3] Alex Borgida, Ronald J. Brachman, Deborah L.
McGuinness, and Lori Alperin Resnick. CLASSIC:
A structural data model for objects. InProceedings
of the 1989 ACM SIGMOD International Conference

3CLASSIC-based configurators are still in use in Lucent and
some have projected life spans into the year 2000, NCR has a com-
mercially deployedCLASSIC-based knowledge discovery tool, and
AT&T has deployedCLASSIC-based knowledge enhanced search
applications[15].



on Mangement of Data, pages 59–67. Association for
Computing Machinery, June 1989.

[4] Alexander Borgida. From type systems to knowl-
edge representation: Natural semantics specifications
for Description Logics. International Journal of In-
telligent and Cooperative Information Systems, pages
93–126, March 1992.

[5] Alexander Borgida and Deborah L. McGuinness. In-
quiring about frames. In Luigia C. Aiello, Jon Doyle,
and Stuart C. Shapiro, editors,Principles of Knowl-
edge Representation and Reasoning: Proceedings of
the Fifth International Conference (KR’96), pages
340–349. Morgan Kaufmann Publishers, San Fran-
cisco, California, November 1996.

[6] Ronald J. Brachman. “Reducing” CLASSIC to prac-
tice: Knowledge representation theory meets reality. In
Nebel et al.[19], pages 247–258.

[7] Ronald J. Brachman, Deborah L. McGuinness, Pe-
ter F. Patel-Schneider, Lori Alperin Resnick, and Alex
Borgida. Living with CLASSIC: When and how to
use a KL-ONE-like language. In John F. Sowa, edi-
tor, Principles of Semantic Networks: Explorations in
the representation of knowledge, pages 401–456. Mor-
gan Kaufmann Publishers, San Francisco, California,
1991.

[8] Martin Buchheit, Francesco M. Donini, and Andrea
Schaerf. Decidable reasoning in terminological knowl-
edge representation systems.Journal of Artificial In-
telligence Research, 1:109–138, 1993.

[9] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes,
and Peter D. Karp. Open Knowledge Base Connectiv-
ity 2.0. Technical report, Technical Report KSL-09-06,
Stanford University KSL, 1998.

[10] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes,
Peter D. Karp, and James Rice. The Generic Frame
Protocol 2.0. Technical report, Artificial Intelligence
Center, SRI International, Menlo Park, CA, July 1997.

[11] Francesco M. Donini, Maurizio Lenzerini, Daniele
Nardi, and Werner Nutt. The complexity of concept
languages. In James Allen, Richard Fikes, and Erik
Sandewall, editors,Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the Second In-
ternational Conference (KR’91), pages 151–162. Mor-
gan Kaufmann Publishers, San Francisco, California,
May 1991.

[12] Yolanda Gil and Eric Melz. Explicit representations of
problem-solving strategies to support knowledge ac-
quisition. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pages 469–476,
Portland, Oregon, August 1996. American Association
for Artificial Intelligence.

[13] Hector J. Levesque. The logic of incomplete knowl-
edge bases. In Michael L. Brodie, John Mylopou-
los, and Joachim W. Schmidt, editors,On Conceptual
Modelling: Perspectives from Artificial Intelligence,

Databases, and Programming Languages, pages 165–
186. Springer-Verlag, New York, November 1982.

[14] Deborah L. McGuinness.Explaining Reasoning in De-
scription Logics. PhD thesis, Department of Computer
Science, Rutgers University, October 1996. Also avail-
able as Rutgers Technical Report Number LCSR-TR-
277.

[15] Deborah L. McGuinness. Ontological issues for
knowledge-enhanced search. InProceedings of For-
mal Ontology in Information Systems. Also to appear
in Frontiers in Artificial Intelligence and Applications,
IOS-Press, Washington, DC, 1998, 1998.

[16] Deborah L. McGuinness and Alex Borgida. Explaining
subsumption in Description Logics. InProceedings of
the Fourteenth International Joint Conference on Arti-
ficial Intelligence, pages 816–821. International Joint
Committee on Artificial Intelligence, August 1995.

[17] Deborah L. McGuinness, Lori Alperin Resnick, and
Charles Isbell. Description Logic in practice: A
CLASSIC application. InProceedings of the Four-
teenth International Joint Conference on Artificial In-
telligence, pages 2045–2046. International Joint Com-
mittee on Artificial Intelligence, August 1995.

[18] Deborah L. McGuinness and Jon R. Wright. Concep-
tual modeling for configuration: A description logic-
based configurator platform.Artificial Intelligence
for Engineering Design, Analysis, and Manufacturing
Journal - Special Issue on Configuration, 1998.

[19] Bernhard Nebel, Charles Rich, and William Swartout,
editors. Principles of Knowledge Representation and
Reasoning: Proceedings of the Third International
Conference (KR’92). Morgan Kaufmann Publishers,
San Francisco, California, October 1992.

[20] Suzanne M. Paley, John D. Lawrence, and Peter D.
Karp. A generic knowledge-base browser and editor.
In Proceedings of the Fourteenth National Conference
on Artificial Intelligence and Ninth Innovative Appli-
cations Artificial Intelligence Conference, pages 1045–
1051, Providence, Rhode Island, July 1997. American
Association for Artificial Intelligence.

[21] Peter F. Patel-Schneider, Deborah L. McGuinness,
Ronald J. Brachman, Lori Alperin Resnick, and Alex
Borgida. The CLASSIC knowledge representation sys-
tem: Guiding principles and implementation rationale.
SIGART Bulletin, 2(3):108–113, June 1991.

[22] Peter F. Patel-Schneider, Lori Alperin Resnick, Deb-
orah L. McGuinness, Elia Weixelbaum, Merryll Abra-
hams, and Alex Borgida. NeoClassic user’s guide: Ver-
sion 1.0. AI Principles Research Department, AT&T
Labs—Research, 1997.

[23] Ramesh S. Patil, Richard E. Fikes, Peter F. Patel-
Schneider, Don Mckay, Tim Finin, Thomas Gruber,
and Robert Neches. The DARPA knowledge sharing
effort: Progress report. In Nebel et al.[19], pages 777–
788.



[24] Lori Alperin Resnick, Alex Borgida, Ronald J. Brach-
man, Deborah L. McGuinness, and Peter F. Patel-
Schneider. CLASSIC description and reference man-
ual for the COMMON LISP implementation: Version
2.3. AI Principles Research Department, AT&T Bell
Laboratories, 1995.

[25] Nestor Rychtyckyj. DLMS: An evaluation of KL-ONE
in the automobile industry. In Luigia C. Aiello, Jon
Doyle, and Stuart C. Shapiro, editors,Principles of
Knowledge Representation and Reasoning: Proceed-
ings of the Fifth International Conference (KR’96),
pages 588–596. Morgan Kaufmann Publishers, San
Francisco, California, November 1996.

[26] Elia S. Weixelbaum. C-Classic reference manual re-
lease 1.0. AT&T Bell Laboratories, 1991.

[27] Jon R. Wright, Elia S. Weixelbaum, Karen Brown,
Gregg T. Vesonder, Stephen R. Palmer, Jay I. Berman,
and Harry H. Moore. A knowledge-based configurator
that supports sales, engineering, and manufacturing at
AT&T network systems. InProceedings of the Innova-
tive Applications of Artificial Intelligence Conference,
pages 183–193, Washington, D. C., July 1993. Ameri-
can Association for Artificial Intelligence.


