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Abstract. The hierarchical mixture of experts architecture provides a
flexible procedure for implementing classification algorithms. The clas-
sification is obtained by a recursive soft partition of the feature space
in a data-driven fashion. Such a procedure enables local classification

where several experts are used, each of which is assigned with the task
of classification over some subspace of the feature space. In this work,
we provide data-dependent generalization error bounds for this class of
models, which lead to effective procedures for performing model selec-
tion. Tight bounds are particularly important here, because the model is
highly parameterized. The theoretical results are complemented with nu-
merical experiments based on a randomized algorithm, which mitigates
the effects of local minima which plague other approaches such as the
expectation-maximization algorithm.

1 Introduction

The mixture of experts (MoE) and hierarchical mixture of experts (HMoE) archi-
tectures, proposed in [10] and extensively studied in later work, is a flexible ap-
proach to constructing complex classifiers. In contrast to many other approaches,
it is based on an adaptive soft partition of the feature space into regions, to each
of which is assigned a ‘simple’ (e.g. generalized linear model (glim)) classifier.
This approach should be contrasted with more standard approaches which con-
struct a complex parameterization of a classifier over the full space, and attempt
to learn its parameters.

In binary pattern classification one attempts to choose a soft classifier f from
some class F , in order to classify an observation x ∈ R

k into one of two classes
y ∈ Y = {−1,+1} using sgn(f(x)). In the case of the 0−1 loss, the ideal classifier
minimizes the risk Pe(f) = P{sgn(f(X)) 6= Y } = P{Y f(x) ≤ 0}. If sgn (F)
consists of all possible mappings from R

k to Y, then the ultimate best classifier
is the Bayes classifier fB(X) = argmaxy∈Y P{Y = y|X}. In practical situations,

the selection of a classifier is based on a sample DN = {(Xn, Yn) ∈ X × Y}Nn=1,
where each pair is assumed to be drawn i.i.d. from an unknown distribution
P (X,Y ).



In this paper we consider the class of hierarchical mixtures of experts classi-
fiers [10], which is based on a soft adaptive partition of the input space, and a
utilization of a small number of ‘expert’ classifiers in each domain. Such a pro-
cedure can be thought of, on the one hand, as extending standard approaches
based on mixtures, and, on the other hand, providing a soft probabilistic ex-
tension of decision trees. This architecture has been successfully applied to re-
gression, classification, control and time series analysis. It should be noted that
since the HMoE architecture is highly parameterized, it is important to obtain
tight error bounds, in order to prevent overfitting. Previous results attempting
to establish bounds on the estimation error of the MoE system were based on
the VC dimension [9] and covering number approaches [15]. Unfortunately, such
approaches are too weak to be useful in any practical setting.

2 Preliminary results

Consider a soft classifier f , and the 0−1 loss incurred by it, given by I[yf(x) ≤ 0],
where I[t ≤ 0] is the indicator function of the event ‘t ≤ 0’. While we attempt
to minimize the expected value of the 0− 1 loss, it turns out to be inopportune
to directly minimize functions based on this loss. First, the computational task
is often intractable due to its non-smoothness. Second, minimizing the empirical
0 − 1 loss may lead to severe overfitting. Many recent approaches are based on
minimizing a smooth convex function φ(yf(x)) which upper bounds the 0 − 1
loss (e.g. [20, 12, 1]). Define the φ-risk, Eφ(f) = E {φ(Y f(X))}, and denote the

empirical φ-risk by Êφ(f,DN ) = N−1
∑N
n=1 φ(ynf(xn)). We assume that the

loss function φ(t) satisfies φ(0) = 1, φ(t) is Lipschitz with constant Lφ, φmax <∞
where φmax = supt∈R

φ(t) and I[t ≤ 0] ≤ φ(t) for all t. Using the φ-risk instead
of the risk itself is motivated by several reasons. (i) Minimizing the φ-risk often
leads asymptotically to the Bayes decision rule [20]. (ii) Rather tight upper
bounds on the risk may be derived for finite sample sizes (e.g. [20, 12, 1]). (iii)
Minimizing the empirical φ-risk instead of the empirical risk is computationally
much simpler.

Data dependent error bounds are often derived using the Rademacher com-
plexity. Let F be a class of real-valued functions with domain R

k. The empirical
Rademacher complexity is defined as

R̂N (F) = Eσ

{

sup
f∈F

1

N

N
∑

n=1

σnf(xn)

}

,

where σ = (σ1, σ2, ..., σN ) is a random vector consisting of independently dis-
tributed binary random variables with P(σn = 1) = P(σn = −1) = 1/2. The
Rademacher complexity is defined as the average over all possible training se-
quences, RN (F) = EDN

R̂N (F).

The following Theorem, adapted from [2] and [16], will serve as our starting
point.



Theorem 1. For every δ ∈ (0, 1) and positive integer N , with probability at
least 1− δ over training sequences of length N , every f ∈ F satisfies

Pe(f) ≤ Êφ(f,DN ) + 2LφR̂N (F) + 3φ
max

√

ln 2
δ

2N
.

This bound is proved in three steps. First McDiarmid’s inequality [14] and a
symmetrization argument [19] are used to bound supf∈F (Eφ(f) − Êφ(f,DN ))

with RN (φ ◦ F), which is then bounded by R̂N (φ ◦ F) using McDiarmid’s in-
equality again. The claim is established by using the Lipschitz property of φ(·)
to bound R̂N (φ◦F) with LφR̂N (F) (e.g. [11, 16]). In the sequel we upper bound

R̂N (F) for the case where F is the HMoE classifier.

Remark 1. The results of the Theorem can be tightened using the entropy method
[4]. This leads to improved constants in the bounds, which are of particular sig-
nificance when the sample size is small. We defer discussion of this issue to the
full paper.

3 Mixture of Experts Classifiers

Consider initially the simple MoE architecture defined in Figure 1, and given
mathematically by

f(x) =

M
∑

m=1

am(wm, x)hm(vm, x). (1)

We interpret the functions hm as experts, each of which ‘operates’ in regions
of space for which the gating functions am are nonzero. Note that assuming
am to be independent of x leads to a standard mixture. Such a classifier can
be intuitively interpreted as implementing the principle of ‘divide and conquer’
where instead of solving one complicated problem (over the full space), we can
do better by dividing it into several regions, defined through the gating functions
am, and using ‘simple’ expert hm in each region. It is clear that some restric-
tion needs to be imposed on the gating functions and experts, since otherwise
overfitting is imminent. We formalize the assumptions regarding the experts and
gating functions below. These assumptions will later be weakened.

Definition 1 (Experts). For each 1 ≤ m ≤ M , let Vm
max

be some nonneg-
ative scalar and vm a vector with k elements. Then, the m-th expert is given
by a mapping hm(vm, x) where vm ∈ Vm =

{

v ∈ R
k : ‖v‖ ≤ Vm

max

}

. We de-
fine the collection of all functions hm(vm, x) such that vm ∈ Vm as Hm. To
simplify the notation we define V

max
= supmVm

max
and set H =

⋃M
m=1Hm =

⋃M
m=1 {hm(vm, x), vm ∈ Vm} .

In the definitions below we write supwm,vm
instead of supwm∈Wm,vm∈Vm

.
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Fig. 1. MoE classifier with M experts.

Assumption 1 The following assumptions, serving the purpose of regulariza-
tion, are made for each m, 1 ≤ m ≤ M . (i) To allow different types of experts,
assume hm(vm, x) = hm(τm(vm, x)) where τm(vm, x) is some mapping such as
v>mx or ‖vm − x‖. We assume that hm(τm(vm, x)) is Lipschitz with constant
Lhm

, i.e. |hm(τm(vm1
, x)) − hm(τm(vm2

, x))| ≤ Lhm
|τm(vm1

, x) − τm(vm2
, x)|.

(ii) |hm(vm, x)| is bounded by some positive constant MHm
< ∞. So, by defin-

ing MH = maxmMHm
we have that supm,vm

|hm(vm, x)| ≤ MH. (iii) The
experts are either symmetric (for regression) or antisymmetric (for classifica-
tion) with respect to the parameters so that hm(vm, x) = νhm(−vm, x) for some
ν ∈ {±1}.

Remark 2. Throughout our analysis we refer to x as a sample of the feature
space. Yet, our results can be immediately extended to experts of the form
hm(vm, x) = hm

(

v>mΦm(x)
)

where Φm(x) may be a high-dimensional nonlinear
mapping as is used in kernel methods. Since our results are independent of the
dimension of Φm, they can be used to obtain useful bounds for local mixtures
of kernel classifiers. The use of such experts results in a powerful classifier that
may select a different kernel in each region of the feature space.

The gating functions a(·, x) reflect the relative weights of each of the experts
at a given point x. In the sequel we consider two main types of gating functions.

Definition 2 (Gating functions). For each 1 ≤ m ≤ M , let Wm
max

be a
nonnegative scalar and wm a vector with k elements. Then, the m-th gating
function is given by a mapping am(wm, x) where wm ∈ Wm = {w ∈ R

k :
‖w‖ ≤ Wm

max
}. To simplify the notation we define W

max
= supmWm

max
and set

A =
⋃M
m=1Am =

⋃M
m=1 {am(wm, x)|wm ∈Wm} . If am(wm, x) = am(w>

mx) we
say that am(wm, x) is a half-space gate, and if am(wm, x) = am

(

‖wm − x‖2/2
)

we say that am(wm, x) is a local gate.



Assumption 2 The following assumptions are made for every m, 1 ≤ m ≤M .
(i) am(vm, x) is Lipschitz with constant Lam

, analogously to Assumption 1. We
define La = maxm Lam

. (ii) |am(vm, x)| is bounded by some positive constant
MAm

<∞. So, by definingMA = maxmMAm
we have supm,wm

|am(wm, x)| ≤
MA.

In Section 6 we will remove some of the restrictions imposed on the param-
eters.

4 Risk bounds for mixture of experts classifiers

In this section we address the problem of bounding R̂N (F) where F is the class
of all MoE classifiers defined in section 3. We begin with the following Lemma,
the proof of which can be found in the appendix.

Lemma 1. Let Fm = {am(wm, x)hm(vm, x)|am(wm, x) ∈ Am, hm(vm, x) ∈ Hm}.
Then, R̂N (F) =

∑M
m=1 R̂N (Fm).

Thus, it is suffices to bound R̂N (Fm), m = 1, 2, . . . ,M in order to establish
bounds for R̂N (F). To do so, we use the following Lemma.

Lemma 2. Let G1,G2 be two classes defined over some sets X1,X2 respectively,
and define the class G3 as

G3 = {g : g(x1, x2) = g1(x1)g2(x2), g1 ∈ G1, g2 ∈ G2} .

Assume further that at least one of the sets X1 or X2 is closed under negation
and that every function in the class defined over this set is either symmetric or
antisymmetric. Then,

Z(G3) ≤M2Z(G1) +M1Z(G2) ,

where Z(Gi) = Eσ

{

supg∈Gi

∑N
n=1 σng(xn)

}

for i = 1, 2, 3 and Mi =

supgi∈Gi,xi∈Xi
|gi(xi)| for i = 1, 2.

The proof of Lemma 2 is given in the Appendix. Note that a simpler deriva-
tion is possible using the identity ab = (1/4)

(

(a+ b)2 − (a− b)2
)

. However, this
approach leads to looser bound. This lemma implies the following corollary.

Corollary 1. For every 1 ≤ m ≤M define Fm as in Lemma 1. Then,

R̂N (Fm) ≤MHm
R̂N (Am) +MAm

R̂N (Hm) (m = 1, 2, . . . ,M) .

We emphasize that Corollary 1 is tight. To see that, set the gating function
to be a constant. In this case R̂N (Am) = 0 and an equality is obtained by setting
the gating variable toMAm

. In the sequel we use the following basic result (see
[11, 16] for a proof).



Lemma 3. Assume ψ is Lipschitz with constant Lψ and let g : R
k × Y 7→ R be

some given function. Then, for every integer N

Eσ

{

sup
f∈F

N
∑

n=1

σnψ (g (yn, f (xn)))

}

≤ LψEσ

{

sup
f∈F

N
∑

n=1

σng(yn, f(xn))

}

.

Remark 3. To minimize the technical burden, we assume the experts are gener-
alized linear models (glim, see [13]), i.e. τm(vm, x) = τm(v>mx) in Assumption
1. An extension to generalized radial basis functions (grbf), i.e. τm(vm, x) =
τm (‖vm − x‖), is immediate using our analysis of local gating functions. Exten-
sions to many other types can be achieved using similar technique.

Using the Lipschitz property of the class Hm along with Lemma 3 we get

R̂N (Hm) ≤ Lhm

N
Eσ sup

vm

{

v>m

N
∑

n=1

σnxn

}

.

By the Cauchy-Schwartz and Jensen inequalities we find that

R̂N (Hm) ≤ Lhm

N
Eσ

{

Vm
max

∥

∥

∥

∥

∥

N
∑

n=1

σnxn

∥

∥

∥

∥

∥

}

≤ Lhm
Vm

max
x̄√

N

where x̄ =
√

N−1
∑k
j=1

∑N
n=1 x

2
nj .

For the case of half-space gating functions we have a(w, x) = a(w>x). In
this case, analogous argumentation to the one used for the experts can be used
to bound R̂N (A). For the case of local gating functions we have a(w, x) =
a
(

‖w − x‖2/2
)

. Similar arguments lead to the bound

R̂N (Am) ≤ Lam√
N

(

(Wm
max

)2√
8

+Wm
max
x̄

)

.

We summarize our results in the following Theorem.

Theorem 2. Let F be the class of mixture of experts classifiers with M glim

experts. Assume that gates 1, 2, . . . ,M1 are local and that gates M1 + 1, . . . ,M
are half-space where 0 ≤M1 ≤M . Then,

R̂N (F) ≤ 1√
N

[

M1
∑

m=1

c1,m(Wm
max

)2 +

M
∑

m=1

c2,mWm
max

+

M
∑

m=1

c3,mVm
max

]

where c1,m =MHm
Lam

/
√
8, c2,m =MHm

Lam
x̄ and c3,m =MAm

Lhm
x̄ for all

m = 1, 2, . . . ,M .



5 Hierarchical Mixture of Experts

The MoE classifier is defined by a linear combination of M experts. An intuitive
interpretation to the meaning of this combination is the division of the feature
space into subspaces, in each of which the experts are combined using the weights
am. The Hierarchical MoE takes this procedure one step further by recursively
dividing the subspaces using a MoE classifier as the expert in each domain, as
described in Figure 2.
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Fig. 2. Balanced 2-level HMoE classifier with M experts. Each expert in the first level
is a mixture of M sub-experts.

In this section we expand the bound obtained for the MoE to the case of
HMoE. We demonstrate the procedure for the case of balanced two-levels hier-
archy with M experts (see Figure 2). It is easy to repeat the same procedure
for any number of levels, whether the HMoE is balanced or not, using the same
idea.



We begin by giving the mathematical description of the HMoE classifier. Let
f(x) be the output of the HMoE, and let gm(θm, x) be the output of the m-th
expert, 1 ≤ m ≤M . The parameter θm is comprised of all the parameters of the
m-th first level expert, as will be detailed shortly. This is described by

f(x) =
M
∑

m=1

am(wm, x)gm(θm, x),

where am(wm, x) is the weight of the m-th expert in the first level gm(θm, x),
given by

gm(θm, x) =

M
∑

j=1

amj(wmj , x)hmj(vmj , x)

where amj(wmj , x) is the weight of hmj(vmj , x), the j-th (sub-)expert in the
m-th expert of the first level. By defining θmj = [wmj , vmj ], we have that θm =
[θm1, . . . , θmM ]. We also define w = [w1, . . . , wM ], the parameter vector of the
gates of the first level and θ = [w, θ1, . . . , θM ], the parameter vector of the HMoE.

Recall that we are seeking to bound the Rademacher complexity for the case
of HMoE. First, we use the independence of the first level gating functions to
show that

R̂N (F) =

M
∑

m=1

Eσ

{

sup
θm,wm

1

N

N
∑

n=1

σnam(wm, xn)gm(θm, xn)

}

. (2)

So, our problem boils down to bounding the summands in (2). Notice that for
every m = 1, . . . ,M we have supθm

{|gm(θm, x)|} ≤MMHMA. By defining Fm
for the case of the 2-level HMoE analogously to the definition given at Lemma
1 for MoE, and using Corollary 1 recursively twice, it is easy to show that

R̂N (Fm) ≤MMHMAR̂N (A) +MAEσ







sup
θm

1

N

N
∑

n=1

σn

M
∑

j=1

amj(wmj , xn)hmj(vmj , xn)







=MMHMAR̂N (A) +MA

M
∑

j=1

Eσ

{

sup
θmj

1

N

N
∑

n=1

σnamj(wmj , xn)hmj(vmj , xn)

}

≤MMHMAR̂N (A) +MMA

(

MHR̂N (A) +MAR̂N (H)
)

=MMA

[

2MHR̂N (A) +MAR̂N (H)
]

which, combined with Corollary 1 implies Theorem 3.

Theorem 3. Let F be the class of balanced 2-level hierarchical mixture of ex-
perts classifiers with M experts in each division (see Figure 2). Then,

R̂N (F) ≤M2MA

[

2MHR̂N (A) +MAR̂N (H)
]

.

Notice that by choosing the constants more carefully, similar to Theorem 2, the
bound in Theorem 3 can be tightened.



6 Fully data dependent bounds

So far, the feasible set for the parameters was determined by a ball with a pre-
defined radius (Wmax for the gates or Vmax for the experts). This predefinition
is problematic as it is difficult to know in advance how to set these parameters.
Notice that given the number of experts M , these predefined parameters are the
only elements in the bound that do not depend on the training sequence. In this
section we eliminate the dependence on these preset parameters. Even though
we give bounds for the case of MoE, the same technique can be easily harnessed
to derive fully data dependent bounds for the case of HMoE.

The derivation is based on the technique used in [6]. The basic idea is to
consider a grid of possible values for Wm

max
and Vm

max
, for each of which Theorem

2 holds. Next, we assign a probability to each of these grid points and use a
variant of the union bound to establish a bound that holds for every possible
parameter.

Similarly to the definition of θ in section 5, we define for the MoE classifier
θ = [θ1, θ2, . . . , θ2M ] where θm = wm for all m = 1, 2, . . . ,M and θm = vm for all
m =M +1,M +2, . . . , 2M . The following result provides a data dependent risk
bound with no preset system parameters, and can be proved using the methods
described in [16].

Theorem 4. Let the definitions and notation of Theorem 2 hold. Let q0 be some
positive number, and assume ‖θm‖ ≥ q0 for every m = 1, . . . , 2M . Then, with
probability at least 1 − δ over training sequences of length N , every function
f ∈ F satisfies

Pe(f) ≤ Êφ(f,DN )+
2√
N

[

2

M1
∑

m=1

c1,m‖θm‖2 +
M
∑

m=1

c2,m‖θm‖+
2M
∑

m=M+1

c3,m‖θm‖
]

+ 3φ
max

√

√

√

√ln
2

δ
+ 2

2M
∑

m=1

ln log2

2‖θm‖
q0

.

Remark 4. Theorem 4 can be generalized to hold for all θ (without the restriction
‖θm‖ ≥ q0), by using the proof method in [6],[16].

7 Algorithm and Numerical results

We demonstrate how the bound derived in Section 4 can be used to select the
number of experts in the MoE model. We consider algorithms which attempt
to minimize the empirical φ-loss Êφ(f,DN ). It should be noted that previous
methods for estimating the parameters of the MoE model were based on gra-
dient methods for maximizing the likelihood or minimizing some risk function.
Such approaches are prone to problems of local optima, which render standard
gradient descent approaches of limited use. This problem also occurs for the EM
algorithm discussed in [10]. Notice that even if φ(yf(x)) is convex with respect



to yf(x), this doesn’t necessarily imply that it is convex with respect to the
parameters of f(x). The deterministic annealing EM algorithm proposed in [17]
attempts to address the local maxima problem, using a modified posterior dis-
tribution parameterized by a temperature like parameter. A modification of the
EM algorithm, the split-and-merge EM algorithm proposed in [7], deals with
certain types of local maxima involving an unbalanced usage of the experts over
the feature space.

One possible solution to the problem of identifying the location of the global
minimum of the loss is given by the Cross-Entropy algorithm (see [5] for a recent
review, [18]). This algorithm, similarly to genetic algorithms, is based on the idea
of randomly drawing samples from the parameter space and improving the way
these samples are drawn from generation to generation. We observe that the
algorithm below is applicable to finite dimensional problems.

To give an exact description of the algorithm used in our simulation we first
introduce the following notation. We let the definition of θ from section 6 hold
and denote by Θ the feasible set of values for θ. We also define a parameterized
p.d.f. ψΘ(θ; ξ) over Θ with ξ parameterizing the distribution.

To find a point that is likely to be in the neighborhood of the global minimum,
we carry out Algorithm 1 (see box). Upon convergence, we use gradient methods

with θ̂Bs (see box for definition) as the initial point to gain further accuracy in

estimating the global minimum point. We denote by θ̂B the solution of the
gradient minimization procedure and declare it as the final solution.

Simulation setup.We simulate a source generating data from a MoE classi-
fier with 3 experts. The Bayes risk for this problem is 18.33%. We used a training
sequence of length 300, for which we carried out Algorithm 1 followed by gra-
dient search with respect to Êφ(f,DN ), where φ(t) = 1 − tanh(2t). Denoting
by fCEM the classifier that was selected for each M = 1, 2, . . . , 5, we denote by

Êφ(f
CE
M , DN ) the minimal empirical φ-risk obtained over the class. We evalu-

ate the performance of each classifier by computing P̂e(f
CE
M , Dtest) over a test

sequence of 106 elements (Dtest), drawn from the same source as the training
sequence. This is the reported probability of error Pe(f). Figure 1 describes
these two measures computed over 400 different training sequences (the bars
describe the standard deviation). The graph labelled as the ‘complexity term’
in Figure 1 is the sum of all terms on the right hand side of Theorem 2 with
δ = 10−3, excluding Êφ(f

CE
M , DN ). As for the CE parameters, we set ψΘ(.) to be

the β distribution, ξ̂0 = [1, 1] (corresponds to uniform distribution), ρ1 = 0.03,
ρ2 = 0.001, ρ3 = 0.7 and T = 200. The results are summarized in Figure 1.

A few observations are in place: (i) As one might expect, Êφ(f
CE
M , DN ) is

monotonically decreasing with respect to M . (ii) As expected, the complexity
term is monotonically increasing with respect to M and (iii) Pe(f) is the closest
to the Bayes error (18.33%) whenM = 3, which is the Bayes solution. We witness
the phenomenon of underfitting for M = 1, 2 and overfitting for M = 4, 5, as
predicted by the bound.

We also applied a variant of Algorithm 1, suitable for unbounded parameter
feasible set (the details will be discussed in the full paper), to the real-world



The Cross-Entropy Algorithm.

Input: ψΘ(.) and φ(.).

Output: θ̂Bs , a point in the neighborhood of the global minimum of Ê(f(θ), DN ).

Algorithm :

1. Pick some ξ̂0 (a good selection will turn ψΘ(θ; ξ̂0) into a uniform distribution over
Θ). Set iteration counter s = 1, two positive integers d, T and three parameters
0 < ρ1, ρ2, ρ3 < 1.

2. Generate an ensemble θ1, . . . , θL where L = 2kMT (k is the dimension of the
feature space and M is the number of experts, thus the dimension of Θ is 2kM),
drawn i.i.d according to ψΘ(θ; ξ̂s−1).

3. Calculate Êφ(f,DN ) for each member of the ensemble. The Elite Sample (ES)
comprises the bρ1Lc parameters that received the lowest empirical φ-risk. Denote
the parameters that are associated with the worst and the best Êφ(f,DN ) in the
ES as θ̂Ws and θ̂Bs respectively.

4. If for some s ≥ d

max
s−d≤i,j≤s

(θ̂Wi − θ̂Wj ) ≤ ρ2

stop (declare θ̂Bs as the solution). Otherwise, solve the maximum likelihood esti-
mation problem, based on the ES, to estimate the parameters of ψΘ (notice that
it is not a MLE for the original empirical risk minimization problem). Denoting
the solution as ξ̂ML, compute ξ̂s+1 = (1− ρ3)ξ̂s+ ρ3ξ̂ML. Set s = s+1 and return
to 2.

Algorithm 1: The Cross-Entropy Algorithm for estimating the location of the
global minimum of the empirical φ-risk.

data sets bupa and pima [3]. We considered a MoE classifier with 1 to 4 linear
experts, all with local gates. The results are compared with those of linear-SVM
and RBF-SVM in Table 1.

Data set MoE (2 experts) Linear-SVM RBF-SVM

bupa 0.289± 0.050 0.320± 0.084 0.317± 0.048

pima 0.241± 0.056 0.244± 0.050 0.255± 0.067
Table 1. Real world data sets results. The results were computed using 7-fold cross-
validation for bupa and 10-fold cross-validation for pima. For each fold, the parameters
of the classifiers were selected using cross-validation in the training sequence.
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Fig. 3. A comparison between the data dependent bound of Theorem 2 and the true
error, computed over 400 Monte Carlo iterations of different training sequences. The
solid line describes the mean and the bars indicate the standard deviation over all
training sequences. The two figures on the left demonstrates the applicability of the
data dependent bound to the problem of model selection when one wishes to set the
optimal number of experts. It can be observed that the optimal predicted value for M
in this case is 3, which is the number of experts used to generate the data.

8 Discussion

We have considered the hierarchical mixture of experts architecture, and have
established data dependent risk bounds for its performance. This class of ar-
chitectures is very flexible and overly parameterized, and it is thus essential to
establish bounds which do not depend on the number of parameters. Our bounds
lead to very reasonable results on a toy problem. Also, the simulation results on
real world problems are encouraging and motivate further research. Since the
algorithmic issues are rather complicated for this architecture, it may be advan-
tageous to consider some of the variational approaches proposed in recent years
(e.g. [8]). We observe that the HMoE architecture can be viewed as a member of
the large class of widely used graphical models (a.k.a. Bayesian networks). We
expect that the techniques developed can be used to obtain tight risk bounds
for these architectures as well.
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A Proofs of some of the theorems

Proof of Lemma 1 To simplify the notation, we write supw,v instead of
supw∈W,v∈V . Since, by definition, the set of parameters (wi, vi) is independent
of (wj , vj) for any 1 ≤ i, j ≤M , i 6= j we have

R̂N (F) = Eσ

{

sup
w,v

1

N

N
∑

n=1

σn

M
∑

m=1

am(wm, xn)hm(vm, xn)

}

=
1

N

M
∑

m=1

Eσ

{

sup
wm,vm

N
∑

n=1

σnam(wm, xn)hm(vm, xn)

}

.

¤

Proof of Lemma 2 First, we introduce the following Lemma

Lemma 4. For any function C(g1, g2, x), there exist ν ∈ {±1} such that

Eσ

{

sup
g1,g2

(C(g1, g2, x) + σg1(x)g2(x))

}

≤Eσ
{

sup
g1,g2

(C(g1, νg2, x) +M2σg1(x) +M1σg2(x))

}

.

Proof. (of Lemma 4)

Eσ

{

sup
g1,g2

(C(g1, g2, x) + σg1(x)g2(x))

}

=
1

2
sup
g1,g2

(C(g1, g2, x) + g1(x)g2(x)) +
1

2
sup
g1,g2

(C(g1, g2, x)− g1(x)g2(x))

=
1

2
sup

g1,g2,g̃1,g̃2

(C(g1, g2, x) + g1(x)g2(x) + C(g̃1, g̃2, x)− g̃1(x)g̃2(x))

(a)
=

1

2
sup

g1,g2,g̃1,g̃2

(C(g1, g2, x) + C(g̃1, g̃2, x) + |g1(x)g2(x)− g̃1(x)g̃2(x)|)

(b)

≤ 1

2
sup

g1,g2,g̃1,g̃2

(C(g1, g2, x) + C(g̃1, g̃2, x) +M1|g2(x)− g̃2(x)|+M2|g1(x)− g̃1(x)|)

(3)

where (a) is due to the symmetry of the expression over which the sepremum is
taken and (b) is immediate, using the following inequality

|g1(x)g2(x)− g̃1(x)g̃2(x)| = |g1(x)(g2(x)− g̃2(x)) + g̃2(x)(g1(x)− g̃1(x))|
≤ M1|g2(x)− g̃2(x)|+M2|g1(x)− g̃1(x)|.



Next, we denote by g∗1 , g
∗
2 , g̃

∗
1 , g̃

∗
2 the functions over which the supremum in (3)

is achieved and address all cases of the signum of the terms inside the absolute
values at (3).

case 1:g∗2(x) > g̃∗2(x), g
∗
1(x) > g̃∗1(x)

sup
g1,g2,g̃1,g̃2

{C(g1, g2, x) + C(g̃1, g̃2, x) +M1(g2(x)− g̃2(x)) +M2(g1(x)− g̃1(x))}

= sup
g1,g2

{C(g1, g2, x) +M1g2(x) +M2g1(x)}+ sup
g̃1,g̃2

{C(g̃1, g̃2, x)−M1g̃2(x)−M2g̃1(x)}

= 2Eσ sup
g1,g2

{C(g1, g2, x) +M1σg2(x) +M2σg1(x)}

case 2: g∗2(x) > g̃∗2(x), g
∗
1(x) < g̃∗1(x)

sup
g1,g2,g̃1,g̃2

{C(g1, g2, x) + C(g̃1, g̃2, x) +M1(g2(x)− g̃2(x)) +M2(g̃1(x)− g1(x))}

(a)
= sup

g1,g2,g̃1,g̃2

{C(g1,−g2, x) + C(g̃1,−g̃2, x) +M1(g̃2(x)− g2(x)) +M2(g̃1(x)− g1(x))}

= 2Eσ sup
g1,g2

{C(g1,−g2, x) +M1σg2(x) +M2σg1(x)}

where (a) is due to the assumption that G2 is close under negation. Notice that
the cases where g∗2(x) < g̃∗2(x), g

∗
1(x) < g̃∗1(x) and g

∗
2(x) < g̃∗2(x), g

∗
1(x) > g̃∗1(x)

are analogous to cases 1 and 2 respectively. ¤

We can now provide the proof of Lemma 2. By using Lemma 4 recursively
with a suitable definition of C(g1, g2, x) in each iteration, we have for every
t = 1, . . . , N + 1

Eσ

{

sup
g1,g2

N
∑

n=1

σng1(xn)g2(xn)

}

≤ Eσ

{

sup
g1,g2

(

N
∑

n=t

σng1(xn)g2(xn) +M2

t−1
∑

n=1

σng1(xn) +M1

t−1
∑

n=1

Γ (n, t)σng2(xn)

)}

where

Γ (n, t) =







∏t−2
i=n νi if n ≤ t− 2

1 if n = t− 1
not defined otherwise

.

By setting t = N + 1 we get

Eσ

{

sup
g1,g2

N
∑

n=1

σng1(xn)g2(xn)

}

≤M2Eσ

{

sup
g1

N
∑

n=1

σng1(xn)

}

+M1Eσ

{

sup
g2

N
∑

n=1

Γ (n,N + 1)σng2(xn)

}

.

Recall that νi ∈ {±1} ∀i and thus Γ (n,N + 1) ∈ {±1} ∀n. So, by redefining

σn =
∏N−1
i=n νiσn ∀n for the second term of the last inequality, we complete the

proof of Theorem 2. ¤
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