Encapsulation for Practical Simplification Procedures
Olga Shumsky Matlin and William McCune

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439

Abstract

ACL2 was used to prove properties of two simplification piaes. The procedures differ in complexity but
solve the same programming problem that arises in the cbiofea resolution/paramodulation theorem proving
system. Term rewriting is at the core of the two proceduresdetails of the rewriting procedure itself are irrelevant
The ACL2 encapsulateonstruct was used to assert the existence of the rewritingtibn and to state some of its
properties. Termination, irreducibility, and soundnesgperties were established for each procedure. The av#itab
of the encapsulation mechanism in ACL2 is considered eisdeatrapid and efficient verification of this kind of
algorithm.

1 Introduction and Problem Description

We examine simplification procedures that arise in resofytparamodulation, and rewriting systems. We have
a programming problem, and at an abstract level we have mlstigrward procedure to solve it. However, our
theorem provers (e.g., Otter [3]) are written in C, with lofhacks and optimizations that impose constraints that do
not fit with our abstract solution. We have devised a two-sfagcedure intended to have properties similar to those
of the straightforward procedure. The two-stage procedbrys the constraints, but its correctness is not obvious,
so we have called on ACL2 [2] for assistance.

The following simplification problem is faced by many red@un/paramodulation style theorem-proving pro-
grams. Suppose we have a Saif clauses with the irreducibility property that no clauseSisimplifies any other
clause inS. We wish to add a new sebf clauses t& and have the resulting set be equivalertol and also satisfy
the irreducibility property. The problem is interestingcheise, in addition to members 88implifying members of
I, members of can also simplify members & and those simplified members can simplify other membe®; afd
so on. Consider the following procedure, which we déct incorporation

Q=1;
Wiile (Q do
C = dequeue(Q;
C=simlify(C 9S);
if (C!= TRUE
for each Din Ssinplifiable by C
nove DfromS to Q
append Cto S;

In the terminology of our theorem prover Otter, the statemi€n= simplify(C, S)” corresponds to both forward
rewriting and forward subsumption, and the loop “for each’'Bcorresponds to back subsumption and back rewriting.
The listl represents a set of clauses derived by some inference rule.

*This work was supported by the Mathematical, Informatiamd £omputational Sciences Division subprogram of the OffitAdvanced
Scientific Computing Research, Office of Science, U.S. Diepant of Energy, under Contract W-31-109-ENG-38.



The direct incorporation procedure does not suit our puepphowever. The sétcan be too large to generate
in full before incorporating it intdS. Members ofl will typically simplify many other members df so we wish to
incorporatd into Sasl is being generated. Furthermore, thelsistgenerated by making inferences from members
of S and our algorithms and data structures do not allow us t@verclauses frons while it is being used to make
inferences.

Therefore, we use a two-stage procedure, which welioahlo incorporation The first stage simplifies members
of | and, if they are not simplified tBRUE puts them into a queue(called theimbo lisf). The setSis not modified
by the first stage. The second stage procekaetil it is empty. For each memb& of L, all clauses irSthat can
be simplified byB are removed from S, simplified by U L, then appended tb. The second stage is similar to the
direct incorporation procedure except that in the secoagestmembers of the queue being processed have already
been simplified with respect t8. In Otter terminology, the first stage does forward simpdifion, and the second
stage does back simplification.

The direct incorporation procedure and the limbo incorgioraprocedure do not necessarily produce the same re-
sults because the simplification operations can happeffaretit orders and the simplifiers we use do not necessarily
produce unique canonical forms.

Our goals are to show, for each incorporation proceduré (t)at terminates, (2) it produces a set in which no
member can simplify any other member, and (3) the finaEsgtequivalent to the conjunction dfand the initial set
S

2 ACL2 Solution

The reasoning we need to do is primarily about the order irctvisimplification operations occur and the sets of
simplifiers that are applied. The details of the basic sifigaliion procedure and of the evaluation procedure for
proving equivalence properties are irrelevant. Therefeechave used an ACL2 encapsulation mechanism to assert
the existence and relevant properties of the simplificagiod evaluation functions.

An alternative to using the encapsulation mechanism isltp define the simplification and evaluation functions
and then prove the required properties based on these faatiahs. Term rewriting, which is at the core of the
simplification procedure, is not a simple algorithm [1], hewer, and considerable effort would have been required
to establish its termination and necessary propertiesmélizing an evaluation function would have necessitated
formalization of first-order logic in ACL2, as was done in they [4] project. Our experiences in that project
highlighted the difficulties in implementing a general fiostler evaluation function in ACL2 and reasoning about it.
Had we taken this route here, the majority of effort woulddbeen spent on these underlying concepts, precluding us
from examining the procedures of interest quickly and effitly. For these reasons, we believe that the encapsulation
mechanism was invaluable in our current work.

2.1 Constrained Functions and Their Properties

We constrain four functions using tlemcapsulateonstruct. The functiosimplify (x y)is for simplification of an
elemenix by a sety. The functiontrue-symbolp (x)s a recognizer for the true symbol (for examplegr 'true or 1)

in a particular logic. The functioneval (x i)is for evaluation of a clausein interpretationi. The functionscount (x)
is for computing the size of the argument. Witnesses fordhe functions are straightforward. A witness &implify
(x y) returnsx. Witnesses fotrue-symbolp (xandceval (x i)always returrt. Acl2-count (x)serves as a witness for
scount (x)

Given the witnesses, the following constraints for these fanctions are stated and proved. Constraints fall into
three categories depending on which of the three main goatsrmination, irredicibility, and logical equivalence
— they enable us to establish. To ensure termination of #icgtion procedures, in practice we typically use
the lexicographic path ordering or the recursive path andefl]. Simplification with these orderings can increase
the number of symbols, sacl2-countdoes not produce an accurate termination function. Instba&dconstrained
functionscountis used to determine the size of a clause. The main propethediinction is that it returns a natural
number.

(def t hm scount - nat ur al
(and (integerp (scount X))
(<= 0 (scount x))))



Termination proofs depend on the constraint that for foasuhat are indeed changed by simplification, the result of
the simplification is somehow smaller than the original ession.

(defthm scount-sinplify
(or (equal (sinmplify x y) x)
(< (scount (simplify x y))
(scount x))))

Proof of the irreducibility property depends on the follogiproperties of the basic simplification procedure. An
idempotence property states that once a formula is simplifiea set, attempting to simplify the result again by the
same set will have no effect. Another property requires hatset simplifies a formula, then a superset of that set
does so as well. A third property states that two sets thatodsimplify a formula individually do not do so when
considered collectively.

(defthm sinplify-idenpot ent
(equal (sinmplify (sinplify x vy) vy)
(simplify xy)))

(defthm sinmplify-subset
(implies (and (not (equal (sinmplify a x) a))
(subset p-equal x y))
(not (equal (sinplify ay) a))))

(defthm sinplify-append
(implies (and (equal (sinplify a x) a)
(equal (simplify ay) a))
(equal (sinplify a (append x y)) a)))

We formalized the notion of rewritability to improve the debility of the formalizations of both the direct and
limbo incorporation procedures and to ease managemenbof9rlf a set simplifies an element, we say that the ele-
ment is rewritable by the set. The new functiewritableis defined outside the encapsulation. Once the termination
and irreducibility constraints are restated in termsanfritable, the function is disabled.

(defun rewitable (x y)
(not (equal (sinplify x vy) x)))

Finally, the proofs of the logical equivalence property af incorporation procedures depend on the following
properties of the constrained evaluation function andelationship withsimplify andtrue-symbolp The evaluation
function is Boolean, and the true symbol of the logic is eatdd to true. We define a function to evaluate a set of
elements as a conjunction. The main soundness propertystrained simplification states that if the conjunction
of simplifiers is true, the evaluations of the original anmigiified expressions are equal.

(def t hm ceval - bool ean
(or (equal (ceval x i) t) (equal (ceval x i) nil)))

(def thm t rue-synbol p- ceval
(implies (true-synbolp x) (ceval x i)))

(defun ceval -list (x i)
(if (endp x)
t
(and (ceval (car x) i) (ceval-list (cdr x) i))))

(defthm sinplify-sound
(implies (ceval-list y i)
(equal (ceval (simplify x y) i) (ceval xi))))



2.2 Formalization and Termination of Incorporation Procedures

Three supporting functions are used to formalize the dimectlimbo incorporation procedures. Rather than present
the ACL2 implementation of the functions, we simply desetibem. The functioextract-rewritables (x syfomputes

a subset of elements Sfthat are rewritable byX. The functionextract-n-simplify-rewritables (x groduces a set of
elements othat are rewritable bX and have been simplified by it. The functimmove-rewritables (x Yroduces

the set of elements @ that are not rewritable b¥X. The direct incorporation procedure is formalized by uding

last two functions as follows.

(defun direct-incorporation (q s)
(cond ((or (not (true-listp qg)) (not (true-listp s))) 'INPUT- ERROR
((endp q) s)
((true-synbolp (sinplify (car q) s)) (direct-incorporation (cdr q) s))
(t (direct-incorporation
(append (cdr Q)
(extract-n-sinplify-rewritables (sinplify (car gq) s) s))
(cons (sinplify (car q) s)
(remove-rewritables (sinplify (car g) s) s))))))

The limbo incorporation procedure relies on computatiothef initial limbo list and subsequent integration of
the list into the original database. As stated above, therskstep of the incorporation procedure may place new
elements on the limbo list. Before any elementis added ttirtiteo list, however, it is simplified as much as possible
by the members of the original database and the elementsdglen the limbo list. We note, therefore, that in the
recursive call of the functiopreprocess-listin addition to the the members of original database andditigt, the
set of simplifiers includes elements processed by the fonati the previous calls.

(defun preprocess (x s I|)
(if (true-synmbolp (simplify x (append s 1)))
|

(append | (list (sinplify x (append s 1))))))

(defun initial-linbo (q s I)
(if (endp Q)
|

(initial-linmbo (cdr gq) s (preprocess (car q) s 1))))

(defun preprocess-list (d s r)
(if (endp d)
r
(preprocess-list (cdr d) s (preprocess (car d)
(append s (cdr d))
r)))

(defun process-linbo (I s)
(cond ((or (not (true-listp 1)) (not (true-listp s))) ’INPUT- ERROR
((endp 1) s)
(t (process-linbo (append (cdr 1)
(preprocess-1ist
(extract-rewitables (car I) s)
(append (renove-rewritables (car 1) s) I)
nil))
(cons (car 1I)
(renove-rewritables (car 1) s))))))

(defun Iinbo-incorporation (q s)
(process-linmbo (initial-linbo q s nil) s))



Termination proofs for the functiordirect-incorporationrandprocess-limbaely on the simplification properties
stated in the encapsulation. The proofs are not entirefiatriin order to achieve them, the conjectures must be split
into two cases: a case when the set of elements produced kyttiaetfunctions is empty, and a case when it is not.
We define an additional counting functitmountwhose behavior on lists is similar to thatatl2-count except that
the size of list elements is computed by using the constidingctionscount

(defun I count (x)
(if (endp x)
0
(+ 1 (scount (car x)) (lcount (cdr x)))))

The measure function, basedleount is

(cons (+ 1 (lcount qg) (lcount s))
(+ 1 (lcount q))).

We note that the formalization on the direct incorporatioogedure is slightly different from the algorithm presehte
in Section 1. In the algorithm elements D that are rewritdlyleC are moved from the set S onto Q. In the formaliza-
tion, these elements are simplified by C before being placéal Q. This extra simplification step allows us to show
that the direct incorporation algorithm terminates. Yas tiddition to the original algorithm does not affect the mai
correctness properties of the procedure.

2.3 Irreducibility Property

We formulate the irreducibility property as follows. We fidefine a functiormutually-irreducible-el-list (x sjhat
checks that the elemeHtneither rewrites nor is rewritable by anything@ The main irreducibility check function
relies on the element wise irreducibility check.

(defun mutual ly-irreducible-el-list (x s)
(cond ((endp s) t)
((or (rewitable x (list (car s)))
(rewitable (car s) (list x))) nil)
(t (mutually-irreducible-el-list x (cdr s)))))

(defun irreducible-list (s)
(cond ((endp s) t)

((rmutual ly-irreducible-el-list (car s) (cdr s))
(irreducible-list (cdr s)))
(t nil)))

We accomplished the second of the stated goals by provindf tha original database of clauses is irreducible, both
incorporation procedures produce sets with that property.

(defthm direct-incorporation-is-irreducible
(implies (irreducible-list s)
(irreducible-list (direct-incorporation q s))))

efthm |i nbo-incorporation-is-irreducible
(defthm I'i mbo-i p i is-i duci bl
(implies (irreducible-list s)
(irreducible-list (linmbo-incorporation g s))))

2.4 Soundness

Soundness proofs rely on the properties of ceval given irtiiapsulateonstruct and were relatively easy to estab-
lish. We showed that both incorporation procedures producenjunction of clauses whose evaluation is equivalent
to the evaluation of the conjunctions of clauses in the tvypufrsets.



(defthm direct-incorporation-is-sound
(implies (and (true-listp q)
(true-listp s))
(equal (ceval-list (direct-incorporation q s) i)
(and (ceval-list q i) (ceval-list si))))

(defthm |i mbo-i ncor poration-is-sound
(implies (true-listp s)
(equal (ceval-list (limbo-incorporation q s) i)
(and (ceval-list q i) (ceval-list s i))))

3 Related Work and Conclusions

Our earlier projectVy [4] dealt with checking the proofs produced by Otter. Theaktes code was written in ACL2
and proved sound. Although both efforts concern the santevard, the errors they help eliminate do not overlap.
Ivy was designed to catch errors in Otter-produced proofs. Whik focuses on irreducibility and termination, and
errors in the simplification procedure described here wdildely not lead to soundness problems in the resulting
proofs, but would prevent Otter from finding some or all pfdr a particular problem.

Also related is the large and ongoing ACL2 effort on abstraduction systems and term rewriting in [5]. The
effort concentrates on formalizing basic reduction anditévg proceduresin ACL2 and establishing their propextie
The work includes formalization of first-order logic and seaing about termination of rewriting. Both are aspects
that our effort takes for granted to concentrate on a praksipplication that relies on a rewriting procedure.

The Otter code is based on an algorithm similar to limbo ipoaation. Correctness of this algorithm is therefore
important to us but is not obvious because of the compleXitthe algorithm. While the algorithm depends on
term rewriting and clause subsumption procedures, we wales thanks to encapsulation mechanism in ACL2, to
concentrate on only a few relevant properties of these fpasitedures and to devote all effort to understanding and
verifying the limbo incorporation, the actual procedurerdérest.

References

[1] F. Baader and T. NipkowTerm Rewriting and All ThatCambridge University Press, Cambridge, United King-
dom, 1998.

[2] M. Kaufmann, P. Manolios, and J S. Moor€omputer-Aided Reasoning: An ApproacKluwer Academic
Publishers, 2000.

[3] W. McCune. Otter 3.0 Reference Manual and Guide. TecipoReANL-94/6, Argonne National Laboratory,
Argonne, IL, 1994. See also URL http://www.mcs.anl.gov/éfer/.

[4] W. McCune and O. Shumsky. IVY: A preprocessor and procaiter for first-order logic. In M. Kaufmann,
P. Manolios, and J Moore, editor€omputer-Aided Reasoning: ACL2 Case Studidspter 16. Kluwer Aca-
demic, 2000.

[5] J. L. Ruiz Reina, J. A. Alonso, M. J. Hidalgo, and F. J. Ntart Formal proofs about rewriting using ACL2.
Annals of Mathematics and Artificial Intelligenc®6(3):239-262, 2002.



