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Abstract

We consider the on-line load balancing problem where therg:ddentical machines (servers).
Jobs arrive at arbitrary times, where each job has a weigthtaagiuration. A job has to be as-
signed upon its arrival to exactly one of the machines. Thatthn of each job becomes known
only upon its termination (this is called temporary tasksioknown durations). Once a job has
been assigned to a machine it cannot be reassigned to anadchine. The goal is to minimize
the maximum over time of the sum (over all machines) of theasegiof the loads, instead of the
traditional maximum load.

We show that for the sum of the squares the greedy algorithforpes within at mos®.23 of
the optimum. We show (an asymptotic) lower bound @b on the competitive ratio of the greedy
algorithm. We also show a lower bound b#4 on the competitive ratio of any deterministic
algorithm.

Minimizing the sum of the squares is equivalent to minimigihe load vector with respect to
the /s norm. We extend our techniques and analyze the competéti@ of greedy with respect
to the/, norm. We show that the greedy algorithm performs within ast2o— (1/p) of the
optimum. We also show a lower bound®f O(Inp/p) on the competitive ratio of any on-line
algorithm.

1 Introduction

We are givenm parallel identical machines and a number of independent jobs (tasksh@rat
arbitrary times, where each job has a weight and a duration. A job showalgdigned upon its arrival

to exactly one of the machines based only on the previous jobs without amldaige on the future
jobs, thus increasing tHead on this machine by its weight for the duration of the job. The duration
of each job becomes known only upon its termination (this is called temporary tdsknknown
durations). Thdoad of a machine is the sum of the weights of the jobs assigned to it. Fof,any
norm we define theostof an assignment for an input sequence of jobs as the maximum over time of
the/,, norm of the load vector. Specifically, tlig, norm is the makespan (or maximum load) and the
£ norm is the Euclidean norm, which is equivalent to the sum of the squatbs tdad vector. The
goal of an assignment algorithm is to assign all the jobs so as to minimize the cost.

Consider for example the case where the weight of a job correspondsntiadtsine disk access
frequency. Each job may see a delay that is proportional to the load on tttémaat is assigned to.
Then theaveragedelay is proportional to the sum of squares of the machines loads (hamely the
norm of the corresponding machines load vector) whereamthémundelay is proportional to the
maximum load.
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We measure the performance of an on-line algorithm bgatmpetitive ratio. An on-line algo-
rithm is c-competitive if for each input the cost of the assignment produced bydgbethm is at most
c time larger than the cost of the optimal assignment.

We first summarizeur results.

e For the sum of the squares of loads, we show that the greedy algorithtmisst2.2293-
competitive for any number of machines. In fact, for= 2 greedy algorithm is optimal and its
competitive ratio isl.309 and form = 3 we can improve the upper bound@ ~ 2.1111.

e For the sum of the squares of loads, we show that there is no on-linethigdhat is1.4472-
competitive.

e For the sum of the squares of loads, we show a lower bourid-efO(L ) on the competitive
ratio of any on-line algorithm and we show a lower bount%dbr m divisible by3.

e For the sum of the squares of loads, we show (an asymptotic) lower tafuh@906 on the
competitive ratio of the greedy algorithm.

e For the general,, norm (for anyp > 1), we show that the greedy algorithm is at mast
2(1/p)-competitive for any number of machines.

e For the general, norm (for anyp > 1), we show (an asymptotic) lower boundf O(In p/p)
on the competitive ratio of any on-line algorithm.

e For the general, norm (for anyp > 1), we show that for m=2 the greedy algorithm is an
optimal on-line algorithm.

Temporary tasks, £, norm: For the problem of on-line load balancing of temporary tasks the
upper bound i€ — % This upper bound was proved for permanent tasks (tasks that depart)
by Graham [12], nevertheless Graham'’s analysis of the upper banldd &lso for temporary tasks.
The results in [4] show that his algorithm is optimal by constructing a lowentdaf2 — % on the
competitive ratio of any deterministic on-line algorithm.

Permanent tasks,/., norm: The permanent tasks model is the model where tasks only ar-
rive (on-line), but never depart. This is the classic ancient problestléduling jobs on identical
machines minimizing the makespan (or maximum load). Graham [12] showed ¢hgtetedy load
balancing algorithm i€ — %—competitive in this case. The greedy algorithm is an optimal on-line
algorithm only form < 3 [9].

Bartal et al. [6] were the first to show an algorithm whose competitive rastriistly belowe < 2
(for all m). More precisely, their algorithm achieves a competitive rati@ef%. Later, the algorithm
was generalized by Karger, Phillips and Torng [16] to yield an uppendai1.945. Subsequently,
Albers [1] designed .923-competitive algorithm. Fleischer and Wahl [10] improved this result to a
ratio of 1.9201.

Bartal et al. [7] showed a lower bound 8370 for the problem. This result was improved by
albers [1] to a ratio of .852 and then by Gormley et al. [11] to a ratio b853. The best lower bound
currently known is due to Rudin [15], who showed a lower bound. 88.

Permanent tasks,/, norm: Chandra and Wong [8] were the first to consider the problem of
minimizing the sum of squares of the machine loads. They showed that if theajobs in non-
increasing weights order then the greedy algorithm yields a schedulesvdiogs is Withih% of the
optimal cost. This result was slightly improved by Leung and Wei [17]. @marand Wong [8]
also considered the genergl norm (for anyp > 1) and showed that the greedy algorithm on the
sorted items achieves a constant performance bound. The constamddemmp and grows to%

whenp grows toco. The problem of on-line load balancing in the genégahorm (for anyp > 1)
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for permanent tasks was considered in [3]. The results in [3] showfohdlhe sum of the squares,
the greedy algorithm performs withii_‘g of the optimum, and no on-line algorithm achieves a better
competitive ratio. For the sum of the squares [3] also provided on-lingitigowith competitive
ratio% — ¢, for some fixed), for any sufficiently large number of machines. For the gengralorm

the results show that the competitive ratio of greedy algorithen+sO ((1n p) /p).

Off-line results:  Azar et al. [5] presented a polynomial time approximation scheme for the
problem of off-line load balancing of temporary tasks (in taenorm) in the case where the number
of machines is fixed. For the case in which the number of machines is giyeartasf the input (i.e,
not fixed) they showed that no polynomial algorithm can achieve a befpeoximation ratio tharg
unlessP = NP.

For the problem of off-line load balancing of permanent tasks (ir/theorm), there is a poly-
nomial time approximation scheme for any fixed number of machines [13, ti8}lao for arbitrary
number of machines by Hochbaum and Shmoys [14].

Off-line scheduling and load balancing of permanent tasks with respéiee g norm has been
considered in [2]. The off-line minimization problem is known to be NP-harthanstrong sense.
Alon et al. [2] provided a polynomial approximation scheme for schedulibg jeith respect to the
¢, norm for anyp > 1. An example in which the optimal assignment for the sum of the squares is
different than the optimal assignment in the norm is also given in [2].

2 Definitions and preliminaries

In theload balancing problemwe are givenn identical machines (servers) and a finite sequence of
events. We denote the input sequencerby o4, ..., 0,.. Each event; is an arrival or departure of a
job (task). We views as a sequence of times, the timgis the moment after thé event happened.
We denote the weight of a jgbby w;, its arrival time bya; and its departure time (which is unknown
until it departs) byd;. An on-line algorithm has to assign a job upon its arrival without knowing the
future jobs and the durations of jobs that have not departed yet. We celttygaperformance of on-
line algorithms and an optimal off-line algorithm that knows the sequence sfgnd their durations

in advance. Let; = {j | a; < 0; < d;} be the active jobs at time;. A schedulesS is an assignment
which assigns each jgfto a single maching, 1 < k < m. For every schedul§, theload of machine

k at timeo;, denotedL; (S), is the sum of weights of all jobs assigned to macliirie S, and active

at this time. Thevector of loads at timeo; is L'(S) = (Li(S),..., L, (S)). Our cost measure is

the, norm. Hence theostof a schedules at timeo; is defined ag{L*(S)||, = (Z’,?:l(L};(S))P)%.
The costof a scheduleS is defined ad|L(5)||, = max; ||L*(S)]||,. We denote the load vector with
the maximum cost, by.(S) = (L1(S), ..., Ln(S)).

Theoptimal cost, denotedOPT(.S), is the minimal cost over all possible schedules for the given
sequence of.

We measure the performance of our algorithms bydbmpetitive ratio. For a fixedp > 1,
the competitive ratio of a scheduleS is defined a£”(S) = || L(5)]|,/OPT(S). Let A be an on-line
assignment algorithm. Trempetitive ratio of A for a fixed number m > 1 of machinesis defined
as

Ca,m =sup{C(S) | S'is a schedule produced byonm machines.

The competitive ratio of A for an arbitrary number of machines is defined a&”4 = sup{Ca, |
m > 1}.



The previous definitions cover also the case where we measure the sguaoés of loads, since
then the cost ig|| L(9)||2)2. Consequently, the competitive ratios for the sum of the squares of loads
are equal ta”?(5), C% ,, andC% w.r.t. thel, norm.

Now we define the notion of a shape of a schedule, which is an abstra¢t#zoschedule where
for every machine, all jobs assigned to it except for one are replacedrly small jobs with the same
total load. In general it may be impossible to produce such a schedule baitie algorithm as the
original one. Nevertheless, the concept of a shape is very usefprdoing upper bounds on the
competitive ratio, since the optimal assignment may improve (by partitioning thewdile the cost
of the assignment does not change. Hence a shape is a pessimistic estimathedule. A shape
characterizes each machine by two numbeyss the total load of the small jobs, and is (a lower
bound on) the weight of one large job.

Formally ashapeis a pairR = (a,u), wherea andu are vectors ofn nonnegative reals. The
vector of loadsof a shape is defined &(R) = a + u. The shapeR = (a,u) is ashape of a
scheduleS if L(R) = L(S) and for everyi < m with u; > 0 there exists a job with weight; > u;
assigned to the machirign S. Theoptimal cost of a shapeR is the infimum of the optimal costs
of all schedulesS with the shapeR, formally OPT(R) = inf{OPT(S) | Ris ashape of}. As
we shall see, the infimum can be replaced by a minimum. ddmepetitive ratio of a shapeR is
C(R) = ||L(R)|»/OPT(R).

It is possible to compute the optimal cost of the sh&pe- (a, ) explicitly. It is the cost of a
schedule in which some big jobs are scheduled each on a separate machihe st of the jobs are
balanced evenly on the rest of the machines. Let the machines be osddhed.; are nondecreasing.
Forl <l<mleth; =} " a;+ Zﬁzl u;)/l. Letk be the largest such that; > u; (k is always
defined, sincé; > u;). We define théneight of the shape to b&(R) = hy,.

It is easy to see that a good candidate for an optimal schedule for the Bhigdo put on each
machine one job of size exactly and partitiona; into a few jobs so that they can be balanced exactly
on thek machines; then the load vector(sy, . . . , g, uk11, - - -, un). See the Figures 1 and 2 for
examples where; = 1 for all s.

The following lemma, which appears in [3] shows that this really is the optima¢@dk. The
proof of the lemma appears in Appendix B.1.
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Figure 1: A shaper. Figure 2: Optimal assignment &f

Lemma 2.1 Leth = h(R) and letk be such that = hy, in the previous definition. Then OPR) =
(R by tgegts - Um) |-

Now we extend the notion of shape and define continuous shapes, whickefined similarly
to shapes. It is an extension, which treats the machines as points in thelifilersgd The load
of machines is a function defined on that interval and is the sum of two funscti®ne function is



the total load of very small jobs on each machine. The other function is theoloawke big job on
each machine. Formally @ntinuous shapeis a pairR = (a,u), wherea andu are functions (not
necessarily continuous), defined in the interfatn]. Thefunction of loads of a shape is defined
asL(R) = a + u. Wherea(t) represents the total load of very small jobs at paiitt the interval
[0, m] andu(t) represents the load of one big job at paiim the interval[0, m]. From the convexity
of the functionz? it follows that theoptimal cost of a continuous shaper is obtained by assigning
some big jobs each on a separate machine and the remaining jobs are balserdgdn the rest of
the machines. Formally w.l.0.g le{t) be a non-decreasing function. There existss.tu/(t) = u(t)
and

/ 0 t<t
a@):{ Lo (" atydt + [ ut)dt) —u(t) <t

and forty, tg, S.tt; <’ < to, it holds thatu' (1) > a'(t2) + u/(t2)

andR’' = (d/, ) gives the optimal load.(R’) for the shapeR.

Transition from a shape to a continuous shape is defined as follows? Eet(a, v) be a shape,
then its continuous shag® = (d/,v’) is

dity={a i-1<t<i

Wty ={w i-1<t<i

3 The greedy algorithm
In this section we analyze the competitive ratio of the greedy algorithm defiele.

Algorithm Greedy: Upon arrival of a jobj assign it to the machine with the current
minimum load (ties are broken arbitrarily).

Note that a job departs from a machine it was assigned to.

To obtain a constant upper bound for the performance ratio of Graexshow that each schedule
can be replaced by a very special continuous shape so that the corepretiitlydoes not decrease.
Computing the competitive ratio is then shown to be equivalent to computing the nraxoha
certain function with equality constraints over the reals. A sh&pe (h, z) is called partial flat if
there exists an integér< k£ < m, and a reat > 0 such that the following conditions hold:

hi=c for 1=1,...,k
x; >0 for i=1,...,k
hi=xz;=0 for i=k+1,...,m.

Whenk = m the shape is calleflat. A shapeR = (h,x) is calledseparateif there exists an
integerl < k < m and a reat > 0, such that the following conditions hold:

h; =0 for i=1,...k
x;>c for i=1,... )k
hi=c for i=k+1,...,m

z;=0 for i=k+1,...,m.

Let S be a schedule obtained by Greedy andilét), be the load when Greedy reaches the
maximum cost. Leh be the load vector of all jobs except the last job assigned to each mackine, w
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treat these jobs as very small jobs and call them sand jobs: bhetthe weight vector of the last job
assigned to each machine. The sh&pe (h, z) is a shape of the schedute we call it the Greedy
shape.

Lemma3.1 Let R = (h,x) be the Greedy shape of a Greedy schedtilenormalized such that
(OPT(S))? = m. Then there exists a partial flat shapé = (2, ') such that| L(R)||, < || L(R')||,
and OPTR) > OPT(R’) with the non-zero components/dfequal to 1, and the off-line shape of the
shapeR’ is a separate shape.

Proof: It is easy to see that; < 1 (otherwise when the last job was assigned to machinefore
Greedy reached the maximum co$dPT(.S))? > m, which is a contradiction).

W.l.0.g we assume that the machines are ordered sa&hatc; are non increasing. We perform
the following transformation. Note that in each step of the transformation theat@reedy can
only increase and the cost of the off-line algorithm can only decredsie.iFin particular due to the
convexity of the functionz?. Figure 3 shows the obtained shape at the end of each transformation
step.

1. In this step we move to a continuous shape- (h(t), z(t)) , whereh(t) andz(t) are functions
in the interval[0, m]. We treat each poirtin that interval as a machine and the vat{e) +x(t)
as its load. Now we transform regular jobs (jobs or part of jobs) thapkeed below height
1 to sand jobs. Next we push the sand jobs left such that the sand jolis tilgoe equal
to 1 from point 0 to point Vj, whereV} is the total volume of the sand jobs. Formally, let
R = (h(t),z(t)) be the current shape and tgtbe maximal, such that(t) + =(¢) > 1 then the
new shape?’ = (h/(t),2/(t)) is obtained as follows. Denote

Vo =to+ /m (h(t) + x(t))dt

to

then
ry )1 t< W
h(t)_{o Vo<t
i [ R +zt) -1 t<tp
x(t)_{ 0 to<t

2. Jobs that in the off-line algorithm are scheduled on machines with sasdajebpushed left
to have the same height as the load of those machines in the off-line algorithitch(are
balanced). Formally, leR = (h(t),z(t)) be the current shape then the new shape=
(W' (t),2'(t)) is obtained as follows. Let be a minimal point such that machinghas sand
jobs in the off-line algorithm, letv be its total load in the off-line algorithm and I&t be the
volume of the regular jobs on machings, m|. Denote

Wi = /m x(t)dt

t1

then
W (t) = h(t)
z(t) t<t
2 (t) = w th<t<t;+4
0 otherwise



3. Sand jobs on machines with no regular jobs are transformed continuousygutar jobs of
height equal tav (as defined in the previous step). We put these jobs on the leftmost machines
possible that have only sand jobs. We perform this process from rigleftto This process
continues until all machines in the greedy shape have sand jobs andlarjegpu Formally,
let R = (h(t),z(t)) be the current shape then the new sh&be= (h/(t),2'(t)) is obtained
as follows. Lett; be maximal such that machine has sand jobs and a regular job. ketbe
maximal such that machine has jobs (any jobs). Let= 2%t then

w+1 !
e 1 t<s
v ={

otherwise
x(t)  t<t
2'(t) = w1 <t<s
0 otherwise

It is easy to see that in each of the transformation steps the cost of graednly increase and
the cost of the off-line algorithm can only decrease due to the convexibhedtinctionz?. We denote
the shape obtained by the transformationfy= (4', 2’). This shape has jobs on machirj@ss| for
some real numbe¥ < s < m. Each machine € [0, s| has sand jobs of height 1 and a regular job of
heightz/(t) > 0, other machines have no jobs assigned to them, hence this is a partial fiat $he
off-line shape has jobs of height(¢) on machines € [0, s] and sand jobs of total volumeevenly
assigned to machings, m]. In additiontm(i]n 2'(t) > w = s/(m — s), hence the off-line shape is a

)

separate shape. This completes the proof.
]

Lemma 3.2 Let R = (h,x) be a partial flat shape such thait) = 1 for 0 < ¢ < s. Assume that
the off-line shape oR is a separate shape. Then there is a shape R’=(h,x’), such tha fort < s,
z'(t) = y for some valug; > 0 and otherwiser/(¢) = 0 and it holds that| L(R)||, < ||L(R')||, and
OPT(R) = OPT(R').

Proof: Letd - m = s. Define 5
1 m 1
= (—— P(t)dt)r.
V=G | oy
ClearlyOPT(R) = OPT(R'). Now

om 1
LR, = ( / (1+ a(t)Pdt)s

where the inequality follows from the triangle inequality for thenorm. This completes the proa.
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Figure 3: The transformation steps

Define the functiory (4, ) with the constrainy(J, z).

f(o,z) = 6-(1+ax)P,

0 g-aP o
g(,x) = T —‘r-m—l

Theorem 3.3 The competitive ratio of Greedy algorithm satisfies

1
CGreedy < (fmax)p

where f,,,4. is the maximum of with constraint (2), in the domait < 2,0 < § <

N[

1

(1)
(2)



Proof: Let Ry be the Greedy shape of a schedtilebtained by Greedy. For simplicity we transform
to a new shap#; by normalizing all job weights such that

(OPT(R1))? = m. (3)

If all the h components of?; are equal to zero then the Greedy schedule is optimal. Otherwise by
applying Lemma 3.1 and Lemma 3.2 we obtain fréina partial flat shapé?, = (h, x), in which

all the non zero components afare the same and its off-line shape is a separate shape such that
|IL(R1)|lp < ||L(R2)||, andOPT(R;) > OPT(R2). We have

(IL(R2)l[p)" = 6-m-(1+x)", (4)
» g-m » d-m » o -m
e > d-m _ 1) . (6)

(1-6)-m 1-9§

The last inequality restricts the weight of a regular job to be greater thentddemeight of sand jobs
on machines with sand jobs in the off-line shape. For simplicity we divide eqafitieand (5) by
m, this does not change the ratio between the cost and the off-line cdséR,. Which gives the
following

f,z) = 6-(1+2), 7
op
1 > §-2P+ m, (8)
1)

The left side of the equality ig'(d,x) by definition. The first inequality results from (5), since
(OPT(R2))? < (OPT(R;1))P < m and the division byn.
Substituting (9) in (8) gives
sp+1 6P 4

R T T R g

which yieldsd < % We obtain the following relation fof

(LR )P (LR )" (ILS)lp)?
f0,2) = L.m 2 (OPT(Ry))P = (OPT(S))?

where the first inequality follows from (3) and the fact thidt(R, )|, < ||L(R2)]|,. Hence to bound
the competitive ratio of Greedy we need to solve the following maximum problemeirddmain
0<d6< % and0 < z. We need to find the maximum ¢f(d, ) under the constraint (8). It is easy
to see that the maximum ¢f is obtained when (8) is an equality. Hence we obtain the following
maximum problem forf with constraintg (1), (2) in the domair) < 2,0 < § < % This completes
the proof. [

The following theorem results from Theorem 3.3. The proof appeargpeAdix B.2.

< 2.2293.

Theorem 3.4 For p = 2 the competitive ratio of Greedy algorithmd,,... dy <
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Theorem A.2 in the Appendix gives a somewhat weaker result to theonuding a different
method for approximating the upper bound.

The following Theorem gives an upper bound@fz 2.1111 for the competitive ratio of Greedy
for p = 2 andm = 3, which is an improvement of the constant upper bound. This result followas f
Theorem A.1, which appears in the Appendix.

Theorem 3.5 For p = 2 andm = 3 the competitive ratio of Greedy algorithr6?,
2.1111.

19
reedy,3 < 9 =~

Now we turn to the case of genegal The proof of the following theorems appear in Appendices
B.3 and B.4.

Theorem 3.6 For anyp > 1 it holds Cirecay < 2 — £ (Zl])

Theorem 3.7 For m = 2 the greedy algorithm is optimal and its competitive ratio is

1
L+ (14x)P\?
C . —= S T TE—— 10
Greedy,2 Zg% ( o + P > s ( )

and the supremum is achieved as a maximum at the unique satutiof, co) of the equation

2PN+ (14 2)7P) = 2P,

From the above theorem, which claims that fier= 2 Greedy is optimal and its competitive ratio is
the same as in the permanent tasks case, we obtain according to [3] tthet $om of the squares and
for two machines Greedy is optimal and its competitive ratioi$ + 3) /4 ~ 1.309.

4 Lower bounds

4.1 Lower bounds for sum of squares

In this section we give lower bounds fpr= 2. We prove a lower bound for any algorithm (the proof
is for m = 3). Then we prove a weaker lower bound for any> 3. Finally we prove a lower bound
for Greedy for a large number of machines (~ o).

Theorem 4.1 For any on-line assignment algoritha, C% > C7 5 > 1.4472.

Proof: Consider the following sequence for three machines. First three unitgobsone job of
weightz > 1 arrive. Then two unit jobs depart. At last one job of weigtdrrive. Consider the first
three unit jobs. If algorithmA assigns two or more jobs to the same machine, it does not get any other
job. Its cost is at leadt, the optimal cost i$, and we are done. Otherwise, algorithtrassigns one
unit job to every machine (the off-line algorithm assigns two unit jobs to machared one unit job
to machine2). Now the next job of weight arrives. AlgorithmA assigns it to one of the machines
say1 (the off-line algorithm assigns it to machiBg Then two unit jobs depart, which are the jobs
on machineg,3 (the jobs on machiné in the off-line algorithm). At last a job of weiglt arrive.
The best algorithmd can do is to assign it to one of the empty machifes 3 (the off-line algorithm
assigns it to maching). Its cost is at leastl + x)? + 22 , whereas the optimum cost2$ + 1 + 22,
The maximal ratiox 1.4472 is achieved forr = /5. [
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Theorem 4.2 For any number of machines > 3 and any on-line assignment algorith#) ij >
4/3 — O(;). For m divisible by3, C3 > 4/3.

Proof: Letm = 3k. We consider the following sequence. Figt unit jobs arrive. Ther2k unit
jobs depart. Finally: jobs of weight2 arrive. Consider the arrival of the firdk unit jobs. Algorithm
A assigns these jobs. W.l.0o.g we assume that machines, m are sorted in nondecreasing order of
load (the off-line algorithm assigns two jobs on each machine. , k£ and one job on each machine
k+1,...,3k). Then2k jobs depart. There exists a minimal> 2k, such that machines,. ..t
are assigned at leagk jobs. Then2k jobs from machineg, ..., ¢ depart as follows, all jobs from
machined., ..., t — 1 and some jobs from machir€in the off-line algorithm the jobs on machines
1,..., k depart). Atthe end of this step machines. ., 2k are empty. Nexk jobs of weight2 arrive.
The best algorithmA can do is to assign each job to an empty machine (In the off-line these jobs are
assigned to machinds. . ., k). Finally there are jobs of total weighk assigned to no more thax
machines. Due to the convexity of the functiefy the minimum cost is obtained when all machines
have the same load, therefore its cost is at I2ast(2)2. The optimum cost i% - 22 + 2k - 12, which
yields a ratio oft/3. Form not divisible by3 a similar proof gives a ratio of /3 — O(--).

[ ]

Theorem 4.3 For the greedy algorithmgz,;,, > 1.7906.

Proof: First we prove a weaker lower bound bf7281 for the greedy algorithm, by solving an ordi-
nary differential equation analytically. Then by a similar proof we obtain aeno@mplex ordinary
differential equation, which has no simple solution. Hence we use a conpratgtam to compute
the competitive ratio in this case, which gives a lower bountl. 906.

We start with the first proof. We see the machines as: points in the interva(0, 1], machine;
as the point: € (0, 1], and the load of the machines as a functfgn), f(t) = I; for % <t< L,
wherel; is the load of machiné. For each machinéthe total load is the value of in the interval
(%, %] and the total load of all machines is the total volumef afi the interval(0, 1] multiplied by
m. Let f(k/m) be the load of machinkeat the end of step and letF'(k/m) be the volume of the jobs
assigned to machinds .. . ., m at the beginning of step in the following process. For convenience
we number the steps from to 1 in decreasing order. In this process we keep the volume of jobs fixed
and equal td at the end of each step. We start with the arrival of infinitesimally small joltetaf
volume 1, we call jobs of this type sand jobs. Both the off-line and greedy algorittsaigia these
jobs evenly on all the machines (total heighin each machine). At stépa job of heightx (z > 1)
arrives. Greedy assigns this job to the machine with minimum load w.l.0.g to makckihéh is the
one with the largest index among all machines with the minimum lgad. , & (otherwise we swap
indices) and the off-line algorithm performs the same assignment. Thenrntbgaizs on machines
1,...,k—1departin greedy. In the off-line algorithm the departing jobs are contpokall the sand
jobs of machinég: and equal amounts of sand jobs from machihes., & — 1 with the appropriate
volume. Next sand jobs arrive with total volunie- F'(k/m) — = (=1-total volume of machines
k,...,m), thus keeping the total volume equalio Greedy and the off-line algorithms assign the
sand jobs to machings. .., k — 1 evenly, such that these machines will have the same load. At the

end of stepk
) = 2=

The computation of the lower bound for Greedy according to the abovegoewhich is techni-
cal, appears in Appendix B.5. [ ]
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4.2 Lower bound for generalp > 1

In this section we construct a lower bound for generat 1. The proof of the following theorem
appears in Appendix B.6.

Theorem 4.4 For anyp > 1 and any on-line algorithmi it holds thatC'y > 2 — O (lr;f).
Acknowledgment: We would like to thank Adi Avidor for letting us use Figures ids2.
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Appendix

A The competitive ratio of Greedy

We show forp = 2 andm = 3 an upper bound 0{99 ~ 2.1111 for the competitive ratio of Greedy,
which is an improvement of the constant upper bound. Actually we givepgenibound in a more
general way in the following theorem.

Theorem A.1 For p = 2 the competitive ratio of Greedy algorithm is bounded@%/reed%m <
3-3+4

Proof: We start with genergb. Consider timel’, when greedy reaches the maximum cost. 4;et
be the time just after the last job was assigned to machisech thatt; < 7. Let h;(t;) be the
load of machine, just before assigning that job and let(¢;) be the weight of that job. In general
let z;(t;) be the weight of the last job assigned to machjrat timet;. Let h;(¢;) be the total Ioad
of jobs on maching at timet; exceptz;(t;). Note that there exists a machlhesuch thatl’ =

Let Greedy, Opt(;) and Opt be the costs of Greedy, the optimal off-line algorithm at tinaad the
optimal off-line algorithm respectively. Denote

™ (hi(t;) + xi(t
(e — Zialha(t) +a;(t) an
m
From the convexity of the function”
m - h(t;)? < Opt(t;)P < OptP. (12)
Substituting (11) in (12) yields
> (hy(ti) + (k) < m'" s . Opt. (13)
7j=1
For maching we have (using volume considerations)
m- hZ(T) + l’l(T) < m- hz(tl) + $z(tz)
< Y (hylts) + x(ts)
j=1
< ml_% - Opt (14)

where the first inequality follows from the fact that no jobs arrive to maehipetween times;
andT (note that jobs can depart from machinat that time interval). The second inequality follows
from the definition of Greedy/j # i h;(t;) < h;(t;) +x;(t;). The lastinequality is obtained by (13).
The inequality (14) is equivalent to

hi(T) <m™ v - Opt — xifnT). (15)

For convenience we denokg(T") by h; andz;(7T") by z;. Now we turn to the case=2.
Substitutingp = 2 in inequality (15) gives

13



Opt X (T)

hi(T) < — — 16
(M) < Jm == (16)
It is obvious that .
fo < Opt2 (17)
=1
as all jobsz; are present at timé'. In addition we use the following
“ " [ Opt xz>
Opt <~ J A
= ESw— (19)
i=1 i=1
Opt 1 &,
< = -Opt) — — - - 20
_ﬁw%omm;xz (20)
2 1 L 2
= Opt® — — x; (21)

where the first inequality follows from (15). The second inequality follénosn (13) by assigning
p=2.
We bound the competitive ratio of greedy

Greedy? = Zm:(hi'i-ﬂ?z‘)Q
i=1
— ihi-(hi+xi)+§:xi-(hi+xi)
i=1 i=1
i=1 =1
= 3—% : i:l(h’ i)+ (1= ) Z;'E (hi + 23)
< (GB)-(Vim-Opt)+ (1= ) : zi- (hi+ 22)

IA
)
=
H‘l\?
+
=

|

|

IA
QS
=
<~
[N}
+
—
|
Q
s
<
[N}
_l_
—
1
Q
bs
<
N



where the first inequality follows from (15). The second inequality folldvesn (13). The third
inequality follows from (21). The last inequality follows from (17). Thiswapletes the proof. m

The following theorem gives a somewhat weaker result to Theorem 8idg dlifferent method
for approximation of the upper bound.

Theorem A.2 For p = 2 the competitive ratio of Greedy algorithmm% < 2.2361.

reedy,m

Proof: Let S be a schedule obtained by Greedy andRet= (h, x) be the shape of the schedufle
For simplicity we normalize all job weights, such that

(OPT(Ry))? = m. (22)

This does not change the competitive ratio of the scheful/.l.0.g we assume that in the off-
line shape jobs, ..., z,, are assigned to machings. . . , m respectively (the machines are ordered
,S.t.z; are non increasing) and sand jobs are assigned to madhinds. . ., m, s.t. the total load of
each machiné + 1, ...,mis the same.

Itis easy to see that

hi <1 (23)
(otherwise when the last job was assigned to machinefore Greedy reached the maximum cost,
(OPT(S))? > m, which is a contradiction)
and
Vi, k+1<i<m, z; <1 (24)
(otherwisevi, 1 <i < m, z; > 1, thereforelOPT(R;))? > m , which is a contradiction).
We bound the cost of shap®,

m

(IL(R)I2)* = ) (i + )
=1
k k m m
= th(hz+x2)+zxz(hz+$z)+ Z hi’(hi+xi)+ le(hl+$z)
=1 =1 i=k+1 i=k+1

m

k k
Zhi~(hi+xi)+2xi~(hi+xi)+2- Z (hz—i-{L'Z)
=1

i=1 i=k+1

k k k m
= Z:U?%—Q'Zhi'frrl-zmz—l—?' Z (hi + z;)
i=1 i=1 i=1

i=k+1

k k k m
i +2> hicwi+ Y hi+2- > (hit+ )
=1 =1 =1

i=k+1

IN

IN

k k k m m k
< Zx?+2-JZhi.¢Zx?+2‘(Z hi+2$i)+zhz‘ (25)
=1 =1 =1

i=k+1 i=k+1 i=1

where the first inequality follows from (23) and (24). The second iadityufollows from the fact
thath? < h; (sinceh; < 1). The last inequality follows from Cauchy Schwartz inequality.
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From (22) we obtain the following equation for the off-line cost of sh&pe

k m ) m "y 2
S a?+ (m— k) ((ZM Bt S ’)) = (OPT(R))* = m
i=1

m—k

which is equivalent to

k m m
Z 22 (Zi:l hi + Zi:kJrl xi)Q

m—k
i=1
Denote
k
a-m = Zx?,
i=1
i=k+1 i=k+1
k
y-m = Z hi7
i=1
k
6 = —
m
where
0<a,8,7,0<1. (27)

Substituting the above new variables in (25) and (26) gives

(IL(R)I2)* = a-m+2-a-y-m+28-m+y-m, (28)
a-m+w = m. (29)

Dividing the above equations by gives

flo,B,7) = a+2-a-y+26+7, (30)
2
(H(ﬁlt? _— (31)

where in the first equation we replage- (|| L(R1)|2)? , by f(a, 3,7).
We add the following constraint

v <. (32)

This constraint results from the definitionsafé and the fact thak; < 1.
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We obtain the following relation fof

| ALY _ (L)1) | (L)L)
He B = T (OPTIRy 2 (0PI

Hence to bound the competitive ratio of Greedy we can solve the following maxiprablem
for f in the domain (27). We have to find the maximumfdé, 3, v) under the constraints (31), (32).

It is easy to see that the maximum pf, 3, ) under the constraints (31) and (32) is achieved
when~y = §. Hence we have to find the maximum ff«, 3, v) under the following constraint

B+7)* _
1—7 N
We find the maximum off (a, 3,~) under the constraint (33) using the Lagrange multipliers
method.
By Theorem A.3 the maximum of is achieved atv ~ 0.7236, § ~ 0.1708, v ~ 0.2764, and
Céreedy < f(a, B,7) = 2.2361. This completes the proof.

o+ 1. (33)

|
Theorem A.3 Let
fla,B,7) = a+2-Va-v+28+7, (34)
gla,B,v) = a+@—1:o. (35)
The maximum of under the constraing in the domair) < «, 8,7 < 1S fhae =~ 2.2361.
Proof: Equation (35) is equivalent to
B+y=vI—-a)l-1). (36)
Substituting (36) in (34) gives
fla,y) =a+2- oy +2/(1-a)l—-7) -7 37)

First we find the maximum of on the boundary
1. If « = 0. Substitutingx in (37) givesf < 2.
2. If o = 1. Substitutingx in (35) givesg = v = 0. Substitutingx, v in (37) givesf < 1.

3. If B = 0. Substitutings in (35) and finding the maximum of under this constraint using
Maple givesfa: ~ f(a = 0.7913,v = 0.3642) ~ 2.2293.

4. If p = 1. Substitutings in (35) givesa = v = 0. Substitutingy, v in (34) givesf < 2.
5. If v = 0. Substitutingy in (37) givesf < 2.
6. If v = 1. Substitutingy in (37) givesf < 2.

Now we find the local extremum points gfusing the lagrange multipliers method.
Solving in Maple givesfi.e ~ f(a = 0.7236,5 = 0.1708,7 = 0.2764) ~ 2.2361. This
completes the proof.
[ ]
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B Omitted proofs

B.1 Proof of Lemma 2.1

We have seen above that there exists a schedule which achieves thidivao&ins to prove that for
any schedulé& with shapeR, the costOPT(.S) is at least the bound in the statement of the lemma.

From the definition ofi(R) it follows thath < w; for everyi > k (otherwise we would have
chosen largek). Fori > k, let j; be a job assigned to machin@ S with weight at leasts; (it exists,
sinceu; > 0).

Let S” be the optimal schedule for the jobsSn First, S’ has a machine with load at mdstthere
are at leask machines on which no joly, ¢ > k, is scheduled, and their total load is at méat
Second, ifS’ is optimal, then for any > k, no other job is assigned to the same machine as the job
Ji: Assume that the job; is scheduled on a machine with the Idad 0 of other jobs. We know that
there is a machine with load< h < u; < wj,. However, if we replace the two machines with loads
c andb + wj, by two machines with loadl + c andwy,, the total cost decreases due to the convexity
of the functionz?. Consequently, after a renumbering of the machines, the vector of Ioad&.(S”)
satisfiesl; > u; for eachi > kand) ;" L; = hk + 7", .| u;. Using convexity again, the cost of
any such schedule is at ledst, . .., h, ugt1, .., Upm)|[p-

B.2 Proof of Theorem 3.4

By Theorem 3.3 the competitive ratio of Greedy is obtained by solving the foltpmaximum prob-
lem for f, which is obtained by substituting= 2 in (1) and (2).

f6,z) = §-(1+z)2 (38)
52

_ L2
1 —5:104—1_6.

(39)

We solve this maximum problem. (39) gives

1- &
x = 5 (40)
Substituting equation (40) in equation (38) gives
2
1 - 8%
f(6)=46- (1 + 5”) : (41)

From (41) we have to find the maximum ¢£4) in the intervals € [0, 3].
Using Maple we can see that the maximum of f is achievedl &t 0.3642, (z ~ 1.474), and
Céreedy < f(0) ~ 2.2293. This completes the proof.

B.3 Proof of Theorem 3.6

By Theorem 3.3 we have

Hence



Substitutingd in (1) gives
fo,z) < = fi(z). (42)

Substitutingy <  in (1) gives

F6.2) < 51+ = fal).

Since f1(x) is a monotonically decreasing function ofand f»(z) is a monotonically increasing
function ofx we obtain
1\P
(1 + 2p)

N | =

f(5,$) < fmam < f2($0 = 2%) =

wherexg = 2% is a solution of the equation
fi(z) = fa(=).
Hence

1
1 1+42p 1\~» _1 1
CGTeedyS(fmam)pS 1 _1+(§>p_1+6 pln2—2—Q(—).
2p

This completes the proof.

B.4 Proof of Theorem 3.7

First we show that any scheduteobtained by Greedy has a flat shaRevhich is a shape of(.5).
Consider timeT’, when greedy reaches the maximum cost. Le& L(S) be the vector of loads
of S attimeT. W.l.o.g we assume thdt; is the smallest component éf We claim that the shape
R = (a,u) wherea = Ly andu; = L; —a, is aflat shape of (S). Clearly(L(R) = L(S)). Consider
machine2 with uy > 0. Letj be the last job assigned to the machinantil time 7. At the time of its
assignment, the load of machihenust have been at mostas otherwise the greedy cost at that time
would be greater thefi(.5)||,, which is a contradiction. Hence; > Ly — a = ug, and the shape
R = (a,u) is a flat shape.

In [3] it is shown that in the permanent tasks caserfioe= 2 the greedy algorithm is optimal and
its competitive ratio is given in equation (10). The proof of the upper bomasl based on the fact
that each schedul€ obtained by greedy has a flat shape, hence this upper bound is triferalse
temporary tasks case. The proof of the lower bound gives a scherhileh is a legal schedule also
for the temporary tasks case, hence this lower bound is true also for ther@mwypasks case. This
completes the proof.

B.5 Detailed proof of Theorem 4.3

Whenm — oot = k/m is a continuous variable in the intervfl, 1] and we get the following

equation
_1-F()

t

f(t) + . (43)
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1
We havef(t) = —df;—gt) (sinceF'(t) = / f(u)du) and we get
t

dF(t) 1-F(t)
dat ot

+x

Now we have the following first order differential equation

dF(t)
M LRt —1 =
= (t)—z-t 0
F1) = 0
It is easy to verify its solution
F(t)=—z-t-In(t) —t+ 1. (44)

Substituting equation (44) in equation (43) gives
f@O)=x-In(t)+z+ 1. (45)

The above process continues until assigning the job with weightthe machine represented by
to, WhereF'(ty) = 1, i.e until the volume of all machines of greedy that were assigned a job ofiveig
x approachegd (until there are no sand jobs that can depart from machingst < t¢y). From (44)
we get

—l‘-to-ln(to)—to—l-l:l

which gives
1

tO = 6_4,‘

At the end of the above process each machine in the intédl has sand jobs and one big job of
weightz. In the off-line algorithm each machine in the intery&, 1] has one job of weight and
the other machines have sand jobs assigned equally to them. The maximur grestdy and the
off-line algorithms is obtained at the end of the above process due to thextynof the function
aP. Let Greedy(z) andOpt(z), be the costs of greedy and the off-line algorithms as a functian of
respectively.

Greedy*(z) = fA(t)dt

_ /1 2 - I0%() + 22 - (2 + 1) - In(t) + (2 + 1))de

= [1:2 - (t - In?

= [t- (2 1n?

£) — 2t -In(t) +26) + 2z (x +1) - (¢ () — 1) + (@ + 12 -] 2
£)+ 2z - In(t) + 22 +1)] 1
= 172'(1—67%)4-1,
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Optta) = (1—6‘%)-m2+e—%.ll‘ﬂ‘_?‘%wr

e =

e v (l—es) a?+[1—(1—e %) af?

_1
T

= e%'[($2—2x)-(1—e_%)+1}.

Let
_ Greedy?(z)

2
Cz) = Opt?(x)
and
C? = max C?(x).
1<x
Forz > 1 the maximum value o€?(x) is obtained approximately at ~ 1.2612 and its value is
C? ~ 1.7281. HenceCy, .4, > C* ~ 1.7281.

Now we give a similar proof to improve the lower bound. The process aiteve similar with the
difference that here we keep the cost of the off-line algorithm fixedesnal to 1 instead of keeping
the volume fixed and equal to 1 at the end of each step. In this proof w@isame notations as in
the first proof. Consider the off-line algorithm at the end of stefen assigning a job with weight
to machinet. According to the invariant constraint we have.

(1—1t)-2® +t-h*=Opt*(z) = 1.

Whereh is the weight of the sand jobs on machin@g] at the end of step We defineh as a function
of t. The above equation gives
—(1—¢)- 2
h(t) = 1 (1tt) z?

At the end of step
f(t):(1_t)'x+i'h(t)_F(t)+x. (46)

We havef(t) = —%gt) and we get

dF(t) (1—t)-x+1t-h(t)— F(t)
T ; + .

Now we have the following first order differential equation

dF(t)

. =Y
dt

FFWt) —t-h{t)—z = 0
F(1) = 0

The solution to this equation is not simple and was calculated using a compugeaupravhich gave
the following result. For: > 1 the maximum value of?(z) is obtained approximately at~ 1.3888
and its value i€©? ~ 1.7906. HenceCg, ., > C* ~ 1.7906, which completes the proof.
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B.6 Proof of Theorem 4.4

Let m — oo. As in the proof of Theorem 4.3 we consider the machines as points in theahter
(0, 1], each machine is represented by a poirt (0, 1], and the load of the machines is represented
as a functionf(¢) in that interval. Let0 < o < 1. We consider the following sequence. First
infinitesimally small jobs of total volume arrive. Next, jobs of total volumél — «) depart. Finally
unit jobs of total volume arrive. Consider the arrival of the infinitesimally small jobs. Algoritiim
assigns these jobs, w.l.o.g we assume that mackines. , 1] are in non increasing order of load (the
off-line algorithm assigns these jobs evenly on all the machines).s leta be maximal such that
machinegs, ..., 1] are assigned jobs of total volunie— «). Then jobs of total volumél — «) depart
from machineqs, ..., 1] (in the off-line algorithm these jobs depart evenly from all the machines).
We denote byr < « the fraction of machines with assigned jobs of total height greaterithélext

the unit jobs of total volume arrive. The best Greedy can do is to assign jobs of total vol(irrex)
evenly to machine&y, . . ., 1] and then to assign jobs of total voluméo the« least loaded machines,
which are composed of machings, . . ., o], each machine with jobs of total height less tHeand
w.l.0.g to machinega, o+ ], each machine with jobs of total heigh(the off-line algorithm assigns
these jobs evenly to all the machines). L&tand Opt be the costs of algorithrh and the off-line
algorithms respectively.

_ p
> mng42iQ;ﬁq
8]

= :p~2”+a(2—£)p
a

where the first term from left represents the cost of machines. ., a + z] and the other term is
a lower bound for the cost of machings . . ., ].

Opt? = (1+a)P.
Hence
A \P
> == 47
5= (o) %
. 9P 9 _ z)\P
> T +a( a) (48)
(14 a)P

We choosex = %. We consider two cases. In both cases we use the inequality 1 — x.
Forz > & = I% we obtain

S SN ek

cr > 2
AT (a2 (I4Lp T (4

Hence

—2mE 1 _olp 1
Cyp>25 " >0 ”:2—O<np>.

I+3 7 143
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Forz <2 = Z% we obtain

C’ﬁzow

Hence

This completes the proof.
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