
INAUGURAL-DISSERTATIONzurErlangung der Doktorw�urdederNaturwissens
haftli
h-Mathematis
hen Gesamtfakult�atderRUPRECHT-KARLS-UNIVERSIT�ATHEIDELBERG

vorgelegt vonDipl. Math. Simina Bodeaaus Cluj-Napo
a, Rum�anienTag der m�undli
hen Pr�ufung: 18 Juli 2003





Os
illations of a Fluid in a Channel

Guta
hter: Prof. Dr. Dr.h.
.mult. Willi J�agerPriv. Doz. Dr. Ben S
hweizer





Contents
Introdu
tion 11 The Existen
e Theory 71.1 Formulation of the Problem . . . . . . . . . . . . . . . . . . . . . . . 71.2 The Linear Equations and Estimates . . . . . . . . . . . . . . . . . . 111.3 The Nonlinear Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 282 The Bifur
ation Theory 352.1 The L-invariant De
omposition . . . . . . . . . . . . . . . . . . . . . 352.2 A Bifur
ation Pi
ture w.r.t � . . . . . . . . . . . . . . . . . . . . . . 402.3 Hopf Bifur
ation with Symmetry . . . . . . . . . . . . . . . . . . . . 53Bibliography 67

i





Introdu
tion
In this work we investigate the motion of a vis
ous, in
ompressible 
uid 
ontainedin an un
overed three-dimensional re
tangular 
hannel. The upper surfa
e 
hangeswith the motion of the 
uid, so we deal with a free boundary problem. We 
onsidersmall perturbations of a uniform 
ow with a 
at free surfa
e. We in
lude the e�e
tof the surfa
e tension; the external for
es are gravity, and the wind for
e whi
h a
tson the free boundary (in the Se
tion 2.3).The motion of the 
uid in the 
hannel is governed by the Navier-Stokes equations.The variables are, as usual, the velo
ity and the pressure of the 
uid in the interiorof the domain and a fun
tion parameterizing the free boundary. The pressure 
anbe expressed in terms of the other two variables, whi
h are 
oupled as follows: the
uid velo
ity at the free boundary pres
ribes the speed of the boundary, and themean 
urvature of the free surfa
e 
reates a pressure jump via the surfa
e tension.We 
onsider the system to be periodi
 in the dire
tion of the length of the
hannel. Te
hni
ally, we identify the in
ow boundary with the out
ow boundary ofthe 
hannel and then we 
onsider the se
ond spatial variable belonging to the 
ir
leS1. In order to obtain a well-posed model, we have to pres
ribe the value of thedynami
 
onta
t angle between the walls and the free boundary (see [S
hw2℄, [Re℄)and we 
hoose it to be �2 . As boundary 
onditions, we 
onsider that the walls areimpenetrable together with a perfe
t slip 
ondition, and a no slip 
ondition for thebottom.The main aim of this paper is to analyse the qualitative behavior of the 
ow (os-
illations of periodi
 solutions) using tools of bifur
ation theory. In order to do thiswe need fundamental fa
ts of existen
e and regularity of solutions, spe
tral analysisof the linear system 
onne
ted with the free boundary value problem taking intoa

ount the underlying symmetries, and te
hniques of equivariant Hopf bifur
ationtheorem.
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2 INTRODUCTIONJ. T. Beale studied the problem of the motion of a vis
ous in
ompressible 
uid ina semi-in�nite domain, bounded below by a solid 
oor and above by an atmosphereof 
onstant pressure, either with ([Be1℄) or without ([Be2℄) surfa
e tension. In [Be1℄he used the Fourier transformation to prove resolvent estimates. These estimates
ombined with the Lapla
e transformation in time were used to prove the solvabilityof the time-dependent problem. He transformed the free boundary value problem toan initial boundary value problem on a �xed domain in a spe
ial way. This methodis 
ru
ial in his existen
e proof and was also adapted and used by [Re℄, [S
hw1℄,[S
hw2℄. We will apply it also in this paper.B. S
hweizer treated in [S
hw1℄ the 
ase of a liquid drop (with vis
osity andsurfa
e tension) in a free spa
e, so a full free boundary problem. With the help ofsemigroup methods, he studied linearized equations and get also existen
e results forthe nonlinear problem. He 
omputed the spe
trum of the generator of the semigroup.Nonreal eigenvalues appeared for large values of the surfa
e tension. An additionalexterior linear for
e proportional to the normal velo
ity and a
ting on the free surfa
eleaded to a Hopf bifur
ation with O(2)-symmetry.As soon as 
onta
t between a �xed boundary and a free boundary arises, theanalyti
 investigations are getting more 
ompli
ated. Already in 
ase of a 
ow in adomain with non smooth �xed boundary, the regularity of the solutions is restri
ted(see e.g. [Dau℄). The problem how to pres
ribe 
onditions for the 
onta
t is still indis
ussion. There exists a huge number of publi
ations dealing with the solvabilityof free boundary problems with 
onta
t points and lines and therefore only some ofthe works and authors 
an be mentioned.V. A. Solonnikov proved existen
e results for free boundary problems for theNavier-Stokes equations for both stati
 or dynami
 
onta
t points and lines. Heproved estimates for stationary problem for limiting values of 
onta
t angle 0 or�, in weighted H�older spa
es (see [Sol1℄, [Sol2℄ and the referen
es presented there).For the solvability of stationary free boundary problems with a Navier type slip
ondition on the rigid walls see [Kr℄ and [So
℄. This 
ondition 
an be applied in the
ase of a domain with rough boundaries by repla
ing the rough boundary with asmooth one where the Navier 
ondition is ful�lled.M. Renardy ([Re℄) proved existen
e and uniqueness results for a two dimensionalfree surfa
e 
ow problem with open boundaries. Both steady and initial value prob-lems are investigated. He 
onsidered the 
ase where velo
ity boundary 
onditionsare pres
ribed on both the in
ow and the out
ow boundary. The smoothness of thesolution is limited by the singularity at the 
orner between the free surfa
e and thein
ow (or out
ow) boundary.



INTRODUCTION 3In [S
hw2℄, B. S
hweizer dis
ussed 
onditions for the dynami
 
onta
t angle andwell-posedness of the equations for a 
ow in a two dimensional domain. For the 
aseof �2 
onta
t angle and slip boundary 
onditions he proved resolvent estimates whi
h,using te
hniques developed in [Re℄, yielded an existen
e result for the nonlinearinitial boundary value problem.The studies of the os
illatory behavior of a 
uid in a 
hannel is 
ontinuing theresear
h of B. S
hweizer who analyzed the os
illation of a liquid drop [S
hw1℄. Dueto the solid boundary in our problem, the te
hniques in this paper have to be
hanged due to diÆ
ulties arising from the additional boundary 
onditions. We areable to obtain results for the 
hannel similar to those B. S
hweizer obtained for theos
illating drop.The present work is divided into two 
hapters. The �rst 
hapter treats the exis-ten
e of solutions for the nonstationary linear and nonlinear problem. The boundary
onditions 
hosen for the walls and the �2 dynami
 
onta
t angle allow us to avoidthe problems whi
h might appear in dealing with the regularity of the solution,be
ause the domain is not smooth. We 
an 
onstru
t symmetri
 extensions of thesolution through the walls obtaining fun
tions in the extended domain, whi
h willsatisfy the same equations as the initial ones. The problem be
omes equivalent toone of a 
uid in a 
ontainer with periodi
 lateral boundary 
onditions.In order to study the spe
tral behavior of the linearized problem, we write the
orresponding system in the form �tx+Lx = 0, where x 
ontains two of the variables:the velo
ity �eld and the position of the free boundary. The third unknown, thepressure, 
an be taken out from the Navier-Stokes equations as follows: using a har-moni
 extension operator (see equations (1.2.12) and (1.2.13)), we 
an express thepressure as a map depending on the velo
ity and the position of the free boundary.In an appropriate Hilbert spa
e Xr (see De�nition 1.2.1), L has a 
ompa
t resol-vent and its spe
trum is 
ontained in a se
tor of the 
omplex plane (see Proposition1.2.6 and Theorem 1.2.9). L and the nonlinearity in the full nonlinear system de�nemaps from ~Xr+2 to Xr, but the operator L does not have the usual regularizationproperty: the inverse does not map Xr to ~Xr+2 (see Remark 1.2.7(
)). We will usethe fa
t that the right hand side of the nonlinear equation is always 
ontained ina subspa
e of the form (F; 0) 2 Xr (see the equation (1.3.9)). Both, the optimalregularization property and a resolvent estimate, hold on su
h a subspa
e (see The-orem 1.2.11 and its 
onsequen
e formulated in Theorem 1.2.13). Using the inverseof the Lapla
e transformation, the resolvent estimates gives us a unique solution ofthe time dependent linear problem (see Theorem 1.2.15).



4 INTRODUCTIONIn order to solve the nonlinear problem we follow the method presented in [Be1℄:we transform the nonlinear problem de�ned on the unknown domain into one on theequilibrium domain (whi
h has a 
at surfa
e on the top), by stret
hing or 
ompress-ing on the verti
al line segments (see Se
tion 1.3). The nonlinearity has the optimalproperties we have already mentioned. We treat it as the right hand side of the lin-ear equation. Then, the impli
it fun
tion theorem gives us, for small enough initialvalues, a solution of the time-dependent nonlinear problem (see Theorem 1.3.2).The se
ond 
hapter follows essentially the ideas presented in [S
hw1℄ and 
ontainsthe main result of this work, a Hopf bifur
ation theorem with Zk-symmetry for thisNavier-Stokes system (see Theorem 2.3.6). For general tools in bifur
ation theory,espe
ially for abstra
t results about the Hopf bifur
ation, see e.g. [GSS℄, [Cr,Ra℄ and[Ma,M
℄. The group of symmetries in our model is determined by the shape of thedomain and the boundary 
onditions, so our problem provides an O(2)-equivarian
e.Using the eigenfun
tions of the Lapla
e operator in a re
tangle, we 
an �nd an L-invariant de
omposition of the spa
es Xr = �Xrn;k, n 2 N , k 2 Z (see Proposition2.1.1 and Proposition 2.1.2). The isotropy subgroup of the position of the boundaryfun
tion in Xrn;k is isomorphi
 to the 
y
li
 group Zk (see Proposition 2.1.3). Weinvestigate the eigenvalues of L in su
h a spa
e Xrn;k with n 2 N and k 2 Z �xed.In Se
tion 2.2, we obtain a detailed pi
ture of the position of the eigenvalues ofL�� ~Xrn;k depending on gravity and the surfa
e tension whi
h, together, we denotedby � (see Theorem 2.2.6 and Figure 2). For � = 0 the spe
trum 
onsists of Stokeseigenvalues together with zero. With in
reasing �, the eigenvalues 
an be
ome
omplex. For � greater than a 
ertain �0, the �rst two merge and leave the realaxis. Between every two 
onse
utive Stokes eigenvalues we 
an �nd at least one realeigenvalue of L, and only one for � ! 1, whi
h approa
hes the next lower Stokeseigenvalue. For �!1, the modulus of the nonreal eigenvalues is not bounded.For a �xed � > �0, a similar pi
ture 
an be drawn if an additional exteriorlinear for
e of strength � a
ts on the free surfa
e (see Theorem 2.3.3 and Figure 3).The operator L� has similar invertibility properties and the solution satis�es similarresolvent estimates like in the 
ase of L (see Proposition 2.3.4). The behavior of theeigenvalues of L� depending on � presents two important di�eren
es 
ompared withthe behavior of the eigenvalues of L depending on �: eigenvalues with negative realpart will appear and the modulus of nonreal eigenvalues is bounded independent of� (see Theorem 2.3.1 and Proposition 2.3.2). For j�j ! +1, all the eigenvalues ofL� are real and interspersed with the eigenvalues of the Stokes operator. Following



INTRODUCTION 5the eigenvalues between � ! �1 and � ! +1, we prove the existen
e of a pair ofnonreal eigenvalues for � 2 (�1; �2) whi
h 
rosses the imaginary axis transversally fora value �� of � (see Theorem 2.3.3). They are simple in every spa
e Xrn;k, up to thesymmetry Zk. We formulate a generalized nonresonan
e 
ondition (see De�nition2.3.5) and we assume that the pair of purely imaginary eigenvalues of L�� satis�esthis generalized nonresonan
e 
ondition. Then we 
an prove an equivariant versionof the Hopf bifur
ation, and thus the existen
e of a bran
h of Zk-symmetri
 andperiodi
ally os
illating solutions of the Navier-Stokes system (see Theorem 2.3.6).The preparation of this thesis was �nan
ially supported by the Deuts
he Fors
h-ungsgemeins
haft in theGraduiertenkolleg \Modellieren und Wissens
haftli
hes Re
h-nen in Mathematik und Naturwissens
haften" and by SFB 359 \Rea
tive Str�omungen,Di�usion und Transport", both at IWR, University of Heidelberg.I am extremely grateful to my s
ienti�
 adviser Prof. Dr. Dr.h.
.mult. WilliJ�ager for awakening my interest in this problem as well as for his 
onstant supportand en
ouragement not to get lost into details. I would also like to thank Priv. Doz.Dr. Ben S
hweizer for many useful and produ
tive dis
ussions that were absolutely
riti
al to the 
ompletion of my work.
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Chapter 1The Existen
e Theory
1.1 Formulation of the ProblemWe want to model the nonstationary motion of a vis
ous, in
ompressible 
uid 
on-tained in an un
overed re
tangular 
hannel. The upper surfa
e 
hanges with themotion of the 
uid, so we deal with a free boundary problem. The unknown fun
-tions are not only the velo
ity �eld u and the pressure �p, but also the domain 
. Thee�e
t of the surfa
e tension on the upper free boundary is in
luded. The externalfor
es are the gravity and the wind for
e whi
h a
ts on the free boundary and infa
t generates the motion of the 
ow.We 
onsider the 
hannel of width b and length l = 2� to be deep enough su
h thatthe 
uid will never over
ow it. We impose a periodi
ity 
ondition in the dire
tionof the length of the 
hannel (for all unknown fun
tions). We write the equationsusing the eu
lidian 
oordinates (x1; x2; x3); the 
omponents of the velo
ity �eld arethen denoted by (u1; u2; u3). In des
ribing the equations of motion we will assumethat all variables are nondimensionalized in the usual way.Let (0; b) � (0; 2�) � (�h;+1), b; h > 0 be the 
hannel and 
 the domaino

upied by the 
uid with the free boundary denoted by � and �xed boundary �
omposed from the walls �1;�2 and the bottom ��h. Let C1; C2 be the interse
tion
urves between the free boundary and the walls. The periodi
ity in x2 is te
hni
allyin
orporated by 
onsidering the independent variable x2 belonging to the 
ir
le S1.So, we have identi�ed (and a
tually eliminated as boundaries) the surfa
es (0; b)�f0g� (�h;+1) and (0; b)�f2�g� (�h;+1). The 
hannel (0; b)�S1� (�h;+1)is now 
onsidered "without 
urvature in the x2-dire
tion", i.e. the equations will notbe transformed (this is not a domain transformation, it is only an identi�
ation).7



8 CHAPTER 1. THE EXISTENCE THEORY
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Figure 1:We take the domain of the 
uid at equilibrium to be
0 = f(x1; x2; x3) 2 R3 : 0 < x1 < b; x2 2 S1;�h < x3 < 0g;with the upper boundary �0 �0 = (0; b)� S1 � f0g;and the �xed boundary 
omposed from the walls �1;0;�2;0 and the bottom ��h. The
onta
t 
urves between the free boundary and the walls are denoted by C1;0; C2;0.Where no 
onfusion 
an appear, we will omit the index 0 from the notation for thewalls and 
onta
t lines of the equilibrium domain. When we want to refer to thewalls together, we will denote them by �1;2 and the same for 
onta
t lines C1;2.To des
ribe the free surfa
e of the 
uid, we assume small perturbations of theequilibrium surfa
e �0 and parametrize the free boundary of the liquid with a fun
-tion �(t; �) : �0 �! R. Thus the height of the free surfa
e is a fun
tion of horizontal
oordinates: x3 = �(t; x1; x2), (x1; x2) 2 �0 and the graph of � gives the shape of �.The domain o

upied by the 
uid is
 = 
(t) = f(x1; x2; x3) 2 R3 : 0 < x1 < b; x2 2 S1;�h < x3 < �(t; x1; x2)g:The velo
ity �eld is a fun
tion u(t; �) : 
(t) �! R3 .



1.1. FORMULATION OF THE PROBLEM 9As usual, we introdu
e the deformation tensor Su with the 
omponents(Su)ij = 12(�iuj + �jui)and the stress tensor � with the 
omponents�ij = ��pÆij + 2�(Su)ij:The motion of the 
uid in the interior is governed by the Navier-Stokes equationsfor an in
ompressible 
uid with vis
osity �:�tu+ (u � r)u� ��u +r�p+ grx3 = 0 (1.1.1)r � u = 0 (1.1.2)where g is the a

eleration of gravity. It is natural to substra
t the hydrostati
presure from �p, so we set p := �p� P0 + gx3where P0 is the atmospheri
 pressure above the liquid. The density does not appearbe
ause of the nondimensionalization. After substitution, the gravity term in (1.1.1)is eliminated.On the free surfa
e we have the kinemati
 boundary 
ondition whi
h statesthat the 
uid parti
les do not 
ross the free surfa
e (whi
h is equivalent with thegeometri
 
ondition that � always parametrizes the free surfa
e):�t� = u3 � (�1�)u1 � (�2�)u2 on �: (1.1.3)If we negle
ted the surfa
e tension, the remaining boundary 
ondition on � wouldbe the 
ontinuity of the stress a
ross the free surfa
e, so �P3j=1 �ijnj = P0 ni+ finifor i = 1; 2; 3, where n = (n1; n2; n3) is the outward normal to � and f = (f1; f2; f3)is the exterior for
e (for example the wind for
e). The e�e
t of surfa
e tension is tointrodu
e a dis
ontinuity in the normal stress, proportional to the mean 
urvatureH(�) of the free surfa
e �. Our boundary 
ondition on � is therefore (using p :=�p� P0 + gx3 and x3 = � on �)p ni � � 3Xj=1(�iuj + �jui)nj = (g� + �H(�) + fi)ni i = 1; 2; 3 (1.1.4)where � > 0 is the nondimensionalized 
oeÆ
ient of the surfa
e tension and themean 
urvature of the surfa
e � is given byH(�) = �r � r�q1 + jr�j2 : (1.1.5)



10 CHAPTER 1. THE EXISTENCE THEORYWe have denoted here by r the gradient with respe
t to the �rst two variablesx1; x2; then let � := r � r.If nothing else is spe
i�ed, in the following, we denote by n the outward normaland by �i, i = 1; 2, the two tangential dire
tions to the surfa
e.From a physi
al point of view, the usual boundary 
ondition u = 0 on � 
an notbe 
onsidered here be
ause of the unknown 
onta
t between the free surfa
e andthe walls (we 
an not assume that it is not moving at all on the walls, so we 
annot "sti
k" the free surfa
e on the �xed boundary); but it is natural to 
onsider theno-slip 
ondition on the bottom: u����h = 0 (1.1.6)and the velo
ity vanishing in the normal dire
tion of the wallsu � n���1[�2 := un���1;2 = u1���1;2 = 0 (1.1.7)together with a perfe
t slip 
onditionn � Su � �i���1;2 = 0: (1.1.8)We need also to pres
ribe the 
onta
t angle between the free surfa
e and the�xed boundary. We shall 
hoose it to be �2 . So, the free surfa
e is moving on thewalls, but the value of the 
onta
t angle should remain 
onstant. This 
ondition 
anbe writen as: r� � n�1 = r� � n�2 = �1� = 0 on C1 [ C2: (1.1.9)For similar problems with 
onta
t angle 0 or � see [Sol1℄, [Sol2℄ and the referen
espresented there.The unknown fun
tions u; p; � are periodi
 in the x2 dire
tion of the 
hannel, so(u; p; �)(t; x1; x2; x3) = (u; p; �)(t; x1; x2 + 2�; x3): (1.1.10)The initial 
ondition is (u; �)��t=0 = (u0; �0): (1.1.11)The equations (1.1.1)�(1.1.11) are the evolutionary nonlinear equations des
rib-ing the os
illations of a 
uid in an un
overed 
hannel.



1.2. THE LINEAR EQUATIONS AND ESTIMATES 111.2 The Linear Equations and EstimatesThe linear problem for whi
h we derive estimates is the one obtained by linearizingequations (1.1.1)�(1.1.11) about equilibrium, repla
ing the initial data by zero andintrodu
ing a right hand side. We note that the linearization of the mean 
urvaturein �0 is ���, where � is the Lapla
ian with respe
t to the "horizontal" variablesx1; x2. Be
ause �0 = fx3 = 0g, we have ni = Æi3, i = 1; 2; 3, in the equation (1.1.4).For the begining we 
onsider the exterior for
e to be zero. The in
uen
e of anonzero exterior for
e (for example the wind for
e) will be 
onsidered for the studyof the Hopf bifur
ation in Se
tion 2.3.We observe that the equation (1.2.5) is equivalent to the 
ondition on the vanish-ing of the tangential stress on �0, so it 
an be writen also in the form n �Su ��i���0 = 0We also use the notations Su : Sv := 3Xi;j=1(Su)ij(Sv)ijSnu := n � Su � n S�iu := n � Su � �i:Our linear problem be
omesu(t; �) : 
0 �! R3 ; p(t; �) : 
0 �! R; �(t; �) : �0 �! R;�tu� ��u +rp = 0 (1.2.1)r � u = 0 (1.2.2)�t� = u3���0 = un���0 (1.2.3)(p� 2��3u3)���0 = (p� 2�Snu )���0 = g� � ��� (1.2.4)(�3ui + �iu3)����0 = n � Su � �i���0 = 0 (i = 1; 2) (1.2.5)u����h = 0 (1.2.6)u1���1;2 = un���1;2 = 0 (1.2.7)�1ui���1;2 (1:2:7)= n � Su � �i���1;2 = 0 (i = 2; 3) (1.2.8)�1���x12f0;bg = 0 (1.2.9)(u; p; �)(t; x1; x2; x3) = (u; p; �)(t; x1; x2 + 2�; x3) (1.2.10)(u; �)��t=0 = (0; 0) (1.2.11)We want to write the linear equations in the form �tx + Lx = 0 and to satisfythe boundary 
onditions by the 
hoi
e of appropriate fun
tion spa
es. To estimatesolutions of this equation, we use the Lapla
e transform in time.



12 CHAPTER 1. THE EXISTENCE THEORYFollowing [Be1℄ and [S
hw1℄, we use a harmoni
 extension operator and repla
ethe pressure term from the equation (1.2.1) by a gradient term whi
h is determinedby the other unknowns (u and �). In order to solve the equation �p = 0 in 
0, wehave to �nd appropriate boundary 
onditions for p on �1;2 and ��h (the boundary
ondition on �0 is the equation (1.2.4)).on �1;2: �np = �1p = ��u1 � �tu1 (1:2:7)= ��21u1 (1:2:2)= ���1(�2u2 + �3u3)= ���2(�1u2)� ��3(�1u3) (1:2:8)= 0on ��h: �np = �3p = ��u3 � �tu3 (1:2:8)= � �23u3 = �(�nSnu )����hIt seams to be to restri
tive to impose this 
ondition for the pressure on the bottombe
ause it is not well-understood that we have enough regularity for u (this 
onditionrequires u 2 Hr(
0)3 with r � 2). At least lo
ally, this will be
ome 
lear after wewill symmetrize the equations and eliminate the walls (see equations (1.2.34) andthe De�nition 1.2.12).The harmoni
 extension fun
tion is de�ned as the unique solution of the problem�p = 0 in 
0 (a)p���0 = 2�Snu ���0 + g� � ��� (b) (1.2.12)�np���1;2 = 0 (
)�np����h = �(�nSnu )����h (d)So, de�ne the linear operator~H : Hr�1=2(�0)�Hr�3=2(��h) �! Hr(
0)3whi
h essentially maps a fun
tion de�ned on �0 to its harmoni
 extension in 
0.The order r of the Sobolev spa
e will be established later. We 
an 
onsider p as aharmoni
 fun
tion de�ned on the whole domain,p = ~H(2�Snu ���0 + g� � ���; �(�nSnu )����h)= ~H(2�Snu ���0; ��nSnu ����h) + ~H(g� � ���; 0):= H(2�Snu ���0) +H(g� � ���): (1.2.13)In the last equality of (1.2.13), we have only simpli�ed the notation for the operator~H (i.e. we have not in
luded the 
ondition on the bottom ��h), be
ause generally weare more interested to solve the problem near the free surfa
e. Anytime when we referto H(2�Snu ���0) we have to understand the 
ondition (1.2.12)(d) to be satis�ed too,and when we refer to H(g�����) we have to understand the 
ondition (1.2.12)(d)with zero right hand side, i.e. �np����h = 0



1.2. THE LINEAR EQUATIONS AND ESTIMATES 13In the following we will 
onsider 
omplex valued fun
tions and denote with �uthe 
omplex 
onjugate of u. We use the following notations for the norms: 8r 2 R(r = 0 denotes the L2-norm) kukHr(
0)3 := kukr;
0k�kHr(�0) := k�kr;�0 :De�nition 1.2.1 De�ne the Hilbert spa
es (over C ):Xr := f(u; �) 2 Hr(
0)3 �Hr+1=2(�0) �� r � u = 0; un���1;2;�h = 0g~Xr := f(u; �) 2 Xr �� n � Su � �i���0[�1;2 = 0; u�i����h = 0; �1���x12f0;bg = 0gwith the natural norm inherited from the produ
t spa
e, i.e.k(u; �)kXr := kukr;
0 + k�kr+1=2;�0and the operator L : ~Xr+2 �! Xr;by L� u� � := 0� ���u +rH(2�Snu ���0) +rH(g� � ���)�un���0 1A :Remark: The fa
t that L maps to Xr follows after a similar 
al
ulation we havedone to �nd the 
ondition for �np���1;2;�h .Lemma 1.2.2 For smooth fun
tions u; v : 
0 ! C 3 with r � u = 0 there holds2 Z
0 Su : S�v = � Z
0 �u � �v + 2 Z�
0 n � Su � �v:In the 
ase r � v = 0, v����h = 0, vn���1;2 = 0, and n � Su � �i���0[�1;2 = 0 (where�i is any tangent ve
tor and n the normal ve
tor 
orresponding to �0, �1 or �2respe
tively), we obtain the identity2 Z
0 Su : S�v = Z
0 [��u+rH(2Snu ���0)℄ � �v



14 CHAPTER 1. THE EXISTENCE THEORYProof: I := 2 Z
0 Su : S�v= 12 Z
0 3Xi;j=1(�iuj + �jui)(�i�vj + �j�vi)= Z
0 3Xi;j=1 12(�iuj�i�vj + �jui�j�vi) + Z
0 3Xi;j=1 12(�iuj�j�vi + �jui�i�vj)= Z
0 3Xi;j=1(�iuj�i�vj + �jui�i�vj)=: 3Xj=1 Ij:Let j be �xed. Integration by parts gives:Ij = � Z
0 3Xi=1 (�2i uj + �j�iui)�vj + Z�
0 3Xi=1 (�iuj)ni�vj + Z�
0 3Xi=1 (�jui)ni�vj= � Z
0 �uj�vj + Z�
0 3Xi=1 (�iuj + �jui)ni�vjI = 3Xj=1 Ij = � Z
0 �u � �v + 2 Z�
0 n � Su � �vIf additionaly n � Su � �i���0[�1;2 = 0, the tangent 
omponents of the ve
torn � Su���0[�1;2 are zero; so together with the 
onditions for v (vn���1;2 = v����h = 0),we 
an write:n � Su � �v���
0 = n � Su � �v���0[�1;2 = (n � Su � n)(�v � n)���0[�1;2 = Snu ���0 � �vn���0 :Using again integration by parts we obtain:2 Z
0 Su : S�v = � Z
0 �u � �v + Z�0 2Snu � �vn= � Z
0 �u � �v + Z
0 rH(2Snu ���0) � �v +H(2Snu ���0)r � �v= Z
0 [��u+rH(2Snu ���0)℄ � �v



1.2. THE LINEAR EQUATIONS AND ESTIMATES 15�We will use the results of Lemma 1.2.2 espe
ially in the parti
ular 
ase when uand v satisfy the same 
onditions. We state this identities in the next Corollary;the proof follows immediately.Corollary 1.2.3 For fun
tion (u; p) and (v; q) satisfying the 
onditionsr � u = r � v = 0un���1;2 = vn���1;2 = 0u����h = v����h = 0n � Su � �i���0[�1;2 = n � Sv � �i���0[�1;2 = 0;the following identities hold:2 Z
0 Su : S�v = � Z
0 �u � �v + 2 Z�0 Snu � �vn (1.2.14)= � Z
0 ��v � u+ 2 Z�0 Sn�v � un2� Z
0 Su : S�v = Z
0 [���u +rH(2�Snu ���0)℄ � �v (1.2.15)Z
0 [���u +rp℄�v � Z�0[p� 2�Snu ℄�vn = Z
0 [����v +r�q℄u� Z�0[�q � 2�Sn�v ℄un(1.2.16)De�nition 1.2.4 (Energy-norms)For fun
tions u; v : 
0 ! C 3 , �; � : �0 ! C we de�ne the s
alar produ
ts:hu; viE;
0 := Z
0 u � �vh�; �iE;�0 := Z�0 � � (g�� � ����)�� u� � ;� u� ��E := hu; viE;
0 + h�; �iE;�0The 
orresponding norms are denoted by k � kE;
0, k � kE;�0 and k � kE.



16 CHAPTER 1. THE EXISTENCE THEORYRemark: For (u; �); (v; �) 2 ~Xr, we haveh�; �iE;�0 = g Z�0 � � �� + � Z�0 r� � r��;so k�k2E;�0 = gk�k20;�0 + �kr�k20;�0and be
ause g and � are positive 
onstants, we obtain immediately the norm equiv-alen
e k�kE;�0 � k�k1;�0:For u we have kukE;
0 = kuk0;
0.Theorem 1.2.5 (Position of eigenvalues of L w.r.t. k � kE)Let (u; �) 2 ~Xr be an eigenfun
tion (
onsidered 
omplex) of L with eigenvalue �.Then Re� 



� u� �



2E = 2� Z
0 jSuj2 (1.2.17)Im� 



� u� �



2E = 2ImZ�0(�un���0)(g�� � ����): (1.2.18)In the 
ase of Im� 6= 0, the energy equality holds:kuk2E;
0 = k�k2E;�0 = 12 



� u� �



2E : (1.2.19)Proof:� 



� u� �



2E = �L� u� � ;� u� ��E= * ���u +rH(2�Snu ���0) +rH(g� � ���)�un���0 ! ;� u� �+E= Z
0 [���u +rH(2�Snu ���0)℄ � �u+ Z
0 rH(g� � ���) � �u+ Z�0(�un���0)(g�� � ����)= 2� Z
0 jSuj2 + Z�0 �un���0(g� � ���)� un���0(g�� � ����)Looking at the last equality, the �rst term is real, the se
ond is imaginary and thisimplies the assertion on the real and imaginary part of �.



1.2. THE LINEAR EQUATIONS AND ESTIMATES 17To prove the energy equality we use the se
ond part of the eigenvalue equation,�un���0 = ��:Im� 



� u� �



2E = 2ImZ�0 ��(g�� � ����) = 2 Im� k�k2E;�0: �Proposition 1.2.6 The operator L�1 : Xr ! ~Xr+1, r � 1, is bounded.Proof: We want to solve L(u; �) = (f; h) 2 Xr for (u; �). Let (u; p) be the solutionof the Stokes system: ���u +rp = fr � u = 0�un���0 = hun���1;2 = 0n � Su � �i���0[�1;2 = 0u����h = 0;with the usual bounds for the solution of the Stokes problem:kukr+1;
0 + krpkr�1;
0 � 
1fkfkr�1;
0 + khkr+1=2;�0g:For these estimates we observe at �rst that the Stokes system is ellipti
 and the
onsidered boundary 
onditions satisfy the 
omplementary 
onditions from [ADN℄.In order to obtain a domain with smooth boundary, we 
an perform a re
e
tion atthe walls as in the equations (1.2.34) and in the De�nition 1.2.12.The pressure p yields � be
ause g� �� is invertible in our fun
tion spa
es. The�rst part of the pressure 
an be estimated bykrH(2�Snu ���0)kr�1;
0 � 
2kukr+1;
0� 
1
2fkfkr�1;
0 + khkr+1=2;�0gand therefore it follows for the se
ond part of the pressure:krH(g� � ���)kr�1;
0 � krpkr�1;
0 + krH(2�Snu ���0)kr�1;
0� 
1(1 + 
2)fkfkr�1;
0 + khkr+1=2;�0g:This implies � 2 Hr+3=2(�0), so we obtain a bound for (u; �) 2 ~Xr+1. �



18 CHAPTER 1. THE EXISTENCE THEORYRemark 1.2.7(a) By Proposition 1.2.6, L�1 : Xr ! Xr is 
ompa
t, be
ause the embeding Hr+1 ,!Hr is 
ompa
t. So L has a pure point spe
trum and the eigenvalues have no �nitea

umulation point(b) �L is dissipative by the 
al
ulation in the proof of Theorem 1.2.5. Togetherwith Proposition 1.2.6, it follows that �L is an operator with 
ompa
t resolvent andthe resolvent set of �L (whi
h is an open set) 
ontains 0. This implies that� 9� > 0 
ontained in the resolvent set of �L;� the resolvent (�+ L)�1 exists and is 
ompa
t 8� in the resolvent set of �L.(
) We point out that L�1 : X0 ! ~X2 is not bounded: let (u; �) solve L(u; �) =(0; h). A bound for kuk2;
0 would imply h = un���0 2 H3=2(�0); but apriori onlyh 2 H1=2(�0) holds. We will formulate later (see Theorem 1.2.17) a result similarwith Proposition 1.2.6 where a better regularity for h is assumed.In the next Proposition we remember some well-known inequalities we will needin order to obtain the resolvent estimates. For the proof (in a Lips
hitz domain,where the fun
tion is zero only on a part of the boundary) see [Ad℄, [Ci℄ or [Gi,Ra℄.Proposition 1.2.8For u 2 H1(
0)3 with u����h = 0, the following inequalities hold (with positive
onstants CK, CP , CT and CI):Korn inequality: 1CK kuk1;
0 � kSuk0;
0 � CKkuk1;
0; (1.2.20)Poin
ar�e inequality: kuk0;
0 � CPkruk0;
0; (1.2.21)Tra
e inequality: kunk1=2;�0 � CTkuk1;
0; (1.2.22)Interpolation inequality (for whi
h we need u 2 H2(
0)3)kuk1;
0 � CIkuk1=20;
0kuk1=22;
0: (1.2.23)Theorem 1.2.9 (Position of the spe
trum of L)The spe
trum of L 
onsists only of eigenvalues and is 
ontained in a se
torSC = f� 2 C �� jIm�j � CRe�g:



1.2. THE LINEAR EQUATIONS AND ESTIMATES 19Proof: Let � 2 C be an eigenvalue of L with eigenve
tor (u; �). If Im� = 0 then �is 
ontained in any se
tor, so we assume Im� 6= 0.We 
an apply the operator r = (�1; �2; 0) to the eigenvalue equation for L andobtain that L� �iu�i� � = �� �iu�i� � for i = 1; 2;so L� rur� � = �� rur� � :But we 
an not say that (�iu; �i�), i = 1; 2 is an eigenve
tor of L be
ause some ofthe boundary 
onditions are not satis�ed (in the sense required for ~Xr). On theother hand we 
an do similar 
al
ulations to that of Theorem 1.2.5 and obtain thesame results for (ru;r�). In parti
ular, for Im� 6= 0 the energy equality holds:kruk2E;
0 = kr�k2E;�0: (1.2.24)In the following 
al
ulations, we will use repeatedly the identities from Theorem1.2.5 and the inequalities from Proposition 1.2.8:jIm�j 



� u� �



2E = 2 ����ImZ�0(�un���0)(g�� � ����)����� Z�0 jun���0 j2 + Z�0 jg�� � ����j2:We 
an estimate the �rst term by:Z�0 jun���0 j2 � CTkuk21;
0� CTCK Z
0 jSuj2 = CTCK2� Re� 



� u� �



2Eand the se
ond by:Z�0 jg�� � ����j2 = gk�k2E;�0 � � Z�0(��)(g�� � ����)= gk�k2E;�0 + �kr�k2E;�0(1:2:24)= gk�k2E;�0 + �kruk2E;
0� gk�k2E;�0 + �
1 2� Z
0 jSuj2= g2 



� u� �



2E + �
1Re� 



� u� �



2E ;



20 CHAPTER 1. THE EXISTENCE THEORYso we obtain a se
tor of the formjIm�j � �CTCK2� + �
1�Re�+ g2 :But we know from Theorem 1.2.5 that all the eigenvalues of L have positive realpart and using Remark 1.2.7(a) we 
an say9Æ > 0 su
h that 8� eigenvalue of L : Re� � Æ > 0;and than �nd a positive 
onstant C su
h that all eigenvalues of L are 
ontained ina se
tor SC = f� 2 C �� jIm�j � CRe�g: �We apply the Lapla
e transform in time to our linear equations and prove an es-timate for the resolvent of �L, �rst on a subspa
e of the form f(f; 0)��f 2 L2(
0)3g.We denote the transformed fun
tions by (û; �̂), but in the following, where no 
on-fusion 
an appear, we will omit to write the ^ (espe
ially in the proofs). So, let usinvestigate the solutions (u; �) of the equation(�+ L)� u� � :=  �u� ��u +rH(2�Snu ���0) +rH(g� � ���)�� � un���0 ! = � f0 � :(1.2.25)The following Lemma gives us useful estimates we will need in order to obtain theresolvent estimate.Lemma 1.2.10 For � 2 C n (�SC), solutions of (1.2.25) satisfy:Z
0 jrSuj2 � C2�j�j kuk0;
0 + kfk0;
0�kuk2;
0 (1.2.26)j�j2kuk20;
0 � C3�kuk1=20;
0kuk3=22;
0 + kfk20;
0� (1.2.27)Proof: We 
arry out the estimates on the region of the 
omplex plane where � isnot an eigenvalue of �L, this is� 2 C n (�SC) = f� 2 C ��Re� � 0; jIm�j � CjRe�jg [ f� 2 C ��Re� > 0g:(a) Let � 2 C , Re� � 0, jIm�j � CjRe�j; we have:jIm�j2 � j�j2 = jIm�j2 + jRe�j2 � (1 + 1C2 )jIm�j2 = C21 jIm�j2:



1.2. THE LINEAR EQUATIONS AND ESTIMATES 21We substitute the se
ond equation of (1.2.25) in the �rst and obtain:�u� ��u +rH(2�Snu ���0) + 1�rH�(gun � ��un)���0� = f : (1.2.28)Multiplying this equation by ��u, integrating over 
0 and using Lemma (1.2.2), weobtain:�� Z
0 jruj2 � 2� Z
0 jrSuj2 � 1� Z�0(gjrunj2 + �j�unj2) = Z
0 f��u (1.2.29)Taking the imaginary part of (1.2.29) and then the absolute value, we obtain:jIm�jj�j2 Z�0(gjrunj2 + �j�unj2) � jIm�j Z
0 jruj2 + kfk0;
0kuk2;
0and this multiplied by j�jjIm�j � C1 gives1j�j Z�0(gjrunj2 + �j�unj2) � j�j kruk20;
0 + C1kfk0;
0kuk2;
0 (1.2.30)Taking the real part of (1.2.29), then the absolute value, using (1.2.30) and(1.2.23), we obtain:2� Z
0 jrSuj2 � j�j Z
0 jruj2 + 1j�j Z�0(gjrunj2 + �j�unj2) + kfk0;
0kuk2;
0(1:2:30)� 2j�j kuk21;
0 + (1 + C1)kfk0;
0kuk2;
0(1:2:23)� �2CIj�j kuk0;
0 + (1 + C1)kfk0;
0�kuk2;
0and this proves (1.2.26) with C2 = maxfCI� ; 1+C12� g.Multiplying the equation (1.2.28) by �u, integrating over 
0 and using Lemma(1.2.2), we obtain:� Z
0 juj2 + 2� Z
0 jSuj2 + 1� Z�0(gjunj2 + �jrunj2) = Z
0 f �u: (1.2.31)Taking the imaginary part, then the absolute value, multiplying by j�j2jIm�j � C1j�jand using the inequalities from Proposition 1.2.8, we obtainj�j2kuk20;
0 � gkunk20;�0 + � Z�0 un�un + C1kfk0;
0 j�j kuk0;
0� gCTkuk21;
0 + �CTkuk1;
0kuk2;
0 + C212 kfk20;
0 + j�j22 kuk20;
0� CTCI(g + �)kuk1=20;
0kuk3=22;
0 + C212 kfk20;
0 + j�j22 kuk20;
0



22 CHAPTER 1. THE EXISTENCE THEORYWe 
an absorb the last term in the left hand side and obtain (1.2.27) with C3 =maxf2CTCI(g + �); C21g.(b) Let now � 2 C , Re� > 0. In this 
ase, the estimates are mu
h easier. Taking thereal part of (1.2.29), we observe that all terms on the left hand side are negative, sotaking the absolute value, we obtain:Z
0 jrSuj2 � 12� kfk0;
0kuk2;
0and in parti
ular (1.2.26) holds. In a similar way we 
an prove (1.2.27), too. �Theorem 1.2.11 (The resolvent (�+ L)�1 in the 
ase (f; 0) 2 X0)There exist 
onstants CR and 
 su
h that solutions (u; �) of (1.2.25) with � 2 C n(�SC) satisfy the regularity k(u; �)kX2 � 
k(f; 0)kX0 (1.2.32)and for j�j large enough, the resolvent estimatek(u; �)kX0 � CRj�j k(f; 0)kX0 : (1.2.33)Proof:Looking at the �rst equation in (1.2.25), we 
an interpret u as the solution ofa Stokes system in 
0 with right hand side f � �u and with pres
ribed boundarydata un���0 . To 
omplete the boundary 
onditions we 
onsider the equations (1.2.5)-(1.2.8) to be satis�ed too. These imply the estimate (with the positive 
onstantCS): kuk22;
0 � CS(kunk23=2;�0 + j�j2kuk20;
0 + kfk20;
0):Using the tra
e and the Korn inequality for ru3, and the inequalities of Lemma1.2.10, we 
an 
al
ulate further:kuk22;
0 � CSCT;K Z
0 jrSuj2 + CS(j�j2kuk20;
0 + kfk20;
0)(1:2:26)� CSCT;KC2kuk2;
0(j�jkuk0;
0 + kfk0;
0) + CS(j�j2kuk20;
0 + kfk20;
0)� 12kuk22;
0 + �C2SC2T;KC222 + CS�j�j2kuk20;
0 + �C2SC2T;KC222 + CS�kfk20;
0(1:2:27)� 12kuk22;
0 + C3�C2SC2T;KC222 + CS�kuk1=20;
0kuk3=22;
0+�C2SC2T;KC222 + CS + C3�kfk20;
0 :



1.2. THE LINEAR EQUATIONS AND ESTIMATES 23We 
an absorb the �rst term of the last inequality in the left hand side and obtain:kuk22;
0 � C4�kuk1=20;
0kuk3=22;
0 + kfk20;
0�;with C4 = maxfC2SC2T;KC22C3+2CSC3; C2SC2T;KC22+2CS+2C3g; this implies a boundof the form kuk2;
0 < 
(kuk0;
0 + kfk0;
0). More expli
itly, for small � > 0 we have:kuk22;
0 � �kuk22;
0 + C24� kuk0;
0kuk2;
0 + C4kfk20;
0� �kuk22;
0 + 12kuk22;
0 + C442�2kuk20;
0 + C4kfk20;
0and absorbing the �rst two terms of the right hand side in the left hand side, weobtain the desired estimate.The �rst equation of (1.2.25) 
onne
ts se
ond derivatives of � in 
0 with tra
esof fun
tions bounded in H1(
0), so we obtain a bound for k�k5=2;�0.Using again the inequality (1.2.27), we obtain an estimate of the formj�jkuk0;
0 � 
(kuk0;
0 + kfk0;
0);so, in the 
ase of large j�j, we get the estimate for kuk0;
0.Using the se
ond equation of (1.2.25), we havej�j k�k1=2;�0 = kunk1=2;�0whi
h 
an be bounded by kuk2;
0 and therefore (for j�j large enough) by kfk0;
0.�In the following we are going to derive estimates for the higher derivatives whi
hare needed for the existen
e theory and for the nonlinear problem. In order to avoiddiÆ
ulties with the 
orners we will perform a re
e
tion a
ross the walls. Withoutloss of generality we may restri
t to one of the sides, let x1 = 0. Our boundary
onditions on the walls �1;2 allow us to de�ne symmetri
 extensions of (u; �; p)a
ross �1. We denote them by (~u; ~�; ~p). These fun
tions will be periodi
 in thex1-dire
tion in the domain ~
0 = (�b; b) � S1 � (�h; 0) with the upper boundary~�0 = (�b; b)� S1 � f0g. The symmetries are as follows:~u1(t;�x1; x2; x3) = �u1(t; x1; x2; x3)~u2(t;�x1; x2; x3) = u2(t; x1; x2; x3)~u3(t;�x1; x2; x3) = u3(t; x1; x2; x3)~p(t;�x1; x2; x3) = p(t; x1; x2; x3)~�(t;�x1; x2) = �(t; x1; x2)
9>>>>=>>>>; (1.2.34)and 
onsistently we de�ne ~f1 to be odd and ~f2; ~f3 to be even with respe
t to the�rst variable (
onsidered as fun
tions of (x1; x2; x3)). It is easy to see that these newfun
tions satis�es the same equations in ~
0 as the old one in 
0.



24 CHAPTER 1. THE EXISTENCE THEORYDe�nition 1.2.12 We de�ne (~u; ~�; ~p) to be the solution of the following problem in~
0 periodi
 in x1- and x2-dire
tion:�t~u� ��~u +r~p = ~f in ~
0r � ~u = 0 in ~
0�t~� = ~u3 on ~�0�~ui�x3 + �~u3�xi = 0 on ~�0 (i = 1; 2)~p� 2� �~u3�x3 � (g~� � ��~�) = 0 on ~�0~u = 0 on ~��h
9>>>>>>>=>>>>>>>; (1.2.35)

In a similar way like Theorem 1.2.11, we 
an prove estimates for the solutionof the problem (1.2.35) in higher Sobolev spa
es, using well-known te
hniques: wedi�erentiate the equations (1.2.35) with respe
t to the variable x1 and x2, then the
orresponding derivatives of u satisfy the same equations with the di�erentiatedright hand side. The estimates of the derivatives with respe
t to x3 
an be obtainedfrom the �rst equation. Using the same methods as before, we obtain estimatessimilar to (1.2.32) and (1.2.33) for the derivatives of (~u; ~�) in ~
0. We formulate nowthe analog of Theorem 1.2.11 in higher Sobolev norms, for the restri
ted solution(u; �) in 
0:Theorem 1.2.13 (The resolvent (�+ L)�1 in the 
ase (f; 0) 2 Xr)There exist 
onstants CR and 
 su
h that solutions (u; �) of (1.2.25) with � 2 C n(�SC) satisfy for (f; 0) 2 Xr, with r � 0, the regularityk(u; �)kXr+2 � 
k(f; 0)kXr (1.2.36)and for j�j large enough, the resolvent estimatek(u; �)kXr � CRj�j k(f; 0)kXr : (1.2.37)Corollary 1.2.14 (The resolvent (�+ L)�1 for (f; h) 2 Xr with h 6= 0)Let (u; �) be a solution of the equation(�+ L)� u� � = � fh � ; (1.2.38)with (f; h) 2 Xr+2, r � 0. Then there exists a 
onstant M > 0 su
h that for all� 2 C n (�SC), j�j large enough, there holds:k(u; �)kXr+2 � Mj�jk(f; h)kXr+2 (1.2.39)



1.2. THE LINEAR EQUATIONS AND ESTIMATES 25Proof: Let (u1; �1) be a solution of the equation(�+ L)� u1�1 � = � f0 � :De�ne u2 := u� u1�2 := � � �1 � 1�h:Then the pair (u2; �2) satis�es the equation(�+ L)� u� � = � � 1�rH(gh� ��h)0 � :We apply now the Theorem 1.2.13, i.e. the inequality (1.2.37) for (u1; �1) andthe inequality (1.2.36) for (u2; �2):k(u1; �1)kXr+2 � CRj�j k(f; 0)kXr+2k(u2; �2)kXr+2 � 
k(�1�rH(gh� ��h); 0)kXr� 
�j�jkhkr+3�1=2;�0= 
�j�jk(0; h)kXr+2:Using the triangle inequality we obtain the desired estimate for (u; �). �We 
an now apply the inverse of the Lapla
e transformation and formulate ourexisten
e result for the linear problem.Theorem 1.2.15 (Linear existen
e result for (f; 0))We 
onsider L : ~Xr+2 ! Xr, r � 1 and (f; 0) 2 L2([0; T ℄; Xr), T > 0. Then theproblem (�t + L)� u� � = � f0 �with initial 
onditions (u; �)��t=0 = (u0; �0) 2 ~Xr+2 has a unique solution(u; �) 2 H1([0; T ℄; ~Xr) \ L2([0; T ℄; ~Xr+2):



26 CHAPTER 1. THE EXISTENCE THEORYProof: We substra
t the initial 
onditions from the solution, so de�ne the pair� v� � = � u� �� � u0�0 �whi
h solves the problem(�t + L)� v� � = � ~fh � := � f0 �� L� u0�0 �and has zero initial 
onditions. Considering the Lapla
e transform in time,v̂(�; �) = Z 10 e��tv(t; �)dt;we obtain the equation (�+ L)� v̂̂� � =  ~̂f̂h ! (1.2.40)whi
h (for all � 2 C with j�j large enough) has a solution (v̂; �̂) satisfying theestimates (1.2.39), so (v̂; �̂) 2 ~Xr, r � 2. The se
ond 
omponent of the righthand side of the equation (1.2.40) is not zero, but Theorem 1.2.13 gives us a
tually(v̂; �̂) 2 ~Xr+2 be
ause ĥ = û0nj�0 2 Hr+3=2(�0) is regular enough. See the proof ofProposition 1.2.6 (where h has now a spe
ial form and a better regularity) and alsothe next two Theorems 1.2.17 and 1.2.18. For the same reason that ĥ is more regularthan the spa
e Xr required, we obtain the properties of the solution for r � 1 (seethe proof of Corollary 1.2.14).We apply the inverse of the Lapla
e transformation� v� � (t; �) = 12�i Z �+i1��i1 e�t � v̂̂� � (�; �) d�where � = �+ is (� = Re� is large enough in order to have the resolvent estimates)and obtain a solution (v; �) 2 L2([0; T ℄; ~Xr+2). Using the isometry of the Lapla
etransformation, we 
an 
al
ulate (with a generi
 
onstant C):Z �+i1��i1 




 
�tv
�t� ! (�; �)




2Xr ds = Z �+i1��i1 j�j2 



� v̂̂� � (�; �)



2Xr ds(1:2:39)� C Z �+i1��i1 




 ~̂f̂h ! (�; �)




2Xr ds= C Z 10 



� ~fh � (t; �)



2Xr e�2�tdt (1.2.41)
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h proves that (v; �) 2 H1([0; T ℄; ~Xr) andZ 10 



�t � v� � (t; �)



2Xr dt � C Z 10 



� ~fh � (t; �)



2Xr dt:As a 
onsequen
e we obtain immediatly that (v; �) 2 C1=2([0; T ℄; ~Xr).Then we obtain (u; �) 2 H1([0; T ℄; ~Xr)\L2([0; T ℄; ~Xr+2) with a bound dependingon kfkL2([0;T ℄;Hr(
0)3) and k(u0; �0)k ~Xr+2. �Remark 1.2.16 Di�erentiating on
e more w.r.t. time and 
utting o� the solu-tion at t = 0, one 
an obtain after 
al
ulations similar to (1.2.41) that (u; �) 2C1;
((0; T ℄; ~Xr) with 
 � 12 .The next theorem is a 
onsequen
e of the Proposition 1.2.6 and Theorem 1.2.13.It states that we 
an generalize the regularity estimate (1.2.36) and obtain it alsofor a nonzero se
ond 
omponent of the right hand side, if this is more regular thanthe spa
e Xr required. This means we have to introdu
e a new spa
eXr3=2 := f(f; h) 2 Hr(
0)3 �Hr+3=2(�0) ��r � f = 0; fn���1;2;�h = 0g (1.2.42)with the natural norm inherited from the produ
t spa
e. Using this notation, ourXr spa
es 
oin
ide with the Xr1=2 spa
es, but we will keep the old notation for Xr.Theorem 1.2.17 (Properties of L : ~Xr+2 ! Xr3=2)The operator L : ~Xr+2 ! Xr3=2, r � 0, is invertible, the inverse is bounded and wehave the regularity estimatek(u; �)kXr+2 � 
k(f; h)kXr3=2 : (1.2.43)The same result holds for the operator �+ L, too, when �� is not an eigenvalue ofL. We 
an immediatly formulate the analog of the linear existen
e Theorem 1.2.15for this spe
ial form of the right hand side:Theorem 1.2.18 (Linear existen
e result for (f; h) with h 6= 0)We 
onsider L : ~Xr+2 ! Xr3=2, r � 1, and (f; h) 2 L2([0; T ℄; Xr3=2), T > 0. Thenthe problem (�t + L)� u� � = � fh �with initial 
onditions (u; �)��t=0 = (u0; �0) 2 ~Xr+2 has a unique solution(u; �) 2 H1([0; T ℄; ~Xr3=2) \ L2([0; T ℄; ~Xr+2):



28 CHAPTER 1. THE EXISTENCE THEORY1.3 Transformation to the Fixed Domain and theNonlinear ProblemFollowing [Be1℄, we 
onvert our (initial) nonlinear problem (1.1.1) - (1.1.11) de�nedon the unknown domain 
 to one on the equilibrium domain 
0 by stret
hing or
ompressing on the verti
al line segments. In this se
tion, we denote the variablesand fun
tions in 
0 by 
apital letters, so X1 = x1, X2 = x2, X3 will be spe
i�edlater.For every time t, given a small � : R+ � �0 ! R with ���x1 ��x12f0;bg = 0, we
an 
hoose ~�(t; X1; X2; �) 
lose to the identity whi
h transforms the interval [�h; 0℄to the interval [�h; �(t; x1; x2)℄. We 
an 
hoose the extension ~� to have maximalregularity as given by the tra
e theorem and su
h that 8t, ~�(t) depends only on �(t),the 
onta
t line 
ondition for � is prelonged on the whole �1;2 and ~� satis�es alsothe boundary 
ondition on ��h. So we de�ne ~� su
h that:~�(t; X1; X2; 0) = �(t; x1; x2) (a)�~��X1 ���X12f0;bg = 0 (b) (1.3.1)~���X3=�h = 0 (
)For ea
h t we de�ne the transformation �(t; �) : 
0 ! 
,(x1; x2; x3) = �(t; X1; X2; X3) := (X1; X2; X3 + (1 + X3h )~�) (1.3.2)and 
al
ulate:D� = � �xi�Xj�ij = 0� 1 0 00 1 0(1 + X3h ) �~��X1 (1 + X3h ) �~��X2 1 + ~�h + (1 + X3h ) �~��X3 1AJ := detD� = 1 + ~�h + (1 + X3h ) �~��X3��Xi�xj �ij�����x=�(X) = 0� 1 0 00 1 0� 1J (1 + X3h ) �~��X1 � 1J (1 + X3h ) �~��X2 1J 1A :We 
ould transform the velo
ity �eld only by 
omposition, but then the diver-gen
e free 
ondition would be lost. Instead, for U in 
0, we de�ne u in 
 = �(
0)by: ui = 1J �xi�XjUj (1.3.3)



1.3. THE NONLINEAR PROBLEM 29where repeated indi
es are summed. It is understood here that for (x1; x2; x3) 2
, the right hand side is evaluated at ��1(x1; x2; x3) = (X1; X2; X3). With thisde�nition, U has divergen
e zero in 
0 i� u has the same property in 
.There is a further advantage to this transformation of the velo
ity �eld: the righthand side of (1.1.3) is repla
ed simply by U3. More expli
itly, on the upper surfa
e�0 we have X3 = 0 and ~� = �, so we 
an 
al
ulate:(u1; u2; u3) = 1J (U1; U2; U1 ���x1 + U2 ���x2 + JU3)���t = 1J U1 ���x1 + 1J U2 ���x2 + U3 � 1J U1 ���x1 � 1J U2 ���x2= U3: (1.3.4)The derivatives of u are: �ui�xj = �Xl�xj ��Xl � 1J �xi�XkUk� :In rewriting �ui�t we have terms arising from the fa
t that � depends on t:�ui�t = 1J �xi�Xj �Uj�t + ��t � 1J �xi�Xj�Uj + ��X3 � 1J �xi�XjUj� �(��1)3�t :Let p Æ � = P . The other three terms in the Navier-Stokes equations 
an bewriten as:(u � ru)i = � 1J �xj�XmUm� �Xl�xj ��Xl � 1J �xi�XkUk��ui = 3Xj=1 ��2Xl�x2j ��Xl � 1J �xi�XkUk�+ �Xl�xj �Xm�xj �2�Xl�Xm � 1J �xi�XkUk��(rp)i = �Xk�xi �P�XkFinally, multiplying by �J �Xi�xj �, expressing the time derivatives of 1J �xi�Xj and �by time derivatives of � and using (1.3.4), we 
an write the Navier-Stokes equationsfor (U; P ): �tU � ��U +rP = F0(U; �;rP ) (1.3.5)r � U = 0



30 CHAPTER 1. THE EXISTENCE THEORYThe 
ondition on the free boundarypni � � ��ui�xj + �uj�xi�nj = 0�g� � �r � r�q1 + jr�j21Ani
an be writen in terms of the new variables asPNi � � ��Xl�xj ��Xl � 1J �xi�XkUk� + �Xl�xi ��Xl � 1J �xj�XkUk��Nj == 0�g� � �r � r�q1 + jr�j21ANiwhere N = n Æ�. It is 
onvenient to repla
e this ve
tor equation with 
omponentstangential and normal to the physi
al surfa
e. Let T1 = (1; 0; ���x1 ), T2 = (0; 1; ���x2 )be two tangent ve
tors and N3 = (� ���x1 ;� ���x2 ; 1) be the normal to � in the point(x1; x2; �(x1; x2)). Proje
ting the equation on this three dire
tions we obtain equa-tions of the form: �Ui�X3 + �U3�Xi = Gi(U; �) i = 1; 2 (1.3.6)P � 2� �U3�X3 � (g� � ���) = G3(U; �) : (1.3.7)The boundary 
onditions on the �xed boundary are preserved , soU ����h = 0Un���1;2 = 0n � SU � �i���1;2 = 0 i = 1; 2 9>=>; (1.3.8)This is easy to see for every parti
ular form of these 
onditions, doing dire
t 
al
u-lations and using the boundary 
onditions (1.3.1)(b; 
) we required for the extension~�. With the help of (1.3.7) we 
an solve a problem similar to (1.2.12) and, again,take out the pressure (as an unknown) from the equation (1.3.5). We 
an write nowour full nonlinear problem in terms of the operator L, so�t� U� � + L� U� � = � F (U; �)0 � (1.3.9)



1.3. THE NONLINEAR PROBLEM 31with the boundary 
onditions (1.3.8) for the �xed boundary and (1.3.6) for the freeboundary. For F and G we have the properties for r � 1 (see [Be1℄, [S
hw1℄ and[Ta℄, Ch.13):F : Xr+2 ! Hr(
0)3; F (0; 0) = 0; DF exists and DF (0; 0) = 0;G : Xr+2 ! Hr+1=2(�0)2; G(0; 0) = 0; DG exists and DG(0; 0) = 0:We have to be 
areful be
ause the 
ondition of vanishing tangential stress on thefree boundary is not ful�lled. We 
orre
t this by a fun
tion �.De�nition 1.3.1 For a fun
tion g = (g1; g2) 2 Hr+1=2(�0)2, we de�ne the ve
tor�eld �(g) : 
0 ! R3 whi
h has the 
orre
t boundary values: let A be the Stokesoperator, i.e. Au := A(u; p) = ���u + rp and r � u = 0. We de�ne �(g) withthe help of A to be the unique solution (we are not interested in the 
orrespondingpressure for �(g)) of: A�(g) = 0 in 
0�(g)����h = 0�n(g)���0[�1;2 = 0n � S�(g) � �i���1;2 = 0n � S�(g) � �i���0 = gi :As the solution of the Stokes operator A with these boundary 
onditions, wehave the following regularity estimates for � (see [ADN℄ and [S
hw1℄): 8r � 0k�(g)kr+2;
0 � C kgkr+1=2;�0 :In the following we denote our variables together, so we want to �nd solutionsx := (U; �) of (�t + L)x = � F (x)0 � (1.3.10)n � SU � �i���0 = Gi(x): (1.3.11)We 
onsider now new variables, namely~x := x� � � ÆG(x)0 � : (1.3.12)



32 CHAPTER 1. THE EXISTENCE THEORYIf x 2 Xr satis�es the boundary 
ondition (1.3.6), then ~x 2 ~Xr, so ~x has the
orre
t (in the sense ~X) boundary 
onditions of vanishing tangential stress on thefree boundary and we have not lost regularity through �ÆG. Be
ause DG(0; 0) = 0,the map ~x 7! x is 
lose to identity, so we 
an lo
ally solve (1.3.12) by x = '(~x). Inthe ~x variable, the equation (1.3.9) be
omes:(�t + L)~x = � ~F (~x)0 � := � F Æ '(~x)0 �� (�t + L)� � ÆG Æ '(~x)0 � (1.3.13)~x(0) = x(0)� � � ÆG(x(0))0 � : (1.3.14)We observe that we have a vanishing se
ond 
omponent on the right hand side of(1.3.13) be
ause of the property of �, �n(g)���0 = 0. ~F keeps the properties of F , so~F : ~Xr+2 ! Hr(
0)3; ~F (0) = 0; D ~F exists and D ~F (0) = 0:De�ne the following operator (r � 1):M : H1([0; T ℄; ~Xr) \ L2([0; T ℄; ~Xr+2) \ fzjz(0) 2 ~Xr+2g ! L2([0; T ℄; Xr)� ~Xr+2z 7�! �(�t + L)z � � ~F0 � (z); z(0)�M has the following properties (using the properties of ~F ):DM���z=0 : y 7�! ((�t + L)y; y(0))It was shown in Theorem 1.2.15 that the problem(�t + L)y = � f0 � 2 L2([0; T ℄; Xr)y(0) = y0 2 ~Xr+2has an unique solution, soDM��z=0 is an isomorphism between the spa
es whereM isde�ned. Then the impli
it fun
tion theorem proves the existen
e of a unique solutionof the nonlinear problemM(z) = ((f; 0); z0) for small enough (f; 0) 2 L2([0; T ℄; Xr)and small enough initial values z0 2 ~Xr+2. We 
an state now our nonlinear existen
eresult:Theorem 1.3.2 (Nonlinear existen
e result for ~X-spa
es)For r � 1, small enough (f; 0) 2 L2([0; T ℄; Xr) and small enough initial valuesz0 2 ~Xr+2, there exists a unique solution z 2 H1([0; T ℄; ~Xr)\L2([0; T ℄; ~Xr+2) of thenonlinear problem M(z) = ((f; 0); z0).



1.3. THE NONLINEAR PROBLEM 33Remark: A similar nonlinear existen
e result holds also in the spa
es Xr3=2 de�nedin (1.2.42). We observe that the transformation � we have done produ
ed no termin the se
ond 
omponent of the right hand side of the equation (1.3.10) (see alsoequation (1.3.4)). Moreover, if we 
onsider from the beginning a nonzero se
ond
omponent of the right hand side, its regularity will be kept through �. The resultis not needed for our Hopf bifur
ation analysis, but for the seek of 
ompleteness wewill formulate it here:Theorem 1.3.3 (Nonlinear existen
e result for ~X3=2-spa
es)De�ne the operatorN : H1([0; T ℄; ~Xr3=2) \ L2([0; T ℄; ~Xr+2) \ fzjz(0) 2 ~Xr+2g ! L2([0; T ℄; Xr3=2)� ~Xr+2z 7�! �(�t + L)z � � ~F0 � (z); z(0)� ;where ~F is de�ned in (1.3.13). Then, for r � 1, small enough (f; h) 2 L2([0; T ℄; Xr3=2)and small enough initial values z0 2 ~Xr+2, there exists a unique solution z 2H1([0; T ℄; ~Xr3=2) \ L2([0; T ℄; ~Xr+2) of the nonlinear problem N (z) = ((f; h); z0).
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Chapter 2The Bifur
ation Theory
2.1 The L-invariant De
ompositionWe want to split Xr and ~Xr into a dire
t sum of L-invariant subspa
es (Xri )i2I .The normed eigenve
tors of �� on �0, with Neumann boundary 
onditions inthe x1-dire
tion of the 
hannel, form an orthonormal basis for L2(�0). In order to�nd this basis expli
itly, we solve the eigenvalue problem���(x1; x2) = ��(x1; x2)�1���x12f0;bg = 0using the method of separation of variables.It is well-known (see e.g.[Da,Li℄, Ch.VIII, Th.8 and the appli
ations presentedhere) that this problem has a 
ountable number of eigenvalues �n;k, n 2 N , k 2 Zwhi
h are real, positive and simple. The eigenfun
tions are�n;k(x1; x2) = 
n;k 
os��b nx1� eikx2 ;the 
onstants 
n;k being 
hosen in su
h a way thatZ�0 j�n;kj2dx1 dx2 = 1:So, L2(�0) 
an be de
omposed into a dire
t Hilbert sumL2(�0) =Mn2Nk2Zl2n;k35



36 CHAPTER 2. THE BIFURCATION THEORYwhere l2n;k(�0) = spanf�n;k(x1; x2)g:Using the basis we found for L2(�0), we want to 
onstru
t a basis for L2(
0)3. Let~e3 = (0; 0; 1) be the normal ve
tor on �0, r = ~e1 ��x1 +~e2 ��x2 and r? = ~e1 ��x2 �~e2 ��x1 ,where ~e1 = (1; 0; 0) and ~e2 = (0; 1; 0) are two tangent ve
tors to �0.Proposition 2.1.1 The setB = f�n;k(x1; x2)~e3; r�n;k(x1; x2) ; r?�n;k(x1; x2)gis a basis for L2(�0)3.Proof: Be
ause these ve
tors are orthogonal, they are linear independent. It remainsto show that they span L2(�0)3.Let u : �0 �! R3 be a fun
tion orthogonal to every element in B. Be
ause it isorthogonal to ~e3, it is a tangent ve
tor, so the third 
omponent of u is zero and werefer to u as u 2 L2(�0)2.We prove that u = 0. Let C0 be a smooth 
ut in �0 su
h that �0 n C0 is simply
onne
ted. Following [Te℄, we use the de
ompositionL2(�0)2 = H0 � ker(r?) =: H0 �H1 �H2 �H
where H0 = fu 2 L2(�0)2 ��r � u = 0; un��C1;2 = 0; ZC0 un dC0 = 0gH1 = fu 2 L2(�0)2 �� u = rq; �q = 0; q 2 H1(�0)gH2 = fu 2 L2(�0)2 �� u = rq; q 2 H10 (�0)gH
 = fu 2 L2(�0)2 �� u = rq; �q = 0 in �0 n C0; q 2 H1(�0);[q℄C0 = 
onst; ��q�n�C0 = 0; �q�n ���C1;2 = 0gwhere [q℄C0 denotes the jump of q on C0. We know that the dimension of H
 is equalto the number of 
uts whi
h we need to make in order to obtain a simply 
onne
teddomain, so is one.Corresponding to this de
omposition, we 
an split u = u0+u1+u2+u
. Be
auseof the dire
t sum, it follows that every u0; u1; u2; u
 is orthogonal to every r�n;k and



2.1. THE L-INVARIANT DECOMPOSITION 37r?�n;k. Then, 0 = Z�0 u1 � r�n;k= Z�0 rq1 � r�n;k= � Z�0 q1��n;k + Z��0 q1�r�n;k � n�= Z�0 q1 �n;k �n;kand this implies q1 = 0 and u1 = 0be
ause f�n;kgn2N;k2Z is a basis for L2(�0). In an analog way we obtain also u2 =u
 = 0.For u0 2 H0 we 
an 
al
ulate0 = Z�0 u0 � r?�n;k = � Z�0(r? u0)�n;k + Z��0 u0n �n;kand then r?u0 = 0. But u0 2 H0 whi
h is the ortogonal 
omplement of ker(r?) inL2(�0)2, so u0 = 0 and the proof is 
omplete. �Using the basis B for L2(�0)3, we 
an de
ompose a fun
tion u(x1; x2; x3) 2L2(
0)3:u(x1; x2; x3) = Xn2Nk2ZUn;k1 (x3)r�n;k(x1; x2) + Un;k2 (x3)r?�n;k(x1; x2)+Un;k3 (x3)�n;k(x1; x2)~e3=: Xn2Nk2Zun;k(x1; x2; x3)where Un;k1;2;3 are arbitrary real fun
tions depending only on x3, not all of them iden-ti
ally zero. Then, L2(
0)3 =Mn2Nk2ZL2n;k;where L2n;k is the 
orresponding spa
e in the de
omposition of L2(
0)3, for n; k �xed.In order to �nd a L-invariant de
omposition for Xr we will see now how thedivergen
e free 
ondition and the boundary 
onditions are 
arried over. We �xen 2 N and k 2 Z.



38 CHAPTER 2. THE BIFURCATION THEORY~un;k(x1; x2; x3) == h� n�b Un;k1 (x3) sin��b nx1� + ik2�l Un;k2 (x3) 
os��b nx1�ieikx2~e1+hik2�l Un;k1 (x3) 
os��b nx1� + n�b Un;k2 (x3) sin��b nx1�ieikx2~e2+Un;k3 (x3) 
os��b nx1�eikx2~e3=: un;k1 ~e1 + un;k2 ~e2 + un;k3 ~e3The divergen
e-free 
ondition:r � ~un;k = 0, (Un;k3 )0(x3) = �n;kUn;k1 (x3) for x3 2 (�h; 0)For Xr, we have to satisfy also the 
ondition ~u � n���1;2;�h = 0, whi
h means:on �1;2: n = �~e1un;k1 ��x12f0;lg = 0 , Un;k2 (x3) = 0 8x3 2 (�h; 0)on ��h: n = �~e3 un;k3 ��x3=�h = 0 , Un;k3 (�h) = 0For ~Xr we have to satisfy additionally the 
onditions for the zero tangential stresson the free boundary and the walls, and zero tangential velo
ity on the bottom. Weobserve that the 
onditions on the walls �1;2 are automati
ally satis�ed.on ��h: ~e1 and ~e2 are tangential dire
tions:un;k1 ����h = un;k2 ����h = 0 , Un;k1 (�h) = 0on �0: n = ~e3, ~e1 and ~e2 are tangential dire
tions:(�3un;ki + �iun;k3 )���0 = 0; i = 1; 2 , Un;k3 (0) + (Un;k1 )0(0) = 0:Proposition 2.1.2 The L-invariant de
ompositions of the spa
es Xr and ~Xr are:Xr =Mn2Nk2ZXrn;k ~Xr =Mn2Nk2Z ~Xrn;k



2.1. THE L-INVARIANT DECOMPOSITION 39withXrn;k = f(un;k; �n;k) 2 Hr(
0)3 �Hr+1=2(�0) ���n;k(x1; x2) = 
n;k 
os ��bnx1� eikx2;~un;k(x1; x2; x3) = Un;k1 (x3)r�n;k(x1; x2) + Un;k3 (x3)�n;k(x1; x2)~e3;(Un;k3 )0(x3) = �n;kUn;k1 (x3); x3 2 (�h; 0);Un;k3 (�h) = 0g~Xrn;k = f(un;k; �n;k) 2 Xrn;k �� Un;k1 (�h) = 0Un;k3 (0) + (Un;k1 )0(0) = 0g:Proof:It remains to prove that L de�ned on ~Xn;k maps to Xn;k. Let (un;k; �n;k) 2 ~Xn;k.Then L� un;k�n;k � =  ���un;k +rH(p���0)�un;kn ���0 ! ;where p���0 = 2�Snun;k ���0 + g�n;k � ���n;k= [2�(Un;k3 )0(0) + g + ��n;k℄�n;k(x1; x2)Be
ause the solution of the problem (1.2.12) is unique and �1�n;k��x12f0;bg = 0, theharmoni
 extension of the pressure has the formH(p���0) = P (x3)�n;k(x1; x2)where P (x3) 
an be found expli
itly as the solution of the problemP 00(x3) = �n;kP (x3) for x3 2 (�h; 0)P (0) = 2�(Un;k3 )0(0) + g + ��n;kP 0(�h) = � (Un;k3 )00(�h):We have P (x3) = 
1ep�n;kx3 + 
2e�p�n;kx3 , where 
1 and 
2 
an be determined fromthe boundary 
onditions for P (0) and P 0(�h).After some simple 
al
ulations using the spe
ial form of un;k, we obtain:���un;k +rH(p���0) = (��n;kUn;k1 � �(Un;k1 )00 + P )(x3)r�n;k(x1; x2)+(��n;kUn;k3 � �(Un;k3 )00 + P 0)(x3)�n;k(x1; x2)~e3=: f1(x3)r�n;k(x1; x2) + f3(x3)�n;k(x1; x2)~e3�un;kn ���0 = �Un;k3 (0)�n;k(x1; x2)



40 CHAPTER 2. THE BIFURCATION THEORYwhere f1 and f3 satisfy the 
onditions required in theXn;k-spa
e (be
ause (un;k; �n;k) 2~Xn;k). The proof is 
omplete. �Sin
e we study the eigenvalue problem for L, we 
an restri
t ourself to su
h aspa
e Xrn;k and make all 
onsiderations there. This is proved in the next proposition:Proposition 2.1.3 Let � be an arbitrary eigenvalue of L. Then there exist n 2 Nand k 2 Z su
h that � is an eigenvalue for L�� ~Xrn;k .Proof:Let � 2 C be an arbitrary eigenvalue of L, so 9 (0; 0) 6� (u; �) 2 ~Xr su
h thatL(u; �) = �(u; �). De
ompose in a unique way(u; �) = (Xn2Nk2Zun;k;Xn2Nk2Z�n;k) =Xn2Nk2Z(un;k; �n;k);with (un;k; �n;k) 2 ~Xrn;k.We have �(un;k; �n;k) 2 ~Xrn;k and the following equalities hold in the weak sense:X�(un;k; �n;k) = L�X(un;k; �n;k)�= XL(un;k; �n;k):The de
omposition is invariant under L and be
ause of the dire
t sum, it follows:9n 2 N and 9 k 2 Z with �(un;k; �n;k) = L(un;k; �n;k)with �n;k 6� 0, so �n;k is an eigenvalue of L�� ~Xrn;k . �So we 
an restri
t our 
onsiderations on su
h a spa
e Xrn;k (a
tually we �xe �n;k)and we will denote the fun
tions there without indi
ies.2.2 A Bifur
ation Pi
ture w.r.t �Sin
e the Navier-Stokes equations are invariant under the Eu
lidian group E3 ofall translations, rotations and re
e
tions of spa
e, the group of symmetries of agiven model is a subgroup of E3 determined by the shape of the domain and theboundary 
onditions. In our problem, we 
onsider the symmetries obtained bytranslations along x2 and re
e
tions through a plane perpendi
ular to the x2-axis.



2.2. A BIFURCATION PICTURE W.R.T � 41The assumption on periodi
 boundary 
onditions in the x2-dire
tion allows us toidentify these translations with the a
tion of a 
ir
le group. These lead to an O(2)symmetry, so our problem provides an O(2)-equivarian
e.Remark: A re
e
tion through the plane fx1 = b2g is also a symmetry for our model.We did not 
onsider it be
ause it does not in
rease the dimension of the kernel spa
esin the bifur
ation theorem. This will be
ome 
lear from the form of the fun
tion�n;k.O(2) is generated by SO(2) together with the 
ip { = � 1 00 �1 �, where SO(2)
onsists of planar rotations R� = � 
os � sin �� sin � 
os � �. We refer to elements of O(2)as 3�3 matri
es, adding the third line and the third 
olumn (0; 0; 1). We de�ne thea
tion of an element 
 2 O(2) on Xr by
 � u := u Æ 
�1
 � � := � Æ 
�1
 � � u� � := � 
 � u
 � � � : 9>>=>>; (2.2.1)SO(2) may be identi�ed with the 
ir
le group S1, the identi�
ation beingR� 7! �.Using this identi�
ation, we des
ribe the a
tion of O(2) = fsei� : � 2 R; s 2 fid;{ggon Xr as follows: if ~u = u1~e1 + u2~e2 + u3~e3 is the velo
ity �eld,� � ~u(x1; x2; x3) := u1(x1; x2 � �; x3)~e1 + u2(x1; x2 � �; x3)~e2+u3(x1; x2 � �; x3)~e3{ � ~u(x1; x2; x3) := u1(x1;�x2; x3)~e1 � u2(x1;�x2; x3)~e2+u3(x1;�x2; x3)~e3� � �(x1; x2) := �(x1; x2 � �){ � �(x1; x2) := �(x1;�x2) :
9>>>>>>>>>>>>=>>>>>>>>>>>>; (2.2.2)

It is easy to see that L is O(2)-equivariant w.r.t. this a
tion, i.e.
 � L� u� � = L�
 � � u� �� :Lemma 2.2.1The fun
tion �n;k has an isotropy subgroup ��n;k of O(2) isomorphi
 to Zk.



42 CHAPTER 2. THE BIFURCATION THEORYProof: The a
tions of ei� and { on �n;k are:� � �n;k(x1; x2) = 
n;k 
os ��b nx1� eik(x2��) ;{ � �n;k(x1; x2) = 
n;k 
os ��b nx1� e�ikx2 :Imposing the isotropy 
ondition we obtain� � �n;k = �n;k , k� = 2m�; m 2 Z
 2 ��n;k , 
 2 fei 2�mk ��m 2 Zg � Zk: �We are now able to study the position of the eigenvalues of L depending on thegravity g and on the surfa
e tension �. The position 
an be 
al
ulated expli
itly forg = � = 0 and for g; � ! +1. It is not of interest to study the problem for g and� separately. Anyway, these parameters are physi
al measures and they are �xedfor a given liquid, but the "formal" analysis we are presenting here gives us usefulideas for the study of Hopf bifur
ation in the next se
tion. Then(g � ��)�n;k = (g + ��n;k)�n;k =: � �n;k;with � := g + ��n;k 2 [0;1).Remark: In this se
tion, n and k are �xed, so �n;k is �xed, and varying � in theTheorem 2.2.6 means a
tually to vary g and �. This is also the reason for whi
h wedo not introdu
e n and k in the notation � for g + ��n;k.Let A : (u; p) 7! ���u +rp together with the following 
onditions:in 
0 : r � u = 0n � Su � �i���0[�1;2 = 0un���1;2 = 0u����h = 0 9>>>=>>>; (2.2.3)be the Stokes operator. In order to study eigenvalue problems for A, we have toimpose one boundary 
ondition more, i.e. one for the normal velo
ity on the freeboundary �0. We have two possibilities, to pres
ribe the normal velo
ity on �0 (andobtain than a "Diri
hlet" problem for the Stokes operator) or to pres
ribe the normalstress on the free boundary (and obtain than a "Neumann" problem for the Stokesoperator). As soon as we have imposed a 
ondition for un���0 or for (p � 2�Snu )���0 ,we 
an 
al
ulate the value of the other one. Be
ause we are in Xrn;k, both of themshould be multiple of �n;k. Also, for �xed �n;k, the pressure p is known as a fun
tion



2.2. A BIFURCATION PICTURE W.R.T � 43of u and �n;k (see (1.2.13)). Therefore, when we don't need to write the pressureexpli
itly, we will simplify the notation:A(u; p) = ���u +rp =: Au:De�nition 2.2.2 (The Stokes operators AD and AN)Denote by AD the Stokes operator A on ~Xr together with the boundary 
onditionof a vanishing normal 
omponent of the velo
ity at the free boundary. It is knownthat its eigenvalues are 
ountable, real, positive and simple; we denote them byf�jgj2N. The 
orresponding eigenfun
tions with symmetry Zk are unique up to amultipli
ative 
onstant. Let fujgj2N be the normed eigenfun
tions with symmetryZk and fpjgj2N be the pressure fun
tions su
h that (pj � 2�Snuj )���0 = �n;k.Denote by AN the Stokes operator A on ~Xr together with the boundary 
onditionof a vanishing normal stress on the free boundary. It is known that its eigenvaluesare 
ountable, real, positive and simple; we denote them by f�jgj2N.The Stokes operators AD and AN are ellipti
 in the sense of Agmon, Douglis andNirenberg (see [ADN℄, and also [Be1℄, [S
hw1℄).Following [S
hw1℄, we de�ne for every � 2 C nf�j j j 2 Ng, (~u(�); ~p(�)) to be theunique solution of the problem (~p(�) is here unique up to an additive 
onstant):(�� A)~u(�) = 0 (2.2.4)~un(�)���0 = ���n;k (2.2.5)We know from the perturbation theory for linear operators (see [Ka℄, and also[S
hw1℄) that (~u(�); ~p(�)) is an analyti
 family of fun
tions for � 2 C n f�j j j 2 Ng.One veri�es easily that Xrn;k are invariant subspa
es also for AD and AN . There-fore the (unique) solution of (2.2.4)-(2.2.5) must be in Xrn;k. In parti
ular (~p(�) �2�Sn~u(�))���0 is a multiple of �n;k. We de�ne ~r(�) 2 C by(~p(�)� 2�Sn~u(�))���0 =: ~r(�)�n;k: (2.2.6)Of 
ourse, every � 6= �j eigenvalue of L together with the 
orresponding eigen-fun
tion satisfy the problem (2.2.4)-(2.2.5). Re
ipro
ally, a � 2 C is an eigenvalueon L with eigenfun
tion (~u(�); �n;k), if and only if~r(�) = �:Lemma 2.2.3 We have: � 2 R implies ~r(�) 2 R.



44 CHAPTER 2. THE BIFURCATION THEORYProof: Testing the eigenvalue equation (2.2.4) with �~u and using Corollary 1.2.3, weobtain: � Z
0 j~u(�)j2 = Z
0 [���~u(�) +rH(2�Sn~u(�)����0)℄ �~u(�)+ Z
0 [r~p(�)�rH(2�Sn~u(�)����0)℄ �~u(�)= 2� Z
0 S~u(�) : S�~u(�) + Z�0(~p(�)� 2�Sn~u(�)) �~un(�)= 2� Z
0 jS~u(�)j2 + Z�0 ~r(�)�n;k(�����n;k)= 2� Z
0 jS~u(�)j2 � ��Z�0 ~r(�) j�n;kj2and the lemma is proved. �In the following we abbreviate by k � k (without indi
ies) the L2(
0)3-norm orthe L2(�0)-norm.Proposition 2.2.4 (Properties of ~u(�))(a) In �j there holds k~u(�)k ! +1 for �! �j: (2.2.7)(b) The res
aled fun
tions approximate the eigenfun
tions of AD, souj := limR3�%�j ~u(�)k~u(�)k = � limR3�&�j ~u(�)k~u(�)k : (2.2.8)(
) k~u(�)k ! +1 for j�j ! +1: (2.2.9)Proof: We de�ne the familly of fun
tions (u(�); p(�)) whi
h depends smooth on � ina neighborhood of �j to be the unique (nonzero) solution of the following problemfor the Stokes operator: (�� A)u(�) = 0 (2.2.10)(p(�)� 2�Snu(�))���0 = �n;k: (2.2.11)Denote un(�)���0 =: s(�)�n;k; (2.2.12)



2.2. A BIFURCATION PICTURE W.R.T � 45we have the properties: s(�) is di�erentiable and s(�j) = 0 (be
ause the eigenvaluesof AD are simple), so for � = �j, u(�j) is a multiple of uju(�j) = 
onst1 uj 6� 0:(a) Comparing the problem (2.2.4),(2.2.5) with the problem (2.2.10),(2.2.12) weobtain: ~u(�) = ��s(�)u(�);so k~u(�)k = ���� ��s(�)���� j
onst1j � 1and k~u(�)k ! +1 for �! �j:(b) Then limR3�!�j ~u(�)k~u(�)k = �sign s(�j) � sign(
onst1) � ujand the sign of the limit will be established by showing that the fun
tion s(�)��R
hanges sign in �j.Assume this is not true, so ��s(�j) = 0. De�ning the fun
tions (v; q), v :=��u(�j) and q := ��p(�j), they satisfy the following equations:(�j � A)v = �u(�j) (2.2.13)vn���0 = ��s(�j)�n;k = 0(q � 2�Snv )���0 = 0:Testing the equation (2.2.13) with �u(�j), integrating by parts and using the equality(1.2.16) together with the boundary 
onditions of the equation (2.2.13), yields:0 6= �ku(�j)k2 = Z
0 [�jv + ��v �rq℄ �u(�j)= Z
0 [�j�u(�j) + ���u(�j)�r�p(�j)℄ v= 0;a 
ontradi
tion, so s(�)��R 
hanges sign in �j, i.e.limR3�%�j ~u(�)k~u(�)k = � limR3�&�j ~u(�)k~u(�)k ;



46 CHAPTER 2. THE BIFURCATION THEORYand we 
hoose uj := limR3�%�j ~u(�)k~u(�)k :(
) As the solution of the Stokes system (2.2.4)�(2.2.5), ~u(�) is suÆ
iently smoothand satis�es the estimate (CS > 0 is a 
onstant):k~u(�)k2;
0 � CS�j�j k~u(�)k0;
0 + j�j k�n;kk3=2;�0�:We use now ~un(�)���0 = ���n;k, a tra
e formula (with 
onstant CT > 0) and aninterpolation (with 
onstant CI > 0) (see also Proposition 1.2.8) to 
al
ulate:j�j2k�n;kk20;�0 = k~un(�)k20;�0� CTk~u(�)k21;
0� CT CIk~u(�)k0;
0k~u(�)k2;
0� CT CI CSk~u(�)k0;
0�j�j k~u(�)k0;
0 + j�j k�n;kk3=2;�0�;and then j�jk�n;kk20;�0 � CT CI CSk~u(�)k0;
0�k~u(�)k0;
0 + k�n;kk3=2;�0�whi
h imply k~u(�)k0;
0 ! +1 for j�j ! +1. �Proposition 2.2.5 (Properties of ~r(�))The fun
tion ~r(�) satis�es:(a) limR3�&0 ~r(�) = 0 ; (2.2.14)(b) limR3�&�j ~r(�) = � limR3�%�j ~r(�) = +1 ; (2.2.15)(
) ~r(�) is positive for small � > 0 and ��~r(�)���=0 > 0;(d) it has exa
tly one turning point on ea
h interval (�j; �j+1), j 2 N;it does not have turning points on the interval (�1; �0);(e) 
riti
al values of ~r(�) are positive.Proof:(a) Putting � = 0 in the problem (2.2.4)�(2.2.5) we obtain that ~u(0) � 0 (be
ause0 is not an eigenvalue of AD) and then ~r(0) = 0.
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tion w(�) := ~u(�)k~u(�)k = ~u(�) ����s(�)
onst1� ����(together with the 
orresponding pressure ~p(�)k~u(�)k) sati�es (2.2.4) and the boundary
onditions on �0: wn(�)���0 = �� �n;k � ����s(�)
onst1� ����� ~p(�)k~u(�)k � 2�Snw(�)� ����0 = ~r(�)k~u(�)k�n;k:Be
ause s(�j) = 0 and kw(�)k = 1, using Proposition 2.2.4 it followsw(�) ! �uj for �! �j~p(�)k~u(�)k ! �
onst2pj for �! �j;so ~r(�)k~u(�)k ! �
onst3 for �! �j:Be
ause of (2.2.7), ~r(�) 
annot stay �nite for �! �j and ~r(�)��R 
hanges sign in �jlike s(�)��R does.(
; d; e) Consider the fun
tions ~v(�) := ��~u(�) and ~q(�) := ��~p(�) whi
h satisfy:(�� A)~v(�) = �~u(�) (2.2.16)~vn(�)���0 = ��n;k(~q(�)� 2�Sn~v(�))���0 = ��~r(�)�n;k:For � = 0, so (~v(0); ~q(0)), the right hand side of the equation (2.2.16) be
omes zeroand testing it with �~v(0) yieldsZ
0 jS~v(0)j2 = Z�0(~q(0)� 2�Sn~v(0))~vn(0) = ��~r(�)���=0 � k�n;kk2whi
h implies ��~r(�)���=0 > 0 �we have ��~r(�)���=0 6= 0 be
ause 0 is not an eigenvalueof AN�; this proves (
) .Testing the equation (2.2.16) with �~u(�) and using the identity (1.2.16), we obtaink~u(�)k2 = Z
0(�~v(�) + ��~v(�)�r~q(�))�~u(�)= Z
0(��~u(�) + ���~u(�)�r�~p(�))~v(�)+ Z�0(�~p(�)� 2�Sn�~u(�))~vn(�)� Z�0(~q(�)� 2�Sn~v(�))�~un(�) :



48 CHAPTER 2. THE BIFURCATION THEORYThis yields, together with (2.2.5), (2.2.6) and the boundary 
onditions from theproblem (2.2.16): k~u(�)k2 � ~r(�)k�n;kk2 + ���~r(�)k�n;kk2 = 0 (2.2.17)whi
h implies for any 
riti
al point �
rit 2 R n f0; �j jj 2 Ng of ~r (so ��~r(�)���=�
rit =0), that ~r(�
rit) > 0 �k~u(�
rit)k2 = 0 would imply ~u(�
rit) � 0 whi
h is in 
ontradi
-tion with the boundary 
ondition (2.2.5)�; this proves (e).Di�erentiating (2.2.17) w.r.t. � we obtain�� �k~u(�)k2�+ ��2�~r(�)k�n;kk2 = 0; (2.2.18)whi
h implies �� �k~u(�)k2� = 0 �6=0() �2�~r(�) = 0;so the turning points of ~r(�), � 2 R n f0; �j jj 2 Ng, 
oin
ide with the 
riti
al pointsof k~u(�)k2, � 2 R n f0; �jjj 2 Ng.We 
an 
al
ulate further�2� �k~u(�)k2� = 2k��~u(�)k2 + 2h~u(�); �2�~u(�)i (2.2.19)and we are looking for an expresion for h~u(�); �2�~u(�)i.De�ne the fun
tions ~w(�) := �2�~u(�), ~t(�) := �2�~p(�) whi
h satisfy(�� A) ~w(�) = �2~v(�) (2.2.20)~wn(�)���0 = 0(~t(�)� 2�Sn~w(�))���0 = �2�~r(�)�n;k:Testing the equation (2.2.20) with �~v(�) and using the identity (1.2.16) we obtain:�2k~v(�)k2 = Z
0(� ~w(�) + �� ~w(�)�r~t(�))�~v(�)= Z
0(��~v(�) + ���~v(�)�r�~q(�)) ~w(�)+ Z�0(�~q(�)� 2�Sn�~v(�)) ~wn(�)� Z�0(~t(�)� 2�Sn~w(�))�~vn(�)and using the problems (2.2.16) and (2.2.20), this yields the equation:2k~v(�)k2 � h~u(�); ~w(�)i+ �2�~r(�)k�n;kk2 = 0 (2.2.21)



2.2. A BIFURCATION PICTURE W.R.T � 49�where we have denoted by h�; �i the usual s
alar produ
t in L2(
0)3�. Togetherwith (2.2.19) we obtain:�2� �k~u(�)k2� = 6k~v(�)k2 + 2�2�~r(�)k�n;kk2 : (2.2.22)Let �turn 2 R n f0; �jjj 2 Ng be a 
riti
al point of k~u(�)k2. It is also a turningpoint of ~r(�) and using (2.2.22) for � = �turn, we 
an 
al
ulate:�2� �k~u(�)k2� ���=�turn = 6k~v(�turn)k2 > 0 :�k~v(�turn)k2 = 0 would imply ~v(�turn) � 0 whi
h is a 
ontradi
tion be
ause ~vn(�)���0 =��n;k 8� (see the problem (2.2.16))�, so all the 
riti
al points of k~u(�)k2 in R nf0; �jjj 2 Ng are points of lo
al minimum. We 
olle
t now the properties of thefun
tion k~u(�)k2:k~u(�)k2 � 0 8� 2 D(k~u(�)k2) = R n f�jjj 2 Ng ;Every 
riti
al point �turn 6= 0 is a lo
al minimum of k~u(�)k2 ;k~u(�)k ! +1 for j�j ! +1 or �! �j(j 2 N) (see (2.2.7) and (2.2.9)) ;k~u(0)k2 = 0 be
ause 0 is not an eigenvalue of AD :Then we 
an 
on
lude that the fun
tion k~u(�)k2 has exa
tly one 
riti
al point (andthis is a minimum) on ea
h interval (�1; �0), (�j; �j+1) (j 2 N). For every interval(�j; �j+1), this is equivalent to say that the fun
tion ~r(�) has exa
tly one turningpoint on ea
h (�j; �j+1).For the interval (�1; �0), we know that the unique 
riti
al point of the fun
tionk~u(�)k2 is the point � = 0, but we 
an not say that this is also a turning point for~r (see the equation (2.2.18)). Moreover, we will show that it is not a turning pointof ~r, so �2�~r(�)���=0 6= 0.Suppose that �2�~r(�)���=0 = 0. For � = 0 we know ~u(0) � 0 (be
ause 0 is not aneigenvalue of AD) and using (2.2.21) we obtain ~v(0) � 0 whi
h is a 
ontradi
tionbe
ause ~vn(0)���0 = ��n;k (see the problem (2.2.16)).So, for the interval (�1; �0) we 
an 
on
lude that ~r does not have turning points;(d) is also proved. �We 
an draw now the graph of ~r for � 2 R (see Figure 2). On (0; �0) weknow exa
tly how it looks like, on (�j; �j+1) we have two possibilities: ~r is monotondes
ending or has a lo
al maximum and a lo
al minimum, both positive. We havedrawn the graph of ~r also for negative � (be
ause we need it for the next se
tion).
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Figure 2: The Graph of ~r(�)We know that ~r has no negative zeros, and no turning points on (�1; �0), so itshould looks like a "parabola" on this interval.The numbers �j > 0 are zeros of the ~r(�), so the shape of ~r implies�j < �j < �j+1 8j 2 N :Theorem 2.2.6 (The global bifur
ation pi
ture in �)For � = 0 all the eigenvalues of L��� ~Xrn;k are real. Denoting them by f�jgj2N, it holds�0 = 0; �j+1 = �j 8j 2 N :For some �0 > 0 the �rst two eigenvalues merge and leave the real axis.Given a number ! 2 R, there exists �! > 0 su
h that for � > �! every interval(�j; �j+1) with �j+1 < ! 
ontains one and only one eigenvalue �(�) of L� (whi
h



2.2. A BIFURCATION PICTURE W.R.T � 51is the unique real solution of the equation ~r(�) = � on this interval) and this realeigenvalue satis�es �R(�)& �j for �! +1:For the nonreal eigenvalues it holdsj�C (�)j ! +1 for �! +1:Proof: The statements for the real eigenvalues of L� are 
lear from the graph of ~r.For � = 0 we 
an 
ompute a 
omplete set of eigenfun
tions in Xrn;k:�0 = 0 with eigenfun
tion (0; �n;k)�j+1 = �j with eigenfun
tion (~u(�j); �n;k)Let �max be the 
riti
al point of ~r on (0; �0). Then �0 := ~r(�max) and from theshape of ~r we see that for � � �0 the �rst two eigenvalues merge and leave the realaxis.Let ! 2 R be given, then there exists i 2 N su
h that 0 < �0 < : : : < �i < !and de�ne �! to be the biggest lo
al maximum of ~r(�) on (�j; �j+1) for all j, j < i.The rest is 
lear from the shape of ~r.It remains now to prove only the assertion on the nonreal eigenvalues. Wesuppose we have a sequen
e of nonreal eigenvalues �(�) of L� whi
h are boundedindependent of �, so suppose:�(�)! �1 2 C for a sequen
e �! +1:Denoting the 
orresponding eigenfun
tions of L� with (~u(�(�)); �n;k), they satisfythe energy equality 8� 2 R: k~u(�(�))k2 = �k�n;kk2and the 
ondition for the normal stress on the free boundary:(~p(�(�))� 2�Sn~u(�(�)))���0 = ��n;k:where ~p(�(�) is the 
orresponding pressure fun
tion. Be
ause �(�) is nonreal 8�,it never meets �j and the pair (~u(�(�)); ~p(�(�))) is also a nonzero solution of theproblem (2.2.4)�(2.2.5).Then the pair (v(�(�)); q(�(�))),v(�(�)) := ~u(�(�))� and q(�(�)) := ~p(�(�))� ;



52 CHAPTER 2. THE BIFURCATION THEORYsatis�es the equations: (�(�)� A)v(�(�)) = 0vn(�(�))���0 = ��(�)� �n;k(q(�(�))� 2�Snv(�(�)))���0 = �n;k:Passing to the limit � ! +1 in all these equations, using our hypothesis �(�) !�1 2 C and 
ontinuity w.r.t. � of the fun
tions v and q, the pair of the limitfun
tions (v(�1); q(�1))v(�1) := lim�!+1 v(�(�)) and q(�1) := lim�!+1 q(�(�))satis�es the following equations:(�1 � A)v(�1) = 0vn(�1)���0 = 0(q(�1)� 2�Snv(�1))���0 = �n;k:and be
ause the normal stress on the free boundary is �n;k, the solution v(�1) 6� 0.On the other hand, using the energy equality we 
an 
al
ulate:0 6= kv(�1)k2 = lim�!+1



 ~u(�(�))� 



2= lim�!+1 �k�n;kk2�2= 0;a 
ontradi
tion, so for nonreal eigenvalues, j�(�)j ! +1 for �! +1. �Proposition 2.2.7(a) Eigenvalues of L� leave the real axis with an in�nite speed (w.r.t. �).(b) The qualitative shape of ~r�(�) is independent of the vis
osity �:~r��(��) = �2~r�(�):Proof:(a) The eigenvalues of L� leave the real axis in a 
riti
al point of ~r and we denoteit by �
rit(�) 2 R. Be
ause ~r is an analyti
 fun
tion in C n f�j j j 2 Ng, we have:�Re(~r(�(�)))�� ����=�
rit = �Im(~r(�(�)))�� ����=�
rit = 0:



2.3. HOPF BIFURCATION WITH SYMMETRY 53Be
ause ~r(�
rit(�)) = �, we 
an 
al
ulate1 = �Re(~r(�(�)))�� ����=�
rit = �Re(~r(�(�)))�� ����=�
rit � ���� = 0 � ����;so the speed of �(�) gets in�nite.(b) Multiplying the equation (2.2.4) with �2, we obtain the system(��)(�~u(�)) + (��)�(�~u(�))�r(�2~p(�)) = 0r � (�~u(�)) = 0(�~u)����1 = 0� � S(�~u(�)) � n���0[�1;2 = 0(�~u)n(�)���1;2 = 0(�~u)n(�)���0 = �(��)�n;ktogether with the 
ondition for the normal stress on the free boundary:(�2~p(�)� 2(��)Sn�~u)���0 = �2~r�(�)�n;k:By de�nition of ~r the last line 
oin
ide with ~r��(��)�n;k and (b) is also proved. �2.3 Hopf Bifur
ation with SymmetryThe Hopf bifur
ation refers to a phenomenon in whi
h a steady state of an evolutionequation evolves into a periodi
 orbit as a bifur
ation parameter is varied. When thesymmetry appears, the problem be
omes more 
ompli
ated be
ause the symmetry
an lead to multiple eigenvalues. In order to state an equivariant Hopf bifur
ationtheorem we have to prove the existen
e of a pair of purely imaginary eigenvalues of Lwhi
h are Zk-simple together with the transversality 
ondition that these eigenvalues
ross the imaginary axis with a nonzero speed, when the bifur
ation parameter isvaried.In this se
tion we 
onsider the in
uen
e of an exterior for
e (e.g. the wind for
e)a
ting on the free surfa
e of the 
uid. In general su
h a for
e will depend on theposition and the velo
ity of the free surfa
e and result in an in
rease or de
rease ofthe pressure at the free boundary. With a parameter � for the strength we write(p� 2�Snu )���0 = g� � ��� + �F (�; un���0):



54 CHAPTER 2. THE BIFURCATION THEORYLinearizing F in 0 we noti
e that D1F � � a
ts like an additional surfa
e tension, thee�e
t of whi
h we know in any subspa
e Xrn;k (Se
tion 2.2). So we will 
on
entrateon a linear for
e of the formF (�; un���0) = D2F � un���0:This for
e 
an be written in terms of the representation Xr = �Xrn;k. We assumethat the de
omposition remains invariant and study the for
e D2F = �id in Xrn;kwhi
h has the stru
ture of a negative damping. We are interested in the position ofeigenvalues and restri
t all the 
al
ulations to Xrn;k. The linearized equation are thesame like that one in Chapter 1, ex
ept the equation (2.3.4) where the term �un���0appears additionaly:�tu� ��u+rp = 0 (2.3.1)r � u = 0 (2.3.2)�t�n;k = un���0 (2.3.3)(p� 2�Snu )���0 = g�n;k � ���n;k � �un���0 (2.3.4)n � Su � �i���0 = 0; i = 1; 2 (2.3.5)u����h = 0 (2.3.6)un���1;2 = 0 (2.3.7)n � Su � �i���1;2 = 0 (2.3.8)�1�n;k��x12f0;bg = 0 (2.3.9)(u; p; �n;k)(t; x1; x2; x3) = (u; p; �n;k)(t; x1; x2 + 2�; x3) (2.3.10)Be
ause we are working in the spa
e ~Xrn;k or Xrn;k, so we have a spe
ial form for �n;k,some of the 
onditions (2.3.1)-(2.3.10) are automati
ally satis�ed; however, for theseek of 
ompleteness we wrote the whole Stokes problem.In analogy with the previous se
tions we de�ne the operatorL� � u�n;k � :=  ���u +rH(2�Snu ���0) +rH(g�n;k � ���n;k)�rH(�un���0)�un���0 ! ;(2.3.11)where H(�un���0) := ~H(�un���0 ; 0). We denote by L�u the �rst 
omponent in thede�nition (2.3.11).We prove how the Theorem 1.2.5 
arries over. We observe that the next Theoremis true also in the whole spa
e ~Xr (i.e. for an eigenve
tor (u; �) 2 ~Xr of L�).



2.3. HOPF BIFURCATION WITH SYMMETRY 55Theorem 2.3.1 (Position of eigenvalues of L� w.r.t. k � kE)Let � u�n;k � 2 ~Xrn;k be an eigenfun
tion (
onsidered 
omplex) of L� with eigenvalue�. Then Re� 



� u�n;k �



2E = 2� Z
0 jSuj2 � �j�j2k�n;kk20;�0 (2.3.12)Im� 



� u�n;k �



2E = 2ImZ�0(�un���0)(g��n;k � ����n;k): (2.3.13)In the 
ase of Im� 6= 0 the energy equality holds :kuk20;
0 = kuk2E;
0 = k�n;kk2E;�0 = 12 



� u�n;k �



2E = �k�n;kk20;�0 : (2.3.14)Proof: Following the proof of Theorem 1.2.5 this Theorem 
an be proved withoutdiÆ
ulties. The only di�eren
e whi
h appear is the expresion (2.3.4) for the normalstress on the free boundary. �We abbreviate again by k�k without indi
ies the L2(
0)3-norm (or L2(�0)-norm)and by h�; �i the L2-s
alar produ
t.We want to get a global pi
ture of the position of eigenvalues as in the previousse
tion, but now depending on the parameter �. Looking at the results of Theorem2.3.1, we see that two important di�eren
es will appear:(a) The eigenvalues may have a negative real part;(b) The energy equality for eigenve
tors (u; �n;k) remains un
hanged and doesnot depend on the bifur
ation parameter �; we will exploit this to provethat for j�j ! +1, the nonreal eigenvalues are bounded.Proposition 2.3.2(a) The modulus of nonreal eigenvalues is bounded independent of �.(b) For j�j ! +1 all eigenvalues of L� are real.Proof:(a) We suppose that for j�j ! +1 we 
an �nd a sequen
e of nonreal eigenvalues�(�) 2 C n R of L� with j�(�)j ! +1. For every su
h 
omplex eigenvalue with theeigenfun
tion u(�(�)), we know from the energy equality (2.3.14):ku(�(�))k2 = �k�n;kk2 is bounded independent of �:



56 CHAPTER 2. THE BIFURCATION THEORYThe fun
tion u(�(�)) satis�es the problem (2.2.4)�(2.2.5) (together with the 
orre-sponding pressure fun
tion). We 
an use the result of Proposition 2.2.4(
) from theprevious se
tion, be
ause its proof did not exploit � = 0, and we 
on
lude:ku(�(�))k ! +1; for j�(�)j ! +1;a 
ontradi
tion.(b) For the se
ond part we treat separately the 
ases � ! �1 and � ! +1.(i) � ! �1The equation (2.3.12) impliesRe�(�)! +1 for � ! �1whi
h implies �(�) 2 R (be
ause the nonreal eigenvalues are bounded).(ii) � ! +1We suppose that for any � arbitrary large, we 
an �nd a nonreal eigenvalue �(�)of L�, so we 
an 
onstru
t a sequen
e of nonreal eigenvalues (whi
h are bounded)and 
onsider �(�)! �1. Let (~u(�(�)); �n;k) be an eigenfun
tion of L� 
orrespondingto �(�) and ~p(�(�)) be the 
orresponding pressure fun
tion. Be
ause �(�) 2 C n R,it never meets �j, so (~u(�(�)); ~p(�(�))) is a nonzero solution of (2.2.4)�(2.2.5) (for�(�)).We distinguish two 
ases:(1) �1 = 0Letting � ! +1, the limit fun
tion (~u(0); ~p(0)) is a solution of the problem(2.2.4)�(2.2.5) for � = 0, so ~u(0) is identi
ally zero. On the other hand, every~u(�(�)) satis�es the energy equality (2.3.14) and passing to the limit, we obtain0 = k~u(0)k2 = lim�!+1 k~u(�(�))k2 = �k�n;kk2 6= 0a 
ontradi
tion.(2) �1 6= 0Then the pair (v(�(�)); q(�(�))),v(�(�)) := ~u(�(�))� and q(�(�)) := ~p(�(�))�satis�es the equations: (�(�)� A)v(�(�)) = 0vn(�(�))���0 = ��(�)� �n;k(q(�(�))� 2�Snv(�(�)))���0 = �� �n;k + �(�)�n;k:



2.3. HOPF BIFURCATION WITH SYMMETRY 57Passing to the limit � ! +1, using our hypothesis �(�)! �1 2 C and 
ontinuityw.r.t � of the fun
tions v and q, the pair of the limit fun
tions (v(�1); q(�1))v(�1) := lim�!+1 v(�(�)) and q(�1) := lim�!+1 q(�(�))satis�es the following equations:(�1 � A)v(�1) = 0vn(�1)���0 = 0(q(�1)� 2�Snv(�1))���0 = �1�n;k:and v(�1) 6� 0 be
ause the normal stress on the free boundary is still nonzero.On the other hand, using the energy equality (2.3.14) we have:0 6= kv(�1)k2 = lim�!+1



 ~u(�(�))� 



2= lim�!+1 �k�n;kk2�2= 0;a 
ontradi
tion.So, 9�0 > 0 su
h that for j�j > �0 all eigenvalues of L� are real. �We resume now two useful results from the previous Se
tion 2.2. First, for � = 0we know:the �rst two eigenvalues of L0;� be
ome nonreal when � ex
eeds �0and for the analysis in this se
tion we �xed su
h an � (and omit it from the notationof L�;�). Se
ond, for � 2 C nf�j : j 2 Ng we have de�ned ~u(�) as the unique solutionof the problem (2.2.4)�(2.2.5), and ~r(�). We know that �(�) is an eigenvalue ofL0;� , ~r(�) = �. With the exterior for
e a
ting through �, we have:�(�) 2 C is an eigenvalue of L� () ~r(�)�n;k = ��n;k � �~un���0= ��n;k + ���n;k() ~r(�) = � + ��;so, we �nd the real eigenvalues of L� at the interse
tion of the graph of the fun
tion~r(�)� � (whi
h is already known) with the line y = �� (see Figure 3).
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Figure 3: The interse
tion of the graph of ~r(�)� � with the line y = ��
We observe:� For any � 2 R, the line y = �� interse
ts the graph of ~r(�)� � on ea
h interval(�j; �j+1), j 2 N, at least on
e, so L� has at least one real eigenvalue lying on ea
hinterval (�j; �j+1).� There exists the values �1 < 0 and �2 > 0 su
h that the lines y = �1� and y = �2�are tangent to the graph of ~r(�)�� on the interval (0; �0) and (�1; 0) respe
tively.For � 2 (�1; �2) the line y = �� does not interse
t the graph of ~r(�) � � for � 2(�1; �0). Be
ause of the analyti
ity of ~r (the number of zeros of ~r, ea
h 
ountedwith its multipli
ity, is lo
ally 
onstant), a pair of 
omplex 
onjugate eigenvalues ofL� appears for � = �1 + � and � = �2 � � (� > 0 small). Denote them by �0(�) and�1(�) with �0(�) = ��1(�).



2.3. HOPF BIFURCATION WITH SYMMETRY 59� For � 2 (�1; �1), the line y = �� interse
ts the graph of ~r(�) � � twi
e for� 2 (0; �0), so the �rst two eigenvalues are real and positive.� For � 2 (�2;+1), the line y = �� interse
ts the "�rst part" of the graph of ~r(�)��twi
e, but for � 2 (�1; 0), so the �rst two eigenvalues are real and negative.We denote the �rst two eigenvalues of L� with �0(�), �1(�) and the orderedsequen
e of the (rest) real eigenvalues with f�j(�)gj2N;j�2.Theorem 2.3.3 (The global bifur
ation pi
ture in �)For � 2 (�1; �1) the �rst two eigenvalues of L� are real and positive:0 < �0(�) < �1(�) < �0:For � ! �1 all eigenvalues of L� are real, every interval (�j; �j+1) 
ontains onereal eigenvalue �j+2 of L� and �0(�)& 0, �j+2 % �j+1, j 2 N [ f�1g.For � 2 (�2;+1) the �rst two eigenvalues of L� are real and negative:�0(�); �1(�) < 0:For � ! +1 all eigenvalues of L� are real, every interval (�j; �j+1) 
ontains onereal eigenvalue �j+2 of L� and �j+2 & �j+1, j 2 N.There exists a point �� 2 (�1; �2) where a pair of 
omplex 
onjugate eigenvaluesof L� 
rosses the imaginary axis transversally. The imaginary axis 
an be 
rossedonly with negative real part of the velo
ity.Proof: During this proof we have to keep in mind that ea
h of �; u; p depends on �,but we will not write this expli
itly.The �rst two statements are 
lear from Proposition 2.3.2(b) and Figure 3, whi
halso implies (be
ause ~r is an analyti
 fun
tion): for small � > 0,� for � = �1 + � the pair of 
omplex 
onjugate eigenvalues of L� has a positivereal part;� for � = �2 � � the pair of 
omplex 
onjugate eigenvalues of L� has a negativereal part.The eigenvalues of L� depend 
ontinuously on � and together with Proposition2.3.2(a) we 
an 
on
lude: there exists �� 2 (�1; �2) su
h that �(��) is purely imagi-nary, Re�(��) = 0.The eigenvalues �(�) 6= �j of L� are geometri
ally simple (in every ~Xrn;k and upto the Zk-symmetry) be
ause for every eigenfun
tion (u(�(�)); �n;k), u(�(�)) satis�esalso the problem (2.2.4)�(2.2.5) whi
h has unique solution. The eigenvalues have



60 CHAPTER 2. THE BIFURCATION THEORYthe same geometri
 and algebrai
 multipli
ity for j�j ! +1; for the proof see[S
hw1℄.We have to prove now the transversality (for � = ��, ��(Re�) 6= 0) and thedire
tion of 
rossing (for � = ��, ��(Re�) < 0).From the energy equality (2.3.14) we see that the norm of the eigenfun
tion udoes not depend on �, and we 
an 
al
ulate:0 = ��kuk2 = �� Z
0 u � �u = Z
0 u � ���u+ u � ���u = 2Rehu; ��ui : (2.3.15)We make �rst some further 
al
ulations, (2.3.16) and (2.3.17), for ��u 6= 0. Mul-tiplying the �rst 
omponent of the eigenvalue equation for L� with ���u, integratingover 
0 and using Corollary 1.2.3 and Theorem 2.3.1, we obtain:h�u; ��ui = hL�u; ��ui= 2� Z
0 Su : S�� �u + Z�0(��n;k � �un���0) � ���un���0= 12�� �2� Z
0 Su : S�u� + Z�0(� + ��)�n;k(��� ��)��n;k= 12�� �Re� � 2�k�n;kk2 + �j�j2k�n;kk2�� �� �� � �k�n;kk2 � ������k�n;kk2= ��(Re�)�k�n;kk2 + 12 j�j2k�n;kk2 + 12�(��j�j2)k�n;kk2| {z }2 R��� �� � �k�n;kk2 � ������k�n;kk2 (2.3.16)Di�erentiating the �rst 
omponent of the eigenvalue equation for L� w.r.t. �, mul-tiplying with ���u, integrating over 
0 and using Corollary 1.2.3 and Theorem 2.3.1,we obtain:0 = h��(�u); ��ui � h��(L�u); ��ui= ���hu; ��ui+ �k��uk2+h����u�rH(2�Sn��u���0); ��ui � hrH(��(��un���0)); ��ui= ���hu; ��ui+ �k��uk2 � 2� Z
0 S��u : S�� �u � Z�0 ��(��)�n;k(��� ��)��n;k= ��� hu; ��ui| {z }2 C n R +� k��uk2| {z }2 R � 2�kS��uk2 + �j���j2k�n;kk2| {z }2 R+��� ��k�n;kk2 (2.3.17)



2.3. HOPF BIFURCATION WITH SYMMETRY 61We prove now that the speed of nonreal eigenvalues never vanishes. Let � be anonreal eigenvalue of L� and suppose ��� = 0, so ��(Re�) = ��(Im�) = 0. We prove�rst that this implies also ��u = 0. Suppose ��u 6= 0, so ���u 6= 0, too. Introdu
ingthis in the equation (2.3.17) we obtain�k��uk2 = 2�kS��uk2whi
h implies � 2 R, a 
ontradi
tion. So��� = 0 =) ��u = ���u = 0 =) ��Su = 0:Di�erentiating the equation (2.3.12) w.r.t. � we obtain0 = ��(Re�)2�k�n;kk2= 2���(Z
0 jSuj2)� ���j�j2k�n;kk2 � j�j2k�n;kk2= �j�j2k�n;kk2;a 
ontradi
tion. Therefore we know for nonreal eigenvalues: ��� 6= 0, 8�.In order to prove the transversality 
ondition for � = �� and the dire
tion of
rossing of the imaginary axis, we take the real part of (2.3.16) together with (2.3.15)to obtain: �Im� � Imhu; ��ui (2:3:15)= Reh�u; ��ui (2:3:16)= 12 j�j2k�n;kk2and the imaginary part of (2.3.17) to obtain0 = ��(Re�)Imhu; ��ui+ Im�k��uk2 + Im(��� ��)k�n;kk2:Multiplying the last equation with 2Im� 6= 0 and using the previous equation, weobtain: ��(Re�)j�j2k�n;kk2 = 2Im2�k��uk2 + 2Im� � Im(��� ��)k�n;kk2:For � = ��, we are on the imaginary axis, so we haveRe� = 0 ) Im(��� ��) = Im� � ��(Re�)j�j2 = Im2� 6= 0and then ���(Re�)k�n;kk2 = 2k��uk2 > 0: �We 
an formulate results similar to Proposition 1.2.6, Theorem 1.2.13 and Theo-rem 1.2.17 for L� (8�). The proofs follow immediatly be
ause only the value of p���0is modi�ed with �un���0 and we 
an estimate krH(�unj�0)kr;
0 � 
kukr+1;
0:



62 CHAPTER 2. THE BIFURCATION THEORYProposition 2.3.4 (Properties of L�)(a) The operator L�1� : Xr ! ~Xr+1, r � 1 is bounded 8�.(b) The solution (u; �) of the equation L�(u; �) = (f; 0) 2 Xr satis�es the regularity:k(u; �)kXr+2 � 
k(f; 0)kXr :(
) The operator L� : ~Xr+2 ! Xr3=2, r � 0, is invertible and the inverse is bounded8�. The same result holds for �+ L�, too, when �� is not an eigenvalue of L�.(d) Linear existen
e results, similar to Theorem 1.2.15 and Theorem 1.2.18, holdfor L�, 8�, too.De�nition 2.3.5 (Generalized nonresonan
e 
ondition)We say that the pair �� of pure imaginary eigenvalues of L�� satis�es the gen-eralised nonresonan
e 
ondition, when the following two requirements are full�led:(a) the usual nonresonan
e 
ondition: 8a 2 Z n f�1g, a�+ is not an eigenvalue ofL��;(b) a simpli
ity 
ondition: for the �xed value �� of the bifur
ation parameter (forwhi
h we have proved the transversality 
ondition), the eigenvalues �� of L�� areeigenvalues of L���� ~Xn;k only for one n 2 N and for one k 2 Z.We are now in position to formulate a Hopf bifur
ation theorem for the fullnonlinear problem. We 
an 
onsider we have written it in the form (after similartransformations we have done in Se
tion 1.3):(�t + L�)� u� � = � F (u; �)0 � (2.3.18)where F 
ontains all the nonlinearities and 
orre
tion terms. We re
all that F hasthe following properties: for r � 1, F : Xr+2 ! Hr(
0)3, F (0; 0) = 0, DF existsand DF (0; 0) = 0.Theorem 2.3.6 (Hopf bifur
ation theorem)For every spa
e Xn;k there exists a 
riti
al value �� of the bifur
ation parameter �su
h that L�� has a pair �� of purely imaginary eigenvalues and the transversality
ondition is full�led. We assume that this pair of eigenvalues satis�es the generalizednonresonan
e 
ondition of De�nition 2.3.5.Then a Hopf bifur
ation o

urs and there exists a bran
h of Zk-symmetri
, periodi
solutions of the nonlinear equation.



2.3. HOPF BIFURCATION WITH SYMMETRY 63Proof: We are looking for periodi
 solution in t of period p and with pres
ribedspatial symmetry Zk for the equation (2.3.18). We 
an res
ale the time throught 7! 2�t=p, so we look for periodi
 solutions of (2.3.18) of period 2� and introdu
ethe unknown period as a parameter. We de�ne the spa
es ~XrZk and ~Xr3=2;Zk whi
h
ontain fun
tions from ~Xr and ~Xr3=2 respe
tively, whi
h have spatial symmetry Zk,i.e.: ~XrZk = fx(t; �) 2 ~Xr �� 
 � x(t; �) = x(t; �); 8
 2 Zk; 8tg~Xr3=2;Zk = fx(t; �) 2 ~Xr3=2 �� 
 � x(t; �) = x(t; �); 8
 2 Zk; 8tgwhere the 
omposition � is de�ned in (2.2.1) and (2.2.2) (� a
ts only on the se
ondspatial variable x2). The de�nition is similar for the spa
es without ~, too.We want to solve the equation�((u; �); p; �) := 2�p �t � u� � + L� � u� �� � F (u; �)0 � = 0 (2.3.19)where� : H1per([0; 2�℄; ~Xr3=2;Zk) \ L2per([0; 2�℄; ~Xr+2Zk )� R � R ! L2per([0; 2�℄; Xr3=2;Zk);(see Proposition 2.3.4(d)).Applying L�1� we obtain an equation equivalent with (2.3.19): ((u; �); p; �) := 2�p L�1� �t � u� �+ � u� �� L�1� � F (u; �)0 � = 0 (2.3.20)and for (u; �) 2 H1per([0; 2�℄; ~Xr3=2;Zk) \ L2per([0; 2�℄; ~Xr+2Zk ), we know from the regu-larity theory of Chapter 1 (see also Proposition 2.3.4):F (u; �) 2 HrZk(
0) ) L�1� � F (u; �)0 � 2 ~Xr+2Zk�t� u� � 2 ~Xr3=2;Zk ) L�1� �t � u� � 2 ~Xr+2Zk ;so  : H1per([0; 2�℄; ~Xr3=2;Zk) \ L2per([0; 2�℄; ~Xr+2Zk )� R � R ! L2per([0; 2�℄; ~Xr+2Zk ):Let �� be the 
riti
al value of � we have found in Theorem 2.3.3. Then 
onsider�+ has Im�+ > 0 and let p� := 2�Im�+ . We have to show that the operator P :=D1 ((0; 0); p�; ��) is Fredholm of index zero with a two dimensional kernel, whereP : H1per([0; 2�℄; ~Xr3=2;Zk) \ L2per([0; 2�℄; ~Xr+2Zk )! L2per([0; 2�℄; ~Xr+2Zk )



64 CHAPTER 2. THE BIFURCATION THEORYPv := D1 ((0; 0); p�; ��)hvi = 2�p� �tL�1�� v + v ;where v = (u; �). We apply the Fourier expansion in time setting 8m 2 Zvm(�) = 1p2� Z 2�0 v(t; �)eimtdt :Then P =Mm2ZPmwith Pm : ~Xr+2Zk ! ~Xr+2ZkPm := �im2�p� L�1�� + id :Pm is a Fredholm operator of index 0 8m 2 Z n f0g, be
ause the operator L�1�� :~Xr+2Zk ! ~Xr+3Zk ,! ~Xr+2Zk is 
ompa
t; P0 = id. We know from Theorem 2.3.3 thatL�� has a pair of purely imaginary 
omplex 
onjugate eigenvalues �� whi
h aresimple up to the Zk-symmetry in every spa
e ~Xr+2n;k (n 2 N , k 2 Z) for whi
h ��are eigenvalues of L���� ~Xr+2n;k . (We observe that the number of su
h ~Xr+2n;k is �nite,be
ause L�1�� is 
ompa
t, so the eigenvalues of L�� have also �nite multipli
ity).We have assumed that the generalized nonresonan
e 
ondition of De�nition 2.3.5 isfull�led, so the eigenvalues �� of L�� are Zk-simple in ~Xr+2 andPm is invertible 8m 2 Z n f�1gkerP1 = kerP�1dimR kerPm = 2 for m = �1 :For the kernel of P , we 
al
ulate:Pv = 0 , P  1p2�Xm2Zvme�imt! = 0, Pmvm = 0 8m 2 Z, � vm = 0 8m 6= �1vm 2 kerPm for m = �1 :Then dimR kerP = dimR kerP�1 = 2. To 
omplete the proof that P is a Fredholmoperator of index zero, it remains to show that~P := Mm2Znf�1gPm~P : H1per([0; 2�℄; ~Xr3=2;Zk) \ L2per([0; 2�℄; ~Xr+2Zk )! L2per([0; 2�℄; ~Xr+2Zk )



2.3. HOPF BIFURCATION WITH SYMMETRY 65is surje
tive. Letg 2 L2per([0; 2�℄; ~Xr+2Zk ); g = 1p2� Xm2Zgme�imt with g1 = g�1 = 0 :For every gm 2 ~Xr+2Zk (m 6= �1) we 
an �nd vm 2 ~Xr+2Zk su
h that Pmvm = gm (bythe Fredholm property of Pm).Denote by gM = 1p2� MXm=�M gme�imt ; vM = 1p2� MXm=�M vme�imt:Then vM satis�es the equation2�p� �tL�1�� vM + vM = gM , 2�p� �tvM + L��vM = L��gMand kvMkH1per([0;2�℄; ~Xr3=2;Zk)\L2per([0;2�℄; ~Xr+2Zk ) � C1kL��gMkL2per([0;2�℄;Xr3=2;Zk)� C2kgMkL2per([0;2�℄; ~Xr+2Zk )� C3kgkL2per([0;2�℄; ~Xr+2Zk ) :We �nd v su
h that vM * v weakly in H1per([0; 2�℄; ~Xr3=2;Zk)\L2per([0; 2�℄; ~Xr+2Zk ) andv solves ~Pv = g. The regularity theory of Chapter 1 (see also Proposition 2.3.4)implies now v 2 H1per([0; 2�℄; ~Xr3=2;Zk) \ L2per([0; 2�℄; ~Xr+2Zk ). Then P is a Fredholmoperator of index 0 (as a dire
t sum of two Fredholm operators of index zero P�1with an invertible operator ~P ) and dimR kerP = 2.Using Ljapunov-S
hmidt te
hniques, we redu
e the problem of �nding periodi
solutions of the equation  = 0 (whi
h is equivalent to � = 0) to one in twodimensions. We 
an apply now standard te
hni
al arguments used in the proof ofthe Hopf bifur
ation theorem (see [GSS℄ and [Cr,Ra℄) and the result follows. �
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