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Introdution
In this work we investigate the motion of a visous, inompressible uid ontainedin an unovered three-dimensional retangular hannel. The upper surfae hangeswith the motion of the uid, so we deal with a free boundary problem. We onsidersmall perturbations of a uniform ow with a at free surfae. We inlude the e�etof the surfae tension; the external fores are gravity, and the wind fore whih atson the free boundary (in the Setion 2.3).The motion of the uid in the hannel is governed by the Navier-Stokes equations.The variables are, as usual, the veloity and the pressure of the uid in the interiorof the domain and a funtion parameterizing the free boundary. The pressure anbe expressed in terms of the other two variables, whih are oupled as follows: theuid veloity at the free boundary presribes the speed of the boundary, and themean urvature of the free surfae reates a pressure jump via the surfae tension.We onsider the system to be periodi in the diretion of the length of thehannel. Tehnially, we identify the inow boundary with the outow boundary ofthe hannel and then we onsider the seond spatial variable belonging to the irleS1. In order to obtain a well-posed model, we have to presribe the value of thedynami ontat angle between the walls and the free boundary (see [Shw2℄, [Re℄)and we hoose it to be �2 . As boundary onditions, we onsider that the walls areimpenetrable together with a perfet slip ondition, and a no slip ondition for thebottom.The main aim of this paper is to analyse the qualitative behavior of the ow (os-illations of periodi solutions) using tools of bifuration theory. In order to do thiswe need fundamental fats of existene and regularity of solutions, spetral analysisof the linear system onneted with the free boundary value problem taking intoaount the underlying symmetries, and tehniques of equivariant Hopf bifurationtheorem.
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2 INTRODUCTIONJ. T. Beale studied the problem of the motion of a visous inompressible uid ina semi-in�nite domain, bounded below by a solid oor and above by an atmosphereof onstant pressure, either with ([Be1℄) or without ([Be2℄) surfae tension. In [Be1℄he used the Fourier transformation to prove resolvent estimates. These estimatesombined with the Laplae transformation in time were used to prove the solvabilityof the time-dependent problem. He transformed the free boundary value problem toan initial boundary value problem on a �xed domain in a speial way. This methodis ruial in his existene proof and was also adapted and used by [Re℄, [Shw1℄,[Shw2℄. We will apply it also in this paper.B. Shweizer treated in [Shw1℄ the ase of a liquid drop (with visosity andsurfae tension) in a free spae, so a full free boundary problem. With the help ofsemigroup methods, he studied linearized equations and get also existene results forthe nonlinear problem. He omputed the spetrum of the generator of the semigroup.Nonreal eigenvalues appeared for large values of the surfae tension. An additionalexterior linear fore proportional to the normal veloity and ating on the free surfaeleaded to a Hopf bifuration with O(2)-symmetry.As soon as ontat between a �xed boundary and a free boundary arises, theanalyti investigations are getting more ompliated. Already in ase of a ow in adomain with non smooth �xed boundary, the regularity of the solutions is restrited(see e.g. [Dau℄). The problem how to presribe onditions for the ontat is still indisussion. There exists a huge number of publiations dealing with the solvabilityof free boundary problems with ontat points and lines and therefore only some ofthe works and authors an be mentioned.V. A. Solonnikov proved existene results for free boundary problems for theNavier-Stokes equations for both stati or dynami ontat points and lines. Heproved estimates for stationary problem for limiting values of ontat angle 0 or�, in weighted H�older spaes (see [Sol1℄, [Sol2℄ and the referenes presented there).For the solvability of stationary free boundary problems with a Navier type slipondition on the rigid walls see [Kr℄ and [So℄. This ondition an be applied in thease of a domain with rough boundaries by replaing the rough boundary with asmooth one where the Navier ondition is ful�lled.M. Renardy ([Re℄) proved existene and uniqueness results for a two dimensionalfree surfae ow problem with open boundaries. Both steady and initial value prob-lems are investigated. He onsidered the ase where veloity boundary onditionsare presribed on both the inow and the outow boundary. The smoothness of thesolution is limited by the singularity at the orner between the free surfae and theinow (or outow) boundary.



INTRODUCTION 3In [Shw2℄, B. Shweizer disussed onditions for the dynami ontat angle andwell-posedness of the equations for a ow in a two dimensional domain. For the aseof �2 ontat angle and slip boundary onditions he proved resolvent estimates whih,using tehniques developed in [Re℄, yielded an existene result for the nonlinearinitial boundary value problem.The studies of the osillatory behavior of a uid in a hannel is ontinuing theresearh of B. Shweizer who analyzed the osillation of a liquid drop [Shw1℄. Dueto the solid boundary in our problem, the tehniques in this paper have to behanged due to diÆulties arising from the additional boundary onditions. We areable to obtain results for the hannel similar to those B. Shweizer obtained for theosillating drop.The present work is divided into two hapters. The �rst hapter treats the exis-tene of solutions for the nonstationary linear and nonlinear problem. The boundaryonditions hosen for the walls and the �2 dynami ontat angle allow us to avoidthe problems whih might appear in dealing with the regularity of the solution,beause the domain is not smooth. We an onstrut symmetri extensions of thesolution through the walls obtaining funtions in the extended domain, whih willsatisfy the same equations as the initial ones. The problem beomes equivalent toone of a uid in a ontainer with periodi lateral boundary onditions.In order to study the spetral behavior of the linearized problem, we write theorresponding system in the form �tx+Lx = 0, where x ontains two of the variables:the veloity �eld and the position of the free boundary. The third unknown, thepressure, an be taken out from the Navier-Stokes equations as follows: using a har-moni extension operator (see equations (1.2.12) and (1.2.13)), we an express thepressure as a map depending on the veloity and the position of the free boundary.In an appropriate Hilbert spae Xr (see De�nition 1.2.1), L has a ompat resol-vent and its spetrum is ontained in a setor of the omplex plane (see Proposition1.2.6 and Theorem 1.2.9). L and the nonlinearity in the full nonlinear system de�nemaps from ~Xr+2 to Xr, but the operator L does not have the usual regularizationproperty: the inverse does not map Xr to ~Xr+2 (see Remark 1.2.7()). We will usethe fat that the right hand side of the nonlinear equation is always ontained ina subspae of the form (F; 0) 2 Xr (see the equation (1.3.9)). Both, the optimalregularization property and a resolvent estimate, hold on suh a subspae (see The-orem 1.2.11 and its onsequene formulated in Theorem 1.2.13). Using the inverseof the Laplae transformation, the resolvent estimates gives us a unique solution ofthe time dependent linear problem (see Theorem 1.2.15).



4 INTRODUCTIONIn order to solve the nonlinear problem we follow the method presented in [Be1℄:we transform the nonlinear problem de�ned on the unknown domain into one on theequilibrium domain (whih has a at surfae on the top), by strething or ompress-ing on the vertial line segments (see Setion 1.3). The nonlinearity has the optimalproperties we have already mentioned. We treat it as the right hand side of the lin-ear equation. Then, the impliit funtion theorem gives us, for small enough initialvalues, a solution of the time-dependent nonlinear problem (see Theorem 1.3.2).The seond hapter follows essentially the ideas presented in [Shw1℄ and ontainsthe main result of this work, a Hopf bifuration theorem with Zk-symmetry for thisNavier-Stokes system (see Theorem 2.3.6). For general tools in bifuration theory,espeially for abstrat results about the Hopf bifuration, see e.g. [GSS℄, [Cr,Ra℄ and[Ma,M℄. The group of symmetries in our model is determined by the shape of thedomain and the boundary onditions, so our problem provides an O(2)-equivariane.Using the eigenfuntions of the Laplae operator in a retangle, we an �nd an L-invariant deomposition of the spaes Xr = �Xrn;k, n 2 N , k 2 Z (see Proposition2.1.1 and Proposition 2.1.2). The isotropy subgroup of the position of the boundaryfuntion in Xrn;k is isomorphi to the yli group Zk (see Proposition 2.1.3). Weinvestigate the eigenvalues of L in suh a spae Xrn;k with n 2 N and k 2 Z �xed.In Setion 2.2, we obtain a detailed piture of the position of the eigenvalues ofL�� ~Xrn;k depending on gravity and the surfae tension whih, together, we denotedby � (see Theorem 2.2.6 and Figure 2). For � = 0 the spetrum onsists of Stokeseigenvalues together with zero. With inreasing �, the eigenvalues an beomeomplex. For � greater than a ertain �0, the �rst two merge and leave the realaxis. Between every two onseutive Stokes eigenvalues we an �nd at least one realeigenvalue of L, and only one for � ! 1, whih approahes the next lower Stokeseigenvalue. For �!1, the modulus of the nonreal eigenvalues is not bounded.For a �xed � > �0, a similar piture an be drawn if an additional exteriorlinear fore of strength � ats on the free surfae (see Theorem 2.3.3 and Figure 3).The operator L� has similar invertibility properties and the solution satis�es similarresolvent estimates like in the ase of L (see Proposition 2.3.4). The behavior of theeigenvalues of L� depending on � presents two important di�erenes ompared withthe behavior of the eigenvalues of L depending on �: eigenvalues with negative realpart will appear and the modulus of nonreal eigenvalues is bounded independent of� (see Theorem 2.3.1 and Proposition 2.3.2). For j�j ! +1, all the eigenvalues ofL� are real and interspersed with the eigenvalues of the Stokes operator. Following



INTRODUCTION 5the eigenvalues between � ! �1 and � ! +1, we prove the existene of a pair ofnonreal eigenvalues for � 2 (�1; �2) whih rosses the imaginary axis transversally fora value �� of � (see Theorem 2.3.3). They are simple in every spae Xrn;k, up to thesymmetry Zk. We formulate a generalized nonresonane ondition (see De�nition2.3.5) and we assume that the pair of purely imaginary eigenvalues of L�� satis�esthis generalized nonresonane ondition. Then we an prove an equivariant versionof the Hopf bifuration, and thus the existene of a branh of Zk-symmetri andperiodially osillating solutions of the Navier-Stokes system (see Theorem 2.3.6).The preparation of this thesis was �nanially supported by the Deutshe Forsh-ungsgemeinshaft in theGraduiertenkolleg \Modellieren und Wissenshaftlihes Reh-nen in Mathematik und Naturwissenshaften" and by SFB 359 \Reative Str�omungen,Di�usion und Transport", both at IWR, University of Heidelberg.I am extremely grateful to my sienti� adviser Prof. Dr. Dr.h..mult. WilliJ�ager for awakening my interest in this problem as well as for his onstant supportand enouragement not to get lost into details. I would also like to thank Priv. Doz.Dr. Ben Shweizer for many useful and produtive disussions that were absolutelyritial to the ompletion of my work.
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Chapter 1The Existene Theory
1.1 Formulation of the ProblemWe want to model the nonstationary motion of a visous, inompressible uid on-tained in an unovered retangular hannel. The upper surfae hanges with themotion of the uid, so we deal with a free boundary problem. The unknown fun-tions are not only the veloity �eld u and the pressure �p, but also the domain 
. Thee�et of the surfae tension on the upper free boundary is inluded. The externalfores are the gravity and the wind fore whih ats on the free boundary and infat generates the motion of the ow.We onsider the hannel of width b and length l = 2� to be deep enough suh thatthe uid will never overow it. We impose a periodiity ondition in the diretionof the length of the hannel (for all unknown funtions). We write the equationsusing the eulidian oordinates (x1; x2; x3); the omponents of the veloity �eld arethen denoted by (u1; u2; u3). In desribing the equations of motion we will assumethat all variables are nondimensionalized in the usual way.Let (0; b) � (0; 2�) � (�h;+1), b; h > 0 be the hannel and 
 the domainoupied by the uid with the free boundary denoted by � and �xed boundary �omposed from the walls �1;�2 and the bottom ��h. Let C1; C2 be the intersetionurves between the free boundary and the walls. The periodiity in x2 is tehniallyinorporated by onsidering the independent variable x2 belonging to the irle S1.So, we have identi�ed (and atually eliminated as boundaries) the surfaes (0; b)�f0g� (�h;+1) and (0; b)�f2�g� (�h;+1). The hannel (0; b)�S1� (�h;+1)is now onsidered "without urvature in the x2-diretion", i.e. the equations will notbe transformed (this is not a domain transformation, it is only an identi�ation).7



8 CHAPTER 1. THE EXISTENCE THEORY
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Figure 1:We take the domain of the uid at equilibrium to be
0 = f(x1; x2; x3) 2 R3 : 0 < x1 < b; x2 2 S1;�h < x3 < 0g;with the upper boundary �0 �0 = (0; b)� S1 � f0g;and the �xed boundary omposed from the walls �1;0;�2;0 and the bottom ��h. Theontat urves between the free boundary and the walls are denoted by C1;0; C2;0.Where no onfusion an appear, we will omit the index 0 from the notation for thewalls and ontat lines of the equilibrium domain. When we want to refer to thewalls together, we will denote them by �1;2 and the same for ontat lines C1;2.To desribe the free surfae of the uid, we assume small perturbations of theequilibrium surfae �0 and parametrize the free boundary of the liquid with a fun-tion �(t; �) : �0 �! R. Thus the height of the free surfae is a funtion of horizontaloordinates: x3 = �(t; x1; x2), (x1; x2) 2 �0 and the graph of � gives the shape of �.The domain oupied by the uid is
 = 
(t) = f(x1; x2; x3) 2 R3 : 0 < x1 < b; x2 2 S1;�h < x3 < �(t; x1; x2)g:The veloity �eld is a funtion u(t; �) : 
(t) �! R3 .



1.1. FORMULATION OF THE PROBLEM 9As usual, we introdue the deformation tensor Su with the omponents(Su)ij = 12(�iuj + �jui)and the stress tensor � with the omponents�ij = ��pÆij + 2�(Su)ij:The motion of the uid in the interior is governed by the Navier-Stokes equationsfor an inompressible uid with visosity �:�tu+ (u � r)u� ��u +r�p+ grx3 = 0 (1.1.1)r � u = 0 (1.1.2)where g is the aeleration of gravity. It is natural to substrat the hydrostatipresure from �p, so we set p := �p� P0 + gx3where P0 is the atmospheri pressure above the liquid. The density does not appearbeause of the nondimensionalization. After substitution, the gravity term in (1.1.1)is eliminated.On the free surfae we have the kinemati boundary ondition whih statesthat the uid partiles do not ross the free surfae (whih is equivalent with thegeometri ondition that � always parametrizes the free surfae):�t� = u3 � (�1�)u1 � (�2�)u2 on �: (1.1.3)If we negleted the surfae tension, the remaining boundary ondition on � wouldbe the ontinuity of the stress aross the free surfae, so �P3j=1 �ijnj = P0 ni+ finifor i = 1; 2; 3, where n = (n1; n2; n3) is the outward normal to � and f = (f1; f2; f3)is the exterior fore (for example the wind fore). The e�et of surfae tension is tointrodue a disontinuity in the normal stress, proportional to the mean urvatureH(�) of the free surfae �. Our boundary ondition on � is therefore (using p :=�p� P0 + gx3 and x3 = � on �)p ni � � 3Xj=1(�iuj + �jui)nj = (g� + �H(�) + fi)ni i = 1; 2; 3 (1.1.4)where � > 0 is the nondimensionalized oeÆient of the surfae tension and themean urvature of the surfae � is given byH(�) = �r � r�q1 + jr�j2 : (1.1.5)



10 CHAPTER 1. THE EXISTENCE THEORYWe have denoted here by r the gradient with respet to the �rst two variablesx1; x2; then let � := r � r.If nothing else is spei�ed, in the following, we denote by n the outward normaland by �i, i = 1; 2, the two tangential diretions to the surfae.From a physial point of view, the usual boundary ondition u = 0 on � an notbe onsidered here beause of the unknown ontat between the free surfae andthe walls (we an not assume that it is not moving at all on the walls, so we annot "stik" the free surfae on the �xed boundary); but it is natural to onsider theno-slip ondition on the bottom: u����h = 0 (1.1.6)and the veloity vanishing in the normal diretion of the wallsu � n���1[�2 := un���1;2 = u1���1;2 = 0 (1.1.7)together with a perfet slip onditionn � Su � �i���1;2 = 0: (1.1.8)We need also to presribe the ontat angle between the free surfae and the�xed boundary. We shall hoose it to be �2 . So, the free surfae is moving on thewalls, but the value of the ontat angle should remain onstant. This ondition anbe writen as: r� � n�1 = r� � n�2 = �1� = 0 on C1 [ C2: (1.1.9)For similar problems with ontat angle 0 or � see [Sol1℄, [Sol2℄ and the referenespresented there.The unknown funtions u; p; � are periodi in the x2 diretion of the hannel, so(u; p; �)(t; x1; x2; x3) = (u; p; �)(t; x1; x2 + 2�; x3): (1.1.10)The initial ondition is (u; �)��t=0 = (u0; �0): (1.1.11)The equations (1.1.1)�(1.1.11) are the evolutionary nonlinear equations desrib-ing the osillations of a uid in an unovered hannel.



1.2. THE LINEAR EQUATIONS AND ESTIMATES 111.2 The Linear Equations and EstimatesThe linear problem for whih we derive estimates is the one obtained by linearizingequations (1.1.1)�(1.1.11) about equilibrium, replaing the initial data by zero andintroduing a right hand side. We note that the linearization of the mean urvaturein �0 is ���, where � is the Laplaian with respet to the "horizontal" variablesx1; x2. Beause �0 = fx3 = 0g, we have ni = Æi3, i = 1; 2; 3, in the equation (1.1.4).For the begining we onsider the exterior fore to be zero. The inuene of anonzero exterior fore (for example the wind fore) will be onsidered for the studyof the Hopf bifuration in Setion 2.3.We observe that the equation (1.2.5) is equivalent to the ondition on the vanish-ing of the tangential stress on �0, so it an be writen also in the form n �Su ��i���0 = 0We also use the notations Su : Sv := 3Xi;j=1(Su)ij(Sv)ijSnu := n � Su � n S�iu := n � Su � �i:Our linear problem beomesu(t; �) : 
0 �! R3 ; p(t; �) : 
0 �! R; �(t; �) : �0 �! R;�tu� ��u +rp = 0 (1.2.1)r � u = 0 (1.2.2)�t� = u3���0 = un���0 (1.2.3)(p� 2��3u3)���0 = (p� 2�Snu )���0 = g� � ��� (1.2.4)(�3ui + �iu3)����0 = n � Su � �i���0 = 0 (i = 1; 2) (1.2.5)u����h = 0 (1.2.6)u1���1;2 = un���1;2 = 0 (1.2.7)�1ui���1;2 (1:2:7)= n � Su � �i���1;2 = 0 (i = 2; 3) (1.2.8)�1���x12f0;bg = 0 (1.2.9)(u; p; �)(t; x1; x2; x3) = (u; p; �)(t; x1; x2 + 2�; x3) (1.2.10)(u; �)��t=0 = (0; 0) (1.2.11)We want to write the linear equations in the form �tx + Lx = 0 and to satisfythe boundary onditions by the hoie of appropriate funtion spaes. To estimatesolutions of this equation, we use the Laplae transform in time.



12 CHAPTER 1. THE EXISTENCE THEORYFollowing [Be1℄ and [Shw1℄, we use a harmoni extension operator and replaethe pressure term from the equation (1.2.1) by a gradient term whih is determinedby the other unknowns (u and �). In order to solve the equation �p = 0 in 
0, wehave to �nd appropriate boundary onditions for p on �1;2 and ��h (the boundaryondition on �0 is the equation (1.2.4)).on �1;2: �np = �1p = ��u1 � �tu1 (1:2:7)= ��21u1 (1:2:2)= ���1(�2u2 + �3u3)= ���2(�1u2)� ��3(�1u3) (1:2:8)= 0on ��h: �np = �3p = ��u3 � �tu3 (1:2:8)= � �23u3 = �(�nSnu )����hIt seams to be to restritive to impose this ondition for the pressure on the bottombeause it is not well-understood that we have enough regularity for u (this onditionrequires u 2 Hr(
0)3 with r � 2). At least loally, this will beome lear after wewill symmetrize the equations and eliminate the walls (see equations (1.2.34) andthe De�nition 1.2.12).The harmoni extension funtion is de�ned as the unique solution of the problem�p = 0 in 
0 (a)p���0 = 2�Snu ���0 + g� � ��� (b) (1.2.12)�np���1;2 = 0 ()�np����h = �(�nSnu )����h (d)So, de�ne the linear operator~H : Hr�1=2(�0)�Hr�3=2(��h) �! Hr(
0)3whih essentially maps a funtion de�ned on �0 to its harmoni extension in 
0.The order r of the Sobolev spae will be established later. We an onsider p as aharmoni funtion de�ned on the whole domain,p = ~H(2�Snu ���0 + g� � ���; �(�nSnu )����h)= ~H(2�Snu ���0; ��nSnu ����h) + ~H(g� � ���; 0):= H(2�Snu ���0) +H(g� � ���): (1.2.13)In the last equality of (1.2.13), we have only simpli�ed the notation for the operator~H (i.e. we have not inluded the ondition on the bottom ��h), beause generally weare more interested to solve the problem near the free surfae. Anytime when we referto H(2�Snu ���0) we have to understand the ondition (1.2.12)(d) to be satis�ed too,and when we refer to H(g�����) we have to understand the ondition (1.2.12)(d)with zero right hand side, i.e. �np����h = 0



1.2. THE LINEAR EQUATIONS AND ESTIMATES 13In the following we will onsider omplex valued funtions and denote with �uthe omplex onjugate of u. We use the following notations for the norms: 8r 2 R(r = 0 denotes the L2-norm) kukHr(
0)3 := kukr;
0k�kHr(�0) := k�kr;�0 :De�nition 1.2.1 De�ne the Hilbert spaes (over C ):Xr := f(u; �) 2 Hr(
0)3 �Hr+1=2(�0) �� r � u = 0; un���1;2;�h = 0g~Xr := f(u; �) 2 Xr �� n � Su � �i���0[�1;2 = 0; u�i����h = 0; �1���x12f0;bg = 0gwith the natural norm inherited from the produt spae, i.e.k(u; �)kXr := kukr;
0 + k�kr+1=2;�0and the operator L : ~Xr+2 �! Xr;by L� u� � := 0� ���u +rH(2�Snu ���0) +rH(g� � ���)�un���0 1A :Remark: The fat that L maps to Xr follows after a similar alulation we havedone to �nd the ondition for �np���1;2;�h .Lemma 1.2.2 For smooth funtions u; v : 
0 ! C 3 with r � u = 0 there holds2 Z
0 Su : S�v = � Z
0 �u � �v + 2 Z�
0 n � Su � �v:In the ase r � v = 0, v����h = 0, vn���1;2 = 0, and n � Su � �i���0[�1;2 = 0 (where�i is any tangent vetor and n the normal vetor orresponding to �0, �1 or �2respetively), we obtain the identity2 Z
0 Su : S�v = Z
0 [��u+rH(2Snu ���0)℄ � �v



14 CHAPTER 1. THE EXISTENCE THEORYProof: I := 2 Z
0 Su : S�v= 12 Z
0 3Xi;j=1(�iuj + �jui)(�i�vj + �j�vi)= Z
0 3Xi;j=1 12(�iuj�i�vj + �jui�j�vi) + Z
0 3Xi;j=1 12(�iuj�j�vi + �jui�i�vj)= Z
0 3Xi;j=1(�iuj�i�vj + �jui�i�vj)=: 3Xj=1 Ij:Let j be �xed. Integration by parts gives:Ij = � Z
0 3Xi=1 (�2i uj + �j�iui)�vj + Z�
0 3Xi=1 (�iuj)ni�vj + Z�
0 3Xi=1 (�jui)ni�vj= � Z
0 �uj�vj + Z�
0 3Xi=1 (�iuj + �jui)ni�vjI = 3Xj=1 Ij = � Z
0 �u � �v + 2 Z�
0 n � Su � �vIf additionaly n � Su � �i���0[�1;2 = 0, the tangent omponents of the vetorn � Su���0[�1;2 are zero; so together with the onditions for v (vn���1;2 = v����h = 0),we an write:n � Su � �v���
0 = n � Su � �v���0[�1;2 = (n � Su � n)(�v � n)���0[�1;2 = Snu ���0 � �vn���0 :Using again integration by parts we obtain:2 Z
0 Su : S�v = � Z
0 �u � �v + Z�0 2Snu � �vn= � Z
0 �u � �v + Z
0 rH(2Snu ���0) � �v +H(2Snu ���0)r � �v= Z
0 [��u+rH(2Snu ���0)℄ � �v



1.2. THE LINEAR EQUATIONS AND ESTIMATES 15�We will use the results of Lemma 1.2.2 espeially in the partiular ase when uand v satisfy the same onditions. We state this identities in the next Corollary;the proof follows immediately.Corollary 1.2.3 For funtion (u; p) and (v; q) satisfying the onditionsr � u = r � v = 0un���1;2 = vn���1;2 = 0u����h = v����h = 0n � Su � �i���0[�1;2 = n � Sv � �i���0[�1;2 = 0;the following identities hold:2 Z
0 Su : S�v = � Z
0 �u � �v + 2 Z�0 Snu � �vn (1.2.14)= � Z
0 ��v � u+ 2 Z�0 Sn�v � un2� Z
0 Su : S�v = Z
0 [���u +rH(2�Snu ���0)℄ � �v (1.2.15)Z
0 [���u +rp℄�v � Z�0[p� 2�Snu ℄�vn = Z
0 [����v +r�q℄u� Z�0[�q � 2�Sn�v ℄un(1.2.16)De�nition 1.2.4 (Energy-norms)For funtions u; v : 
0 ! C 3 , �; � : �0 ! C we de�ne the salar produts:hu; viE;
0 := Z
0 u � �vh�; �iE;�0 := Z�0 � � (g�� � ����)�� u� � ;� u� ��E := hu; viE;
0 + h�; �iE;�0The orresponding norms are denoted by k � kE;
0, k � kE;�0 and k � kE.



16 CHAPTER 1. THE EXISTENCE THEORYRemark: For (u; �); (v; �) 2 ~Xr, we haveh�; �iE;�0 = g Z�0 � � �� + � Z�0 r� � r��;so k�k2E;�0 = gk�k20;�0 + �kr�k20;�0and beause g and � are positive onstants, we obtain immediately the norm equiv-alene k�kE;�0 � k�k1;�0:For u we have kukE;
0 = kuk0;
0.Theorem 1.2.5 (Position of eigenvalues of L w.r.t. k � kE)Let (u; �) 2 ~Xr be an eigenfuntion (onsidered omplex) of L with eigenvalue �.Then Re� � u� �2E = 2� Z
0 jSuj2 (1.2.17)Im� � u� �2E = 2ImZ�0(�un���0)(g�� � ����): (1.2.18)In the ase of Im� 6= 0, the energy equality holds:kuk2E;
0 = k�k2E;�0 = 12 � u� �2E : (1.2.19)Proof:� � u� �2E = �L� u� � ;� u� ��E= * ���u +rH(2�Snu ���0) +rH(g� � ���)�un���0 ! ;� u� �+E= Z
0 [���u +rH(2�Snu ���0)℄ � �u+ Z
0 rH(g� � ���) � �u+ Z�0(�un���0)(g�� � ����)= 2� Z
0 jSuj2 + Z�0 �un���0(g� � ���)� un���0(g�� � ����)Looking at the last equality, the �rst term is real, the seond is imaginary and thisimplies the assertion on the real and imaginary part of �.



1.2. THE LINEAR EQUATIONS AND ESTIMATES 17To prove the energy equality we use the seond part of the eigenvalue equation,�un���0 = ��:Im� � u� �2E = 2ImZ�0 ��(g�� � ����) = 2 Im� k�k2E;�0: �Proposition 1.2.6 The operator L�1 : Xr ! ~Xr+1, r � 1, is bounded.Proof: We want to solve L(u; �) = (f; h) 2 Xr for (u; �). Let (u; p) be the solutionof the Stokes system: ���u +rp = fr � u = 0�un���0 = hun���1;2 = 0n � Su � �i���0[�1;2 = 0u����h = 0;with the usual bounds for the solution of the Stokes problem:kukr+1;
0 + krpkr�1;
0 � 1fkfkr�1;
0 + khkr+1=2;�0g:For these estimates we observe at �rst that the Stokes system is ellipti and theonsidered boundary onditions satisfy the omplementary onditions from [ADN℄.In order to obtain a domain with smooth boundary, we an perform a reetion atthe walls as in the equations (1.2.34) and in the De�nition 1.2.12.The pressure p yields � beause g� �� is invertible in our funtion spaes. The�rst part of the pressure an be estimated bykrH(2�Snu ���0)kr�1;
0 � 2kukr+1;
0� 12fkfkr�1;
0 + khkr+1=2;�0gand therefore it follows for the seond part of the pressure:krH(g� � ���)kr�1;
0 � krpkr�1;
0 + krH(2�Snu ���0)kr�1;
0� 1(1 + 2)fkfkr�1;
0 + khkr+1=2;�0g:This implies � 2 Hr+3=2(�0), so we obtain a bound for (u; �) 2 ~Xr+1. �



18 CHAPTER 1. THE EXISTENCE THEORYRemark 1.2.7(a) By Proposition 1.2.6, L�1 : Xr ! Xr is ompat, beause the embeding Hr+1 ,!Hr is ompat. So L has a pure point spetrum and the eigenvalues have no �niteaumulation point(b) �L is dissipative by the alulation in the proof of Theorem 1.2.5. Togetherwith Proposition 1.2.6, it follows that �L is an operator with ompat resolvent andthe resolvent set of �L (whih is an open set) ontains 0. This implies that� 9� > 0 ontained in the resolvent set of �L;� the resolvent (�+ L)�1 exists and is ompat 8� in the resolvent set of �L.() We point out that L�1 : X0 ! ~X2 is not bounded: let (u; �) solve L(u; �) =(0; h). A bound for kuk2;
0 would imply h = un���0 2 H3=2(�0); but apriori onlyh 2 H1=2(�0) holds. We will formulate later (see Theorem 1.2.17) a result similarwith Proposition 1.2.6 where a better regularity for h is assumed.In the next Proposition we remember some well-known inequalities we will needin order to obtain the resolvent estimates. For the proof (in a Lipshitz domain,where the funtion is zero only on a part of the boundary) see [Ad℄, [Ci℄ or [Gi,Ra℄.Proposition 1.2.8For u 2 H1(
0)3 with u����h = 0, the following inequalities hold (with positiveonstants CK, CP , CT and CI):Korn inequality: 1CK kuk1;
0 � kSuk0;
0 � CKkuk1;
0; (1.2.20)Poinar�e inequality: kuk0;
0 � CPkruk0;
0; (1.2.21)Trae inequality: kunk1=2;�0 � CTkuk1;
0; (1.2.22)Interpolation inequality (for whih we need u 2 H2(
0)3)kuk1;
0 � CIkuk1=20;
0kuk1=22;
0: (1.2.23)Theorem 1.2.9 (Position of the spetrum of L)The spetrum of L onsists only of eigenvalues and is ontained in a setorSC = f� 2 C �� jIm�j � CRe�g:



1.2. THE LINEAR EQUATIONS AND ESTIMATES 19Proof: Let � 2 C be an eigenvalue of L with eigenvetor (u; �). If Im� = 0 then �is ontained in any setor, so we assume Im� 6= 0.We an apply the operator r = (�1; �2; 0) to the eigenvalue equation for L andobtain that L� �iu�i� � = �� �iu�i� � for i = 1; 2;so L� rur� � = �� rur� � :But we an not say that (�iu; �i�), i = 1; 2 is an eigenvetor of L beause some ofthe boundary onditions are not satis�ed (in the sense required for ~Xr). On theother hand we an do similar alulations to that of Theorem 1.2.5 and obtain thesame results for (ru;r�). In partiular, for Im� 6= 0 the energy equality holds:kruk2E;
0 = kr�k2E;�0: (1.2.24)In the following alulations, we will use repeatedly the identities from Theorem1.2.5 and the inequalities from Proposition 1.2.8:jIm�j � u� �2E = 2 ����ImZ�0(�un���0)(g�� � ����)����� Z�0 jun���0 j2 + Z�0 jg�� � ����j2:We an estimate the �rst term by:Z�0 jun���0 j2 � CTkuk21;
0� CTCK Z
0 jSuj2 = CTCK2� Re� � u� �2Eand the seond by:Z�0 jg�� � ����j2 = gk�k2E;�0 � � Z�0(��)(g�� � ����)= gk�k2E;�0 + �kr�k2E;�0(1:2:24)= gk�k2E;�0 + �kruk2E;
0� gk�k2E;�0 + �1 2� Z
0 jSuj2= g2 � u� �2E + �1Re� � u� �2E ;



20 CHAPTER 1. THE EXISTENCE THEORYso we obtain a setor of the formjIm�j � �CTCK2� + �1�Re�+ g2 :But we know from Theorem 1.2.5 that all the eigenvalues of L have positive realpart and using Remark 1.2.7(a) we an say9Æ > 0 suh that 8� eigenvalue of L : Re� � Æ > 0;and than �nd a positive onstant C suh that all eigenvalues of L are ontained ina setor SC = f� 2 C �� jIm�j � CRe�g: �We apply the Laplae transform in time to our linear equations and prove an es-timate for the resolvent of �L, �rst on a subspae of the form f(f; 0)��f 2 L2(
0)3g.We denote the transformed funtions by (û; �̂), but in the following, where no on-fusion an appear, we will omit to write the ^ (espeially in the proofs). So, let usinvestigate the solutions (u; �) of the equation(�+ L)� u� � :=  �u� ��u +rH(2�Snu ���0) +rH(g� � ���)�� � un���0 ! = � f0 � :(1.2.25)The following Lemma gives us useful estimates we will need in order to obtain theresolvent estimate.Lemma 1.2.10 For � 2 C n (�SC), solutions of (1.2.25) satisfy:Z
0 jrSuj2 � C2�j�j kuk0;
0 + kfk0;
0�kuk2;
0 (1.2.26)j�j2kuk20;
0 � C3�kuk1=20;
0kuk3=22;
0 + kfk20;
0� (1.2.27)Proof: We arry out the estimates on the region of the omplex plane where � isnot an eigenvalue of �L, this is� 2 C n (�SC) = f� 2 C ��Re� � 0; jIm�j � CjRe�jg [ f� 2 C ��Re� > 0g:(a) Let � 2 C , Re� � 0, jIm�j � CjRe�j; we have:jIm�j2 � j�j2 = jIm�j2 + jRe�j2 � (1 + 1C2 )jIm�j2 = C21 jIm�j2:



1.2. THE LINEAR EQUATIONS AND ESTIMATES 21We substitute the seond equation of (1.2.25) in the �rst and obtain:�u� ��u +rH(2�Snu ���0) + 1�rH�(gun � ��un)���0� = f : (1.2.28)Multiplying this equation by ��u, integrating over 
0 and using Lemma (1.2.2), weobtain:�� Z
0 jruj2 � 2� Z
0 jrSuj2 � 1� Z�0(gjrunj2 + �j�unj2) = Z
0 f��u (1.2.29)Taking the imaginary part of (1.2.29) and then the absolute value, we obtain:jIm�jj�j2 Z�0(gjrunj2 + �j�unj2) � jIm�j Z
0 jruj2 + kfk0;
0kuk2;
0and this multiplied by j�jjIm�j � C1 gives1j�j Z�0(gjrunj2 + �j�unj2) � j�j kruk20;
0 + C1kfk0;
0kuk2;
0 (1.2.30)Taking the real part of (1.2.29), then the absolute value, using (1.2.30) and(1.2.23), we obtain:2� Z
0 jrSuj2 � j�j Z
0 jruj2 + 1j�j Z�0(gjrunj2 + �j�unj2) + kfk0;
0kuk2;
0(1:2:30)� 2j�j kuk21;
0 + (1 + C1)kfk0;
0kuk2;
0(1:2:23)� �2CIj�j kuk0;
0 + (1 + C1)kfk0;
0�kuk2;
0and this proves (1.2.26) with C2 = maxfCI� ; 1+C12� g.Multiplying the equation (1.2.28) by �u, integrating over 
0 and using Lemma(1.2.2), we obtain:� Z
0 juj2 + 2� Z
0 jSuj2 + 1� Z�0(gjunj2 + �jrunj2) = Z
0 f �u: (1.2.31)Taking the imaginary part, then the absolute value, multiplying by j�j2jIm�j � C1j�jand using the inequalities from Proposition 1.2.8, we obtainj�j2kuk20;
0 � gkunk20;�0 + � Z�0 un�un + C1kfk0;
0 j�j kuk0;
0� gCTkuk21;
0 + �CTkuk1;
0kuk2;
0 + C212 kfk20;
0 + j�j22 kuk20;
0� CTCI(g + �)kuk1=20;
0kuk3=22;
0 + C212 kfk20;
0 + j�j22 kuk20;
0



22 CHAPTER 1. THE EXISTENCE THEORYWe an absorb the last term in the left hand side and obtain (1.2.27) with C3 =maxf2CTCI(g + �); C21g.(b) Let now � 2 C , Re� > 0. In this ase, the estimates are muh easier. Taking thereal part of (1.2.29), we observe that all terms on the left hand side are negative, sotaking the absolute value, we obtain:Z
0 jrSuj2 � 12� kfk0;
0kuk2;
0and in partiular (1.2.26) holds. In a similar way we an prove (1.2.27), too. �Theorem 1.2.11 (The resolvent (�+ L)�1 in the ase (f; 0) 2 X0)There exist onstants CR and  suh that solutions (u; �) of (1.2.25) with � 2 C n(�SC) satisfy the regularity k(u; �)kX2 � k(f; 0)kX0 (1.2.32)and for j�j large enough, the resolvent estimatek(u; �)kX0 � CRj�j k(f; 0)kX0 : (1.2.33)Proof:Looking at the �rst equation in (1.2.25), we an interpret u as the solution ofa Stokes system in 
0 with right hand side f � �u and with presribed boundarydata un���0 . To omplete the boundary onditions we onsider the equations (1.2.5)-(1.2.8) to be satis�ed too. These imply the estimate (with the positive onstantCS): kuk22;
0 � CS(kunk23=2;�0 + j�j2kuk20;
0 + kfk20;
0):Using the trae and the Korn inequality for ru3, and the inequalities of Lemma1.2.10, we an alulate further:kuk22;
0 � CSCT;K Z
0 jrSuj2 + CS(j�j2kuk20;
0 + kfk20;
0)(1:2:26)� CSCT;KC2kuk2;
0(j�jkuk0;
0 + kfk0;
0) + CS(j�j2kuk20;
0 + kfk20;
0)� 12kuk22;
0 + �C2SC2T;KC222 + CS�j�j2kuk20;
0 + �C2SC2T;KC222 + CS�kfk20;
0(1:2:27)� 12kuk22;
0 + C3�C2SC2T;KC222 + CS�kuk1=20;
0kuk3=22;
0+�C2SC2T;KC222 + CS + C3�kfk20;
0 :



1.2. THE LINEAR EQUATIONS AND ESTIMATES 23We an absorb the �rst term of the last inequality in the left hand side and obtain:kuk22;
0 � C4�kuk1=20;
0kuk3=22;
0 + kfk20;
0�;with C4 = maxfC2SC2T;KC22C3+2CSC3; C2SC2T;KC22+2CS+2C3g; this implies a boundof the form kuk2;
0 < (kuk0;
0 + kfk0;
0). More expliitly, for small � > 0 we have:kuk22;
0 � �kuk22;
0 + C24� kuk0;
0kuk2;
0 + C4kfk20;
0� �kuk22;
0 + 12kuk22;
0 + C442�2kuk20;
0 + C4kfk20;
0and absorbing the �rst two terms of the right hand side in the left hand side, weobtain the desired estimate.The �rst equation of (1.2.25) onnets seond derivatives of � in 
0 with traesof funtions bounded in H1(
0), so we obtain a bound for k�k5=2;�0.Using again the inequality (1.2.27), we obtain an estimate of the formj�jkuk0;
0 � (kuk0;
0 + kfk0;
0);so, in the ase of large j�j, we get the estimate for kuk0;
0.Using the seond equation of (1.2.25), we havej�j k�k1=2;�0 = kunk1=2;�0whih an be bounded by kuk2;
0 and therefore (for j�j large enough) by kfk0;
0.�In the following we are going to derive estimates for the higher derivatives whihare needed for the existene theory and for the nonlinear problem. In order to avoiddiÆulties with the orners we will perform a reetion aross the walls. Withoutloss of generality we may restrit to one of the sides, let x1 = 0. Our boundaryonditions on the walls �1;2 allow us to de�ne symmetri extensions of (u; �; p)aross �1. We denote them by (~u; ~�; ~p). These funtions will be periodi in thex1-diretion in the domain ~
0 = (�b; b) � S1 � (�h; 0) with the upper boundary~�0 = (�b; b)� S1 � f0g. The symmetries are as follows:~u1(t;�x1; x2; x3) = �u1(t; x1; x2; x3)~u2(t;�x1; x2; x3) = u2(t; x1; x2; x3)~u3(t;�x1; x2; x3) = u3(t; x1; x2; x3)~p(t;�x1; x2; x3) = p(t; x1; x2; x3)~�(t;�x1; x2) = �(t; x1; x2)
9>>>>=>>>>; (1.2.34)and onsistently we de�ne ~f1 to be odd and ~f2; ~f3 to be even with respet to the�rst variable (onsidered as funtions of (x1; x2; x3)). It is easy to see that these newfuntions satis�es the same equations in ~
0 as the old one in 
0.



24 CHAPTER 1. THE EXISTENCE THEORYDe�nition 1.2.12 We de�ne (~u; ~�; ~p) to be the solution of the following problem in~
0 periodi in x1- and x2-diretion:�t~u� ��~u +r~p = ~f in ~
0r � ~u = 0 in ~
0�t~� = ~u3 on ~�0�~ui�x3 + �~u3�xi = 0 on ~�0 (i = 1; 2)~p� 2� �~u3�x3 � (g~� � ��~�) = 0 on ~�0~u = 0 on ~��h
9>>>>>>>=>>>>>>>; (1.2.35)

In a similar way like Theorem 1.2.11, we an prove estimates for the solutionof the problem (1.2.35) in higher Sobolev spaes, using well-known tehniques: wedi�erentiate the equations (1.2.35) with respet to the variable x1 and x2, then theorresponding derivatives of u satisfy the same equations with the di�erentiatedright hand side. The estimates of the derivatives with respet to x3 an be obtainedfrom the �rst equation. Using the same methods as before, we obtain estimatessimilar to (1.2.32) and (1.2.33) for the derivatives of (~u; ~�) in ~
0. We formulate nowthe analog of Theorem 1.2.11 in higher Sobolev norms, for the restrited solution(u; �) in 
0:Theorem 1.2.13 (The resolvent (�+ L)�1 in the ase (f; 0) 2 Xr)There exist onstants CR and  suh that solutions (u; �) of (1.2.25) with � 2 C n(�SC) satisfy for (f; 0) 2 Xr, with r � 0, the regularityk(u; �)kXr+2 � k(f; 0)kXr (1.2.36)and for j�j large enough, the resolvent estimatek(u; �)kXr � CRj�j k(f; 0)kXr : (1.2.37)Corollary 1.2.14 (The resolvent (�+ L)�1 for (f; h) 2 Xr with h 6= 0)Let (u; �) be a solution of the equation(�+ L)� u� � = � fh � ; (1.2.38)with (f; h) 2 Xr+2, r � 0. Then there exists a onstant M > 0 suh that for all� 2 C n (�SC), j�j large enough, there holds:k(u; �)kXr+2 � Mj�jk(f; h)kXr+2 (1.2.39)



1.2. THE LINEAR EQUATIONS AND ESTIMATES 25Proof: Let (u1; �1) be a solution of the equation(�+ L)� u1�1 � = � f0 � :De�ne u2 := u� u1�2 := � � �1 � 1�h:Then the pair (u2; �2) satis�es the equation(�+ L)� u� � = � � 1�rH(gh� ��h)0 � :We apply now the Theorem 1.2.13, i.e. the inequality (1.2.37) for (u1; �1) andthe inequality (1.2.36) for (u2; �2):k(u1; �1)kXr+2 � CRj�j k(f; 0)kXr+2k(u2; �2)kXr+2 � k(�1�rH(gh� ��h); 0)kXr� �j�jkhkr+3�1=2;�0= �j�jk(0; h)kXr+2:Using the triangle inequality we obtain the desired estimate for (u; �). �We an now apply the inverse of the Laplae transformation and formulate ourexistene result for the linear problem.Theorem 1.2.15 (Linear existene result for (f; 0))We onsider L : ~Xr+2 ! Xr, r � 1 and (f; 0) 2 L2([0; T ℄; Xr), T > 0. Then theproblem (�t + L)� u� � = � f0 �with initial onditions (u; �)��t=0 = (u0; �0) 2 ~Xr+2 has a unique solution(u; �) 2 H1([0; T ℄; ~Xr) \ L2([0; T ℄; ~Xr+2):



26 CHAPTER 1. THE EXISTENCE THEORYProof: We substrat the initial onditions from the solution, so de�ne the pair� v� � = � u� �� � u0�0 �whih solves the problem(�t + L)� v� � = � ~fh � := � f0 �� L� u0�0 �and has zero initial onditions. Considering the Laplae transform in time,v̂(�; �) = Z 10 e��tv(t; �)dt;we obtain the equation (�+ L)� v̂̂� � =  ~̂f̂h ! (1.2.40)whih (for all � 2 C with j�j large enough) has a solution (v̂; �̂) satisfying theestimates (1.2.39), so (v̂; �̂) 2 ~Xr, r � 2. The seond omponent of the righthand side of the equation (1.2.40) is not zero, but Theorem 1.2.13 gives us atually(v̂; �̂) 2 ~Xr+2 beause ĥ = û0nj�0 2 Hr+3=2(�0) is regular enough. See the proof ofProposition 1.2.6 (where h has now a speial form and a better regularity) and alsothe next two Theorems 1.2.17 and 1.2.18. For the same reason that ĥ is more regularthan the spae Xr required, we obtain the properties of the solution for r � 1 (seethe proof of Corollary 1.2.14).We apply the inverse of the Laplae transformation� v� � (t; �) = 12�i Z �+i1��i1 e�t � v̂̂� � (�; �) d�where � = �+ is (� = Re� is large enough in order to have the resolvent estimates)and obtain a solution (v; �) 2 L2([0; T ℄; ~Xr+2). Using the isometry of the Laplaetransformation, we an alulate (with a generi onstant C):Z �+i1��i1  �tv�t� ! (�; �)2Xr ds = Z �+i1��i1 j�j2 � v̂̂� � (�; �)2Xr ds(1:2:39)� C Z �+i1��i1  ~̂f̂h ! (�; �)2Xr ds= C Z 10 � ~fh � (t; �)2Xr e�2�tdt (1.2.41)



1.2. THE LINEAR EQUATIONS AND ESTIMATES 27whih proves that (v; �) 2 H1([0; T ℄; ~Xr) andZ 10 �t � v� � (t; �)2Xr dt � C Z 10 � ~fh � (t; �)2Xr dt:As a onsequene we obtain immediatly that (v; �) 2 C1=2([0; T ℄; ~Xr).Then we obtain (u; �) 2 H1([0; T ℄; ~Xr)\L2([0; T ℄; ~Xr+2) with a bound dependingon kfkL2([0;T ℄;Hr(
0)3) and k(u0; �0)k ~Xr+2. �Remark 1.2.16 Di�erentiating one more w.r.t. time and utting o� the solu-tion at t = 0, one an obtain after alulations similar to (1.2.41) that (u; �) 2C1;((0; T ℄; ~Xr) with  � 12 .The next theorem is a onsequene of the Proposition 1.2.6 and Theorem 1.2.13.It states that we an generalize the regularity estimate (1.2.36) and obtain it alsofor a nonzero seond omponent of the right hand side, if this is more regular thanthe spae Xr required. This means we have to introdue a new spaeXr3=2 := f(f; h) 2 Hr(
0)3 �Hr+3=2(�0) ��r � f = 0; fn���1;2;�h = 0g (1.2.42)with the natural norm inherited from the produt spae. Using this notation, ourXr spaes oinide with the Xr1=2 spaes, but we will keep the old notation for Xr.Theorem 1.2.17 (Properties of L : ~Xr+2 ! Xr3=2)The operator L : ~Xr+2 ! Xr3=2, r � 0, is invertible, the inverse is bounded and wehave the regularity estimatek(u; �)kXr+2 � k(f; h)kXr3=2 : (1.2.43)The same result holds for the operator �+ L, too, when �� is not an eigenvalue ofL. We an immediatly formulate the analog of the linear existene Theorem 1.2.15for this speial form of the right hand side:Theorem 1.2.18 (Linear existene result for (f; h) with h 6= 0)We onsider L : ~Xr+2 ! Xr3=2, r � 1, and (f; h) 2 L2([0; T ℄; Xr3=2), T > 0. Thenthe problem (�t + L)� u� � = � fh �with initial onditions (u; �)��t=0 = (u0; �0) 2 ~Xr+2 has a unique solution(u; �) 2 H1([0; T ℄; ~Xr3=2) \ L2([0; T ℄; ~Xr+2):



28 CHAPTER 1. THE EXISTENCE THEORY1.3 Transformation to the Fixed Domain and theNonlinear ProblemFollowing [Be1℄, we onvert our (initial) nonlinear problem (1.1.1) - (1.1.11) de�nedon the unknown domain 
 to one on the equilibrium domain 
0 by strething orompressing on the vertial line segments. In this setion, we denote the variablesand funtions in 
0 by apital letters, so X1 = x1, X2 = x2, X3 will be spei�edlater.For every time t, given a small � : R+ � �0 ! R with ���x1 ��x12f0;bg = 0, wean hoose ~�(t; X1; X2; �) lose to the identity whih transforms the interval [�h; 0℄to the interval [�h; �(t; x1; x2)℄. We an hoose the extension ~� to have maximalregularity as given by the trae theorem and suh that 8t, ~�(t) depends only on �(t),the ontat line ondition for � is prelonged on the whole �1;2 and ~� satis�es alsothe boundary ondition on ��h. So we de�ne ~� suh that:~�(t; X1; X2; 0) = �(t; x1; x2) (a)�~��X1 ���X12f0;bg = 0 (b) (1.3.1)~���X3=�h = 0 ()For eah t we de�ne the transformation �(t; �) : 
0 ! 
,(x1; x2; x3) = �(t; X1; X2; X3) := (X1; X2; X3 + (1 + X3h )~�) (1.3.2)and alulate:D� = � �xi�Xj�ij = 0� 1 0 00 1 0(1 + X3h ) �~��X1 (1 + X3h ) �~��X2 1 + ~�h + (1 + X3h ) �~��X3 1AJ := detD� = 1 + ~�h + (1 + X3h ) �~��X3��Xi�xj �ij�����x=�(X) = 0� 1 0 00 1 0� 1J (1 + X3h ) �~��X1 � 1J (1 + X3h ) �~��X2 1J 1A :We ould transform the veloity �eld only by omposition, but then the diver-gene free ondition would be lost. Instead, for U in 
0, we de�ne u in 
 = �(
0)by: ui = 1J �xi�XjUj (1.3.3)



1.3. THE NONLINEAR PROBLEM 29where repeated indies are summed. It is understood here that for (x1; x2; x3) 2
, the right hand side is evaluated at ��1(x1; x2; x3) = (X1; X2; X3). With thisde�nition, U has divergene zero in 
0 i� u has the same property in 
.There is a further advantage to this transformation of the veloity �eld: the righthand side of (1.1.3) is replaed simply by U3. More expliitly, on the upper surfae�0 we have X3 = 0 and ~� = �, so we an alulate:(u1; u2; u3) = 1J (U1; U2; U1 ���x1 + U2 ���x2 + JU3)���t = 1J U1 ���x1 + 1J U2 ���x2 + U3 � 1J U1 ���x1 � 1J U2 ���x2= U3: (1.3.4)The derivatives of u are: �ui�xj = �Xl�xj ��Xl � 1J �xi�XkUk� :In rewriting �ui�t we have terms arising from the fat that � depends on t:�ui�t = 1J �xi�Xj �Uj�t + ��t � 1J �xi�Xj�Uj + ��X3 � 1J �xi�XjUj� �(��1)3�t :Let p Æ � = P . The other three terms in the Navier-Stokes equations an bewriten as:(u � ru)i = � 1J �xj�XmUm� �Xl�xj ��Xl � 1J �xi�XkUk��ui = 3Xj=1 ��2Xl�x2j ��Xl � 1J �xi�XkUk�+ �Xl�xj �Xm�xj �2�Xl�Xm � 1J �xi�XkUk��(rp)i = �Xk�xi �P�XkFinally, multiplying by �J �Xi�xj �, expressing the time derivatives of 1J �xi�Xj and �by time derivatives of � and using (1.3.4), we an write the Navier-Stokes equationsfor (U; P ): �tU � ��U +rP = F0(U; �;rP ) (1.3.5)r � U = 0



30 CHAPTER 1. THE EXISTENCE THEORYThe ondition on the free boundarypni � � ��ui�xj + �uj�xi�nj = 0�g� � �r � r�q1 + jr�j21Anian be writen in terms of the new variables asPNi � � ��Xl�xj ��Xl � 1J �xi�XkUk� + �Xl�xi ��Xl � 1J �xj�XkUk��Nj == 0�g� � �r � r�q1 + jr�j21ANiwhere N = n Æ�. It is onvenient to replae this vetor equation with omponentstangential and normal to the physial surfae. Let T1 = (1; 0; ���x1 ), T2 = (0; 1; ���x2 )be two tangent vetors and N3 = (� ���x1 ;� ���x2 ; 1) be the normal to � in the point(x1; x2; �(x1; x2)). Projeting the equation on this three diretions we obtain equa-tions of the form: �Ui�X3 + �U3�Xi = Gi(U; �) i = 1; 2 (1.3.6)P � 2� �U3�X3 � (g� � ���) = G3(U; �) : (1.3.7)The boundary onditions on the �xed boundary are preserved , soU ����h = 0Un���1;2 = 0n � SU � �i���1;2 = 0 i = 1; 2 9>=>; (1.3.8)This is easy to see for every partiular form of these onditions, doing diret alu-lations and using the boundary onditions (1.3.1)(b; ) we required for the extension~�. With the help of (1.3.7) we an solve a problem similar to (1.2.12) and, again,take out the pressure (as an unknown) from the equation (1.3.5). We an write nowour full nonlinear problem in terms of the operator L, so�t� U� � + L� U� � = � F (U; �)0 � (1.3.9)



1.3. THE NONLINEAR PROBLEM 31with the boundary onditions (1.3.8) for the �xed boundary and (1.3.6) for the freeboundary. For F and G we have the properties for r � 1 (see [Be1℄, [Shw1℄ and[Ta℄, Ch.13):F : Xr+2 ! Hr(
0)3; F (0; 0) = 0; DF exists and DF (0; 0) = 0;G : Xr+2 ! Hr+1=2(�0)2; G(0; 0) = 0; DG exists and DG(0; 0) = 0:We have to be areful beause the ondition of vanishing tangential stress on thefree boundary is not ful�lled. We orret this by a funtion �.De�nition 1.3.1 For a funtion g = (g1; g2) 2 Hr+1=2(�0)2, we de�ne the vetor�eld �(g) : 
0 ! R3 whih has the orret boundary values: let A be the Stokesoperator, i.e. Au := A(u; p) = ���u + rp and r � u = 0. We de�ne �(g) withthe help of A to be the unique solution (we are not interested in the orrespondingpressure for �(g)) of: A�(g) = 0 in 
0�(g)����h = 0�n(g)���0[�1;2 = 0n � S�(g) � �i���1;2 = 0n � S�(g) � �i���0 = gi :As the solution of the Stokes operator A with these boundary onditions, wehave the following regularity estimates for � (see [ADN℄ and [Shw1℄): 8r � 0k�(g)kr+2;
0 � C kgkr+1=2;�0 :In the following we denote our variables together, so we want to �nd solutionsx := (U; �) of (�t + L)x = � F (x)0 � (1.3.10)n � SU � �i���0 = Gi(x): (1.3.11)We onsider now new variables, namely~x := x� � � ÆG(x)0 � : (1.3.12)



32 CHAPTER 1. THE EXISTENCE THEORYIf x 2 Xr satis�es the boundary ondition (1.3.6), then ~x 2 ~Xr, so ~x has theorret (in the sense ~X) boundary onditions of vanishing tangential stress on thefree boundary and we have not lost regularity through �ÆG. Beause DG(0; 0) = 0,the map ~x 7! x is lose to identity, so we an loally solve (1.3.12) by x = '(~x). Inthe ~x variable, the equation (1.3.9) beomes:(�t + L)~x = � ~F (~x)0 � := � F Æ '(~x)0 �� (�t + L)� � ÆG Æ '(~x)0 � (1.3.13)~x(0) = x(0)� � � ÆG(x(0))0 � : (1.3.14)We observe that we have a vanishing seond omponent on the right hand side of(1.3.13) beause of the property of �, �n(g)���0 = 0. ~F keeps the properties of F , so~F : ~Xr+2 ! Hr(
0)3; ~F (0) = 0; D ~F exists and D ~F (0) = 0:De�ne the following operator (r � 1):M : H1([0; T ℄; ~Xr) \ L2([0; T ℄; ~Xr+2) \ fzjz(0) 2 ~Xr+2g ! L2([0; T ℄; Xr)� ~Xr+2z 7�! �(�t + L)z � � ~F0 � (z); z(0)�M has the following properties (using the properties of ~F ):DM���z=0 : y 7�! ((�t + L)y; y(0))It was shown in Theorem 1.2.15 that the problem(�t + L)y = � f0 � 2 L2([0; T ℄; Xr)y(0) = y0 2 ~Xr+2has an unique solution, soDM��z=0 is an isomorphism between the spaes whereM isde�ned. Then the impliit funtion theorem proves the existene of a unique solutionof the nonlinear problemM(z) = ((f; 0); z0) for small enough (f; 0) 2 L2([0; T ℄; Xr)and small enough initial values z0 2 ~Xr+2. We an state now our nonlinear existeneresult:Theorem 1.3.2 (Nonlinear existene result for ~X-spaes)For r � 1, small enough (f; 0) 2 L2([0; T ℄; Xr) and small enough initial valuesz0 2 ~Xr+2, there exists a unique solution z 2 H1([0; T ℄; ~Xr)\L2([0; T ℄; ~Xr+2) of thenonlinear problem M(z) = ((f; 0); z0).



1.3. THE NONLINEAR PROBLEM 33Remark: A similar nonlinear existene result holds also in the spaes Xr3=2 de�nedin (1.2.42). We observe that the transformation � we have done produed no termin the seond omponent of the right hand side of the equation (1.3.10) (see alsoequation (1.3.4)). Moreover, if we onsider from the beginning a nonzero seondomponent of the right hand side, its regularity will be kept through �. The resultis not needed for our Hopf bifuration analysis, but for the seek of ompleteness wewill formulate it here:Theorem 1.3.3 (Nonlinear existene result for ~X3=2-spaes)De�ne the operatorN : H1([0; T ℄; ~Xr3=2) \ L2([0; T ℄; ~Xr+2) \ fzjz(0) 2 ~Xr+2g ! L2([0; T ℄; Xr3=2)� ~Xr+2z 7�! �(�t + L)z � � ~F0 � (z); z(0)� ;where ~F is de�ned in (1.3.13). Then, for r � 1, small enough (f; h) 2 L2([0; T ℄; Xr3=2)and small enough initial values z0 2 ~Xr+2, there exists a unique solution z 2H1([0; T ℄; ~Xr3=2) \ L2([0; T ℄; ~Xr+2) of the nonlinear problem N (z) = ((f; h); z0).



34 CHAPTER 1. THE EXISTENCE THEORY



Chapter 2The Bifuration Theory
2.1 The L-invariant DeompositionWe want to split Xr and ~Xr into a diret sum of L-invariant subspaes (Xri )i2I .The normed eigenvetors of �� on �0, with Neumann boundary onditions inthe x1-diretion of the hannel, form an orthonormal basis for L2(�0). In order to�nd this basis expliitly, we solve the eigenvalue problem���(x1; x2) = ��(x1; x2)�1���x12f0;bg = 0using the method of separation of variables.It is well-known (see e.g.[Da,Li℄, Ch.VIII, Th.8 and the appliations presentedhere) that this problem has a ountable number of eigenvalues �n;k, n 2 N , k 2 Zwhih are real, positive and simple. The eigenfuntions are�n;k(x1; x2) = n;k os��b nx1� eikx2 ;the onstants n;k being hosen in suh a way thatZ�0 j�n;kj2dx1 dx2 = 1:So, L2(�0) an be deomposed into a diret Hilbert sumL2(�0) =Mn2Nk2Zl2n;k35



36 CHAPTER 2. THE BIFURCATION THEORYwhere l2n;k(�0) = spanf�n;k(x1; x2)g:Using the basis we found for L2(�0), we want to onstrut a basis for L2(
0)3. Let~e3 = (0; 0; 1) be the normal vetor on �0, r = ~e1 ��x1 +~e2 ��x2 and r? = ~e1 ��x2 �~e2 ��x1 ,where ~e1 = (1; 0; 0) and ~e2 = (0; 1; 0) are two tangent vetors to �0.Proposition 2.1.1 The setB = f�n;k(x1; x2)~e3; r�n;k(x1; x2) ; r?�n;k(x1; x2)gis a basis for L2(�0)3.Proof: Beause these vetors are orthogonal, they are linear independent. It remainsto show that they span L2(�0)3.Let u : �0 �! R3 be a funtion orthogonal to every element in B. Beause it isorthogonal to ~e3, it is a tangent vetor, so the third omponent of u is zero and werefer to u as u 2 L2(�0)2.We prove that u = 0. Let C0 be a smooth ut in �0 suh that �0 n C0 is simplyonneted. Following [Te℄, we use the deompositionL2(�0)2 = H0 � ker(r?) =: H0 �H1 �H2 �Hwhere H0 = fu 2 L2(�0)2 ��r � u = 0; un��C1;2 = 0; ZC0 un dC0 = 0gH1 = fu 2 L2(�0)2 �� u = rq; �q = 0; q 2 H1(�0)gH2 = fu 2 L2(�0)2 �� u = rq; q 2 H10 (�0)gH = fu 2 L2(�0)2 �� u = rq; �q = 0 in �0 n C0; q 2 H1(�0);[q℄C0 = onst; ��q�n�C0 = 0; �q�n ���C1;2 = 0gwhere [q℄C0 denotes the jump of q on C0. We know that the dimension of H is equalto the number of uts whih we need to make in order to obtain a simply onneteddomain, so is one.Corresponding to this deomposition, we an split u = u0+u1+u2+u. Beauseof the diret sum, it follows that every u0; u1; u2; u is orthogonal to every r�n;k and



2.1. THE L-INVARIANT DECOMPOSITION 37r?�n;k. Then, 0 = Z�0 u1 � r�n;k= Z�0 rq1 � r�n;k= � Z�0 q1��n;k + Z��0 q1�r�n;k � n�= Z�0 q1 �n;k �n;kand this implies q1 = 0 and u1 = 0beause f�n;kgn2N;k2Z is a basis for L2(�0). In an analog way we obtain also u2 =u = 0.For u0 2 H0 we an alulate0 = Z�0 u0 � r?�n;k = � Z�0(r? u0)�n;k + Z��0 u0n �n;kand then r?u0 = 0. But u0 2 H0 whih is the ortogonal omplement of ker(r?) inL2(�0)2, so u0 = 0 and the proof is omplete. �Using the basis B for L2(�0)3, we an deompose a funtion u(x1; x2; x3) 2L2(
0)3:u(x1; x2; x3) = Xn2Nk2ZUn;k1 (x3)r�n;k(x1; x2) + Un;k2 (x3)r?�n;k(x1; x2)+Un;k3 (x3)�n;k(x1; x2)~e3=: Xn2Nk2Zun;k(x1; x2; x3)where Un;k1;2;3 are arbitrary real funtions depending only on x3, not all of them iden-tially zero. Then, L2(
0)3 =Mn2Nk2ZL2n;k;where L2n;k is the orresponding spae in the deomposition of L2(
0)3, for n; k �xed.In order to �nd a L-invariant deomposition for Xr we will see now how thedivergene free ondition and the boundary onditions are arried over. We �xen 2 N and k 2 Z.



38 CHAPTER 2. THE BIFURCATION THEORY~un;k(x1; x2; x3) == h� n�b Un;k1 (x3) sin��b nx1� + ik2�l Un;k2 (x3) os��b nx1�ieikx2~e1+hik2�l Un;k1 (x3) os��b nx1� + n�b Un;k2 (x3) sin��b nx1�ieikx2~e2+Un;k3 (x3) os��b nx1�eikx2~e3=: un;k1 ~e1 + un;k2 ~e2 + un;k3 ~e3The divergene-free ondition:r � ~un;k = 0, (Un;k3 )0(x3) = �n;kUn;k1 (x3) for x3 2 (�h; 0)For Xr, we have to satisfy also the ondition ~u � n���1;2;�h = 0, whih means:on �1;2: n = �~e1un;k1 ��x12f0;lg = 0 , Un;k2 (x3) = 0 8x3 2 (�h; 0)on ��h: n = �~e3 un;k3 ��x3=�h = 0 , Un;k3 (�h) = 0For ~Xr we have to satisfy additionally the onditions for the zero tangential stresson the free boundary and the walls, and zero tangential veloity on the bottom. Weobserve that the onditions on the walls �1;2 are automatially satis�ed.on ��h: ~e1 and ~e2 are tangential diretions:un;k1 ����h = un;k2 ����h = 0 , Un;k1 (�h) = 0on �0: n = ~e3, ~e1 and ~e2 are tangential diretions:(�3un;ki + �iun;k3 )���0 = 0; i = 1; 2 , Un;k3 (0) + (Un;k1 )0(0) = 0:Proposition 2.1.2 The L-invariant deompositions of the spaes Xr and ~Xr are:Xr =Mn2Nk2ZXrn;k ~Xr =Mn2Nk2Z ~Xrn;k



2.1. THE L-INVARIANT DECOMPOSITION 39withXrn;k = f(un;k; �n;k) 2 Hr(
0)3 �Hr+1=2(�0) ���n;k(x1; x2) = n;k os ��bnx1� eikx2;~un;k(x1; x2; x3) = Un;k1 (x3)r�n;k(x1; x2) + Un;k3 (x3)�n;k(x1; x2)~e3;(Un;k3 )0(x3) = �n;kUn;k1 (x3); x3 2 (�h; 0);Un;k3 (�h) = 0g~Xrn;k = f(un;k; �n;k) 2 Xrn;k �� Un;k1 (�h) = 0Un;k3 (0) + (Un;k1 )0(0) = 0g:Proof:It remains to prove that L de�ned on ~Xn;k maps to Xn;k. Let (un;k; �n;k) 2 ~Xn;k.Then L� un;k�n;k � =  ���un;k +rH(p���0)�un;kn ���0 ! ;where p���0 = 2�Snun;k ���0 + g�n;k � ���n;k= [2�(Un;k3 )0(0) + g + ��n;k℄�n;k(x1; x2)Beause the solution of the problem (1.2.12) is unique and �1�n;k��x12f0;bg = 0, theharmoni extension of the pressure has the formH(p���0) = P (x3)�n;k(x1; x2)where P (x3) an be found expliitly as the solution of the problemP 00(x3) = �n;kP (x3) for x3 2 (�h; 0)P (0) = 2�(Un;k3 )0(0) + g + ��n;kP 0(�h) = � (Un;k3 )00(�h):We have P (x3) = 1ep�n;kx3 + 2e�p�n;kx3 , where 1 and 2 an be determined fromthe boundary onditions for P (0) and P 0(�h).After some simple alulations using the speial form of un;k, we obtain:���un;k +rH(p���0) = (��n;kUn;k1 � �(Un;k1 )00 + P )(x3)r�n;k(x1; x2)+(��n;kUn;k3 � �(Un;k3 )00 + P 0)(x3)�n;k(x1; x2)~e3=: f1(x3)r�n;k(x1; x2) + f3(x3)�n;k(x1; x2)~e3�un;kn ���0 = �Un;k3 (0)�n;k(x1; x2)



40 CHAPTER 2. THE BIFURCATION THEORYwhere f1 and f3 satisfy the onditions required in theXn;k-spae (beause (un;k; �n;k) 2~Xn;k). The proof is omplete. �Sine we study the eigenvalue problem for L, we an restrit ourself to suh aspae Xrn;k and make all onsiderations there. This is proved in the next proposition:Proposition 2.1.3 Let � be an arbitrary eigenvalue of L. Then there exist n 2 Nand k 2 Z suh that � is an eigenvalue for L�� ~Xrn;k .Proof:Let � 2 C be an arbitrary eigenvalue of L, so 9 (0; 0) 6� (u; �) 2 ~Xr suh thatL(u; �) = �(u; �). Deompose in a unique way(u; �) = (Xn2Nk2Zun;k;Xn2Nk2Z�n;k) =Xn2Nk2Z(un;k; �n;k);with (un;k; �n;k) 2 ~Xrn;k.We have �(un;k; �n;k) 2 ~Xrn;k and the following equalities hold in the weak sense:X�(un;k; �n;k) = L�X(un;k; �n;k)�= XL(un;k; �n;k):The deomposition is invariant under L and beause of the diret sum, it follows:9n 2 N and 9 k 2 Z with �(un;k; �n;k) = L(un;k; �n;k)with �n;k 6� 0, so �n;k is an eigenvalue of L�� ~Xrn;k . �So we an restrit our onsiderations on suh a spae Xrn;k (atually we �xe �n;k)and we will denote the funtions there without indiies.2.2 A Bifuration Piture w.r.t �Sine the Navier-Stokes equations are invariant under the Eulidian group E3 ofall translations, rotations and reetions of spae, the group of symmetries of agiven model is a subgroup of E3 determined by the shape of the domain and theboundary onditions. In our problem, we onsider the symmetries obtained bytranslations along x2 and reetions through a plane perpendiular to the x2-axis.



2.2. A BIFURCATION PICTURE W.R.T � 41The assumption on periodi boundary onditions in the x2-diretion allows us toidentify these translations with the ation of a irle group. These lead to an O(2)symmetry, so our problem provides an O(2)-equivariane.Remark: A reetion through the plane fx1 = b2g is also a symmetry for our model.We did not onsider it beause it does not inrease the dimension of the kernel spaesin the bifuration theorem. This will beome lear from the form of the funtion�n;k.O(2) is generated by SO(2) together with the ip { = � 1 00 �1 �, where SO(2)onsists of planar rotations R� = � os � sin �� sin � os � �. We refer to elements of O(2)as 3�3 matries, adding the third line and the third olumn (0; 0; 1). We de�ne theation of an element  2 O(2) on Xr by � u := u Æ �1 � � := � Æ �1 � � u� � := �  � u � � � : 9>>=>>; (2.2.1)SO(2) may be identi�ed with the irle group S1, the identi�ation beingR� 7! �.Using this identi�ation, we desribe the ation of O(2) = fsei� : � 2 R; s 2 fid;{ggon Xr as follows: if ~u = u1~e1 + u2~e2 + u3~e3 is the veloity �eld,� � ~u(x1; x2; x3) := u1(x1; x2 � �; x3)~e1 + u2(x1; x2 � �; x3)~e2+u3(x1; x2 � �; x3)~e3{ � ~u(x1; x2; x3) := u1(x1;�x2; x3)~e1 � u2(x1;�x2; x3)~e2+u3(x1;�x2; x3)~e3� � �(x1; x2) := �(x1; x2 � �){ � �(x1; x2) := �(x1;�x2) :
9>>>>>>>>>>>>=>>>>>>>>>>>>; (2.2.2)

It is easy to see that L is O(2)-equivariant w.r.t. this ation, i.e. � L� u� � = L� � � u� �� :Lemma 2.2.1The funtion �n;k has an isotropy subgroup ��n;k of O(2) isomorphi to Zk.



42 CHAPTER 2. THE BIFURCATION THEORYProof: The ations of ei� and { on �n;k are:� � �n;k(x1; x2) = n;k os ��b nx1� eik(x2��) ;{ � �n;k(x1; x2) = n;k os ��b nx1� e�ikx2 :Imposing the isotropy ondition we obtain� � �n;k = �n;k , k� = 2m�; m 2 Z 2 ��n;k ,  2 fei 2�mk ��m 2 Zg � Zk: �We are now able to study the position of the eigenvalues of L depending on thegravity g and on the surfae tension �. The position an be alulated expliitly forg = � = 0 and for g; � ! +1. It is not of interest to study the problem for g and� separately. Anyway, these parameters are physial measures and they are �xedfor a given liquid, but the "formal" analysis we are presenting here gives us usefulideas for the study of Hopf bifuration in the next setion. Then(g � ��)�n;k = (g + ��n;k)�n;k =: � �n;k;with � := g + ��n;k 2 [0;1).Remark: In this setion, n and k are �xed, so �n;k is �xed, and varying � in theTheorem 2.2.6 means atually to vary g and �. This is also the reason for whih wedo not introdue n and k in the notation � for g + ��n;k.Let A : (u; p) 7! ���u +rp together with the following onditions:in 
0 : r � u = 0n � Su � �i���0[�1;2 = 0un���1;2 = 0u����h = 0 9>>>=>>>; (2.2.3)be the Stokes operator. In order to study eigenvalue problems for A, we have toimpose one boundary ondition more, i.e. one for the normal veloity on the freeboundary �0. We have two possibilities, to presribe the normal veloity on �0 (andobtain than a "Dirihlet" problem for the Stokes operator) or to presribe the normalstress on the free boundary (and obtain than a "Neumann" problem for the Stokesoperator). As soon as we have imposed a ondition for un���0 or for (p � 2�Snu )���0 ,we an alulate the value of the other one. Beause we are in Xrn;k, both of themshould be multiple of �n;k. Also, for �xed �n;k, the pressure p is known as a funtion



2.2. A BIFURCATION PICTURE W.R.T � 43of u and �n;k (see (1.2.13)). Therefore, when we don't need to write the pressureexpliitly, we will simplify the notation:A(u; p) = ���u +rp =: Au:De�nition 2.2.2 (The Stokes operators AD and AN)Denote by AD the Stokes operator A on ~Xr together with the boundary onditionof a vanishing normal omponent of the veloity at the free boundary. It is knownthat its eigenvalues are ountable, real, positive and simple; we denote them byf�jgj2N. The orresponding eigenfuntions with symmetry Zk are unique up to amultipliative onstant. Let fujgj2N be the normed eigenfuntions with symmetryZk and fpjgj2N be the pressure funtions suh that (pj � 2�Snuj )���0 = �n;k.Denote by AN the Stokes operator A on ~Xr together with the boundary onditionof a vanishing normal stress on the free boundary. It is known that its eigenvaluesare ountable, real, positive and simple; we denote them by f�jgj2N.The Stokes operators AD and AN are ellipti in the sense of Agmon, Douglis andNirenberg (see [ADN℄, and also [Be1℄, [Shw1℄).Following [Shw1℄, we de�ne for every � 2 C nf�j j j 2 Ng, (~u(�); ~p(�)) to be theunique solution of the problem (~p(�) is here unique up to an additive onstant):(�� A)~u(�) = 0 (2.2.4)~un(�)���0 = ���n;k (2.2.5)We know from the perturbation theory for linear operators (see [Ka℄, and also[Shw1℄) that (~u(�); ~p(�)) is an analyti family of funtions for � 2 C n f�j j j 2 Ng.One veri�es easily that Xrn;k are invariant subspaes also for AD and AN . There-fore the (unique) solution of (2.2.4)-(2.2.5) must be in Xrn;k. In partiular (~p(�) �2�Sn~u(�))���0 is a multiple of �n;k. We de�ne ~r(�) 2 C by(~p(�)� 2�Sn~u(�))���0 =: ~r(�)�n;k: (2.2.6)Of ourse, every � 6= �j eigenvalue of L together with the orresponding eigen-funtion satisfy the problem (2.2.4)-(2.2.5). Reiproally, a � 2 C is an eigenvalueon L with eigenfuntion (~u(�); �n;k), if and only if~r(�) = �:Lemma 2.2.3 We have: � 2 R implies ~r(�) 2 R.



44 CHAPTER 2. THE BIFURCATION THEORYProof: Testing the eigenvalue equation (2.2.4) with �~u and using Corollary 1.2.3, weobtain: � Z
0 j~u(�)j2 = Z
0 [���~u(�) +rH(2�Sn~u(�)����0)℄ �~u(�)+ Z
0 [r~p(�)�rH(2�Sn~u(�)����0)℄ �~u(�)= 2� Z
0 S~u(�) : S�~u(�) + Z�0(~p(�)� 2�Sn~u(�)) �~un(�)= 2� Z
0 jS~u(�)j2 + Z�0 ~r(�)�n;k(�����n;k)= 2� Z
0 jS~u(�)j2 � ��Z�0 ~r(�) j�n;kj2and the lemma is proved. �In the following we abbreviate by k � k (without indiies) the L2(
0)3-norm orthe L2(�0)-norm.Proposition 2.2.4 (Properties of ~u(�))(a) In �j there holds k~u(�)k ! +1 for �! �j: (2.2.7)(b) The resaled funtions approximate the eigenfuntions of AD, souj := limR3�%�j ~u(�)k~u(�)k = � limR3�&�j ~u(�)k~u(�)k : (2.2.8)() k~u(�)k ! +1 for j�j ! +1: (2.2.9)Proof: We de�ne the familly of funtions (u(�); p(�)) whih depends smooth on � ina neighborhood of �j to be the unique (nonzero) solution of the following problemfor the Stokes operator: (�� A)u(�) = 0 (2.2.10)(p(�)� 2�Snu(�))���0 = �n;k: (2.2.11)Denote un(�)���0 =: s(�)�n;k; (2.2.12)



2.2. A BIFURCATION PICTURE W.R.T � 45we have the properties: s(�) is di�erentiable and s(�j) = 0 (beause the eigenvaluesof AD are simple), so for � = �j, u(�j) is a multiple of uju(�j) = onst1 uj 6� 0:(a) Comparing the problem (2.2.4),(2.2.5) with the problem (2.2.10),(2.2.12) weobtain: ~u(�) = ��s(�)u(�);so k~u(�)k = ���� ��s(�)���� jonst1j � 1and k~u(�)k ! +1 for �! �j:(b) Then limR3�!�j ~u(�)k~u(�)k = �sign s(�j) � sign(onst1) � ujand the sign of the limit will be established by showing that the funtion s(�)��Rhanges sign in �j.Assume this is not true, so ��s(�j) = 0. De�ning the funtions (v; q), v :=��u(�j) and q := ��p(�j), they satisfy the following equations:(�j � A)v = �u(�j) (2.2.13)vn���0 = ��s(�j)�n;k = 0(q � 2�Snv )���0 = 0:Testing the equation (2.2.13) with �u(�j), integrating by parts and using the equality(1.2.16) together with the boundary onditions of the equation (2.2.13), yields:0 6= �ku(�j)k2 = Z
0 [�jv + ��v �rq℄ �u(�j)= Z
0 [�j�u(�j) + ���u(�j)�r�p(�j)℄ v= 0;a ontradition, so s(�)��R hanges sign in �j, i.e.limR3�%�j ~u(�)k~u(�)k = � limR3�&�j ~u(�)k~u(�)k ;



46 CHAPTER 2. THE BIFURCATION THEORYand we hoose uj := limR3�%�j ~u(�)k~u(�)k :() As the solution of the Stokes system (2.2.4)�(2.2.5), ~u(�) is suÆiently smoothand satis�es the estimate (CS > 0 is a onstant):k~u(�)k2;
0 � CS�j�j k~u(�)k0;
0 + j�j k�n;kk3=2;�0�:We use now ~un(�)���0 = ���n;k, a trae formula (with onstant CT > 0) and aninterpolation (with onstant CI > 0) (see also Proposition 1.2.8) to alulate:j�j2k�n;kk20;�0 = k~un(�)k20;�0� CTk~u(�)k21;
0� CT CIk~u(�)k0;
0k~u(�)k2;
0� CT CI CSk~u(�)k0;
0�j�j k~u(�)k0;
0 + j�j k�n;kk3=2;�0�;and then j�jk�n;kk20;�0 � CT CI CSk~u(�)k0;
0�k~u(�)k0;
0 + k�n;kk3=2;�0�whih imply k~u(�)k0;
0 ! +1 for j�j ! +1. �Proposition 2.2.5 (Properties of ~r(�))The funtion ~r(�) satis�es:(a) limR3�&0 ~r(�) = 0 ; (2.2.14)(b) limR3�&�j ~r(�) = � limR3�%�j ~r(�) = +1 ; (2.2.15)() ~r(�) is positive for small � > 0 and ��~r(�)���=0 > 0;(d) it has exatly one turning point on eah interval (�j; �j+1), j 2 N;it does not have turning points on the interval (�1; �0);(e) ritial values of ~r(�) are positive.Proof:(a) Putting � = 0 in the problem (2.2.4)�(2.2.5) we obtain that ~u(0) � 0 (beause0 is not an eigenvalue of AD) and then ~r(0) = 0.



2.2. A BIFURCATION PICTURE W.R.T � 47(b) The funtion w(�) := ~u(�)k~u(�)k = ~u(�) ����s(�)onst1� ����(together with the orresponding pressure ~p(�)k~u(�)k) sati�es (2.2.4) and the boundaryonditions on �0: wn(�)���0 = �� �n;k � ����s(�)onst1� ����� ~p(�)k~u(�)k � 2�Snw(�)� ����0 = ~r(�)k~u(�)k�n;k:Beause s(�j) = 0 and kw(�)k = 1, using Proposition 2.2.4 it followsw(�) ! �uj for �! �j~p(�)k~u(�)k ! �onst2pj for �! �j;so ~r(�)k~u(�)k ! �onst3 for �! �j:Beause of (2.2.7), ~r(�) annot stay �nite for �! �j and ~r(�)��R hanges sign in �jlike s(�)��R does.(; d; e) Consider the funtions ~v(�) := ��~u(�) and ~q(�) := ��~p(�) whih satisfy:(�� A)~v(�) = �~u(�) (2.2.16)~vn(�)���0 = ��n;k(~q(�)� 2�Sn~v(�))���0 = ��~r(�)�n;k:For � = 0, so (~v(0); ~q(0)), the right hand side of the equation (2.2.16) beomes zeroand testing it with �~v(0) yieldsZ
0 jS~v(0)j2 = Z�0(~q(0)� 2�Sn~v(0))~vn(0) = ��~r(�)���=0 � k�n;kk2whih implies ��~r(�)���=0 > 0 �we have ��~r(�)���=0 6= 0 beause 0 is not an eigenvalueof AN�; this proves () .Testing the equation (2.2.16) with �~u(�) and using the identity (1.2.16), we obtaink~u(�)k2 = Z
0(�~v(�) + ��~v(�)�r~q(�))�~u(�)= Z
0(��~u(�) + ���~u(�)�r�~p(�))~v(�)+ Z�0(�~p(�)� 2�Sn�~u(�))~vn(�)� Z�0(~q(�)� 2�Sn~v(�))�~un(�) :



48 CHAPTER 2. THE BIFURCATION THEORYThis yields, together with (2.2.5), (2.2.6) and the boundary onditions from theproblem (2.2.16): k~u(�)k2 � ~r(�)k�n;kk2 + ���~r(�)k�n;kk2 = 0 (2.2.17)whih implies for any ritial point �rit 2 R n f0; �j jj 2 Ng of ~r (so ��~r(�)���=�rit =0), that ~r(�rit) > 0 �k~u(�rit)k2 = 0 would imply ~u(�rit) � 0 whih is in ontradi-tion with the boundary ondition (2.2.5)�; this proves (e).Di�erentiating (2.2.17) w.r.t. � we obtain�� �k~u(�)k2�+ ��2�~r(�)k�n;kk2 = 0; (2.2.18)whih implies �� �k~u(�)k2� = 0 �6=0() �2�~r(�) = 0;so the turning points of ~r(�), � 2 R n f0; �j jj 2 Ng, oinide with the ritial pointsof k~u(�)k2, � 2 R n f0; �jjj 2 Ng.We an alulate further�2� �k~u(�)k2� = 2k��~u(�)k2 + 2h~u(�); �2�~u(�)i (2.2.19)and we are looking for an expresion for h~u(�); �2�~u(�)i.De�ne the funtions ~w(�) := �2�~u(�), ~t(�) := �2�~p(�) whih satisfy(�� A) ~w(�) = �2~v(�) (2.2.20)~wn(�)���0 = 0(~t(�)� 2�Sn~w(�))���0 = �2�~r(�)�n;k:Testing the equation (2.2.20) with �~v(�) and using the identity (1.2.16) we obtain:�2k~v(�)k2 = Z
0(� ~w(�) + �� ~w(�)�r~t(�))�~v(�)= Z
0(��~v(�) + ���~v(�)�r�~q(�)) ~w(�)+ Z�0(�~q(�)� 2�Sn�~v(�)) ~wn(�)� Z�0(~t(�)� 2�Sn~w(�))�~vn(�)and using the problems (2.2.16) and (2.2.20), this yields the equation:2k~v(�)k2 � h~u(�); ~w(�)i+ �2�~r(�)k�n;kk2 = 0 (2.2.21)



2.2. A BIFURCATION PICTURE W.R.T � 49�where we have denoted by h�; �i the usual salar produt in L2(
0)3�. Togetherwith (2.2.19) we obtain:�2� �k~u(�)k2� = 6k~v(�)k2 + 2�2�~r(�)k�n;kk2 : (2.2.22)Let �turn 2 R n f0; �jjj 2 Ng be a ritial point of k~u(�)k2. It is also a turningpoint of ~r(�) and using (2.2.22) for � = �turn, we an alulate:�2� �k~u(�)k2� ���=�turn = 6k~v(�turn)k2 > 0 :�k~v(�turn)k2 = 0 would imply ~v(�turn) � 0 whih is a ontradition beause ~vn(�)���0 =��n;k 8� (see the problem (2.2.16))�, so all the ritial points of k~u(�)k2 in R nf0; �jjj 2 Ng are points of loal minimum. We ollet now the properties of thefuntion k~u(�)k2:k~u(�)k2 � 0 8� 2 D(k~u(�)k2) = R n f�jjj 2 Ng ;Every ritial point �turn 6= 0 is a loal minimum of k~u(�)k2 ;k~u(�)k ! +1 for j�j ! +1 or �! �j(j 2 N) (see (2.2.7) and (2.2.9)) ;k~u(0)k2 = 0 beause 0 is not an eigenvalue of AD :Then we an onlude that the funtion k~u(�)k2 has exatly one ritial point (andthis is a minimum) on eah interval (�1; �0), (�j; �j+1) (j 2 N). For every interval(�j; �j+1), this is equivalent to say that the funtion ~r(�) has exatly one turningpoint on eah (�j; �j+1).For the interval (�1; �0), we know that the unique ritial point of the funtionk~u(�)k2 is the point � = 0, but we an not say that this is also a turning point for~r (see the equation (2.2.18)). Moreover, we will show that it is not a turning pointof ~r, so �2�~r(�)���=0 6= 0.Suppose that �2�~r(�)���=0 = 0. For � = 0 we know ~u(0) � 0 (beause 0 is not aneigenvalue of AD) and using (2.2.21) we obtain ~v(0) � 0 whih is a ontraditionbeause ~vn(0)���0 = ��n;k (see the problem (2.2.16)).So, for the interval (�1; �0) we an onlude that ~r does not have turning points;(d) is also proved. �We an draw now the graph of ~r for � 2 R (see Figure 2). On (0; �0) weknow exatly how it looks like, on (�j; �j+1) we have two possibilities: ~r is monotondesending or has a loal maximum and a loal minimum, both positive. We havedrawn the graph of ~r also for negative � (beause we need it for the next setion).
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Figure 2: The Graph of ~r(�)We know that ~r has no negative zeros, and no turning points on (�1; �0), so itshould looks like a "parabola" on this interval.The numbers �j > 0 are zeros of the ~r(�), so the shape of ~r implies�j < �j < �j+1 8j 2 N :Theorem 2.2.6 (The global bifuration piture in �)For � = 0 all the eigenvalues of L��� ~Xrn;k are real. Denoting them by f�jgj2N, it holds�0 = 0; �j+1 = �j 8j 2 N :For some �0 > 0 the �rst two eigenvalues merge and leave the real axis.Given a number ! 2 R, there exists �! > 0 suh that for � > �! every interval(�j; �j+1) with �j+1 < ! ontains one and only one eigenvalue �(�) of L� (whih



2.2. A BIFURCATION PICTURE W.R.T � 51is the unique real solution of the equation ~r(�) = � on this interval) and this realeigenvalue satis�es �R(�)& �j for �! +1:For the nonreal eigenvalues it holdsj�C (�)j ! +1 for �! +1:Proof: The statements for the real eigenvalues of L� are lear from the graph of ~r.For � = 0 we an ompute a omplete set of eigenfuntions in Xrn;k:�0 = 0 with eigenfuntion (0; �n;k)�j+1 = �j with eigenfuntion (~u(�j); �n;k)Let �max be the ritial point of ~r on (0; �0). Then �0 := ~r(�max) and from theshape of ~r we see that for � � �0 the �rst two eigenvalues merge and leave the realaxis.Let ! 2 R be given, then there exists i 2 N suh that 0 < �0 < : : : < �i < !and de�ne �! to be the biggest loal maximum of ~r(�) on (�j; �j+1) for all j, j < i.The rest is lear from the shape of ~r.It remains now to prove only the assertion on the nonreal eigenvalues. Wesuppose we have a sequene of nonreal eigenvalues �(�) of L� whih are boundedindependent of �, so suppose:�(�)! �1 2 C for a sequene �! +1:Denoting the orresponding eigenfuntions of L� with (~u(�(�)); �n;k), they satisfythe energy equality 8� 2 R: k~u(�(�))k2 = �k�n;kk2and the ondition for the normal stress on the free boundary:(~p(�(�))� 2�Sn~u(�(�)))���0 = ��n;k:where ~p(�(�) is the orresponding pressure funtion. Beause �(�) is nonreal 8�,it never meets �j and the pair (~u(�(�)); ~p(�(�))) is also a nonzero solution of theproblem (2.2.4)�(2.2.5).Then the pair (v(�(�)); q(�(�))),v(�(�)) := ~u(�(�))� and q(�(�)) := ~p(�(�))� ;



52 CHAPTER 2. THE BIFURCATION THEORYsatis�es the equations: (�(�)� A)v(�(�)) = 0vn(�(�))���0 = ��(�)� �n;k(q(�(�))� 2�Snv(�(�)))���0 = �n;k:Passing to the limit � ! +1 in all these equations, using our hypothesis �(�) !�1 2 C and ontinuity w.r.t. � of the funtions v and q, the pair of the limitfuntions (v(�1); q(�1))v(�1) := lim�!+1 v(�(�)) and q(�1) := lim�!+1 q(�(�))satis�es the following equations:(�1 � A)v(�1) = 0vn(�1)���0 = 0(q(�1)� 2�Snv(�1))���0 = �n;k:and beause the normal stress on the free boundary is �n;k, the solution v(�1) 6� 0.On the other hand, using the energy equality we an alulate:0 6= kv(�1)k2 = lim�!+1 ~u(�(�))� 2= lim�!+1 �k�n;kk2�2= 0;a ontradition, so for nonreal eigenvalues, j�(�)j ! +1 for �! +1. �Proposition 2.2.7(a) Eigenvalues of L� leave the real axis with an in�nite speed (w.r.t. �).(b) The qualitative shape of ~r�(�) is independent of the visosity �:~r��(��) = �2~r�(�):Proof:(a) The eigenvalues of L� leave the real axis in a ritial point of ~r and we denoteit by �rit(�) 2 R. Beause ~r is an analyti funtion in C n f�j j j 2 Ng, we have:�Re(~r(�(�)))�� ����=�rit = �Im(~r(�(�)))�� ����=�rit = 0:



2.3. HOPF BIFURCATION WITH SYMMETRY 53Beause ~r(�rit(�)) = �, we an alulate1 = �Re(~r(�(�)))�� ����=�rit = �Re(~r(�(�)))�� ����=�rit � ���� = 0 � ����;so the speed of �(�) gets in�nite.(b) Multiplying the equation (2.2.4) with �2, we obtain the system(��)(�~u(�)) + (��)�(�~u(�))�r(�2~p(�)) = 0r � (�~u(�)) = 0(�~u)����1 = 0� � S(�~u(�)) � n���0[�1;2 = 0(�~u)n(�)���1;2 = 0(�~u)n(�)���0 = �(��)�n;ktogether with the ondition for the normal stress on the free boundary:(�2~p(�)� 2(��)Sn�~u)���0 = �2~r�(�)�n;k:By de�nition of ~r the last line oinide with ~r��(��)�n;k and (b) is also proved. �2.3 Hopf Bifuration with SymmetryThe Hopf bifuration refers to a phenomenon in whih a steady state of an evolutionequation evolves into a periodi orbit as a bifuration parameter is varied. When thesymmetry appears, the problem beomes more ompliated beause the symmetryan lead to multiple eigenvalues. In order to state an equivariant Hopf bifurationtheorem we have to prove the existene of a pair of purely imaginary eigenvalues of Lwhih are Zk-simple together with the transversality ondition that these eigenvaluesross the imaginary axis with a nonzero speed, when the bifuration parameter isvaried.In this setion we onsider the inuene of an exterior fore (e.g. the wind fore)ating on the free surfae of the uid. In general suh a fore will depend on theposition and the veloity of the free surfae and result in an inrease or derease ofthe pressure at the free boundary. With a parameter � for the strength we write(p� 2�Snu )���0 = g� � ��� + �F (�; un���0):



54 CHAPTER 2. THE BIFURCATION THEORYLinearizing F in 0 we notie that D1F � � ats like an additional surfae tension, thee�et of whih we know in any subspae Xrn;k (Setion 2.2). So we will onentrateon a linear fore of the formF (�; un���0) = D2F � un���0:This fore an be written in terms of the representation Xr = �Xrn;k. We assumethat the deomposition remains invariant and study the fore D2F = �id in Xrn;kwhih has the struture of a negative damping. We are interested in the position ofeigenvalues and restrit all the alulations to Xrn;k. The linearized equation are thesame like that one in Chapter 1, exept the equation (2.3.4) where the term �un���0appears additionaly:�tu� ��u+rp = 0 (2.3.1)r � u = 0 (2.3.2)�t�n;k = un���0 (2.3.3)(p� 2�Snu )���0 = g�n;k � ���n;k � �un���0 (2.3.4)n � Su � �i���0 = 0; i = 1; 2 (2.3.5)u����h = 0 (2.3.6)un���1;2 = 0 (2.3.7)n � Su � �i���1;2 = 0 (2.3.8)�1�n;k��x12f0;bg = 0 (2.3.9)(u; p; �n;k)(t; x1; x2; x3) = (u; p; �n;k)(t; x1; x2 + 2�; x3) (2.3.10)Beause we are working in the spae ~Xrn;k or Xrn;k, so we have a speial form for �n;k,some of the onditions (2.3.1)-(2.3.10) are automatially satis�ed; however, for theseek of ompleteness we wrote the whole Stokes problem.In analogy with the previous setions we de�ne the operatorL� � u�n;k � :=  ���u +rH(2�Snu ���0) +rH(g�n;k � ���n;k)�rH(�un���0)�un���0 ! ;(2.3.11)where H(�un���0) := ~H(�un���0 ; 0). We denote by L�u the �rst omponent in thede�nition (2.3.11).We prove how the Theorem 1.2.5 arries over. We observe that the next Theoremis true also in the whole spae ~Xr (i.e. for an eigenvetor (u; �) 2 ~Xr of L�).



2.3. HOPF BIFURCATION WITH SYMMETRY 55Theorem 2.3.1 (Position of eigenvalues of L� w.r.t. k � kE)Let � u�n;k � 2 ~Xrn;k be an eigenfuntion (onsidered omplex) of L� with eigenvalue�. Then Re� � u�n;k �2E = 2� Z
0 jSuj2 � �j�j2k�n;kk20;�0 (2.3.12)Im� � u�n;k �2E = 2ImZ�0(�un���0)(g��n;k � ����n;k): (2.3.13)In the ase of Im� 6= 0 the energy equality holds :kuk20;
0 = kuk2E;
0 = k�n;kk2E;�0 = 12 � u�n;k �2E = �k�n;kk20;�0 : (2.3.14)Proof: Following the proof of Theorem 1.2.5 this Theorem an be proved withoutdiÆulties. The only di�erene whih appear is the expresion (2.3.4) for the normalstress on the free boundary. �We abbreviate again by k�k without indiies the L2(
0)3-norm (or L2(�0)-norm)and by h�; �i the L2-salar produt.We want to get a global piture of the position of eigenvalues as in the previoussetion, but now depending on the parameter �. Looking at the results of Theorem2.3.1, we see that two important di�erenes will appear:(a) The eigenvalues may have a negative real part;(b) The energy equality for eigenvetors (u; �n;k) remains unhanged and doesnot depend on the bifuration parameter �; we will exploit this to provethat for j�j ! +1, the nonreal eigenvalues are bounded.Proposition 2.3.2(a) The modulus of nonreal eigenvalues is bounded independent of �.(b) For j�j ! +1 all eigenvalues of L� are real.Proof:(a) We suppose that for j�j ! +1 we an �nd a sequene of nonreal eigenvalues�(�) 2 C n R of L� with j�(�)j ! +1. For every suh omplex eigenvalue with theeigenfuntion u(�(�)), we know from the energy equality (2.3.14):ku(�(�))k2 = �k�n;kk2 is bounded independent of �:



56 CHAPTER 2. THE BIFURCATION THEORYThe funtion u(�(�)) satis�es the problem (2.2.4)�(2.2.5) (together with the orre-sponding pressure funtion). We an use the result of Proposition 2.2.4() from theprevious setion, beause its proof did not exploit � = 0, and we onlude:ku(�(�))k ! +1; for j�(�)j ! +1;a ontradition.(b) For the seond part we treat separately the ases � ! �1 and � ! +1.(i) � ! �1The equation (2.3.12) impliesRe�(�)! +1 for � ! �1whih implies �(�) 2 R (beause the nonreal eigenvalues are bounded).(ii) � ! +1We suppose that for any � arbitrary large, we an �nd a nonreal eigenvalue �(�)of L�, so we an onstrut a sequene of nonreal eigenvalues (whih are bounded)and onsider �(�)! �1. Let (~u(�(�)); �n;k) be an eigenfuntion of L� orrespondingto �(�) and ~p(�(�)) be the orresponding pressure funtion. Beause �(�) 2 C n R,it never meets �j, so (~u(�(�)); ~p(�(�))) is a nonzero solution of (2.2.4)�(2.2.5) (for�(�)).We distinguish two ases:(1) �1 = 0Letting � ! +1, the limit funtion (~u(0); ~p(0)) is a solution of the problem(2.2.4)�(2.2.5) for � = 0, so ~u(0) is identially zero. On the other hand, every~u(�(�)) satis�es the energy equality (2.3.14) and passing to the limit, we obtain0 = k~u(0)k2 = lim�!+1 k~u(�(�))k2 = �k�n;kk2 6= 0a ontradition.(2) �1 6= 0Then the pair (v(�(�)); q(�(�))),v(�(�)) := ~u(�(�))� and q(�(�)) := ~p(�(�))�satis�es the equations: (�(�)� A)v(�(�)) = 0vn(�(�))���0 = ��(�)� �n;k(q(�(�))� 2�Snv(�(�)))���0 = �� �n;k + �(�)�n;k:



2.3. HOPF BIFURCATION WITH SYMMETRY 57Passing to the limit � ! +1, using our hypothesis �(�)! �1 2 C and ontinuityw.r.t � of the funtions v and q, the pair of the limit funtions (v(�1); q(�1))v(�1) := lim�!+1 v(�(�)) and q(�1) := lim�!+1 q(�(�))satis�es the following equations:(�1 � A)v(�1) = 0vn(�1)���0 = 0(q(�1)� 2�Snv(�1))���0 = �1�n;k:and v(�1) 6� 0 beause the normal stress on the free boundary is still nonzero.On the other hand, using the energy equality (2.3.14) we have:0 6= kv(�1)k2 = lim�!+1 ~u(�(�))� 2= lim�!+1 �k�n;kk2�2= 0;a ontradition.So, 9�0 > 0 suh that for j�j > �0 all eigenvalues of L� are real. �We resume now two useful results from the previous Setion 2.2. First, for � = 0we know:the �rst two eigenvalues of L0;� beome nonreal when � exeeds �0and for the analysis in this setion we �xed suh an � (and omit it from the notationof L�;�). Seond, for � 2 C nf�j : j 2 Ng we have de�ned ~u(�) as the unique solutionof the problem (2.2.4)�(2.2.5), and ~r(�). We know that �(�) is an eigenvalue ofL0;� , ~r(�) = �. With the exterior fore ating through �, we have:�(�) 2 C is an eigenvalue of L� () ~r(�)�n;k = ��n;k � �~un���0= ��n;k + ���n;k() ~r(�) = � + ��;so, we �nd the real eigenvalues of L� at the intersetion of the graph of the funtion~r(�)� � (whih is already known) with the line y = �� (see Figure 3).
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Figure 3: The intersetion of the graph of ~r(�)� � with the line y = ��
We observe:� For any � 2 R, the line y = �� intersets the graph of ~r(�)� � on eah interval(�j; �j+1), j 2 N, at least one, so L� has at least one real eigenvalue lying on eahinterval (�j; �j+1).� There exists the values �1 < 0 and �2 > 0 suh that the lines y = �1� and y = �2�are tangent to the graph of ~r(�)�� on the interval (0; �0) and (�1; 0) respetively.For � 2 (�1; �2) the line y = �� does not interset the graph of ~r(�) � � for � 2(�1; �0). Beause of the analytiity of ~r (the number of zeros of ~r, eah ountedwith its multipliity, is loally onstant), a pair of omplex onjugate eigenvalues ofL� appears for � = �1 + � and � = �2 � � (� > 0 small). Denote them by �0(�) and�1(�) with �0(�) = ��1(�).



2.3. HOPF BIFURCATION WITH SYMMETRY 59� For � 2 (�1; �1), the line y = �� intersets the graph of ~r(�) � � twie for� 2 (0; �0), so the �rst two eigenvalues are real and positive.� For � 2 (�2;+1), the line y = �� intersets the "�rst part" of the graph of ~r(�)��twie, but for � 2 (�1; 0), so the �rst two eigenvalues are real and negative.We denote the �rst two eigenvalues of L� with �0(�), �1(�) and the orderedsequene of the (rest) real eigenvalues with f�j(�)gj2N;j�2.Theorem 2.3.3 (The global bifuration piture in �)For � 2 (�1; �1) the �rst two eigenvalues of L� are real and positive:0 < �0(�) < �1(�) < �0:For � ! �1 all eigenvalues of L� are real, every interval (�j; �j+1) ontains onereal eigenvalue �j+2 of L� and �0(�)& 0, �j+2 % �j+1, j 2 N [ f�1g.For � 2 (�2;+1) the �rst two eigenvalues of L� are real and negative:�0(�); �1(�) < 0:For � ! +1 all eigenvalues of L� are real, every interval (�j; �j+1) ontains onereal eigenvalue �j+2 of L� and �j+2 & �j+1, j 2 N.There exists a point �� 2 (�1; �2) where a pair of omplex onjugate eigenvaluesof L� rosses the imaginary axis transversally. The imaginary axis an be rossedonly with negative real part of the veloity.Proof: During this proof we have to keep in mind that eah of �; u; p depends on �,but we will not write this expliitly.The �rst two statements are lear from Proposition 2.3.2(b) and Figure 3, whihalso implies (beause ~r is an analyti funtion): for small � > 0,� for � = �1 + � the pair of omplex onjugate eigenvalues of L� has a positivereal part;� for � = �2 � � the pair of omplex onjugate eigenvalues of L� has a negativereal part.The eigenvalues of L� depend ontinuously on � and together with Proposition2.3.2(a) we an onlude: there exists �� 2 (�1; �2) suh that �(��) is purely imagi-nary, Re�(��) = 0.The eigenvalues �(�) 6= �j of L� are geometrially simple (in every ~Xrn;k and upto the Zk-symmetry) beause for every eigenfuntion (u(�(�)); �n;k), u(�(�)) satis�esalso the problem (2.2.4)�(2.2.5) whih has unique solution. The eigenvalues have



60 CHAPTER 2. THE BIFURCATION THEORYthe same geometri and algebrai multipliity for j�j ! +1; for the proof see[Shw1℄.We have to prove now the transversality (for � = ��, ��(Re�) 6= 0) and thediretion of rossing (for � = ��, ��(Re�) < 0).From the energy equality (2.3.14) we see that the norm of the eigenfuntion udoes not depend on �, and we an alulate:0 = ��kuk2 = �� Z
0 u � �u = Z
0 u � ���u+ u � ���u = 2Rehu; ��ui : (2.3.15)We make �rst some further alulations, (2.3.16) and (2.3.17), for ��u 6= 0. Mul-tiplying the �rst omponent of the eigenvalue equation for L� with ���u, integratingover 
0 and using Corollary 1.2.3 and Theorem 2.3.1, we obtain:h�u; ��ui = hL�u; ��ui= 2� Z
0 Su : S�� �u + Z�0(��n;k � �un���0) � ���un���0= 12�� �2� Z
0 Su : S�u� + Z�0(� + ��)�n;k(��� ��)��n;k= 12�� �Re� � 2�k�n;kk2 + �j�j2k�n;kk2�� �� �� � �k�n;kk2 � ������k�n;kk2= ��(Re�)�k�n;kk2 + 12 j�j2k�n;kk2 + 12�(��j�j2)k�n;kk2| {z }2 R��� �� � �k�n;kk2 � ������k�n;kk2 (2.3.16)Di�erentiating the �rst omponent of the eigenvalue equation for L� w.r.t. �, mul-tiplying with ���u, integrating over 
0 and using Corollary 1.2.3 and Theorem 2.3.1,we obtain:0 = h��(�u); ��ui � h��(L�u); ��ui= ���hu; ��ui+ �k��uk2+h����u�rH(2�Sn��u���0); ��ui � hrH(��(��un���0)); ��ui= ���hu; ��ui+ �k��uk2 � 2� Z
0 S��u : S�� �u � Z�0 ��(��)�n;k(��� ��)��n;k= ��� hu; ��ui| {z }2 C n R +� k��uk2| {z }2 R � 2�kS��uk2 + �j���j2k�n;kk2| {z }2 R+��� ��k�n;kk2 (2.3.17)



2.3. HOPF BIFURCATION WITH SYMMETRY 61We prove now that the speed of nonreal eigenvalues never vanishes. Let � be anonreal eigenvalue of L� and suppose ��� = 0, so ��(Re�) = ��(Im�) = 0. We prove�rst that this implies also ��u = 0. Suppose ��u 6= 0, so ���u 6= 0, too. Introduingthis in the equation (2.3.17) we obtain�k��uk2 = 2�kS��uk2whih implies � 2 R, a ontradition. So��� = 0 =) ��u = ���u = 0 =) ��Su = 0:Di�erentiating the equation (2.3.12) w.r.t. � we obtain0 = ��(Re�)2�k�n;kk2= 2���(Z
0 jSuj2)� ���j�j2k�n;kk2 � j�j2k�n;kk2= �j�j2k�n;kk2;a ontradition. Therefore we know for nonreal eigenvalues: ��� 6= 0, 8�.In order to prove the transversality ondition for � = �� and the diretion ofrossing of the imaginary axis, we take the real part of (2.3.16) together with (2.3.15)to obtain: �Im� � Imhu; ��ui (2:3:15)= Reh�u; ��ui (2:3:16)= 12 j�j2k�n;kk2and the imaginary part of (2.3.17) to obtain0 = ��(Re�)Imhu; ��ui+ Im�k��uk2 + Im(��� ��)k�n;kk2:Multiplying the last equation with 2Im� 6= 0 and using the previous equation, weobtain: ��(Re�)j�j2k�n;kk2 = 2Im2�k��uk2 + 2Im� � Im(��� ��)k�n;kk2:For � = ��, we are on the imaginary axis, so we haveRe� = 0 ) Im(��� ��) = Im� � ��(Re�)j�j2 = Im2� 6= 0and then ���(Re�)k�n;kk2 = 2k��uk2 > 0: �We an formulate results similar to Proposition 1.2.6, Theorem 1.2.13 and Theo-rem 1.2.17 for L� (8�). The proofs follow immediatly beause only the value of p���0is modi�ed with �un���0 and we an estimate krH(�unj�0)kr;
0 � kukr+1;
0:



62 CHAPTER 2. THE BIFURCATION THEORYProposition 2.3.4 (Properties of L�)(a) The operator L�1� : Xr ! ~Xr+1, r � 1 is bounded 8�.(b) The solution (u; �) of the equation L�(u; �) = (f; 0) 2 Xr satis�es the regularity:k(u; �)kXr+2 � k(f; 0)kXr :() The operator L� : ~Xr+2 ! Xr3=2, r � 0, is invertible and the inverse is bounded8�. The same result holds for �+ L�, too, when �� is not an eigenvalue of L�.(d) Linear existene results, similar to Theorem 1.2.15 and Theorem 1.2.18, holdfor L�, 8�, too.De�nition 2.3.5 (Generalized nonresonane ondition)We say that the pair �� of pure imaginary eigenvalues of L�� satis�es the gen-eralised nonresonane ondition, when the following two requirements are full�led:(a) the usual nonresonane ondition: 8a 2 Z n f�1g, a�+ is not an eigenvalue ofL��;(b) a simpliity ondition: for the �xed value �� of the bifuration parameter (forwhih we have proved the transversality ondition), the eigenvalues �� of L�� areeigenvalues of L���� ~Xn;k only for one n 2 N and for one k 2 Z.We are now in position to formulate a Hopf bifuration theorem for the fullnonlinear problem. We an onsider we have written it in the form (after similartransformations we have done in Setion 1.3):(�t + L�)� u� � = � F (u; �)0 � (2.3.18)where F ontains all the nonlinearities and orretion terms. We reall that F hasthe following properties: for r � 1, F : Xr+2 ! Hr(
0)3, F (0; 0) = 0, DF existsand DF (0; 0) = 0.Theorem 2.3.6 (Hopf bifuration theorem)For every spae Xn;k there exists a ritial value �� of the bifuration parameter �suh that L�� has a pair �� of purely imaginary eigenvalues and the transversalityondition is full�led. We assume that this pair of eigenvalues satis�es the generalizednonresonane ondition of De�nition 2.3.5.Then a Hopf bifuration ours and there exists a branh of Zk-symmetri, periodisolutions of the nonlinear equation.



2.3. HOPF BIFURCATION WITH SYMMETRY 63Proof: We are looking for periodi solution in t of period p and with presribedspatial symmetry Zk for the equation (2.3.18). We an resale the time throught 7! 2�t=p, so we look for periodi solutions of (2.3.18) of period 2� and introduethe unknown period as a parameter. We de�ne the spaes ~XrZk and ~Xr3=2;Zk whihontain funtions from ~Xr and ~Xr3=2 respetively, whih have spatial symmetry Zk,i.e.: ~XrZk = fx(t; �) 2 ~Xr ��  � x(t; �) = x(t; �); 8 2 Zk; 8tg~Xr3=2;Zk = fx(t; �) 2 ~Xr3=2 ��  � x(t; �) = x(t; �); 8 2 Zk; 8tgwhere the omposition � is de�ned in (2.2.1) and (2.2.2) (� ats only on the seondspatial variable x2). The de�nition is similar for the spaes without ~, too.We want to solve the equation�((u; �); p; �) := 2�p �t � u� � + L� � u� �� � F (u; �)0 � = 0 (2.3.19)where� : H1per([0; 2�℄; ~Xr3=2;Zk) \ L2per([0; 2�℄; ~Xr+2Zk )� R � R ! L2per([0; 2�℄; Xr3=2;Zk);(see Proposition 2.3.4(d)).Applying L�1� we obtain an equation equivalent with (2.3.19): ((u; �); p; �) := 2�p L�1� �t � u� �+ � u� �� L�1� � F (u; �)0 � = 0 (2.3.20)and for (u; �) 2 H1per([0; 2�℄; ~Xr3=2;Zk) \ L2per([0; 2�℄; ~Xr+2Zk ), we know from the regu-larity theory of Chapter 1 (see also Proposition 2.3.4):F (u; �) 2 HrZk(
0) ) L�1� � F (u; �)0 � 2 ~Xr+2Zk�t� u� � 2 ~Xr3=2;Zk ) L�1� �t � u� � 2 ~Xr+2Zk ;so  : H1per([0; 2�℄; ~Xr3=2;Zk) \ L2per([0; 2�℄; ~Xr+2Zk )� R � R ! L2per([0; 2�℄; ~Xr+2Zk ):Let �� be the ritial value of � we have found in Theorem 2.3.3. Then onsider�+ has Im�+ > 0 and let p� := 2�Im�+ . We have to show that the operator P :=D1 ((0; 0); p�; ��) is Fredholm of index zero with a two dimensional kernel, whereP : H1per([0; 2�℄; ~Xr3=2;Zk) \ L2per([0; 2�℄; ~Xr+2Zk )! L2per([0; 2�℄; ~Xr+2Zk )



64 CHAPTER 2. THE BIFURCATION THEORYPv := D1 ((0; 0); p�; ��)hvi = 2�p� �tL�1�� v + v ;where v = (u; �). We apply the Fourier expansion in time setting 8m 2 Zvm(�) = 1p2� Z 2�0 v(t; �)eimtdt :Then P =Mm2ZPmwith Pm : ~Xr+2Zk ! ~Xr+2ZkPm := �im2�p� L�1�� + id :Pm is a Fredholm operator of index 0 8m 2 Z n f0g, beause the operator L�1�� :~Xr+2Zk ! ~Xr+3Zk ,! ~Xr+2Zk is ompat; P0 = id. We know from Theorem 2.3.3 thatL�� has a pair of purely imaginary omplex onjugate eigenvalues �� whih aresimple up to the Zk-symmetry in every spae ~Xr+2n;k (n 2 N , k 2 Z) for whih ��are eigenvalues of L���� ~Xr+2n;k . (We observe that the number of suh ~Xr+2n;k is �nite,beause L�1�� is ompat, so the eigenvalues of L�� have also �nite multipliity).We have assumed that the generalized nonresonane ondition of De�nition 2.3.5 isfull�led, so the eigenvalues �� of L�� are Zk-simple in ~Xr+2 andPm is invertible 8m 2 Z n f�1gkerP1 = kerP�1dimR kerPm = 2 for m = �1 :For the kernel of P , we alulate:Pv = 0 , P  1p2�Xm2Zvme�imt! = 0, Pmvm = 0 8m 2 Z, � vm = 0 8m 6= �1vm 2 kerPm for m = �1 :Then dimR kerP = dimR kerP�1 = 2. To omplete the proof that P is a Fredholmoperator of index zero, it remains to show that~P := Mm2Znf�1gPm~P : H1per([0; 2�℄; ~Xr3=2;Zk) \ L2per([0; 2�℄; ~Xr+2Zk )! L2per([0; 2�℄; ~Xr+2Zk )



2.3. HOPF BIFURCATION WITH SYMMETRY 65is surjetive. Letg 2 L2per([0; 2�℄; ~Xr+2Zk ); g = 1p2� Xm2Zgme�imt with g1 = g�1 = 0 :For every gm 2 ~Xr+2Zk (m 6= �1) we an �nd vm 2 ~Xr+2Zk suh that Pmvm = gm (bythe Fredholm property of Pm).Denote by gM = 1p2� MXm=�M gme�imt ; vM = 1p2� MXm=�M vme�imt:Then vM satis�es the equation2�p� �tL�1�� vM + vM = gM , 2�p� �tvM + L��vM = L��gMand kvMkH1per([0;2�℄; ~Xr3=2;Zk)\L2per([0;2�℄; ~Xr+2Zk ) � C1kL��gMkL2per([0;2�℄;Xr3=2;Zk)� C2kgMkL2per([0;2�℄; ~Xr+2Zk )� C3kgkL2per([0;2�℄; ~Xr+2Zk ) :We �nd v suh that vM * v weakly in H1per([0; 2�℄; ~Xr3=2;Zk)\L2per([0; 2�℄; ~Xr+2Zk ) andv solves ~Pv = g. The regularity theory of Chapter 1 (see also Proposition 2.3.4)implies now v 2 H1per([0; 2�℄; ~Xr3=2;Zk) \ L2per([0; 2�℄; ~Xr+2Zk ). Then P is a Fredholmoperator of index 0 (as a diret sum of two Fredholm operators of index zero P�1with an invertible operator ~P ) and dimR kerP = 2.Using Ljapunov-Shmidt tehniques, we redue the problem of �nding periodisolutions of the equation  = 0 (whih is equivalent to � = 0) to one in twodimensions. We an apply now standard tehnial arguments used in the proof ofthe Hopf bifuration theorem (see [GSS℄ and [Cr,Ra℄) and the result follows. �
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