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Introduction

In this work we investigate the motion of a viscous, incompressible fluid contained
in an uncovered three-dimensional rectangular channel. The upper surface changes
with the motion of the fluid, so we deal with a free boundary problem. We consider
small perturbations of a uniform flow with a flat free surface. We include the effect
of the surface tension; the external forces are gravity, and the wind force which acts
on the free boundary (in the Section 2.3).

The motion of the fluid in the channel is governed by the Navier-Stokes equations.
The variables are, as usual, the velocity and the pressure of the fluid in the interior
of the domain and a function parameterizing the free boundary. The pressure can
be expressed in terms of the other two variables, which are coupled as follows: the
fluid velocity at the free boundary prescribes the speed of the boundary, and the
mean curvature of the free surface creates a pressure jump via the surface tension.

We consider the system to be periodic in the direction of the length of the
channel. Technically, we identify the inflow boundary with the outflow boundary of
the channel and then we consider the second spatial variable belonging to the circle
St In order to obtain a well-posed model, we have to prescribe the value of the
dynamic contact angle between the walls and the free boundary (see [Schw2], [Re])
and we choose it to be 7. As boundary conditions, we consider that the walls are
impenetrable together with a perfect slip condition, and a no slip condition for the

bottom.

The main aim of this paper is to analyse the qualitative behavior of the flow (os-
cillations of periodic solutions) using tools of bifurcation theory. In order to do this
we need fundamental facts of existence and regularity of solutions, spectral analysis
of the linear system connected with the free boundary value problem taking into
account the underlying symmetries, and techniques of equivariant Hopf bifurcation
theorem.



2 INTRODUCTION

J. T. Beale studied the problem of the motion of a viscous incompressible fluid in
a semi-infinite domain, bounded below by a solid floor and above by an atmosphere
of constant pressure, either with ([Bel]) or without ([Be2]) surface tension. In [Bel]
he used the Fourier transformation to prove resolvent estimates. These estimates
combined with the Laplace transformation in time were used to prove the solvability
of the time-dependent problem. He transformed the free boundary value problem to
an initial boundary value problem on a fixed domain in a special way. This method
is crucial in his existence proof and was also adapted and used by [Re], [Schwl],
[Schw2]. We will apply it also in this paper.

B. Schweizer treated in [Schwl] the case of a liquid drop (with viscosity and
surface tension) in a free space, so a full free boundary problem. With the help of
semigroup methods, he studied linearized equations and get also existence results for
the nonlinear problem. He computed the spectrum of the generator of the semigroup.
Nonreal eigenvalues appeared for large values of the surface tension. An additional
exterior linear force proportional to the normal velocity and acting on the free surface
leaded to a Hopf bifurcation with O(2)-symmetry.

As soon as contact between a fixed boundary and a free boundary arises, the
analytic investigations are getting more complicated. Already in case of a flow in a
domain with non smooth fixed boundary, the regularity of the solutions is restricted
(see e.g. [Dau]). The problem how to prescribe conditions for the contact is still in
discussion. There exists a huge number of publications dealing with the solvability
of free boundary problems with contact points and lines and therefore only some of
the works and authors can be mentioned.

V. A. Solonnikov proved existence results for free boundary problems for the
Navier-Stokes equations for both static or dynamic contact points and lines. He
proved estimates for stationary problem for limiting values of contact angle 0 or
m, in weighted Holder spaces (see [Soll], [Sol2] and the references presented there).
For the solvability of stationary free boundary problems with a Navier type slip
condition on the rigid walls see [Kr| and [Soc|. This condition can be applied in the
case of a domain with rough boundaries by replacing the rough boundary with a
smooth one where the Navier condition is fulfilled.

M. Renardy ([Re]) proved existence and uniqueness results for a two dimensional
free surface flow problem with open boundaries. Both steady and initial value prob-
lems are investigated. He considered the case where velocity boundary conditions
are prescribed on both the inflow and the outflow boundary. The smoothness of the
solution is limited by the singularity at the corner between the free surface and the
inflow (or outflow) boundary.
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In [Schw2], B. Schweizer discussed conditions for the dynamic contact angle and
well-posedness of the equations for a flow in a two dimensional domain. For the case
of § contact angle and slip boundary conditions he proved resolvent estimates which,
using techniques developed in [Re], yielded an existence result for the nonlinear
initial boundary value problem.

The studies of the oscillatory behavior of a fluid in a channel is continuing the
research of B. Schweizer who analyzed the oscillation of a liquid drop [Schwl]. Due
to the solid boundary in our problem, the techniques in this paper have to be
changed due to difficulties arising from the additional boundary conditions. We are
able to obtain results for the channel similar to those B. Schweizer obtained for the
oscillating drop.

The present work is divided into two chapters. The first chapter treats the exis-
tence of solutions for the nonstationary linear and nonlinear problem. The boundary
conditions chosen for the walls and the 7 dynamic contact angle allow us to avoid
the problems which might appear in dealing with the regularity of the solution,
because the domain is not smooth. We can construct symmetric extensions of the
solution through the walls obtaining functions in the extended domain, which will
satisfy the same equations as the initial ones. The problem becomes equivalent to

one of a fluid in a container with periodic lateral boundary conditions.

In order to study the spectral behavior of the linearized problem, we write the
corresponding system in the form 0;x+Lx = 0, where x contains two of the variables:
the velocity field and the position of the free boundary. The third unknown, the
pressure, can be taken out from the Navier-Stokes equations as follows: using a har-
monic extension operator (see equations (1.2.12) and (1.2.13)), we can express the
pressure as a map depending on the velocity and the position of the free boundary.
In an appropriate Hilbert space X" (see Definition 1.2.1), £ has a compact resol-
vent and its spectrum is contained in a sector of the complex plane (see Proposition
1.2.6 and Theorem 1.2.9). £ and the nonlinearity in the full nonlinear system define
maps from X2 o X", but the operator £ does not have the usual regularization
property: the inverse does not map X" to X"*2 (see Remark 1.2.7(c)). We will use
the fact that the right hand side of the nonlinear equation is always contained in
a subspace of the form (F,0) € X" (see the equation (1.3.9)). Both, the optimal
regularization property and a resolvent estimate, hold on such a subspace (see The-
orem 1.2.11 and its consequence formulated in Theorem 1.2.13). Using the inverse
of the Laplace transformation, the resolvent estimates gives us a unique solution of
the time dependent linear problem (see Theorem 1.2.15).
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In order to solve the nonlinear problem we follow the method presented in [Bel]:
we transform the nonlinear problem defined on the unknown domain into one on the
equilibrium domain (which has a flat surface on the top), by stretching or compress-
ing on the vertical line segments (see Section 1.3). The nonlinearity has the optimal
properties we have already mentioned. We treat it as the right hand side of the lin-
ear equation. Then, the implicit function theorem gives us, for small enough initial
values, a solution of the time-dependent nonlinear problem (see Theorem 1.3.2).

The second chapter follows essentially the ideas presented in [Schw1] and contains
the main result of this work, a Hopf bifurcation theorem with Zg-symmetry for this
Navier-Stokes system (see Theorem 2.3.6). For general tools in bifurcation theory,
especially for abstract results about the Hopf bifurcation, see e.g. [GSS], [Cr,Ra] and
[Ma,Mc|. The group of symmetries in our model is determined by the shape of the
domain and the boundary conditions, so our problem provides an O(2)-equivariance.
Using the eigenfunctions of the Laplace operator in a rectangle, we can find an £-
invariant decomposition of the spaces X" = @ X} ., n € N, k € Z (see Proposition
2.1.1 and Proposition 2.1.2). The isotropy subgroup of the position of the boundary
function in Xk 1s isomorphic to the cyclic group Z, (see Proposition 2.1.3). We
investigate the eigenvalues of £ in such a space X ; with n € N and k € Z fixed.

In Section 2.2, we obtain a detailed picture of the position of the eigenvalues of
5‘)‘@ depending on gravity and the surface tension which, together, we denoted
n,k

by a (see Theorem 2.2.6 and Figure 2). For @ = 0 the spectrum consists of Stokes
eigenvalues together with zero. With increasing «, the eigenvalues can become
complex. For a greater than a certain «p, the first two merge and leave the real
axis. Between every two consecutive Stokes eigenvalues we can find at least one real
eigenvalue of £, and only one for &« — oo, which approaches the next lower Stokes
eigenvalue. For a — oo, the modulus of the nonreal eigenvalues is not bounded.

For a fixed a > «q, a similar picture can be drawn if an additional exterior
linear force of strength & acts on the free surface (see Theorem 2.3.3 and Figure 3).
The operator L, has similar invertibility properties and the solution satisfies similar
resolvent estimates like in the case of £ (see Proposition 2.3.4). The behavior of the
eigenvalues of £, depending on { presents two important differences compared with
the behavior of the eigenvalues of £ depending on «: eigenvalues with negative real
part will appear and the modulus of nonreal eigenvalues is bounded independent of
¢ (see Theorem 2.3.1 and Proposition 2.3.2). For |£| — 400, all the eigenvalues of
L are real and interspersed with the eigenvalues of the Stokes operator. Following
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the eigenvalues between £ — —oo and £ — 400, we prove the existence of a pair of
nonreal eigenvalues for £ € (&, &) which crosses the imaginary axis transversally for
a value £* of £ (see Theorem 2.3.3). They are simple in every space X ,, up to the
symmetry Z;. We formulate a generalized nonresonance condition (see Definition
2.3.5) and we assume that the pair of purely imaginary eigenvalues of L¢- satisfies
this generalized nonresonance condition. Then we can prove an equivariant version
of the Hopf bifurcation, and thus the existence of a branch of Zj-symmetric and
periodically oscillating solutions of the Navier-Stokes system (see Theorem 2.3.6).

The preparation of this thesis was financially supported by the Deutsche Forsch-
ungsgemeinschaft in the Graduiertenkolleg “Modellieren und Wissenschaftliches Rech-
nen in Mathematik und Naturwissenschaften” and by SFB 359 “Reactive Stromungen,
Diffusion und Transport”, both at IWR, University of Heidelberg.

[ am extremely grateful to my scientific adviser Prof. Dr. Dr.h.c.mult. Willi
Jager for awakening my interest in this problem as well as for his constant support
and encouragement not to get lost into details. I would also like to thank Priv. Doz.
Dr. Ben Schweizer for many useful and productive discussions that were absolutely
critical to the completion of my work.
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Chapter 1

The Existence Theory

1.1 Formulation of the Problem

We want to model the nonstationary motion of a viscous, incompressible fluid con-
tained in an uncovered rectangular channel. The upper surface changes with the
motion of the fluid, so we deal with a free boundary problem. The unknown func-
tions are not only the velocity field w and the pressure p, but also the domain 2. The
effect of the surface tension on the upper free boundary is included. The external
forces are the gravity and the wind force which acts on the free boundary and in
fact generates the motion of the flow.

We consider the channel of width b and length [ = 27 to be deep enough such that
the fluid will never overflow it. We impose a periodicity condition in the direction
of the length of the channel (for all unknown functions). We write the equations
using the euclidian coordinates (z1, s, z3); the components of the velocity field are
then denoted by (w1, us,us). In describing the equations of motion we will assume
that all variables are nondimensionalized in the usual way.

Let (0,b) x (0,27) x (—h,+00), b,h > 0 be the channel and © the domain
occupied by the fluid with the free boundary denoted by I' and fixed boundary
composed from the walls Y1, 5 and the bottom ¥ 5. Let C;.Cs be the intersection
curves between the free boundary and the walls. The periodicity in x5 is technically
incorporated by considering the independent variable x5 belonging to the circle S?.
So, we have identified (and actually eliminated as boundaries) the surfaces (0, b) x
{0} x (=h, +o0) and (0,b) x {27} x (=h, +00). The channel (0,b) x S* x (—h, +o0)
is now considered "without curvature in the xo-direction”, i.e. the equations will not
be transformed (this is not a domain transformation, it is only an identification).

7
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Figure 1:

We take the domain of the fluid at equilibrium to be
Qo = {(w1,79,23) ER* 10 <y < b, 29 € S*, —h < 23 <0},
with the upper boundary I'y
[y = (0,b) x S* x {0},

and the fixed boundary composed from the walls ¥ o, ¥5 o and the bottom ¥_;. The
contact curves between the free boundary and the walls are denoted by Cj . Csy.
Where no confusion can appear, we will omit the index 0 from the notation for the
walls and contact lines of the equilibrium domain. When we want to refer to the
walls together, we will denote them by ¥, 5 and the same for contact lines C .

To describe the free surface of the fluid, we assume small perturbations of the
equilibrium surface I'y and parametrize the free boundary of the liquid with a func-
tion 7(t,-) : To — R. Thus the height of the free surface is a function of horizontal
coordinates: x3 = n(t, 1, 22), (r1,72) € [y and the graph of n gives the shape of T
The domain occupied by the fluid is

Q=Q(t) = {(21,72,73) ER®: 0 <y <b,my €S', —h < w3 <n(t, v, 72)}.

The velocity field is a function u(t,-) : Q(f) — R3.
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As usual, we introduce the deformation tensor S, with the components
1
(Su)ij = 5(Fiu; + Ojus)
and the stress tensor o with the components

The motion of the fluid in the interior is governed by the Navier-Stokes equations
for an incompressible fluid with viscosity v:

Ou+ (u-Viu—vAu+Vp+gVey = 0 (1.1.1)
Vou = 0 (1.1.2)

where ¢ is the acceleration of gravity. It is natural to substract the hydrostatic
presure from p, so we set

p:=p—Py+grs
where P, is the atmospheric pressure above the liquid. The density does not appear
because of the nondimensionalization. After substitution, the gravity term in (1.1.1)
is eliminated.

On the free surface we have the kinematic boundary condition which states
that the fluid particles do not cross the free surface (which is equivalent with the
geometric condition that n always parametrizes the free surface):

Om = ug — (O1m)us — (Gan)us on T (1.1.3)

If we neglected the surface tension, the remaining boundary condition on I" would
be the continuity of the stress across the free surface, so — 23:1 oin; = Pyn; + fin;
for i = 1,2,3, where n = (nq, ng, n3) is the outward normal to I" and f = (fi, fo, f3)
is the exterior force (for example the wind force). The effect of surface tension is to
introduce a discontinuity in the normal stress, proportional to the mean curvature
H(n) of the free surface I'. Our boundary condition on I' is therefore (using p :=

p— Py+grsand z3 =non )
3
pni vy (O + Oui)n; = (gn+ BH(n) + fi)n; =123 (1.1.4)
j=1

where § > 0 is the nondimensionalized coefficient of the surface tension and the
mean curvature of the surface I' is given by

H(n) =-V- v (1.1.5)

V 1+ [Vnl?
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We have denoted here by V the gradient with respect to the first two variables
Z1,x9; then let A .=V - V.

If nothing else is specified, in the following, we denote by n the outward normal
and by 7;, ¢ = 1,2, the two tangential directions to the surface.

From a physical point of view, the usual boundary condition © = 0 on ¥ can not
be considered here because of the unknown contact between the free surface and
the walls (we can not assume that it is not moving at all on the walls, so we can
not "stick” the free surface on the fixed boundary); but it is natural to consider the
no-slip condition on the bottom:
=0 (1.1.6)

U‘th,

and the velocity vanishing in the normal direction of the walls

u - n‘zluzz = “"1‘21,2 = “‘1‘21,2 = (1.1.7)
together with a perfect slip condition
n-S, 7y =0 (1.1.8)

We need also to prescribe the contact angle between the free surface and the

fixed boundary. We shall choose it to be 3. So, the free surface is moving on the

walls, but the value of the contact angle should remain constant. This condition can
be writen as:
Vn-n®' =Vn-n?=0n=0 on CyUC,. (1.1.9)

For similar problems with contact angle 0 or 7 see [Sol1], [Sol2] and the references
presented there.

The unknown functions w, p, n are periodic in the x5 direction of the channel, so
(U, p, 77) (t7 Ty, T2, .’L‘3) = (U’?pu T’) (t7 Ty, To + 271—7 333)' (1110)
The initial condition is

(w,m),_, = (uo, m)- (1.1.11)

The equations (1.1.1)—(1.1.11) are the evolutionary nonlinear equations describ-
ing the oscillations of a fluid in an uncovered channel.



1.2. THE LINEAR EQUATIONS AND ESTIMATES 11
1.2 The Linear Equations and Estimates

The linear problem for which we derive estimates is the one obtained by linearizing
equations (1.1.1)—(1.1.11) about equilibrium, replacing the initial data by zero and
introducing a right hand side. We note that the linearization of the mean curvature
in I'y is —An, where A is the Laplacian with respect to the "horizontal” variables
x1, 2. Because 'y = {x3 = 0}, we have n; = d;3, i = 1,2, 3, in the equation (1.1.4).

For the begining we consider the exterior force to be zero. The influence of a
nonzero exterior force (for example the wind force) will be considered for the study
of the Hopf bifurcation in Section 2.3.

We observe that the equation (1.2.5) is equivalent to the condition on the vanish-
ing of the tangential stress on I'y, so it can be writen also in the form n- S, - 7; 0
We also use the notations

‘rn -

3

Sut Sy =Y (Su)ij(So)is

i,j=1

Sy =n-Sy-n S':=n-S, 7.
Our linear problem becomes

u(t,)): Qg — R, pt,):Qy — R nt,-): Ty — R,

Ou—vAu+Vp = 0 (1.2.1)

Vou = 0 (1.2.2)

on = 11,3‘1,0:11%‘1,0 (1.2.3)

(p—2m93u3)‘1,0:(p—QVS:j)‘FO = gn— BAn (1.2.4)

(Osu; + Ojug)|  =n-Sy -1, = 0 (i=1,2) (1.2.5)
To 0

u‘zih =0 (1.2.6)

Urlg, = tnlg = 0 (1.2.7)

ouily "E w8, mly = 0 (i=23) (1.2.8)

0y oy = O (1.2.9)

(u,p,n)(t,x1, 20, 23) = (u,p,n)(t, 1, T2 + 27, 13) (1.2.10)

(w,n)|,_y = (0,0) (1.2.11)

We want to write the linear equations in the form 0;x + Lx = 0 and to satisfy
the boundary conditions by the choice of appropriate function spaces. To estimate
solutions of this equation, we use the Laplace transform in time.
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Following [Bel] and [Schwl], we use a harmonic extension operator and replace
the pressure term from the equation (1.2.1) by a gradient term which is determined
by the other unknowns (u and 7). In order to solve the equation Ap = 0 in Qq, we
have to find appropriate boundary conditions for p on ¥; 5 and X_; (the boundary
condition on [y is the equation (1.2.4)).

on Xy 9: Opp = O1p = VAU — Oy (:27) v, (1.2.2) —v0h (Oaus + O3us)

= —V82(8111,2) — V83(81?1,3) (1i8) 0
: _ _ (128) oo n
on X p: Opp = 0sp =vAus — Oyug =" vOus = V(ansu)‘z,h
It seams to be to restrictive to impose this condition for the pressure on the bottom
because it is not well-understood that we have enough regularity for u (this condition
requires u € H"(Qy)? with 7 > 2). At least locally, this will become clear after we

will symmetrize the equations and eliminate the walls (see equations (1.2.34) and
the Definition 1.2.12).

The harmonic extension function is defined as the unique solution of the problem

Ap = 0 in QO ((1,)

ply, = wSi|p, +9n—pBAn (D) (1.2.12)
a”p‘zm =0 (¢)
dpls = v(.S0)]s (d)

So, define the linear operator
H: HY2(Dy) x H¥2(2_,) — H™(Q)*

which essentially maps a function defined on I'y to its harmonic extension in 2.
The order r of the Sobolev space will be established later. We can consider p as a
harmonic function defined on the whole domain,

p = HQuS|, + 91— BAN V(3,57 )
= H@uS;|,, . v0.S)], )+ H(gn — BAN,0)
= H(vS; )+ Hlgn — BAn). (1.2.13)

In the last equality of (1.2.13), we have only simplified the notation for the operator
# (i.e. we have not included the condition on the bottom X_j,), because generally we
are more interested to solve the problem near the free surface. Anytime when we refer
to ”H(QVS{”‘FO) we have to understand the condition (1.2.12)(d) to be satisfied too,

and when we refer to H(gn — SAn) we have to understand the condition (1.2.12)(d)
with zero right hand side, i.e. anp\th =0
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In the following we will consider complex valued functions and denote with «
the complex conjugate of u. We use the following notations for the norms: Vr € R
(r = 0 denotes the L*-norm)

lullrany = llullao

Il

army) =l

Definition 1.2.1 Define the Hilbert spaces (over C):

X" = {(un) € H'(Q0)* x H™(T) | Vou= 0wy, =0

X" = {(un)eX |n-S7

- 07 8177‘

=0, u, melon) = 0}

‘FOUEI,Z Y p

with the natural norm inherited from the product space, i.e.

(. )]

xr = [Jullrao + |0llr41/2.10

and the operator
L: X"+ 5 X"

by
—vAu+ VH(2vS)

r,) + VH(gn — fAn)

_u”‘ro

Remark: The fact that £ maps to X" follows after a similar calculation we have

done to find the condition for anp\& L

Lemma 1.2.2 For smooth functions u,v : Qy — C* with V - u = 0 there holds

2 Sy Sy =— Au-v+2/ n-S, v
QO 590

Qo
In the case V -v = 0, U‘E =0, U”‘z =0, andn-S, - ‘r St =0 (where

7, is any tangent vector and n the nm‘mal vector corresponding to Lo, &1 or 3y
respectively), we obtain the identity

Ir,)]

2 Su:SU—/[ Au+ VH(2S!
Qo Q0
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Proof:

I = 2 Su : S{)

3
= / Z 81-11,‘7- + aj’ll,i)(aif)j + ajf)i)
Q

017 1

= / 8 u;0;0; + 0;1;0;9;) / 8 (0;u;0;9; + 0ju;0;v;)
Q Q

0791 07J1

= / Z ainaj@j—FajUiai@j)
Q

04,5=1
= E:fj-
Jj=1

Let 7 be fixed. Integration by parts gives:

3
I; / Z (07 uj + 0;0;u;)v; + / Z (Ojuj)n;v; + / Z dju;)n;v;
Q 200 3 200 3

0 =1
= —/ Au;v; + Zau]+6u,)nvj
9 ;1
3
I = ij—/ Au-v+2/ n-S, v
= Qo Ion
If additionaly n - S, - "r S, T 0, the tangent components of the vector
n-S, rous, , AT€ 7€T0; 50 together with the conditions for v vn‘z

we can write:

n-S, =n-9S,

'“‘690

Using again integration by parts we obtain:

2 Su:S; = / Au-v+/ 25, - vy,
Qo Qo To

= / Au-v+/ VH( 25"‘1, <0+ H( 25”‘1,
Qo Qo

= /[ Au+ VH(2S; | )]
Qo

) ,U‘F()leﬂ - (n ) Su ) n)(i) ) n)‘FgU21,2 - SZZL‘FO ) ,an

U‘th,

)V -0

Ty’

0),
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O

We will use the results of Lemma 1.2.2 especially in the particular case when u
and v satisfy the same conditions. We state this identities in the next Corollary;
the proof follows immediately.

Corollary 1.2.3 For function (u,p) and (v, q) satisfying the conditions

Vu = V-ov=0

Uy | = Uyl =
LIS 1%
“"Z,h = 7)‘27’1 =0
n- Su ) Ti‘FgU21,2 = n- Sv ) Ti‘roUzl,g = O’

the following identities hold:

2/ Syt Sy = —/ Au-v+2/ Sy -y, (1.2.14)
QO Q[] Fg

= —/ Av-u+2/ Sy up
Qn FO

2y/ Syt S; = / [—vAu+ VH(2vS]
Qn QO

IR (1.2.15)

/ [—vAu + Vp|o — / [p —2vS] v, = / [—vAD + Vq|u — / [q — 2vS]uy,
Qo Ty Qq To
(1.2.16)

Definition 1.2.4 (Energy-norms)
For functions u,v : Qq — C3, n,0 : Iy — C we define the scalar products:

(u,vV)pq, = /u-v
Qo

O / n- (g5 - BAD)

((5)-(3)), = worns o

The corresponding norms are denoted by || - |g.qq, || - ||Ex, and || - ||&-
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Remark: For (u,n), (v,0) € X", we have

<n,0>E,r0=.q/n-0+ﬁ Vn - Vo,
To

To
S0
1l%.r, = gllnllor, + BIIVallor,
and because ¢ and [ are positive constants, we obtain immediately the norm equiv-
alence
7l .re 2 [[0l]1,1,-

For u we have ||ul|g.q, = ||©|/0.00-
Theorem 1.2.5 (Position of eigenvalues of £ w.r.t. || - ||g)
Let (u,n) € X" be an eigenfunction (considered complex) of L with eigenvalue A.
Then
N
Re H( > = 21// S, 2 (1.2.17)
Y E Qo
NE
ImAH( ) = 2Im [ (—u,| )(gn — BAD). (1.2.18)
n E Lo 0

In the case of Im\ # 0, the energy equality holds:

1 u
2 _ 2 _
lelan = Il = 5 (o)

() -(0),
_ << “vAu +w(2usn?\2‘r+ VH(gn — BAR) ) | ( :; >>E
I8

—vAu + V’H(QVS”\FO)] U+ / VH(gn — BAn) -
Qo

2 (1.2.19)

E

Proof:

)

2

E

Qo

+/ —tin |, ) (g7 — BAD)
— 9% |5u|2+/ | (g0 — BAN) — uy |y (971 — BAD)
Qo To

Looking at the last equality, the first term is real, the second is imaginary and this
implies the assertion on the real and imaginary part of .
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To prove the energy equality we use the second part of the eigenvalue equation,

—Un | = An:

()

Proposition 1.2.6 The operator £ : X" — X" r > 1, is bounded.

r

2

=2Im [ An(gn — BAR) = 2ImA ||n||%p,-

E To

Proof: We want to solve L(u,n) = (f,h) € X" for (u,n). Let (u,p) be the solution
of the Stokes system:

—vAu+Vp = f
Veu = 0

—un‘ro = h

u”‘zm = 0

n-Sy, - Ti‘rouzm = 0
u‘z,h = 0,

with the usual bounds for the solution of the Stokes problem:

[ullr41.00 + 1VPlr 100 < x{llfllr.0 + [[Pllr41/20m0 )

For these estimates we observe at first that the Stokes system is elliptic and the
considered boundary conditions satisfy the complementary conditions from [ADN].
In order to obtain a domain with smooth boundary, we can perform a reflection at
the walls as in the equations (1.2.34) and in the Definition 1.2.12.

The pressure p yields n because g — SA is invertible in our function spaces. The
first part of the pressure can be estimated by

IVH(2vS]

roll—100 < callullriin
<

cica{|lfll—r.00 + [[2llr41/2m0}
and therefore it follows for the second part of the pressure:

IVl 100 + IVH VST )l 1.00

IVH(gn — BAN)|[r—1.0, <
< a(l+e){ll fllr-1.00 + | 2llr1/200}-

This implies n € H"3/2(Ty), so we obtain a bound for (u,n) € X"t ]
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Remark 1.2.7

(a) By Proposition 1.2.6, L' : X" — X" is compact, because the embeding H™' —
H" is compact. So L has a pure point spectrum and the eigenvalues have no finite
accumulation point

(b) —L is dissipative by the calculation in the proof of Theorem 1.2.5. Together
with Proposition 1.2.6, it follows that —L is an operator with compact resolvent and
the resolvent set of —L (which is an open set) contains 0. This implies that

e i > 0 contained in the resolvent set of —L;

o the resolvent (pu+ L)™' exists and is compact ¥V in the resolvent set of —L.

(c) We point out that L' : X° — X2 is not bounded: let (u,n) solve L£(u,n) =
(0,h). A bound for ||ull20, would imply h = “‘n‘ro € H®2(Ty); but apriori only

h € HY2(Ty) holds. We will formulate later (see Theorem 1.2.17) a result similar
with Proposition 1.2.6 where a better reqularity for h is assumed.

In the next Proposition we remember some well-known inequalities we will need
in order to obtain the resolvent estimates. For the proof (in a Lipschitz domain,
where the function is zero only on a part of the boundary) see [Ad], [Ci] or [Gi,Ra].

Proposition 1.2.8

For uw € H'(Qy)?* with 11,‘2 . = 0, the following inequalities hold (with positive

constants Cr, Cp, Cr and Cp):
Korn inequality:

-l < ISl < Crllulho (1.2.20)
Poincaré inequality:
lullo.0 < CrlIVulloq,: (1.2.21)
Trace inequality:
ltallyjoro < Crlully o (1.2.22)

Interpolation inequality (for which we need v € H*()?)

1/2 1/2
lull1.0 < Crllullg/, llull3/d,- (1.2.23)

Theorem 1.2.9 (Position of the spectrum of £)
The spectrum of L consists only of eigenvalues and is contained in a sector

Sc ={X € C| [ImA| < CReA}.
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Proof: Let A € C be an eigenvalue of £ with eigenvector (u,n). If ImA = 0 then A
is contained in any sector, so we assume ImA\ # (.

We can apply the operator V = (91, 02, 0) to the eigenvalue equation for £ and

obtain that 5 5
i U . U -
£<am>—)\<am>forz—1,2,

e( v )= (w):

But we can not say that (Q;u,d;n), i = 1,2 is an eigenvector of £ because some of
the boundary conditions are not satisfied (in the sense required for X”). On the
other hand we can do similar calculations to that of Theorem 1.2.5 and obtain the
same results for (Vu, Vn). In particular, for ImA # 0 the energy equality holds:

SO

IVulZq, = 1901 (1.2.94)

In the following calculations, we will use repeatedly the identities from Theorem
1.2.5 and the inequalities from Proposition 1.2.8:

i)
n

We can estimate the first term by:

[ wle, < Crlulig,
o

OTCK ‘Su‘z = OZCK ReA H( :; )

Qo v

2

= 2 Im/rn(—unpo)(.(m - 6&77)‘

E

< /|un\ro|2+ g7 — BAR|*.
To To

2

IN

E

and the second by:

lgn—BAR? = glnllzr, — B [ (An)(gn— BAR)
To
= glnllzr, +B1Valir,
=" glnllzr, + BlIVulz g,

< glnlEg, + B2 / 1.2

Qo
. g Uu
= 5 "

To

2

Y

E

2
+ BeciReA H < " )
B U
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so we obtain a sector of the form

CrCk
2v

[TmA| < < + ﬁcl> Re + 2.

2

But we know from Theorem 1.2.5 that all the eigenvalues of £ have positive real
part and using Remark 1.2.7(a) we can say

30 > 0 such that VA eigenvalue of £: ReA >0 > 0,

and than find a positive constant C' such that all eigenvalues of £ are contained in
a sector

Sc ={X € C| [ImA| < CReA}.
O

We apply the Laplace transform in time to our linear equations and prove an es-
timate for the resolvent of —£, first on a subspace of the form {(f,0)|f € L*(Q)*}.
We denote the transformed functions by (@, 7), but in the following, where no con-
fusion can appear, we will omit to write the ~ (especially in the proofs). So, let us
investigate the solutions (u,n) of the equation

(hs o) ( u ) _ Au— vAu+ VH(2wS}| )+ VH(gn — BAR) _ ( f ) |
n )‘n_un‘ro O

(1.2.25)

The following Lemma gives us useful estimates we will need in order to obtain the
resolvent estimate.

Lemma 1.2.10 For A € C\ (=S¢), solutions of (1.2.25) satisfy:

VS < Co(|A lullogo + [1fllo.co) [1ull2.00 (1.2.26)

Qo
1/2 3/2
Mo, < Cs(llullgalullya, + I1F12.0,) (1.2.27)

Proof: We carry out the estimates on the region of the complex plane where A is
not an eigenvalue of —L, this is

A€ C\ (~Sc)={A € C|ReA <0, [ImA| > C|ReA[} U {A € C|ReA > 0}.
(a) Let A € C, ReA <0, [ImA| > C|Rel|; we have:

1
TmA|? < A2 = [ImA]? + |ReA® < (1 + @)umw = CF|Im)|?.
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We substitute the second equation of (1.2.25) in the first and obtain:

1
M~ vAu+ VH2uS! | )+ ~VH((gu, — Béu‘n)‘rn) =f. (1.2.28)

‘Fg )\
Multiplying this equation by Aw, integrating over Qg and using Lemma (1.2.2), we
obtain:

__ __ 1 __
A/vm22u/|v&ﬁ—/ng%ﬁ+mé%2y— fAn (1.2.29)
Qo Qo >\ To Qo

Taking the imaginary part of (1.2.29) and then the absolute value, we obtain:

[TmA|
A2

(9IVun* + BlAu, |*) < Imx\l/ [Vul? + | fllo.go [l 200
To Q0
and this multiplied by ‘Im/\‘ < (Y gives

To

Taking the real part of (1.2.29), then the absolute value, using (1.2.30) and
(1.2.23), we obtain:

_ 1
VS, 2 < |\ Vul? + —
Qo Qo |)\‘

(1.2.30) )
< 2wl g, + (1 + COIf lloa lull2g

(1.2.23)
< (20 ullogy + (1 + Co)ll fllogo) |2
and this proves (1.2.26) with Cp = max{<, 1},

(QIV%I2 + B Aua|*) + [ fllogn Il

Multiplying the equation (1.2.28) by u, integrating over )y and using Lemma
(1.2.2), we obtain:

1 _
ol [ s [l eaTunl = [ e 02s
Qo

Qo Qo To

Taking the imaginary part, then the absolute value, multiplying by % < Ch]A|

and using the inequalities from Proposition 1.2.8, we obtain

APllullfg, < gl\unl\ﬁ,rﬁﬁ/r tn At + G| fllo.ao [A] f[ullo.q
0

> Clipe o AL
< 9Crllullia, + BCrlulliasllullaco + 1160, + S llul.a,
A

02
1/2 3/2
< CrCilg+B)lullis, Iully, + 51715 0, + S5-Il o,
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We can absorb the last term in the left hand side and obtain (1.2.27) with C5 =
max{2C07C (g + B), Ct}.

(b) Let now A € C, ReA > 0. In this case, the estimates are much easier. Taking the
real part of (1.2.29), we observe that all terms on the left hand side are negative, so
taking the absolute value, we obtain:

— 1
VS’U 2 < —
98 < S sl

and in particular (1.2.26) holds. In a similar way we can prove (1.2.27), too. O]

Theorem 1.2.11 (The resolvent (A + £)~! in the case (f,0) € X°)
There exist constants Cr and ¢ such that solutions (u,n) of (1.2.25) with A € C \
(—Sc) satisfy the reqularity

H(Uﬂ?)HX? < CH(f: O)HX0 (1232)

and for || large enough, the resolvent estimate

o) o < 2O (1.2.33)

Al

Proof:

Looking at the first equation in (1.2.25), we can interpret u as the solution of
a Stokes system in €y with right hand side f — Au and with prescribed boundary
data "’"‘rn' To complete the boundary conditions we consider the equations (1.2.5)-
(1.2.8) to be satisfied too. These imply the estimate (with the positive constant
Cs):
lull3.0, < Cs(lluall3/ar, + M llullon, + 1£16.0,)-

Using the trace and the Korn inequality for Vug, and the inequalities of Lemma
1.2.10, we can calculate further:

[ulo, < CsCrx | S+ COs(APIulio, + £ 130,
0
(1.2.26) 9 9 9
< OsCruCallullagy (Mlullogn + [ Flloas) + Cs (A2l g + £ 126,)

1 cick . C cic? ¢
g, + (Z5EE 4 O ) AR ulld g, + (Z5E + Cs) IR 0,

IN

(1.2.27) 1 cic 1/9 3/9
< Slula, + O (SEEE 4+ o) ulifd 3,

+(BLEE 1 s+ )1 IR,
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We can absorb the first term of the last inequality in the left hand side and obtain:

1/2 3/2
lull3, < Callullg'a, llulZa, + 11F15.0,)-

with Cy = max{C3C? ;C5C5+2CsCs, C5C7 (C3+2Cs+2Cs}: this implies a bound
of the form ||u||2.0, < c(||ullo.a, + || fllo.0,). More explicitly, for small € > 0 we have:

2
lulzg, < ellullza, + = llullo.asllullan, + Call FlI5.0,
1 4
< ellulBa, + 5 lulBa, + 55 lulia, +CillFIR o,

and absorbing the first two terms of the right hand side in the left hand side, we
obtain the desired estimate.

The first equation of (1.2.25) connects second derivatives of 7 in €y with traces
of functions bounded in H'(£)), so we obtain a bound for ||n||5/2.r,-

Using again the inequality (1.2.27), we obtain an estimate of the form

AMlfullo.ay < ellullogo + 1fllo.00),
so, in the case of large |A|, we get the estimate for ||ul]o q,.

Using the second equation of (1.2.25), we have

(A2, = llualli2r,
which can be bounded by ||u||2., and therefore (for |A| large enough) by || f|l0.q,-
U

In the following we are going to derive estimates for the higher derivatives which
are needed for the existence theory and for the nonlinear problem. In order to avoid
difficulties with the corners we will perform a reflection across the walls. Without
loss of generality we may restrict to one of the sides, let £y = 0. Our boundary
conditions on the walls X; - allow us to define symmetric extensions of (u,7,p)
across ;. We denote them by (@,7,p). These functions will be periodic in the
z1-direction in the domain Qy = (—b,b) x S* x (—h,0) with the upper boundary
Ty = (—b,b) x S* x {0}. The symmetries are as follows:

~1(t,-$1,.’132,.’1)3) == —Ul(t,$1,$2,$3)
’L~L2(t, .’,Ul,.'lig,.’ljg) == u2(t,x1,x2,x3)
uz(t, —x1, 70, 23) = wus(t, 1,7, 13) (1.2.34)
p(t, —w1, 29, 73) = p(t, 71,72, 73)
ﬁ(tv .731,552) = n(t7x17x2)

and consistently we define fl to be odd and fg, ]‘73 to be even with respect to the
first variable (considered as functions of (zy, 72, 73)). It is easy to see that these new
functions satisfies the same equations in €2y as the old one in ).
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Definition 1.2.12 We define (i, 1, p) to be the solution of the following problem in
Qq periodic in x1- and xy-direction:

Ot —vAu+Vp = [ inQ )
on = uz on fo
g:; + ?}Z;% = 0 on fo (i=1,2) (1.2.35)
p—2vqs — (g — BAT) = 0 onTy
U 0 onX_y )

In a similar way like Theorem 1.2.11, we can prove estimates for the solution
of the problem (1.2.35) in higher Sobolev spaces, using well-known techniques: we
differentiate the equations (1.2.35) with respect to the variable z; and s, then the
corresponding derivatives of u satisfy the same equations with the differentiated
right hand side. The estimates of the derivatives with respect to x3 can be obtained
from the first equation. Using the same methods as before, we obtain estimates
similar to (1.2.32) and (1.2.33) for the derivatives of (i, 7) in Q. We formulate now
the analog of Theorem 1.2.11 in higher Sobolev norms, for the restricted solution
(u,n) in Qy:

Theorem 1.2.13 (The resolvent (A + £)~! in the case (f,0) € X")
There exist constants Cr and ¢ such that solutions (u,n) of (1.2.25) with A € C \
(—=Sc) satisfy for (f,0) € X", with r > 0, the regularity

) lxess < li(F, 0)l1x (1.2.36)
and for || large enough, the resolvent estimate
[ (uy )| xr < WH(f ,0)llx (1.2.37)

Corollary 1.2.14 (The resolvent (A + £)~! for (f,h) € X" with h # 0)
Let (u,n) be a solution of the equation

(,\+£)<Z>:<£>, (1.2.38)

with (f,h) € X" r > 0. Then there exists a constant M > 0 such that for all
A€ C\ (=Sc), |A| large enough, there holds:

Xr+2 (1239)

2iiis.m)

[(w, n)|| xr+2 <

Al
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Proof: Let (uy,m1) be a solution of the equation
Uy f
A+ L = :
A+ < n ) ( 0 )

Ug = U — Up

Define

1

2 = n*mth-

Then the pair (uz, 1) satisfies the equation

(A + L) ( ; ) - < W%(gg"ﬁé”) )

We apply now the Theorem 1.2.13, i.e. the inequality (1.2.37) for (u1,7;) and
the inequality (1.2.36) for (us, 72):

Cr
r+2 < — 0
Xr+ = ‘>‘|H(f7 )|

() X2
1
Cuz, me)l[xr 2 < €ll(=5 VH(gh — BAR), 0)]|x-
Cx
< —||h]|r43-
> ‘)\||| || +3-1/2,Tg
Cx
= Z 0 B
Al
Using the triangle inequality we obtain the desired estimate for (u,n). 0

We can now apply the inverse of the Laplace transformation and formulate our
existence result for the linear problem.

Theorem 1.2.15 (Linear existence result for (f,0))
We consider L : X" — X" r > 1 and (f,0) € L*([0,T],X"), T > 0. Then the

problem
o (y)- (1)

with initial conditions (u, n)‘tio = (ug,mo) € X" has a unique solution

(u,n) € H'(]0,T],X") N L*([0,T], X"*?).
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Proof: We substract the initial conditions from the solution, so define the pair

BROREY
which solves the problem
ava ()= (1) (1) ()

and has zero initial conditions. Considering the Laplace transform in time,

v(A, ) = / e Mu(t,-)dt,
0

(A+ L) < ! ) _ ( ;) (1.2.40)

which (for all A € C with |A| large enough) has a solution (9, ) satisfying the
estimates (1.2.39), so (9,6) € X", r > 2. The second component of the right
hand side of the equatlon (1.2.40) is not zero, but Theorem 1.2.13 gives us actually
(9,6) € X2 because h = Ggn|r, € H’“+3/2(F0) is regular enough. See the proof of
Proposition 1.2.6 (where h has now a special form and a better regularity) and also
the next two Theorems 1.2.17 and 1.2.18. For the same reason that h is more regular
than the space X" required, we obtain the properties of the solution for r > 1 (see
the proof of Corollary 1.2.14).

we obtain the equation

We apply the inverse of the Laplace transformation

v 1 a—+ioo y
) =— .
( o ) ( ’ ) 2 /{)z?OO ‘

where A = ar+1is (a = Re] is large enough in order to have the resolvent estimates)
and obtain a solution (v,0) € L*([0,T], X"*?). Using the isometry of the Laplace
transformation, we can calculate (with a generic constant C):

a+ioco a3 2 a+ioco 2

/ <@“>(A,-> i = / ar( ] )(x-) s

a—1i00 ata i Xr
XT‘

) (A, ) dA

Qy =

Q>

(1.2.39) a+ioo
ds

a—100

-l

*Wdt (1.2.41)

ar
h
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which proves that (v, o) € H'([0,T], X") and
2

[lo(:)elLaze [0

As a consequence we obtain immediatly that (v, o) € CV/2([0,T], X").

Then we obtain (u,n) € H'([0,T], X")NL*([0,T], X"*?) with a bound depending
on || fllz>o.27,17(20)2) and [[(uo, 10)|

2

dt.

XT

Xr+2- 0

Remark 1.2.16 Differentiating once more w.r.t. time and cutting off the solu-
tion at t = 0, one can obtain after calculations similar to (1.2.41) that (u,n) €
C7((0,T), X7) with v < 1.

The next theorem is a consequence of the Proposition 1.2.6 and Theorem 1.2.13.
It states that we can generalize the regularity estimate (1.2.36) and obtain it also
for a nonzero second component of the right hand side, if this is more regular than
the space X" required. This means we have to introduce a new space

32 = {(f.h) € H'(Q)* x H'P(To) [V f =0, fulg, =0} (1.242)

with the natural norm inherited from the product space. Using this notation, our

X" spaces coincide with the X{/Q spaces, but we will keep the old notation for X".

Theorem 1.2.17 (Properties of £ : X"+? — X3/5)

The operator £ : X" — Xg/z, r > 0, is invertible, the inverse is bounded and we
have the reqularity estimate

1, m)]

The same result holds for the operator A + L, too, when —\ is not an eigenvalue of

L.

xre2 < e[ (f 1)l

3/2 "

(1.2.43)

We can immediatly formulate the analog of the linear existence Theorem 1.2.15
for this special form of the right hand side:

Theorem 1.2.18 (Linear existence result for (f,h) with h # 0)
We consider £ : X" — X3, v > 1, and (f.h) € L*([0,T], X%,,), T > 0. Then

3/2
the problem
wy) (f
a=0(5)- (%)

with initial conditions (u, n)‘tzo = (ug,m0) € X2 has a unique solution

(Uﬂ?) € Hl([O,T], ~?f/Q) n Lz([ovT]7XT+2)'
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1.3 Transformation to the Fixed Domain and the
Nonlinear Problem

Following [Bel|, we convert our (initial) nonlinear problem (1.1.1) - (1.1.11) defined
on the unknown domain 2 to one on the equilibrium domain €y by stretching or
compressing on the vertical line segments. In this section, we denote the variables
and functions in 2, by capital letters, so X; = z1, X5 = x5, X3 will be specified
later.

O
Ozt lz1€{0,b}
can choose 7(t, X1, Xo, -) close to the identity which transforms the interval [—h, 0]

to the interval [—h,n(t, x1,22)]. We can choose the extension 7 to have maximal
regularity as given by the trace theorem and such that V¢, 7(¢) depends only on 7(¢),
the contact line condition for 7 is prelonged on the whole ;5 and 7 satisfies also
the boundary condition on ¥ ;. So we define 7 such that:

ﬁ(thlaX%O) = n(t’m17m2) ((])

an
i ~ 0 (b) (1.3.1)

For every time ¢, given a small  : Rt x I\, — R with = 0, we

X1 E{O,b}

=0 ()

n‘xngh

For each t we define the transformation ©(t,-) : Qy — Q,

(1’1,])2,.7)3) = @(t, Xl, XQ, Xg) = (X17X2,X3 + (1 + %)ﬁ) (132)
and calculate:
1 0 0
DO — <§; ) — 0 I 0 ]
NGRS T IS S R IR 2L
n X3, 0On
J:=det DO = 1+ — 14+ —=)——
¢ U35,
1 0 0
<2Xl’) _ o 10
197 iila=ex) S U OF e (VR SF

We could transform the velocity field only by composition, but then the diver-
gence free condition would be lost. Instead, for U in Q, we define u in Q = O(£)
by:

— g, 1.3.
JOX; ] (1.3.3)

U
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where repeated indices are summed. It is understood here that for (z1,xs,23) €
Q, the right hand side is evaluated at O '(z1, 22, 23) = (X1, Xo, X3). With this
definition, U has divergence zero in )y iff v has the same property in €.

There is a further advantage to this transformation of the velocity field: the right
hand side of (1.1.3) is replaced simply by Us. More explicitly, on the upper surface
['y we have X3 = 0 and 77 = 71, so we can calculate:

1 ) )
(ur, s, u3) = —(Ur, Us, Uy b 4+ Uyl 4 JUS)
J Oxy x5
on 1.__0n 1__0n 1__0n 1__ 0On
A § e B § N B § At § S § il
ot T %0 T %0 T 10 T % 0m

The derivatives of u are:

or;  0x; 0X, \J OX),
In rewriting aazi" we have terms arising from the fact that © depends on ¢:
ot JoX; ot ot \JoX;) 7 0X3 \JOX; ot

Let po ® = P. The other three terms in the Navier-Stokes equations can be
writen as:

(u-Vu); = (J@XmUm) dz; 0X, (J@XkUk)
5 — Ug | + — U,
ij 6X, J an 835]- 835]- 6X,8Xm J an

0Xy OP

—l

(Vp)q; =

8X; . . . . 1 By o
J o, ), expressing the time derivatives of %, and ©

by time derivatives of 7 and using (1.3.4), we can write the Navier-Stokes equations
for (U, P):

Finally, multiplying by (

V-U =0
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The condition on the free boundary

Oou;  Ou; — v
pmV< IZ+—">nj— gn— BV - ———— | n,

can be writen in terms of the new variables as
0X; 0 1 Oz, 0X; 0 1 Oz,
Y <axj aX, (J@Xk ’“) * o5, 0, (Jc’?Xk ’“)) J

Vi

\/ 1+ V2

where N = n o ©. It is convenient to replace this vector equation with components
tangential and normal to the physical surface. Let T3 = (1,0, g—ﬂi), T, = (0,1, 5—3?2)
be two tangent vectors and N3 = (—8‘9—;71, —5;72, 1) be the normal to I" in the point
(1, 22,m(x1,22)). Projecting the equation on this three directions we obtain equa-

tions of the form:

= | gn—pBV- N;

oU;  0Us .
- =1,2 1.3.
0Us
P—2v-— —(gn—pAn) = G3(Un). (1.3.7)

0X3

The boundary conditions on the fixed boundary are preserved , so

Ug, =0
Unlg,, = 0 (1.3.8)
n-Su-mly = 0 i=1.2

This is easy to see for every particular form of these conditions, doing direct calcu-
lations and using the boundary conditions (1.3.1)(b, ¢) we required for the extension

7).

With the help of (1.3.7) we can solve a problem similar to (1.2.12) and, again,
take out the pressure (as an unknown) from the equation (1.3.5). We can write now
our full nonlinear problem in terms of the operator L, so

(4)ee(D)-(50) o
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with the boundary conditions (1.3.8) for the fixed boundary and (1.3.6) for the free
boundary. For F' and G we have the properties for r > 1 (see [Bel], [Schwl] and
[Ta], Ch.13):

F: X" — H"(Q)% F(0,0) =0, DF exists and DF(0,0) = 0,
G: X" - H™Y2(Ty)%, G(0,0) =0, DG exists and DG(0,0) = 0.

We have to be careful because the condition of vanishing tangential stress on the
free boundary is not fulfilled. We correct this by a function ®.

Definition 1.3.1 For a function g = (g1.g2) € H™"/%(Ty)2, we define the vector
field ®(g) : Qo — R® which has the correct boundary values: let A be the Stokes
operator, i.e. Au := A(u,p) = —vAu + Vp and V - u = 0. We define ®(g) with
the help of A to be the unique solution (we are not interested in the corresponding

pressure for ®(g)) of:

AdP(g) = 0 inQy
Og)ly, = 0
q)”(g)‘rouxm =0
n-Sag) - Tily,, = 0
n - Sa(g) * T,;‘FO = g.

As the solution of the Stokes operator A with these boundary conditions, we
have the following regularity estimates for ® (see [ADN] and [Schwl]): ¥r > 0

12(9)lr+2.00 < Cllgllrs1/2m, -

In the following we denote our variables together, so we want to find solutions
z:= (U,n) of

0+ L)z = < F(x) ) (1.3.10)
= Gi(z). (1.3.11)

’II'SU 'Tj‘ro

We consider now new variables, namely

Fi=a— < o Glz) > . (1.3.12)
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If 2 € X" satisfies the boundary condition (1.3.6), then # € X’, so & has the
correct (in the sense X) boundary conditions of vanishing tangential stress on the
free boundary and we have not lost regularity through ®oG. Because DG(0,0) = 0,
the map = — z is close to identity, so we can locally solve (1.3.12) by x = ¢(Z). In
the 7 variable, the equation (1.3.9) becomes:

(0, + L)F = ( Fé@ > = ( FOSO('%) > — (3 + L) < @OGOW@ > (1.3.13)
#0) = z(0) — ( CDOGO(””(O)) ) . (1.3.14)

We observe that we have a vanishing second component on the right hand side of
(1.3.13) because of the property of ®, ®,(g) ‘Fo = 0. F keeps the properties of F, so

FoX™2 5 H'(Q9)% F(0)=0, DF exists and DF(0) = 0.

Define the following operator (r > 1):

M HY[0,T], X") 0 L2([0,T], X" %) 0 {2]2(0) € X"} — L2([0,T], X") x X"+?

S <(8t+£)z - < ]g ) (z),z(0)>

M has the following properties (using the properties of F):

DM y—s (0, + L)y, y(0))

2=0

It was shown in Theorem 1.2.15 that the problem

O+ L)y = < é ) € L*([0,T], X")

y(O) — yOEXw+2

has an unique solution, so DM ‘z:O is an isomorphism between the spaces where M is
defined. Then the implicit function theorem proves the existence of a unique solution
of the nonlinear problem M(z) = ((f,0), 29) for small enough (f,0) € L*([0,T], X")
and small enough initial values z, € X"+2. We can state now our nonlinear existence
result:

Theorem 1.3.2 (Nonlinear existence result for X-spaces)

For v > 1, small enough (f,0) € L*([0,T],X") and small enough initial values
20 € X712, there exists a unique solution z € H*([0,T], X") N L*([0,T], X"*?) of the
nonlinear problem M(z) = ((f,0), zo).
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Remark: A similar nonlinear existence result holds also in the spaces Xg/z defined
in (1.2.42). We observe that the transformation ©® we have done produced no term
in the second component of the right hand side of the equation (1.3.10) (see also
equation (1.3.4)). Moreover, if we consider from the beginning a nonzero second
component of the right hand side, its regularity will be kept through ©. The result
is not needed for our Hopf bifurcation analysis, but for the seek of completeness we
will formulate it here:

Theorem 1.3.3 (Nonlinear existence result for X'g/g—spaces)
Define the operator

N HY([0,T), X3) 0 E2(0,T), X72) 1 {2]2(0) € X742} = L2((0,T), X3) x X+

2z <(8t+£)z < g ) (z),z(0)> :

where F is defined in (1.3.13). Then, forr > 1, small enough (f, h) € L?([0, T, X3/5)

and small enough initial values zy € X”z, there exists a unique solution z €
HY([0,T], X3,,) N L*([0,T], X"*?) of the nonlinear problem N (z) = ((f,h), zo).
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Chapter 2

The Bifurcation Theory

2.1 The L-invariant Decomposition

We want to split X” and X" into a direct sum of L-invariant subspaces (X );c;.

The normed eigenvectors of —A on Iy, with Neumann boundary conditions in
the x,-direction of the channel, form an orthonormal basis for L?(Tg). In order to
find this basis explicitly, we solve the eigenvalue problem

—An(r1,12) = (w1, 72)
aln‘xle{o,b} = 0

using the method of separation of variables.

It is well-known (see e.g.[Da,Li], Ch.VIII, Th.8 and the applications presented
here) that this problem has a countable number of eigenvalues \"*, n € N, k € Z
which are real, positive and simple. The eigenfunctions are

T .
n”’k(ajl, To) = " cos (znm) ethrz
the constants ¢"* being chosen in such a way that

"k P day dag = 1.
To
So, L*(Ty) can be decomposed into a direct Hilbert sum

L2(F0) = @ li,k

n€eN
k€EZ

35
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where
l (Fo)—spcm{n (3517$2)}

Using the basis we found for L*(T'y), we want to construct a ba%w for L?(Q)3. Let
@3 = (0,0,1) be the normal vector on Ty, V = 618 —|—62— and V =é; ai — *28%1,

where €1 = (1,0,0) and €, = (0,1,0) are two tangent vectors to T'.

Proposition 2.1.1 The set

B={n" (%;352)@37 VU (%;352) \Y n””“(wlsz)}

is a basis for L*(Tg)3.

Proof: Because these vectors are orthogonal, they are linear independent. It remains
to show that they span L*(Tg)3.

Let v : 'y — R® be a function orthogonal to every element in B. Because it is
orthogonal to €3, it is a tangent vector, so the third component of u is zero and we
refer to u as u € L*(Ty)2.

We prove that u = 0. Let Cy be a smooth cut in I'y such that 'y \ Cy is simply
connected. Following [Te], we use the decomposition

LX(Ty)? = Hy@ ker(V') = Hy® H, & Hy & H,

where

Hy = {ueL*(Ty)?|V-u=0, 11,n012—0,/ u, dCy = 0}
: Co

Hy = {ueLl*T)?|u=Vq A¢=0,qc H (I}
Hy, = {ue L*y)*|u=Vgq,q¢c Hyo)}
H. = {ueL*y)’|u=Vgq, Ag=0inT,\ Cy, g € H'(Ty),

_ g _, a1 _
[Q]C’o - COHSt, |:an:|co — 07 on s - 0}

where [q]¢c, denotes the jump of g on Cy. We know that the dimension of H. is equal
to the number of cuts which we need to make in order to obtain a simply connected
domain, so is one.

Corresponding to this decomposition, we can split « = ug+ u; +us+u.. Because
of the direct sum, it follows that every ug, u1, us, u, is orthogonal to every Vn™* and
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v n™*. Then,

0 = /ul-Vn”’k
To
= /Vql-vn”’"“
To
= - / a1 An™* + / q (Vo™ - n)
To ol

— / 0 )\n,k nn,k
To

¢1=0 and u; =0

and this implies

because {n"*},cnrez is a basis for L2(Ty). In an analog way we obtain also uy =
u. = 0.

For ug € Hy we can calculate

_Ln A n n
oz/uO-Vn”“z—/(V uO)n"“+/ ug, 0"
To To Ty

and then VLUO = 0. But ug € Hy which is the ortogonal complement of ker(VL) in
L*(Ty)?, so ug = 0 and the proof is complete. O

Using the basis B for L?*(Ty)%, we can decompose a function u(zy, s, T3) €

L2(Q)3:

n X~ n n =1 n
u(ry, 9, 73) = ZU1 Fas) Vi * (w1, w2) + U3 (03) V™" (21, 2)

n€eN
ke

—

+U3 " (30" (21, ) 5

=: Zu”’k(ml,mg,xg)

n€eN
keZ

where U{1,72k,3 are arbitrary real functions depending only on x3, not all of them iden-

tically zero. Then,
LQ(QO)3 = @ Li,k’

n€eN
k€EZ

where Lik is the corresponding space in the decomposition of L?(€q)3, for n, k fixed.
In order to find a L-invariant decomposition for X" we will see now how the

divergence free condition and the boundary conditions are carried over. We fixe
neNand k € Z.
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@ (1, 10, 13) =

2 .
= { - ”zU{l’k(%) sin <zmc1) + Zk—ﬂ-U;k(.’I)?,) oS (znxlﬂ ehr2g,

b b l b
2 .
+ {7/<T7TU{”€(T3) cos (%mq) + N%U;k(m) sin <%n7"1>} e'ke2g,

k m ikmy =
+U;" (x3) cos (577,3:1)6””263

n,k - n,k - nk -
= u; e+ uy €+ u3 €3

The divergence-free condition:

Vi@t =0 (UyF) (x5) = NVPU (25) for 25 € (—h,0)

For X", we have to satisfy also the condition = 0, which means:

1l
Y1,2,-h

on Xy n=+€;

n,k n,k
U oy = 0 & Uy (x3) =0 Vaze (—h,0)
On,Ej,h: n/::——éé
u?k wa=—h 0 = U;)%k(ih) =0

For X" we have to satisfy additionally the conditions for the zero tangential stress
on the free boundary and the walls, and zero tangential velocity on the bottom. We
observe that the conditions on the walls YJ; 5 are automatically satisfied.

on Y_5: €1 and € are tangential directions:

n,k - n,k - n,k -

on ['y: n = €3, €1 and é; are tangential directions:

(Osui™ + g ™), =0, i=1,2 & US0) + (U)'(0) = 0.

Proposition 2.1.2 The L-invariant decompositions of the spaces X" and X" are:

X =px,, X=px;,

neN n€eN
ke kEeZ
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with

Xip = L) € B () x H V(T |
n,k

us

b
= UM (as) Vi F (wy, w0) + U ()™ (w1, 22) %,

)
Us*Y(ws) = AU (s), w5 € (=h,0),
) =0

wk(z1,m2) = "Fcos (Enay) e,

Proof:
It remains to prove that £ defined on Xnk maps to X,, ;. Let (u™k, k) € Xnk
Then
()< (i),
" il
where

p‘ro = U5 \Fn + gn™* — pAn™*
= [20(U3")(0) + g + BN (21, 22)

Because the solution of the problem (1.2.12) is unique and 8177"”“‘ = 0, the

mle{o,b}
harmonic extension of the pressure has the form

/H(P‘po) = P(z3)n™" (21, z2)
where P(z3) can be found explicitly as the solution of the problem
P'(z3) = A"*P(z3) for x5 € (—h,0)
P(0) = 2v(U3")(0) + g+ pA"™
P'(=h) = v (U;")"(=h).

We have P(z3) = ¢1e" AmFEs 4o VAT 3 where ¢; and ¢y can be determined from
the boundary conditions for P(0) and P'(—h).

After some simple calculations using the special form of 4", we obtain:
AU VH(p| ) = AU = (U)o P) () Vi (2 0)
HWARUSE — (U H) + P (3™ (21, 22) €3
= f1(zs) V" (21, 1) + fa(ws)n™* (21, 22)

—upt| = U O) " (o)
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where f; and f3 satisfy the conditions required in the X,, y-space (because (u™* prk) e
X,.x). The proof is complete. O

Since we study the eigenvalue problem for £, we can restrict ourself to such a
space X ; and make all considerations there. This is proved in the next proposition:

Proposition 2.1.3 Let A be an arbitrary eigenvalue of L. Then there exist n € N
and k € 7 such that X is an eigenvalue for E‘)’(T .
n,k

Proof:

Let A € C be an arbitrary eigenvalue of £, so 3(0,0) # (u,n) € X" such that
L(u,n) = Au,n). Decompose in a unique way

() = O w3 "ty = (g,

neN neN neN
kEL k€EZ kEL

with (u™*, n"*) e )N(;k

We have \(u™F, n™*) € Xﬁk and the following equalities hold in the weak sense:

Z )\(un,k,’ nn,k) — E( Z(un,k’ nn,k))
_ Zﬁ(un,k’nn,k).

The decomposition is invariant under £ and because of the direct sum, it follows:
dn € N and 3k € Z with

)\(un,k’ nn,k) — ﬁ(un,k’ nn,k)
with n"* # 0, so A™* is an eigenvalue of ﬁ‘}”(r . U
n,k

So we can restrict our considerations on such a space X , (actually we fixe n™*)
and we will denote the functions there without indicies.

2.2 A Bifurcation Picture w.r.t «

Since the Navier-Stokes equations are invariant under the Euclidian group Fs of
all translations, rotations and reflections of space, the group of symmetries of a
given model is a subgroup of F3 determined by the shape of the domain and the
boundary conditions. In our problem, we consider the symmetries obtained by
translations along x5 and reflections through a plane perpendicular to the x;-axis.
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The assumption on periodic boundary conditions in the zs-direction allows us to
identify these translations with the action of a circle group. These lead to an O(2)
symmetry, so our problem provides an O(2)-equivariance.

Remark: A reflection through the plane {z; = £} is also a symmetry for our model.
We did not consider it because it does not increase the dimension of the kernel spaces
in the bifurcation theorem. This will become clear from the form of the function

n.k
n .

1 0

0O(2) is generated by SO(2) together with the flip » = < 0 —1

) , where SO(2)

cosf) sinf
—sinfl cosf
as 3 x 3 matrices, adding the third line and the third column (0,0, 1). We define the
action of an element v € O(2) on X" by

consists of planar rotations Ry = . We refer to elements of O(2)

yxu = uo~y !

A -1
VU*" - (2.2.1)
+(3) = (05)
1 v *)

SO(2) may be identified with the circle group S?, the identification being Ry — 6.
Using this identification, we describe the action of O(2) = {se? : § € R, s € {id, »}}
on X7 as follows: if & = u;€; + us€s + uzes is the velocity field,

0*17:(.7)1,.’1)2,1‘3) = 71,1(.7)1,.’1)2 — 0,.’[)3)51 +U2(.’I)1,.’L’2 - 0,.’[)3)52 W
+us (.’I)l, To — 0, .’L’g)é}g
5% (11, Tg, w3) = ur(T1, —Ta, 3)€1 — uz(T1, —Ta, T3)E
+U3(.’I,‘1, *.’I)Q,.’L’g)gg (222)
0% n(xry,rs) = n(r1,12 — 0)
wxn(ry,xe) = n(xy, —x2) . ]

It is easy to see that £ is O(2)-equivariant w.r.t. this action, i.e.
u u
x L =L * )
ree()=2 (- (5))
Lemma 2.2.1

The function 1™ has an isotropy subgroup Sk of O(2) isomorphic to Zy,.



42 CHAPTER 2. THE BIFURCATION THEORY

Proof: The actions of € and s on n™* are:

s ; _
0 x n”’"“(xl, Ty) = " cos (an) etkw2=0)
n.k _ n.k T —ikxo
" (xy,x) = ™ cos pna) e .

Imposing the isotropy condition we obtain

Oxn"t =" < kO =2mm, meL

™m

YE X & fye{eizT‘meZ}sz.

O

We are now able to study the position of the eigenvalues of £ depending on the
gravity ¢g and on the surface tension 5. The position can be calculated explicitly for
g = =0 and for g, — +o00. It is not of interest to study the problem for g and
[ separately. Anyway, these parameters are physical measures and they are fixed
for a given liquid, but the "formal” analysis we are presenting here gives us useful
ideas for the study of Hopf bifurcation in the next section. Then

(9 = BAW"™ = (g + BA"F)if* =2 ar™*,
with o := g+ A" € [0, 00).

Remark: In this section, n and k are fixed, so A™" is fixed, and varying o in the
Theorem 2.2.6 means actually to vary g and . This is also the reason for which we
do not introduce n and k in the notation a for g + BA™F.

Let A : (u,p) — —vAu + Vp together with the following conditions:

inQ: V-u = 0
n - S'u, . Ti‘FOUELQ - 0 (2 5 3)
Un |y =0 -
1,2
u‘lh = 0

be the Stokes operator. In order to study eigenvalue problems for A, we have to
impose one boundary condition more, i.e. one for the normal velocity on the free
boundary I'y. We have two possibilities, to prescribe the normal velocity on 'y (and
obtain than a " Dirichlet” problem for the Stokes operator) or to prescribe the normal
stress on the free boundary (and obtain than a "Neumann” problem for the Stokes
operator). As soon as we have imposed a condition for u,| or for (p — QVS;})‘FO,
we can calculate the value of the other one. Because we are in X7 ;, both of them

should be multiple of n*. Also, for fixed n™*, the pressure p is known as a function
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of u and n™* (see (1.2.13)). Therefore, when we don’t need to write the pressure
explicitly, we will simplify the notation:

A(u,p) = —vAu+ Vp =: Au.

Definition 2.2.2 (The Stokes operators Ap and Ay)

Denote by Ap the Stokes operator A on X" together with the boundary condition
of a vanishing normal component of the velocity at the free boundary. It is known
that its eigenvalues are countable, real, positive and simple; we denote them by
{Kj}jen. The corresponding eigenfunctions with symmetry Zy are unique up to a
multiplicative constant. Let {u;};en be the normed eigenfunctions with symmetry
Zy, and {p;j}jen be the pressure functions such that (p; — 2”*931-)‘1“0 =k,

Denote by Ay the Stokes operator A on X" together with the boundary condition
of a vanishing normal stress on the free boundary. It is known that its eigenvalues
are countable, real, positive and simple; we denote them by {p;};en.

The Stokes operators Ap and Ay are elliptic in the sense of Agmon, Douglis and
Nirenberg (see [ADN], and also [Bel], [Schwl]).

Following [Schw1], we define for every u € C\ {x; | 7 € N}, (a(p), p(p)) to be the
unique solution of the problem (p(u) is here unique up to an additive constant):

(n = Aya(p) = 0 (2.2.4)
()], = —pn™*

We know from the perturbation theory for linear operators (see [Ka, and also
[Schw1]) that (@(u), p(p)) is an analytic family of functions for p € C\ {x;|j € N}.

One verifies easily that X ; are invariant subspaces also for Ap and Ay. There-
fore the (unique) solution of (2.2.4)-(2.2.5) must be in X7 ,. In particular (p(u) —
21/53(”))‘1,0 is a multiple of n™*. We define 7(u) € C by

(B(p) = 2vS5,) |, =2 T()n™". (2.2.6)

Of course, every p # rk; eigenvalue of £ together with the corresponding eigen-
function satisfy the problem (2.2.4)-(2.2.5). Reciprocally, a u € C is an eigenvalue
on £ with eigenfunction (a(u), n™*), if and only if

() = o

Lemma 2.2.3 We have: p € R implies 7(p) € R.



44 CHAPTER 2. THE BIFURCATION THEORY

Proof: Testing the eigenvalue equation (2.2.4) with # and using Corollary 1.2.3, we
obtain:

) a(p)

To

)a(p)

1)

w [ ar = [ eaa+ vHEsSy,
Qo

Qo

Q
= 21// Sﬁ(ﬂ) : Sﬁ(#) -l—/r (p(p) — 21153(“)) 1:1n(u)

— 2% / Siw|* + / ()™ (— py™")
Qg To

_ / a0 / Fu) P
Qg To

and the lemma is proved.

L]
In the following we abbreviate by || - || (without indicies) the L*(£2y)*-norm or
the L?(T'y)-norm.
Proposition 2.2.4 (Properties of a(u))
(a) In k; there holds
|la(p)]| = 400 for p— kK;. (2.2.7)
(b) The rescaled functions approximate the eigenfunctions of Ap, so
w; = _lim lf('u) = — lim lf(u) . (2.2.8)
rap g [la(u)ll - B [Ja(w)]
(c)
la(p)|| = +o0  for |u[ = +oo. (2.2.9)

Proof: We define the familly of functions (u(su), p(p)) which depends smooth on p in
a neighborhood of x; to be the unique (nonzero) solution of the following problem
for the Stokes operator:

(u—Au(p) = 0 (2.2.10)
i) — 2wy, = 0 @.2.11)

Denote

wn (1) |, =2 ()™, (2.2.12)
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we have the properties: s(-) is differentiable and s(x;) = 0 (because the eigenvalues
of Ap are simple), so for u = k;, u(x;) is a multiple of u;

u(k;) = consty u; # 0.

(a) Comparing the problem (2.2.4),(2.2.5) with the problem (2.2.10),(2.2.12) we
obtain:

_ —
u(p) = ——u(p),
(1) = <t
SO
it = | ] oo -1
s(p)
and
la(p)]] = 400 for p— kj.
(b) Then

a(p)
Bau—r; ||[a(p)

= —sign s(k;) - sign(consty) - u;

and the sign of the limit will be established by showing that the function s(-)|

R
changes sign in x;.
Assume this is not true, so d,s(k;) = 0. Defining the functions (v,q), v =
d,u(rk;) and g := 0,p(k;), they satisfy the following equations:
(kj — Ay = —u(ky) (2.2.13)

Un‘rozaus(ﬁj)n”vk - 0

(q—21/51f)‘1,0 = 0.

Testing the equation (2.2.13) with u(k;), integrating by parts and using the equality
(1.2.16) together with the boundary conditions of the equation (2.2.13), yields:

0% —||u(k;)|]® = /Q (kv +vAv — V| u(k;)
0

= [ It + vias;) - Tl
Qo
= 07

a contradiction, so s(-)‘R changes sign in x;, i.e.
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and we choose

=g

wj = lim — 1) )
®ap s || (p) |

(¢) As the solution of the Stokes system (2.2.4)—(2.2.5), @) is sufficiently smooth
and satisfies the estimate (C's > 0 is a constant):

|a(1)l2.00 < Cs (Il 1a(m)llogo + el 10" |32, )

We use now ﬁn(u)‘ro = —un™*, a trace formula (with constant Cy > 0) and an
interpolation (with constant C; > 0) (see also Proposition 1.2.8) to calculate:

2 (1) 5.1,

Crlla(p) g,

Cr Crlla(m)loeolla(1)ll2.00

Cr Cr Cs|la(u)llos (Il @) o, + el 19" [l3/2.r0).

P 15

VARRVANRVAN

and then

I W5 x, < Cr Cr Cslla) o (1) llo.0o + 10" l3/20,)

which imply ||@(u)|o.0, = 400 for |u| = +oo.

L]
Proposition 2.2.5 (Properties of 7(u))
The function 7(u) satisfies:
(a)
li r =0; 2.2.14
Gim 7 () =0 ( )
(b)
lim 7(p) =— lim 7(u) =-+o00; 2.2.15
plim (1) p i (1) ( )

(c) () is positive for small p > 0 and auf(u)‘uzo > 0;

(d) it has exactly one turning point on each interval (k;, Kj41), j € N;
it does not have turning points on the interval (—oo, ko),
(e) critical values of T(u) are positive.

Proof:

(a) Putting g = 0 in the problem (2.2.4)—(2.2.5) we obtain that @(0) = 0 (because
0 is not an eigenvalue of Ap) and then 7(0) = 0.
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(b) The function

=g

() _ - | s(u)consty
Tagon = "0 |~

(together with the corresponding pressure HZEZ))II) satifies (2.2.4) and the boundary
conditions on I'y:

w(p) =

=t

n s(p)const
wa ()| p, = —pn™ s{p)consty
1
p(p) > T(1) o
- —2vS, = — ",
<|\U(u)|\ ) Ir, [a ()]
Because s(x;) = 0 and ||w(p)|| = 1, using Proposition 2.2.4 it follows

w(p) — £u; for p— kK,
)

plp
——— — +constyp;, for pu— K,
@)l ’ !
SO B
7:(“) — Fconsty  for pu— K.
@)l

Because of (2.2.7), #(u) cannot stay finite for y — &; and 77(-)‘IR changes sign in &;
like s(-)‘IR does.

(¢,d,e) Consider the functions o(u) := 9,u(p) and ¢(p) := 9,p(p) which satisfy:

(n—A)o(p) = —ulp) (2.2.16)
f)n(:u) ‘1—‘0 = 7nn7k
((j(/'t) - 2”‘55(“)) ‘FO = auf(/i)n

For 1 =0, so (9(0), ¢(0)), the right hand side of the equation (2.2.16) becomes zero
and testing it with ©(0) yields

[ S0l = [ (@0) ~20850)5(0) = 2,79yl

which implies 9,7 (p) ‘#:0 > 0 (we have 9,7 (1) ‘#:0 # 0 because 0 is not an eigenvalue

n,k

of Ay); this proves (c) .
Testing the equation (2.2.16) with @(u) and using the identity (1.2.16), we obtain

i P = [ (o) + 25 0) — Vi)
= Gt + i) ~ Vi)

n / (1) — 2082, )iu(it) — / (1) — 2052 )i (1) -
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This yields, together with (2.2.5), (2.2.6) and the boundary conditions from the
problem (2.2.16):

() lI* = 7 ()™ 1 + 10, () ™ *[|* = 0 (2.2.17)

which implies for any critical point y.,;+ € R\ {0, ;|7 € N} of 7 (so 9,7 (p) ‘ﬂ:# =

0), that 7(gerir) > 0 (||1l(,th)||2 = 0 would imply @(fserit) = 0 which is in contradic-
tion with the boundary condition (2.2.5)); this proves (e).

Differentiating (2.2.17) w.r.t. g we obtain

Oy (I(12)12) + 12 () ™12 = o, (2.2.18)

which implies
- #0 ~
o (lawlP?) =0 & Gor(u) =0,

so the turning points of 7(p), € R\ {0, x;|j € N}, coincide with the critical points
of (1) %, 4 € R\ {0, 517 € N}.

We can calculate further
32 () 12) = 2019, (u0) |12 + 20, B2a(w) (2.2.19)

and we are looking for an expresion for (@(u), 95 (u)).
S
T

Define the functions w(p) := 92a(p), t(p) := 92p(u) which satisfy

o A)“(“) = —20(u) (2.2.20)
)‘Fg =
(tn )*2”55’ e, = Gr(wn™".

Testing the equation (2.2.20) with ©(u) and using the identity (1.2.16) we obtain:

Safla? = / (i (1) + vA@ (1) — Vi(p))
= /Q (o () + vAD(p) — Va(p)) i (p)
+ / () — 2082, )i (1) — / (i) — 207, ) (1)

31
—
=
N2

and using the problems (2.2.16) and (2.2.20), this yields the equation:

2| — (). (1)) + 02 () ["*]> = 0 (2.2.21)
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(where we have denoted by (-,-) the usual scalar product in L?()*). Together
with (2.2.19) we obtain:

O (la(u)1?) = 6llo ()1 + 2057 () ™ |1* (2.2.22)

Let piurn € R\ {0,5;]7 € N} be a critical point of |Ja(u)||*. It is also a turning
point of #(p) and using (2.2.22) for g = fisyn, we can calculate:

7 (la(u)|?) | = 6|5 (ftrurn) > > 0.

H=Hturn

(||17(,utum) |2 = 0 would imply 9 (ptsurn) = 0 which is a contradiction because o, (1) ‘Fo =

—n™* Yu (see the problem (2.2.16))), so all the critical points of ||a(u)|* in R\

{0, ;|5 € N} are points of local minimum. We collect now the properties of the
function ||u(p)|?:

la(u)* >0 Ve D(la(p)]*) =R\ {x;lj € N}
Every critical point iy, # 0 is a local minimum of || (u)
lla(p)|| = 400 for |u| = 400 or p— K;(j € N) (see (2.2.7) and (2.2.9));

|%(0)]|> =0  because 0 is not an eigenvalue of Ap .

[

Then we can conclude that the function ||a(u)||? has exactly one critical point (and
this is a minimum) on each interval (—oo, Kg), (K, k;41) (j € N). For every interval
(kj. kj41), this is equivalent to say that the function 7(x) has exactly one turning

point on each (k;, Kjt1)-

For the interval (—oo, kg), we know that the unique critical point of the function
|a(p)||* is the point g = 0, but we can not say that this is also a turning point for
7 (see the equation (2.2.18)). Moreover, we will show that it is not a turning point

~ 2~
of 7, so aur(u)‘u:o # 0.

Suppose that aif(u)‘ﬂzo = 0. For u = 0 we know u(0) = 0 (because 0 is not an

eigenvalue of Ap) and using (2.2.21) we obtain ©(0) = 0 which is a contradiction
because 17n(0)‘1,0 = —n"* (see the problem (2.2.16)).

So, for the interval (—oo, kg) we can conclude that 7 does not have turning points;
(d) is also proved.
[

We can draw now the graph of 7 for p € R (see Figure 2). On (0, ko) we
know exactly how it looks like, on (k;, k;41) we have two possibilities: 7 is monoton
descending or has a local maximum and a local minimum, both positive. We have
drawn the graph of 7 also for negative u (because we need it for the next section).
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| turning
“77 points

Figure 2: The Graph of 7 ()

We know that 7 has no negative zeros, and no turning points on (—oo, Kkg), so it
should looks like a "parabola” on this interval.

The numbers p; > 0 are zeros of the 7(), so the shape of 7 implies

Pi < Kj < Pj+1 V] e N.

Theorem 2.2.6 (The global bifurcation picture in «)
For a = 0 all the eigenvalues of L, are real. Denoting them by {i;}jen, it holds

X7
o =0, pj1=p; VjeN

For some ag > 0 the first two eigenvalues merge and leave the real axis.
Given a number w € R, there exists o, > 0 such that for a > «, every interval
(Kj, Kjt1) with Kj11 < w contains one and only one eigenvalue p(a) of L, (which
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is the unique real solution of the equation T(u) = « on this interval) and this real
etgenvalue satisfies
pf(a) N K;  for a— +oo.

For the nonreal eigenvalues it holds

1“(a)] = +o0  for a— +oo.

Proof: The statements for the real eigenvalues of £, are clear from the graph of 7.

For a = () we can compute a complete set of eigenfunctions in X/ :

o = 0 with eigenfunction (0, ™)
i1 = p; with eigenfunction (a(p;), n"")
Let pimax be the critical point of 7 on (0,kq). Then ag := 7(pmax) and from the
shape of 7 we see that for o > aq the first two eigenvalues merge and leave the real
axis.

Let w € R be given, then there exists ¢ € N such that 0 < kg < ... < K; < w
and define «, to be the biggest local maximum of 7(u) on (k;, kj41) for all j, j <.
The rest is clear from the shape of 7.

It remains now to prove only the assertion on the nonreal eigenvalues. We
suppose we have a sequence of nonreal eigenvalues p(«a) of £, which are bounded
independent of a, so suppose:

() = po € C - for a sequence a — +oo.

Denoting the corresponding eigenfunctions of £, with (a(u(a)), n™*), they satisfy
the energy equality Va € R:

l(p)]I* = all™*|?

and the condition for the normal stress on the free boundary:

(B(n(cr)) = 2085y (a) |, = ™.

where p(p(a) is the corresponding pressure function. Because u(a) is nonreal Vo,
it never meets «; and the pair (a(u(a)),p(p(e))) is also a nonzero solution of the
problem (2.2.4)—(2.2.5).

Then the pair (v(p(@)), ¢(p(a))),
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satisfies the equations:
(u(@) = A)o(u(e)) = 0
wlple))ly, = —E
(q(p(ar)) *QVSS(M(Q)))‘FO =

Passing to the limit & — +oo in all these equations, using our hypothesis pu(a) —
It € C and continuity w.r.t. p of the functions v and ¢, the pair of the limit

functions (v(pheo); ¢(1eo))

U(po) == lim w(p(a)) and  q(p) == lim q(u(e))

a—400 a—+oc
satisfies the following equations:
(:uoo - A)v(uoo)
Un (Noo) ‘1"0 =

(Q(/,LOO) - QVSS(;LOO))‘FO = mk'

and because the normal stress on the free boundary is n™*, the solution v(p) Z 0.

On the other hand, using the energy equality we can calculate:

() |
0# [[o(peo)[I” = lim [[———=
a— 400 «
n,k||2
i
a——+00 (0]
= 0’

a contradiction, so for nonreal eigenvalues, |u(a)| — 400 for a — +oo.

Proposition 2.2.7
(a) Figenvalues of L, leave the real axis with an infinite speed (w.r.t. o).
(b) The qualitative shape of 7,(n) is independent of the viscosity v:

2

Tev(€p) = €7 ().

Proof:
(a) The eigenvalues of L, leave the real axis in a critical point of 7 and we denote
it by perit(@) € R Because 7 is an analytic function in C\ {x;|j € N}, we have:

= 0.
au H=Hecrit a/l H=Hcrit



2.3. HOPF BIFURCATION WITH SYMMETRY 53

Because 7(pe () = a, we can calculate

_ ORe(7(p(@))) _ ORe(7(p())) I _ . o

1 . =0 -
aa H=crit a,u H=Hecrit aO{ 804 ’

so the speed of u(a) gets infinite.
(b) Multiplying the equation (2.2.4) with €2, we obtain the system
() eilp)) + () Alei(p)) -~ T(5() = 0
V(i) = 0
(@), =0
7+ Sea(w) | rpuw,, = 0
(cit)n(m)]g,, = 0
(€a)n(p)|p, = —(ep)n™*

together with the condition for the normal stress on the free boundary:

(3() = 2ev)S5) , = )™

By definition of 7 the last line coincide with 7, (eu)n™* and (b) is also proved.

2.3 Hopf Bifurcation with Symmetry

The Hopf bifurcation refers to a phenomenon in which a steady state of an evolution
equation evolves into a periodic orbit as a bifurcation parameter is varied. When the
symmetry appears, the problem becomes more complicated because the symmetry
can lead to multiple eigenvalues. In order to state an equivariant Hopf bifurcation
theorem we have to prove the existence of a pair of purely imaginary eigenvalues of £
which are Zg-simple together with the transversality condition that these eigenvalues
cross the imaginary axis with a nonzero speed, when the bifurcation parameter is
varied.

In this section we consider the influence of an exterior force (e.g. the wind force)
acting on the free surface of the fluid. In general such a force will depend on the
position and the velocity of the free surface and result in an increase or decrease of
the pressure at the free boundary. With a parameter £ for the strength we write

(p—2vS})| . = gn — BAN+ EF (1, unl ).
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Linearizing F' in 0 we notice that Dy F'-n acts like an additional surface tension, the
effect of which we know in any subspace X/ , (Section 2.2). So we will concentrate
on a linear force of the form 7
F(n, un‘ro) = DyF - “‘n‘rn'

This force can be written in terms of the representation X" = ©X/ ;. We assume
that the decomposition remains invariant and study the force DoF' = —id in X ;
which has the structure of a negative damping. We are interested in the position of
eigenvalues and restrict all the calculations to X7 ;. The linearized equation are the
same like that one in Chapter 1, except the equation (2.3.4) where the term £u,,
appears additionaly:

o

ou —vAu+Vp = 0 (2.3.1)
Veou = 0 (2.3.2)
o =l (2.3.3)
(p—2vS))|,, = gn™" = BAN"" — Cuy |, (2.3.4)
n- Su : Ti"Fg = 07 1= 1, 2 (235)
ulg , =0 (2.3.6)
tnlg,, = 0 (2.3.7)
n- Su : 7—7',‘21 ) =0 (238)

n,k _
o™, com = 0 (2.3.9)
(w, p. ™) (t, 21, 29, 23) = (u,p, n™F) (L, 21, 29 + 2, 23) (2.3.10)

Because we are working in the space X;k or X 1, so we have a special form for n"k,
some of the conditions (2.3.1)-(2.3.10) are automatically satisfied; however, for the
seek of completeness we wrote the whole Stokes problem.

In analogy with the previous sections we define the operator

, < u ) ( —vAu+ VH2uS| )+ VH(gn™ — BA"*) — VH(Eun|,, ) )
3 = )
n *“’"‘ro

(2.3.11)

where H( Eun‘r
definition (2.3. 11)

= f[(fun‘ro,ﬂ). We denote by Lcu the first component in the

We prove how the Theorem 1.2.5 carries over. We observe that the next Theorem
is true also in the whole space X” (i.e. for an eigenvector (u,n) € X" of Lq).
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Theorem 2.3.1 (Position of eigenvalues of £, w.r.t. || - ||g)

u ~
, ‘ . . o
Let ( _— ) € X, 1. be an eigenfunction (considered complex) of L¢ with eigenvalue

u
Re N
”H( "k )
u
Im
“H( "t )

In the case of Impu # 0 the energy equality holds :

. Then

2

% / 2 Pl R (23.12)
(0]

E
2

2lm | (—un|, ) (gn™" = BAT"). (2.3.13)
E To

2

— a2y, (2314)

1 U
2 = lal% o, = [ ——H( )
0 0 0 2 T’n 5

Proof: Following the proof of Theorem 1.2.5 this Theorem can be proved without
difficulties. The only difference which appear is the expresion (2.3.4) for the normal

stress on the free boundary.
O]

We abbreviate again by || || without indicies the L?(€)*-norm (or L?(T'y)-norm)
and by (-,-) the L?-scalar product.

We want to get a global picture of the position of eigenvalues as in the previous
section, but now depending on the parameter £. Looking at the results of Theorem
2.3.1, we see that two important differences will appear:

(a) The eigenvalues may have a negative real part;

(b)  The energy equality for eigenvectors (u, n™*) remains unchanged and does
not depend on the bifurcation parameter &; we will exploit this to prove
that for |£| — +oo, the nonreal eigenvalues are bounded.

Proposition 2.3.2
(a) The modulus of nonreal eigenvalues is bounded independent of &.
(b) For |§| — +o0 all eigenvalues of L are real.

Proof:

(a) We suppose that for [¢| — +oo we can find a sequence of nonreal eigenvalues
pn(§) € C\ R of L with |u(€)] — +o00. For every such complex eigenvalue with the
eigenfunction u(pu(§)), we know from the energy equality (2.3.14):

lu(e()|]> = ef[n™*||? is bounded independent of .
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The function u(p(§)) satisfies the problem (2.2.4)—(2.2.5) (together with the corre-
sponding pressure function). We can use the result of Proposition 2.2.4(c) from the
previous section, because its proof did not exploit £ = 0, and we conclude:

luu(€))| = +00, for  |u(€) — +oc,
a contradiction.
(b) For the second part we treat separately the cases £ — —oc and & — +o00.
(1) £ = —o0

The equation (2.3.12) implies
Rep(§) — +oo0  for & — —oo

which implies p(€) € R (because the nonreal eigenvalues are bounded).
(17) & = 400

We suppose that for any & arbitrary large, we can find a nonreal eigenvalue p(§)
of L¢, so we can construct a sequence of nonreal eigenvalues (which are bounded)
and consider p(§) = fio. Let (a(u(€)), n™*) be an eigenfunction of L, corresponding
to p(€) and p(pu(€)) be the corresponding pressure function. Because u(¢) € C\ R,
it never meets «;, so (@(p(€)),p(p(€))) is a nonzero solution of (2.2.4)—(2.2.5) (for

n(€)).

We distinguish two cases:
(1) fteo =0
Letting £ — +oo, the limit function (a(0),p(0)) is a solution of the problem

(2.2.4)—(2.2.5) for p = 0, so @(0) is identically zero. On the other hand, every
u(p(€)) satisfies the energy equality (2.3.14) and passing to the limit, we obtain

0=l = tim fa(u(€)* = alln™ | #0

a contradiction.

(2) poo # 0
Then the pair (0((€)). q(4(€))).
olp(@) = S g(ut - M
satisfies the equations:
(n(&) — Av(u(€) = 0
@)y, =
(a(1(€) = 28 = 2™+ €)™
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Passing to the limit £ — 400, using our hypothesis j(§) — po € C and continuity
w.r.t p of the functions v and ¢, the pair of the limit functions (v(peo), ¢(fico))

v(poe) = lim v(p(§)) and  q(peo) = lim q(p())

E—+o0 E—+o0
satisfies the following equations:
(oo — A)v(pie) = 0

Un(,uoo)‘po =0
(a(poc) = 208y, )|, = toot™.

and v(p) Z 0 because the normal stress on the free boundary is still nonzero.

On the other hand, using the energy equality (2.3.14) we have:

2

()
0 D = 1 A LLEA
A lo(r)lF = tim |55
n,k||2
_ 5213@6!”272”
= 0,

a contradiction.

So, 3¢ > 0 such that for [{] > &, all eigenvalues of L, are real.
[

We resume now two useful results from the previous Section 2.2. First, for £ =0
we know:

the first two eigenvalues of Loy become nonreal when o exceeds oy

and for the analysis in this section we fixed such an « (and omit it from the notation
of L¢ ). Second, for p € C\{x; : j € N} we have defined () as the unique solution
of the problem (2.2.4)—(2.2.5), and 7(u). We know that u(a) is an eigenvalue of
Loy < 7(p) = a. With the exterior force acting through &, we have:

n(€) € C is an eigenvalue of L < r(u)n™* = ang™ — gﬂ”‘ro
= o™+ Euntt
= i) = atin

so, we find the real eigenvalues of L, at the intersection of the graph of the function
7(p) — a (which is already known) with the line y = £u (see Figure 3).
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V4
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Figure 3: The intersection of the graph of 7(u) — o with the line y = &

We observe:

e For any ¢ € R, the line y = &u intersects the graph of 7(u) — o on each interval
(kj.kj11), J € N, at least once, so L¢ has at least one real eigenvalue lying on each
interval (k;, Kjt1).

e There exists the values & < 0 and & > 0 such that the lines y = & pu and y = &p
are tangent to the graph of 7(u) — « on the interval (0, k) and (—oo, 0) respectively.
For & € (&1,&) the line y = £u does not intersect the graph of 7(u) — a for p €
(—00, Kkg). Because of the analyticity of 7 (the number of zeros of 7, each counted
with its multiplicity, is locally constant), a pair of complex conjugate eigenvalues of
L¢ appears for £ =& + € and { = & — € (e > 0 small). Denote them by p(§) and

p1(€) with o(&) = f11(§)-
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e For £ € (—00,&), the line y = &u intersects the graph of 7(u) — a twice for
p € (0, Kg), so the first two eigenvalues are real and positive.

e For £ € (&, 400), the line y = {u intersects the "first part” of the graph of 7(u) —
twice, but for p € (—o0,0), so the first two eigenvalues are real and negative.

We denote the first two eigenvalues of L with po(§), p1(§) and the ordered
sequence of the (rest) real eigenvalues with {/;(£)}jen,j>o.

Theorem 2.3.3 (The global bifurcation picture in ¢)

For ¢ € (—o0,&) the first two eigenvalues of L¢ are real and positive:

0 < po(§) < pa(§) < Ko

For & — —oo all eigenvalues of L are real, every interval (kj, kj41) contains one
real eigenvalue pjio of Le and p10(€) (0, ptj42 / Kjr1, j € NU{-1}.

For € € (&, +00) the first two eigenvalues of L¢ are real and negative:

10 (&), pa(§) < 0.

For £ — 400 all eigenvalues of L¢ are real, every interval (k;, k;j+1) contains one
real eigenvalue p1j1o of Le and prjio \ Kjy1, J € N.

There exists a point & € (&1,&) where a pair of complex conjugate eigenvalues
of L¢ crosses the imaginary axis transversally. The imaginary axis can be crossed
only with negative real part of the velocity.

Proof: During this proof we have to keep in mind that each of u, u,p depends on &,
but we will not write this explicitly.

The first two statements are clear from Proposition 2.3.2(b) and Figure 3, which
also implies (because 7 is an analytic function): for small € > 0,

o for £ = & + € the pair of complex conjugate eigenvalues of L¢ has a positive
real part;

o for { = & — e the pair of complex conjugate eigenvalues of L, has a negative
real part.
The eigenvalues of £ depend continuously on § and together with Proposition
2.3.2(a) we can conclude: there exists £* € (&1, &) such that p(£*) is purely imagi-
nary, Reu(&*) = 0.

The eigenvalues p(§) # k; of L¢ are geometrically simple (in every X;k and up
to the Z;-symmetry) because for every eigenfunction (u(u(€)), n™*), u(u(€)) satisfies
also the problem (2.2.4)—(2.2.5) which has unique solution. The eigenvalues have
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the same geometric and algebraic multiplicity for [{] — +oo; for the proof see
[Schw1].

We have to prove now the transversality (for { = &*, d¢(Reu) # 0) and the
direction of crossing (for £ = £*, 9¢(Reu) < 0).

From the energy equality (2.3.14) we see that the norm of the eigenfunction u
does not depend on &, and we can calculate:

o:aguuH?:ag/Q u-u:/Q w- Octi +u et = 2Re(u, du) . (2.3.15)

We make first some further calculations, (2.3.16) and (2.3.17), for deu # 0. Mul-
tiplying the first component of the eigenvalue equation for £, with d¢u, integrating
over €}y and using Corollary 1.2.3 and Theorem 2.3.1, we obtain:

(pu, Ogu) = (Leu, Ocu)
= u Su i Socu +/ ((m”k — Su,n‘rn) . 8517,71‘1,0
To

Qq
1 _\_p
— 585 <21/ Sy Su> +/ (o + Ep)n™* (—0c)n™*
Qo To
1 . n I
= 5&(Rmr2MM“W2+£WVWWﬂF)*&M-MM’W2*£u&mm’WQ

n 1 n 1 n,.K
= OcRep)allg™ | + S 1Pl |1* + S €Dl ul*) ™|

-

cR
— et - ||| — Eudepl|n™*|? (2.3.16)

Differentiating the first component of the eigenvalue equation for £, w.r.t. £, mul-
tiplying with J¢u, integrating over {2y and using Corollary 1.2.3 and Theorem 2.3.1,
we obtain:

0 = (Oe(pu), Ogu) — (Oe(Leu), eu)
= i, Ogu) + | Ogul|*
+(VvAOsu — V’H(QVSggu‘FO), Ogu) — <V7—l(85(—§un‘rn)), Ogu)
= Oepau. D)+ plOcull* = 20 [ ot Saa— [ Ol (~dem)r*

= Ok Do)+ [Oeul? = 20 Sl + El0en P
N—— N - ,
udegll™P s
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We prove now that the speed of nonreal eigenvalues never vanishes. Let u be a
nonreal eigenvalue of £ and suppose Jgpt = 0, so J¢(Rep) = J¢(Imp) = 0. We prove
first that this implies also d¢u = 0. Suppose O:u # 0, so d¢u # 0, too. Introducing
this in the equation (2.3.17) we obtain

|2 = 20/ Soal
which implies ¢ € R, a contradiction. So
Oep=0 —= Ou=0u=0 —= 0.5, =0.
Differentiating the equation (2.3.12) w.r.t. £ we obtain
0 = Oc(Rep)2aly"*|*

= 200 [ ISF) — 0Pl — el
0

= a7,

a contradiction. Therefore we know for nonreal eigenvalues: d¢p # 0, V<.

In order to prove the transversality condition for & = £* and the direction of
crossing of the imaginary axis, we take the real part of (2.3.16) together with (2.3.15)
to obtain:

2.3.15) (2.3.1

16) 1
*Imu-1m<u,,8fu,>(: Re(p, Deu) :6)§|u‘2”nn,k”2

and the imaginary part of (2.3.17) to obtain
0 = O (Rep)Im(u, Ou) + Impl|Ocu||* + Im(udem)||n™ ">

Multiplying the last equation with 2Impu # 0 and using the previous equation, we
obtain:

Og(Re) | [ln™*|* = 2Im® po]| Ogu||* + 20mps - T (udefa) || *||*.
For £ = ¢*, we are on the imaginary axis, so we have

Rep =0 = Im(poepn) = Imp - O¢(Rep)
u)? =Tm?p # 0
and then
—0e(Rep)[[n™*[|* = 2(|9gul® > 0.
L]

We can formulate results similar to Proposition 1.2.6, Theorem 1.2.13 and Theo-
rem 1.2.17 for £, (V€). The proofs follow immediatly because only the value of p‘rn

is modified with u,|. and we can estimate ||VH ({un|r,)|lrao < cf|te|lri1.00:

vy <
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Proposition 2.3.4 (Properties of L;)
(a) The operator Egl : X7 — X" > 1 is bounded V€.

b) The solution (u,n) of the equation L¢(u,n) = (f,0) € X" satisfies the reqularity:
£
[y )|l < ]| (F, 0) ][ 0

(¢) The operator Lg : X2 Xg/z, r > 0, is invertible and the inverse is bounded

VE. The same result holds for A+ L¢, too, when —\ is not an eigenvalue of L.

(d) Linear existence results, similar to Theorem 1.2.15 and Theorem 1.2.18, hold
for Le¢, V€, too.

Definition 2.3.5 (Generalized nonresonance condition)

We say that the pair u* of pure imaginary eigenvalues of Le- satisfies the gen-
eralised nonresonance condition, when the following two requirements are fullfiled:
(a) the usual nonresonance condition: Ya € Z \ {£1}, au™ is not an eigenvalue of
Le-;

(b) a simplicity condition: for the fized value £ of the bifurcation parameter (for
which we have proved the transversality condition), the eigenvalues u* of Le- are

eigenvalues of Lex| ; . only for one n € N and for one k € 7.

We are now in position to formulate a Hopf bifurcation theorem for the full
nonlinear problem. We can consider we have written it in the form (after similar
transformations we have done in Section 1.3):

(0, + Le) < Z ) - < F(%’ ") ) (2.3.18)

where F' contains all the nonlinearities and correction terms. We recall that F' has
the following properties: for r > 1, F : X"*2 — H"(Q)3, F(0,0) = 0, DF exists
and DF(0,0) = 0.

Theorem 2.3.6 (Hopf bifurcation theorem)

For every space X, 1 there exists a critical value £ of the bifurcation parameter &
such that Le- has a pair p* of purely imaginary eigenvalues and the transversality
condition is fullfiled. We assume that this pair of eigenvalues satisfies the generalized
nonresonance condition of Definition 2.3.5.

Then a Hopf bifurcation occurs and there exists a branch of Zj-symmetric, periodic
solutions of the nonlinear equation.
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Proof: We are looking for periodic solution in ¢ of period p and with prescribed
spatial symmetry Zj for the equation (2.3.18). We can rescale the time through
t — 2mt/p, so we look for periodic solutions of (2.3.18) of period 27 and introduce
the unknown period as a parameter. We define the spaces )N(%k and )M(g/mk which

contain functions from X’ and X7

3/2 respectively, which have spatial symmetry Z;,

ie.

X5, = {a(t) € X |ywalt.) = (t. ). ¥y € T, V1)
{a(t,) € Rgjp |y (b, ) = 2(t, ). ¥y € Ty, Vi)

r J—
3/27,

where the composition * is defined in (2.2.1) and (2.2.2) (% acts only on the second
spatial variable z5). The definition is similar for the spaces without ~, too.

We want to solve the equation

é((u,n), p, €) := 2%@ ( :; ) + Le < :; ) - ( F(?é’") > =0 (2.3.19)

¢+ Hy, ([0.27], X5)07,) 0 L5, ([0,27), X72) X R x R — Ly, ([0. 2], X5 7).

per per

where

(see Proposition 2.3.4(d)).
Applying Cgl we obtain an equation equivalent with (2.3.19):

Y((u.n).p.&) == %ﬁglat ( Z ) + < Z ) Lt ( F(%’ ) ) -0 (2.3.20)

and for (u,n) € H} ([0=27T]7)~(§/2,Z )N L

e ([0, 27], X7 %), we know from the regu-

larity theory of Chapter 1 (see also Proposition 2.3.4):

per

0

U o _ U .

SO

W HY([0,27]), X5 p 5 ) 0 L2([0,27], X2F) x R x R — L2, ([0, 2], X7 12).

per per

Let &* be the critical value of £ we have found in Theorem 2.3.3. Then consider
pt has Tmp™ > 0 and let p* := Irr212+ . We have to show that the operator P :=
D11((0,0), p*, £*) is Fredholm of index zero with a two dimensional kernel, where

P H;PT([()? 27(]7 X§/2,Zk) N Lper([o 271—] XT+2) — Lf}er([ov 271—]7 X;:—Q)
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2
Pv := D19((0,0),p", ") (v) = —j@tﬁg}v + v,
p

where v = (u,n). We apply the Fourier expansion in time setting Vm € Z

27
Mnf
Uy (¢ dt .
\/ 2T /
Then
P=EpPr.
me7Z
with
. v +2 v +2
P, sz — sz
2
Po = —im—L 4 id,
p*

P,, is a Fredholm operator of index 0 Vm € Z \ {0}, because the operator ,Cg*l
X’“Jr2 — X“L3 s X’“Jr2 is compact; Py = id. We know from Theorem 2.3.3 that
55* has a palr of purely imaginary complex conjugate eigenvalues pu* which are
simple up to the Z;-symmetry in every space X;jf? (n € N, k € Z) for which pu*

are eigenvalues of Le| ¢, 42. (We observe that the number of such X712 is finite,
n,k o

because Cg*l is compact, so the eigenvalues of L¢ have also finite multiplicity).
We have assumed that the generalized nonresonance condition of Definition 2.3.5 is
fullfiled, so the eigenvalues u* of L¢- are Zj-simple in X" 2 and

P,, is invertible Vm € Z\ {£1}
kerAFﬁ == ker‘f?,l
dimp ker P,,, = 2 for m = +1.

For the kernel of P, we calculate:

Pr=0 & P(mzvm m>:

me7Z

< Pov, =0VmeZ

v, € ker P,, for m = %1

Then dimp ker P = dimp ker P11 = 2. To complete the proof that P is a Fredholm
operator of index zero, it remains to show that

P = @ P,

meZ\{+1}
P Hy([0,27), X35 5,) N L2,,.([0,27), X2 7%) — L2 ([0, 2], X7+%)

{vm—O VYm # +1

per per
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is surjective. Let

\ 1 —im :
g e Lppr([ov 271—]7 X;:—Q)v g=—7= Z gm€ * with g1 =091 = 0.

For every g, € X’;f (m # +1) we can find v, € X}f such that P,v,, = g, (by
the Fredholm property of P,,).

Denote by

M
1 —imt 1 —imt
9M = —F/— gme T, UM = —— Ume .
v 2 _Z " V2T _Z "
m=—M m
Then v, satisfies the equation
27 2
p—*ﬁtﬁg}vM +oy =9 < Faﬂ;M + Levy = Legu

and

IN

||7)M||H;ET([0,27r},)~(§/2,zk)ﬂLpM([0 2m], xr+2) 01||£E*QM||LW ([0.27).X5 5 )

IN

CZHQMHLZ ([0,27], X7 +%)

< C’3||9||L12W ([0.27). X7 7% -

We find v such that vy, — v weakly in H!, ([0, 27], X§/2 2,) 0 e, ([0, 27], X;;Lz) and

per per
v solves Pv = g. The regularity theory of Chapter 1 (see also Proposition 2.3.4)
implies now v € H,,.([0. 27), X3/92,) N L2..([0,2x], X%Z’Q). Then P is a Fredholm
operator of index 0 (as a direct sum of two Fredholm operators of index zero Py

with an invertible operator P) and dimg ker P = 2.

Using Ljapunov-Schmidt techniques, we reduce the problem of finding periodic
solutions of the equation ¢ = 0 (which is equivalent to ¢ = 0) to one in two
dimensions. We can apply now standard technical arguments used in the proof of
the Hopf bifurcation theorem (see [GSS] and [Cr,Ra]) and the result follows.

O]
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