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An FPGA-based Run-time Reconfigurable 2-D Discrete Wavelet  
Transform Core 

 
 

Jonathan B. Ballagh 
 
 

(ABSTRACT) 
 
 
FPGAs provide an ideal template for run-time reconfigurable (RTR) designs.  Only re-

cently have RTR enabling design tools that bypass the traditional synthesis and bitstream 

generation process for FPGAs become available.  The JBits tool suite is an environment 

that provides support for RTR designs on Xilinx Virtex and 4K devices.  This research 

provides a comprehensive design process description of a two-dimensional discrete 

wavelet transform (DWT) core using the JBits run-time reconfigurable FPGA design tool 

suite.  Several aspects of the design process are discussed, including implementation, 

simulation, debugging, and hardware interfacing to a reconfigurable computing platform.  

The DWT lends itself to a straightforward implementation in hardware, requiring rela-

tively simple logic for control and address generation circuitry.  Through the application 

of RTR techniques to the DWT, this research attempts to exploit certain advantages that 

are unobtainable with static implementations.  Performance results of the DWT core are 

presented, including speed of operation, resource consumption, and reconfiguration over-

head times.   
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Chapter 1  

Introduction 

1.1 FPGAs and Run-Time Reconfiguration  

Hardware applications that utilize run-time reconfiguration (RTR) and parameterization 

have been the topic of considerable research in the field of configurable computing [29-

32].  Run-time reconfigurable designs are capable of dynamically tailoring circuit routing 

and logic to better suit the current application task.  Run-time parameterizable (RTP) sys-

tems, on the other hand, define logic and routing just prior-to run-time, based on a set of 

parameters that define circuit behavior.  Research into field programmable gate array 

(FPGA) RTR application design, however, has been hindered by the lack of software 

tools that enable true RTR design for these devices.   

 

FPGAs provide a hardware environment in which physical logic and routing resources 

can be reprogrammed by a configuration bitstream in order to perform a specific func-

tion.  As a result, they provide an ideal template for dynamic circuit specialization and 

logic reconfiguration.  With the exception of research on the Xilinx XC6200 device 

[14,15], access to configuration bitstreams of commodity devices has been restricted.   

Designers, therefore, have been required to generate configuration bitstreams using tradi-

tional vendor tool flows.    
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The vendor tools attempt to provide optimum speed and efficiency for static circuits by 

using complex routing and placement algorithms.  With the contemporary tool flow, one 

must typically cope with lengthy synthesis and bitstream generation times.  For static de-

signs, this time penalty is usually acceptable.  These times are impractical for RTR de-

signs that require fast bitstream reconfigurations.  As a result, traditional FPGA tools and 

design methodologies have prohibited true RTR designs, simply because they could not 

meet the reconfiguration time constraints required by the design.   

 

The development of the JBits API has opened access into the configuration bitstream of 

Xilinx 4K and Virtex FPGA devices [2].  Using the JBits API, the designer can bypass 

the logical synthesis and physical implementation steps, allowing rapid bitstream recon-

figurations.  When compared with ASICs, JBits has been used to create higher perform-

ance circuits in FPGAs using RTR [18].  The JBits API, therefore, provides the necessary 

tools for implementing an effective FPGA-based run-time reconfigurable and parame-

terizable design.   

1.2 Wavelets 

Wavelets have been receiving increased attention, mainly due to their wide appeal for a 

variety of applications, ranging from image editing and compression to electrocardiogram 

analysis.  As today’s applications become more graphically intensive, the need for effi-

cient image compression techniques has grown extensively.  This need is most apparent 

in the case of network applications, where bandwidth limitations are present.  Before an 

image can be compressed, it must first be transformed into a domain where higher com-

pression ratios can be achieved, rather than applying the compression algorithms directly 

to the original image itself.  JPEG, the predominant image compression format for the 

World Wide Web, uses the discrete cosine transform as its transform technique [33]. 

 

The wavelet transform improves on the discrete cosine transform (DCT), however. The 

DCT divides a signal’s frequency content into fixed, equal bandwidth partitions.  By pro-

viding only the frequency content of the signal, the DCT is unable to represent non-
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stationary signal properties in the transform domain.  Images are often non-stationary.  

To circumvent this problem, the JPEG algorithm uses a block-based transform in which 

the DCT is applied to image block partitions separately.  Because each block is trans-

formed on an individual basis, there are often inefficiencies between blocks.  The wavelet 

transform rectifies this problem by providing a representation of a given signal in both 

time and scale domains [8].  The discrete wavelet transform (DWT) provides coarser 

resolution at low frequencies, while providing finer resolution at higher frequencies 

(Figure 1.1).   The DWT can transform the entire image and preserve non-stationary in-

formation, rather than using block partitions.  Because of this, the wavelet transform has 

been shown to significantly outperform the DCT in image compression applications, 

leading to their inclusion in the JPEG 2000 standard [5].  The DWT is a reversible trans-

form and can be either a “lossly” or “lossless” process depending on the selection of 

wavelet.  Besides image compression, wavelets are also aptly suited for image editing 

and progressive transmission applications since they provide a multiresolution decompo-

sition of a signal.   

 

 

 

 

 

 

 

 

 

Figure 1.1: DWT frequency partitioning based on time. 

To date, the majority of wavelet transform implementations have existed in software.  

Software provides greater flexibility of operation, however, performance is often too 

sluggish for high-end multimedia applications such as video and sound compression.  It is 

often desirable to offload repetitive computations, such as compression coding and signal 

filtering, to a hardware accelerator in order to free the processor for other tasks.    
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1.3 Justifying Run-Time Reconfiguration 

The purpose of this research is to explore the advantages of RTR and RTP when applied 

to the DWT algorithm.  For the design of an RTR application to be justifiable, it should 

exhibit clear advantages over a similar, static circuit.  Although a number of architectures 

for static ASIC-based wavelet transform architectures have been explored [6,7], they of-

fer little in the way of operation customization.  Advantages that can be exploited through 

RTR include circuit speed increases through decreased latency or increased clock fre-

quency, and decreased resource consumption when compared to the static implementa-

tion counterpart.  These advantages were considered in relation to the discrete wavelet 

transform core implementation.   

 

The DWT relies on digital filtering to perform the transform operation.  Although param-

eterization of the control logic is possible and even required to guarantee design portabil-

ity between devices, the speed advantages gained by applying RTR are negligible.  

Therefore, focus was placed on the advantages gained from dynamic specialization of the 

filter circuitry.      

 

The primary advantage of specializing filters at run-time is that the coefficients can be 

hard-coded into the circuit.  Although a static transform implementation could also be 

implemented that would provide similar features, filter coefficients would have to be 

clocked into registers during an initialization procedure.  This would not only require ex-

tra host interfacing circuitry to provide access to FPGA registers, but would also compli-

cate the control logic required for circuit operation.  Guccione notes that the elimination 

of system interface circuitry through RTR results in lowered system costs if a smaller de-

vice can be used on the reduced circuit [26].  Another advantage is that specialized filter 

circuitry can be defined that optimizes latency and resource usage based on a set of filter 

coefficients.   It was perceived that the possible advantages gained by RTR warranted the 

design of a two-dimensional discrete wavelet transform core.        
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1.4 Shared Processing Environment 

The use of JBits for RTR requires a separate “host” processor and Java Virtual Machine 

(JVM) to execute the Java classes that perform bitstream reconfigurations.  It was desir-

able, therefore, to have the wavelet transform application benefit from the required PC-

FPGA shared processing environment.  More specifically, the DWT core could be used 

to accelerate computationally intensive signal processing tasks offloaded from the host 

processor.    

 

Image processing applications have been shown to benefit from shared processing envi-

ronments, in which the FPGA is utilized as a co-processor [16,17].  This concept can be 

extended to utilize RTR for the wavelet transform core, in which the “host” process de-

fines a specialized circuit coprocessor instance to accelerate computation of the current 

image-processing task.    

 

Designing specialized circuitry is useful in wavelet-based image coding applications, 

where the performance of the coding algorithm is dependent on the image itself [19].   

The optimizations occur through the selection of wavelet family, directly affecting the 

signal-to-noise ratio for reconstructed images in the case of image compression.  In this 

situation, the host process can select a wavelet that provides optimum performance for an 

image, or video stream, and tailor an FPGA circuitry accordingly.  It is feasible, there-

fore, for the coder to store the circuit optimizations as instructions for circuit rebuilding, 

and transmit them with the compressed image as a header.  In other words, the decom-

pression circuit is passed along with the image data.  The host on the decoder end can 

construct a specialized circuit based on the circuit instructions in the header, and decom-

press the image.  For wavelets, these instructions are defined in terms of filter coeffi-

cients.  These concepts can be extended to video compression, where the compression 

ratio may need to be periodically adjusted to provide necessary throughput requirements.  

Again, the selection of filter coefficients can alter the compression ratio.         
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1.5 JBits 

JBits [2] is a Java-based API that enables direct modification of Xilinx 4K and Virtex 

device bitstreams by providing access to all FPGA SRAM-based configuration resources.  

Sample configuration resources include configurable-logic block (CLB) elements, rout-

ing switches, input/output blocks (IOB), block RAM (BRAM), and routing MUXes.  A 

Java JBits class and set of configuration constants represent these resources.  The re-

source classes provide methods for configuring the functionality of the corresponding 

FPGA resource by setting the SRAM values to a particular configuration constant.    

 

Each resource is identified by a series of indices that identify its position in the resource 

array.  The majority of reconfigurable resources are located within the CLB array.  The 

resources in this array are indexed by the row and column of the CLB tile that the re-

sources are located in.  JBits locates the origin of the CLB array in the lower-left corner 

of the device.   

 

A typical JBits application accepts a bitstream as input, modifies and analyzes the appro-

priate configuration resources as necessary, and then saves the modified bitstream to file.  

The JBits API also provides the ability to perform readback of selected resources from 

the FGPA during execution, thereby providing a powerful debug utility at the bitstream 

level.   

 

Figure 1.2 provides sample JBits code in which F and G look-up tables (LUTs) are con-

figured.  The JBits Expr() method converts a string representation of a Boolean equation 

into a sixteen-bit integer vector that can be loaded into a LUT.  In this case, the four F-

LUT input pins are being AND’d together, while the four G-LUT input pins are OR’d to-

gether.  The “~” character negates the expression.  The negation is required since LUT 

values are inverted when written to the configuration bitstream.    
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/* define row and column values */ 
int row = 5; int col = 4; 
 
/* define logic function for F LUT */ 
int[] F_LUT_Vals = Expr.F_LUT(“~(F1&F2&F3&F4)”); 
 
/* define logic function for G LUT */ 
int[] G_LUT_Vals = Expr.G_LUT(“~(F1|F2|F3|F4)”); 
 
/* set the F LUT value for slice 0 */ 
jbits.set(row, col, LUT.SLICE0_F, F_LUT_Vals); 
 
/* set the G LUT value for slice 1 */ 
jbits.set(row, col, LUT.SLICE1_G, G_LUT_Vals); 

 

Figure 1.2: Configuring F and G look-up tables with JBits 

Using this API, bitstreams can be modified in relatively short amounts of time when 

compared to the time required for traditional FPGA vendor tools to produce bitstreams.  

Whereas synthesis tools can take on the order of a few hours to complete, a JBits stand-

alone application can produce bitstreams in a matter of seconds.  These times can be fur-

ther reduced if only a portion of the bitstream requires modification, as is the case with 

partial reconfiguration.   

 

Although direct JBits calls occur at a very low level, higher-level tools have been built on 

the foundation of configuration calls using the object-oriented model afforded by the 

Java.  These tools have transformed JBits into a powerful FPGA design and debug envi-

ronment.  Chapter 2 discusses the higher level tools built on the JBits foundation that are 

pertinent to the implementation of the wavelet transform system.    

1.6 Thesis Contributions 

The most significant contribution of this thesis is the presentation of run-time reconfigur-

able and parameterizable two-dimensional discrete wavelet transform core.  Although the 

design was tested and run on the Slaac1V PCI-accelerator platform, the design can be 

easily ported to other platforms.  The implementation of the wavelet transform core re-

quired the development of a core library.  Among the most pertinent of these cores is the 

RTP FIRFilter core, which offers full parameterization in terms of coefficient precision 
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and number of taps.  Several of the cores in the library have uses outside of the wavelet 

transform implementation and are included in the JBits release distribution. 

 

In addition, this research provides a means for automatically interfacing a JBits design to 

IOBs.  A designer was previously required to determine the JBits Pin resources that at-

tached to each signal end-point of the design.  Because a large number of IOBs were of-

ten required, this was a tedious and error-prone process.  Hard coding IOB routes also 

restricted an IOB dependent core to a particular FPGA device.  For this reason, a utility 

was created that automated the process of interfacing a top-level RTP core to IOBs based 

on the specifications given in a standard user constraint’s files.   

1.7 Organization 

Chapter 2 provides a brief background on the tools and subject material of this research. 

More specifically, JBits, the discrete wavelet transform theory, and the Slaac-1V board 

are introduced.  The chapter also provides a brief survey of existing DWT implementa-

tions.  Chapter 3 describes the design and implementation of the core library that pro-

vided the design building blocks.  Understanding the operation of the smaller cores is 

critical in understanding the composition and operation of the larger wavelet transform 

system.  After a discussion of the DWT core library, the overall two-dimensional discrete 

wavelet transform core is presented in Chapter 4, including the filter bank design and ad-

dress generator logic.  Chapter 5 describes how the core was simulated using a behavioral 

Java representation of the hardware.  The chapter continues by describing the bitstream 

level debugging process used during core design. Chapter 6 introduces a set of JBits 

classes that automate the interfacing of cores to FPGA I/O resources.   The chapter also 

describes how the discrete wavelet transform core was interfaced to the Slaac1V board.  

Chapter 7 describes the operation of the “host” PC application that controls operation and 

reconfiguration of the target FPGA platform.  Chapter 8 presents the performance results 

of the core.  The research is summarized along with a postulation of future work in Chap-

ter 9.   
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Chapter 2   

Background 

This chapter introduces the software, hardware, and theory used throughout this research.   

The JBits design environment is presented as a series of tools that aid RTR design.  The 

run-time parameterizable core specification is introduced separately, as it defines a struc-

tural hardware description language that is at a higher level of abstraction than the origi-

nal low-level JBits functions.  A brief introduction is provided on IOB routing, which is 

necessary in understanding how the DWT implementation was interfaced to FPGA I/O 

resources.  The DWT theory is explained in relation to the implementation in FPGA 

hardware.  The specifications of the Slaac1V PCI accelerator board are also discussed.  

The chapter concludes with the introduction of several existing DWT implementations on 

different hardware devices. 

2.1 JBits Environment 

The JBits environment provides users with the tools needed to implement RTR and RTP 

designs for Xilinx Virtex and 4K series FPGAs.  These tools aid in the coding, debug-

ging, simulation, and validation aspects of the design process.  Each component offers 

different levels of abstraction, allowing the design process to take place at the level of 

detail required by the designer.  Figure 2.1 shows a component view of the JBits envi-

ronment.  The following sections discuss each component in greater detail. 
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JRoute – The JRoute API is a run-time reconfigurable router for use with JBits designs 

[22].  Choosing individual routing resources, selecting a route template, or using the auto-

router are the supported techniques for specifying routes.  These three routing method-

ologies allow the designer the level of routing abstraction he or she desires.  At the lowest 

level, the user can specify a list of all individual routing resources that define a point-to-

point connection.  At a higher level of abstraction, the user can select between templates 

that dictate which routing resources should be considered by JRoute when connecting 

endpoints.  An auto-router provides the highest level of abstraction; however, it offers the 

user little control over how the connection is defined.     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: JBits environment 

XHWIF – The Xilinx Hardware Interface API provides generic; non-device specific 

calls for communicating with FPGA based hardware platforms.  XHWIF methods let the 

user step the clock, reset the device, read and write to memory, load bitstream configura-

tions, and perform device readback.  Communication with the FPGA is done through the 

XVPI interface [21].  Using the Java Native Interface (JNI) to perform non-JVM func-

tions, an API specific to any Xilinx Virtex/4K FPGA hardware platform can be ported to 

XHWIF, assuming the device API provides basic readback and clock stepping capabili-
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ties.  XHWIF provides a single communication interface for a variety of FPGA based 

hardware platforms.   

 

VirtexDS – The VirtexDS [20] is a Java based simulator for Virtex devices.  The simula-

tor models the system level hardware functionality of the Virtex family.  The specific 

Virtex device, along with a global clock identifier parameterizes the VirtexDS.  The be-

havior of RTR designs is accurately depicted since the hardware itself is being simulated, 

rather than using the fixed circuit netlist approach often used by traditional simulators.   

The simulator interface has been ported to XHWIF, allowing communication to take 

place with the simulator in the same manner as physical hardware.  The interface also al-

lows for seamless integration with the BoardScope debugging environment.  As a result, 

designs can be safely validated in software before being tested on the physical FPGA.   

 

BoardScope – BoardScope is a graphical FPGA debugging environment that operates at 

the bitstream level.  Communication with hardware takes place using an underlining 

XHWIF layer.  This allows BoardScope to use any hardware platform that has been 

ported to XHWIF.  The BoardScope environment displays FPGA read-back information 

in a graphical context.  This information includes CLB flip-flop states, LUT configura-

tions, BRAM data, and IOB register states.  The debugging process is started with a con-

nection to a supported FPGA hardware platform, either locally, or remotely using a net-

work connection.  After connecting to desired hardware, bitstreams can be loaded on the 

device.  Debugging in BoardScope allows the user to switch between hardware platforms, 

including the VirtexDS.  Figure 2.2 provides a screen shot of the BoardScope debugging 

environment, along with captions that explain features.   

 

The debugging environment features different graphical views in which the operation of 

the FPGA hardware is shown in different contexts.  Possible views include State, Core, 

Power, and Routing Density.  As an example, the State view provides a graphical display 

of read back state information.  The main grid representing the CLB layout shows the 

state information of all four flip-flops within a single grid square.  Clicking on a CLB 
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grid square causes the look-up table configuration to be displayed in the graphical CLB 

viewer.  These views create a robust debugging environment for RTR applications.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: BoardScope graphical debugging environment 

2.1.1 The Run-Time Parameterizable Core Specification 

The JBits run-time parameterizable (RTP) core specification [3] provides a means for ab-

stracting away the low level JBits configuration calls, thereby creating an environment 

similar to traditional hardware design languages (HDL)s.  By taking advantage of the 

Java object-oriented paradigm, bitstream configuration calls are encapsulated by low-
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level primitive cores, such as MUXes, LUTs, and gate-level logic.  These primitive cores 

can then be used together to create higher abstraction cores.   

 

The distinction between JBits RTP cores and cores used in traditional structural HDLs is 

that each core must be physically placed on the FPGA device during implementation.   

The RTP core template specification provides two methods for placing cores.  The de-

signer can choose between placing cores relative to other cores and explicitly defining the 

core location within the CLB grid.   

 

The Place class allows cores to be placed in relation to previous child core placements 

and parents’ core boundaries.  The class defines a series of placement directives such as 

ABOVE_PREV_ALIGN_LEFT, which determines the placement of the current child 

core relative to the placement of other child cores.  Other included placement directives, 

such as LOWER_LEFT and LOWER_RIGHT allow the working child core to be aligned 

with the parent core’s boundaries.  The core is placed when a child core is added to the 

parent using the addChild() method.     

 

As an alternative to using Place directives, core offsets can be calculated and defined ex-

plicitly by the designer.  This is accomplished through the use of an offset class.  Every 

RTP core has an offset class as a member field.  The offset class allows the designer to 

anchor an RTP core to the desired location within the FPGA CLB array.  A core offset is 

defined in terms of both a horizontal and vertical offsets.  These offset values are defined 

relative to the offset of the core’s parent.  The relative offset is measured from the origin 

(0,0) located at the lower-left corner of the parent core (Figure 2.3).   

 

The sizing and placement of an RTP core depends on the core’s horizontal and vertical 

granularity.  The granularity of a core specifies the coordinate grid in which the core is 

aligned.  The three granularities include CLB, slice, and LE granularities.  LE provides 

logic element alignment resolution, where a logic element is comprised of a LUT and 

flip-flop.  Providing different granularities allows the designer to make more efficient use 

of FPGA resources.   
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Figure 2.3: FPGA CLB array with offset origin located in lower-left corner 

Net and bus signals provide the interconnections between core interfaces.  Both Net and 

Bus classes extend from the base class Signal.  The Bus class is a collection of Net sig-

nals.  A core’s interface is defined by a series of I/O ports.   A port is realized in JBits by 

the Port class.  A Port allows for both internal and external signal connections.  External 

signals provide connections between cores.  Child cores within a parent core, on the other 

hand, are connected together by internal signals.  Figure 2.4 provides a graphical view of 

this relationship.   

 

Because ports are only an abstraction, they do not explicitly bind signal routing to physi-

cal resources.  At the primitive core level, signal sources and sinks must be bound to 

physical pins within the FPGA.  The Pin class allows physical signal endpoints to be de-

fined and instanced.  A Pin is defined by four parameters: a tile type, two location coor-

dinates, and the JBits resource to use within a particular tile.  The tile types provide rout-

ing to all FPGA resources, including CLB, IOB, BRAM, and clock DLLs.  Pins are at-

tached to ports using the Port.setPin() method.   

 

By making the appropriate JRoute API calls, the bitstream is modified so that the core 

interconnections are implemented in physical hardware.  The RTP core specification es-

sentially transforms JBits from a low-level language to a high-level language using a 

structural design approach requiring physical placement of cores.        
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Figure 2.4: Diagram showing relation between internal and external signals 

2.1.2 Routing to JBits IOB Resources 

In order to route and configure an IOB using JBits, the specific JBits IOB resource class 

must first be determined.  Three indices are required to distinguish a JBits IOB resource.  

An FPGA diagram showing the three indices is shown in Figure 2.5.  The figure also 

provides an example of a JBits setIOB() call that sets the initial IOB register state to one.  

The creation of these indices was dictated by the arrangement of the configuration col-

umns within the configuration bitstream [23].  The side on which the IOB is located pro-

vides the first index of the resource.  The secondary index determines which IOB group is 

being accessed from the particular side.  IOBs are grouped together in pairs for the top 

and bottom sides, and are grouped as threes for the left and right sides.  The third index 

corresponds to the individual IOB that should be configured from a given group.  After 

determining the three indices, IOB pins and configuration resources can be accessed ac-

cordingly.    
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Figure 2.5: Example of JBits setIOB() method illustrated by an FPGA diagram showing 

side, secondary, and tertiary IOB resource indices.   

2.2 The Discrete Wavelet Transform 

The two-dimensional discrete wavelet transform (DWT) was implemented using JBits 

because it lent itself to a straightforward implementation, requiring relatively simple logic 

for control and address generation circuitry.   The focus of DWT operation, the FIR filter, 

provided a core that could be implemented with a regular structure and layout.  The DWT 

core also provided a good example of how a hierarchy of JBits RTP child cores can be 

used together to implement a larger system.    

 

The DWT converts a signal from the time domain into the time-scale domain. Although 

the Fourier transform provides information about the frequency content of a signal, it 

does not preserve the time information that indicates when those frequencies occur.  

Based on a multiresolution analysis framework, the DWT captures both time and fre-

quency information [24].  This section focuses on the DWT theory as it pertains to the 

implementation of the DWT in hardware.   
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The DWT of a signal can be computed by passing a signal through a two-channel filter 

bank (Figure 2.7).  For orthogonal wavelets, these filters are responsible for dividing the 

signal bandwidth and are referred to as a quadrature mirror filter (QMF) pair, where the 

frequency responses are reflections of one another [9].  A QMF pair is comprised of a 

high-pass and low-pass filter.  For example, the frequency response of the low pass syn-

thesis filter derived from the Daubechies’s N=3 orthogonal, compactly supported wavelet 

is shown in Figure 2.6.  The low-pass filter coefficients [10] that correspond to this par-

ticular wavelet are given below: 
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The low-pass filter branch generates the average DWT coefficients of the signal, while 

the high-pass branch generates the detail DWT coefficients.  

 

Figure 2.6: Frequency response of Daubechies’s N=3 wavelet filter coefficients 
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The down sampled output of the high-pass filter constitutes the first octave output.  As 

the filter pair processes the signal, the output is decimated by a factor of two.  Filtering 

the signal controls the resolution of the signal, while the subsampling process controls the 

scale.  Scale and frequency are inversely proportional such that higher frequencies corre-

spond to lower (i.e. finer) scales, while lower frequencies correspond to higher (i.e. 

coarser) scales.  Because the filters separate the frequency bandwidth, the filter pairs pro-

duce different resolutions, or levels, of detail.   

 

Down sampling the filter output allows the output to be stored in the original signal 

space.  The average coefficients are stored in the first half of the space, and the detail co-

efficients are stored in the latter half.  The average coefficients are then processed again 

through the same set of filters producing a second set of average and detail coefficients.  

This DWT decomposition of the signal continues until the desired scale is achieved.  

Mallat illustrates this process in the Pyramid Algorithm [25]. 

 

Two-dimensional signals, such as images, are transformed using the two-dimensional 

DWT.  The two-dimensional DWT operates in a similar manner, with only slight varia-

tions from the one-dimensional transform.  Given a two-dimensional array of samples, 

the rows of the array are processed first with only one level of decomposition.  This es-

sentially divides the array into two vertical halves, with the first half storing the average 

coefficients, while the second vertical half stores the detail coefficients.  This process is 

repeated again with the columns, resulting in four subbands within the array defined by 

filter output.  Figure 2.7 shows a one level decomposition using the two-dimensional 

DWT.  The filter output that results from two low-pass filters, labeled LL in Figure 2.7, is 

then processed again in the same manner.  The process is repeated for as many levels of 

decomposition as are desired.  The JPEG2000 standard specifies five levels of decompo-

sition, although three is usually considered acceptable in hardware. 
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Figure 2.7: One-level decomposition using the two-dimensional DWT, where LPF x 

represents low-pass filtering of the image rows, HPF x represents high-pass filtering of 

image rows, LPF y represents low-pass filtering of image columns, and HPF y represents 

high-pass filtering of image columns.  

2.3 Slaac1V Board 

The Slaac1V PCI-board [1] was designed by the SLAAC group at the Information Sci-

ences Institute-East.  A block diagram of the Slaac1V board components and intercon-

nects are provided in Figure 2.8.  The board provides an ideal platform for reconfigurable 

computing applications with its usage of high-density FPGA devices that provide a tem-

plate for reprogramable logic circuits.  It also provides a unique test platform since a host 

computer can interact with the PEs through memory and FIFO accesses using the 

Slaac1V API.  Since the API provides access to each PE’s XVPI registers, partial recon-

figuration and read back commands can be performed on the FPGA.  The advantages af-

forded by the ability of the host to interact with the hardware made the Slaac1V the 

hardware platform of choice for this research.  
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Computation on the board takes place in one of three separate processing elements, or 

PEs.  All PEs are implemented in hardware using Xilinx XCV1000 devices.  The three 

PEs are designated as X0, X1, and X2.    

 

Interconnects are provided between the PEs to enable communication between the de-

vices.  Communication between PEs can take place over the crossbar and across the di-

rect connects to adjacent PEs.   As shown in Figure 2.8, each PE has two 72-bit data ports 

that allow direct connections with the PE on either its left or right side.  In this manner, 

the interconnect buses connect the PEs in a systolic “ring” arrangement.  In addition to 

the direct connects, a 72-bit cross bar allows for unidirectional broadcast between PEs.  

As a result, there are three 72-bit data paths provided to connect a PE with other PEs.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Slaac1V diagram 

Designated SRAM and FIFO interfaces are provided to each PE as well, allowing data 

flow through the board.  The Slaac1V board has a total of ten K25636 ×  SRAM banks.   

PEs X1 and X2 have access to four K25636 ×  SRAM banks.  X0 on the other hand, can 
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access the remaining two SRAM banks, and can also access any of the other eight 

SRAMs.  While having access to two of its own SRAMs, X0 can swap one of its SRAMs 

with any of X1’s SRAMs and can swap its other SRAM with any of X2’s SRAMs.  The 

host retains the ability to take control of a PE’s memory at any time during operation.   

 

2.4 Existing DWT Implementations 

DWT designs have been implemented on a variety of devices, including standard com-

mercial processors, DSPs, ASICs, and FPGAs.  Although the slowest, software imple-

mentations for PCs provide the greatest deal of flexibility in terms of the selection of 

wavelet, bits per pixel, precision, number of transform levels, and image size.  DSP im-

plementations operate faster than generic processor designs since the instruction set is 

tailored to signal processing applications.  Their flexibility is more limited than a generic 

microprocessor, however.  ASIC designs provide the fastest operation since they use 

dedicated hardware to perform the transform.  The tradeoff for speed, however, is lack of 

support for parameterization.  FPGA implementations are located somewhere between 

ASICs and DSPs in terms of speed and parameterization capabilities.  This section pro-

vides a brief survey of existing DWT implementations for processors, DSPs, ASICs, and 

FPGAs.   

  

The majority of DWT designs are software-based algorithms.  The JPEG2000 [5] and 

MPEG4 [34] standards both incorporate the DWT in their compression algorithms.  The 

JPEG2000 uses a 9/7 wavelet to perform lossy compression, and uses a 5/3 wavelet for 

lossless compression.  Both JPEG2000 and MPEG4 feature a variety of software imple-

mentations based on the underlying standards.  The Matlab technical computing envi-

ronment, designed by MathWorks [35], features a Wavelet Toolkit add-on that provides 

DWT support.  The toolkit offers a wide variety of wavelets that can be used for signal 

processing and analysis computations.   
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Several DSP manufactures provide DWT implementations through source code or library 

functions.  Motorola offers an application note for implementing a JPEG2000 version of 

the DWT for the StarCore DSP processor [36].  Texas Instruments includes functions for 

computing the vertical and horizontal wavelet transforms of image data in its image/video 

processing library for its TMS320C62x series DSP devices [37].  These functions allow 

specification of the filter bank coefficients, number of filter taps, and image size.  The 

functions accept only 16-bit input and output data.      

 

Several DWT ASIC architectures have been investigated [6,7].  Such research has at-

tempted to find optimal architectures and efficient DWT designs that maximize parallel-

ism, reduce the transform period, and reduce the amount of memory storage required for 

intermediate output.  In the commercial sector, Analog Devices [38] has recently released 

the first JPEG2000 image compression chip.  Analog Devices also produces the ADV601 

Multiformat Video Codec chip that features a wavelet kernel.  The wavelet coefficients 

are fixed for both devices.   

 

FPGAs have experienced explosive growth in the number of system gates available for 

designs.  The growth in size has allowed for the exploration of DWT implementations on 

FPGAs [39-41].  Benkrid et al have designed a two-dimensional biorthogonal DWT for 

the Xilinx XCV600E-8 device.  This design uses a non-folded architecture to perform the 

DWT of an NxN image in N2 clock cycles.  The Benkrid et al design uses a biorthogonal 

9/7 wavelet in the transform.  Parameterization of the wavelet and image size requires a 

resynthesis of the design. 
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Chapter 3  

Wavelet Transform RTP Core Library 

3.1 Library Overview  

The RTP Core specification provides a mechanism for describing designs as a conglom-

erate of functional cores and interconnects using the JBits API.  The DWT system makes 

advantageous use of the RTP core specification in that it is hierarchical composition of 

smaller child cores that each performs a unique function (Figure 3.1).   Each core used in 

the design offers full parameterization capabilities for the designer.   

 

The DWT system was implemented using a bottom-up approach in which the smaller 

RTP cores were created first before moving to higher abstraction cores.  The creation of 

these smaller cores led to the formation of a DWT RTP core library.  The library included 

cores written specifically for this research and already existing JBits cores.  The follow-

ing sections provide a detailed description of the lower abstraction cores developed for 

this research.   
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Figure 3.1: Hierarchical core decomposition of the overall DWT system.  Blocks contain-

ing section numbers point to the particular section that describes the core implementation. 
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3.2 Comparator 

The Comparator core determines the equivalency of two input signals.  The core is pa-

rameterized by a core name, two input signals, and an output net.  The output net, dOut, 

is asserted when the data on input bus AIn is equal to the data on input bus BIn.  Signals 

AIn and BIn must have the same width.  Two signals with a maximum width of two are 

compared together using a ComparatorStage core.  Each comparator stage occupies a 

single Virtex LUT, and are stacked on top of each other to implement wide comparators.  

The carry chain is used to propagate an “equivalence” output signal between stages.  The 

core can exhibit either synchronous or asynchronous behavior, depending on whether a 

clock signal is passed to the constructor.   The core features CLB height granularity, and 

SLICE width granularity.    

3.3 Shift-Register 

The ShiftRegister core implements a shift register function in hardware.  The core con-

structor is parameterized by an instance name, an input net, dIn, an output bus, dOut, and 

an enable signal, CE.   The input net, dIn, drives the data bit that is shifted into the regis-

ter on each shift operation.  The output signal, dOut, is driven by the register outputs.  

The shift register size is determined by the width of the dOut signal.  An assertion of the 

CE signal enables the shift operation.  This enable signal is asynchronous.  The shifting 

direction is specified as a parameter in the implement() method.  The initial value of the 

shift register is also defined in the implement() method.  An assertion of the global 

set/reset line (GSR) causes the initial values to be loaded into the registers.  Individual 

bits of the shift register are implemented using ShiftRegisterStage child cores.  A stage 

occupies a single LUT.   Each consecutive stage is placed vertically on top of the previ-

ous stage.  Assuming the dOut signal is N bits wide, the ShiftRegister is N/2 CLBs high, 

and one slice wide.  
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3.4 Variable-Width Adder  

The Adder core adds data on the two input buses and drives the data out bus with the re-

sult.  The core provides unique parameterization capabilities.   The widths of the two in-

puts buses do not have to match, allowing for variable input width of both inputs.  Also, 

the designer can choose synchronous or asynchronous operation by passing a clock net to 

the constructor.  The constructor also provides the option to use a carry in, if a carry in 

net is passed as a parameter.  The Adder core features slice width granularity, and CLB 

height granularity.   

3.5 Adder Tree 

The AdderTree core allows any number of tree inputs to be summed together.  The core 

is comprised of variable width Adder cores that sum two inputs together, as well as Reg-

ister cores that provide required delay in the case of unbalanced trees.  An unbalanced 

tree results in a case where the number of tree inputs is not an even power of two.  A 

stipulation of the current core implementation is that although the inputs can be of any 

width, all tree inputs widths must be equal.  The output bus width of the core can be of 

two possible widths, depending on designer configuration.  The width is either the same 

width as the tree inputs, or is the width of the tree input plus  n2log  in order to preserve 

adder carries, where n is the number of tree inputs.   

 

The number of adders required for a tree with n inputs is simply n-1.  The AdderTree core 

exemplifies the advantages of run-time reconfiguration, since an efficient tree is derived 

for any given number of inputs during core instantiation.  Each addition stage is pipe-

lined, thereby allowing for increased clock frequencies at the expense of increased output 

latency.  The latency of the core from input to output is given by  n2log .  Each Adder 

core is placed horizontally adjacent to the previous adder.  If necessary, delay between 

addition stages is implemented using registers.  Figure 3.2 illustrates the above concepts 

by providing an unbalanced, ten-input adder tree.  As shown in the figure, the tree has a 
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latency of four clock cycles.  Two registers are required between the adder labeled eight 

and the adder labeled nine.   

 

Routing between adders follows the hierarchical tree structure shown in Figure 3.2.  Us-

ing this approach to placement, routing distance between adder levels is optimized.  The 

optimization results from the fact that two adders providing input for the next stage adder 

are spaced an equidistant apart, except in the case where the adder core is located in an 

unbalanced stage.  Figure 3.3 shows the horizontal placement scheme used for the adder 

tree.   

 

 

 

 

 

 

 

 

 

 
 

Figure 3.2: AdderTree core composition where the circled numbers designate the particu-

lar adder index and the horizontal lines partition the addition operations into different 

clock cycles.   

Deriving the necessary interconnections between adders presented several challenges.  

First, the adder tree was designed so that adder carrys are preserved between addition 

stages.  Secondly, the tree interconnect structure must be known before instantiating the 

Adder cores, since the Adder core constructor accepted both input and output buses.   

Lastly, some tree configurations required registers to be interspersed with adders in order 

to balance latency between addition stages. 
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Figure 3.3: Ten-input AdderTree core floor plan 

 

Two integer arrays are used to store indices of the Adder core outputs that provided the 

two inputs into that particular adder.  As an example, in Figure 3.2 for the adder labeled 

two, the first array identifies the first input as coming from adder labeled one’s output, 

while the second array identifies the second input as coming from adder three’s output.   

Such values are stored for every adder, and define the adder interconnect structure.  A 

function was written to calculate the values for both arrays, as well as the number of reg-

isters required for a particular adder instance.  The function uses recursive partitioning of 

the tree in order to determine adder interconnects, based on an adder range defined by 

high and low parameter values.  Partitions are created using the highest and lowest pow-

ers of two for a particular range of adders.  Figure 3.4 provides a Java code excerpt from 

the AdderTree core illustrating this process. 

 

Method deriveAdderTree() accepts two adder tree indices, low and high, that define the 

current partition.  Input A of the parent adder is stored in Aindex[parentAdder – 1], while 

input B is stored in BIndex[parentAdder –1].  After computing the adder input indices, 

left and right hand partitions are defined using a recursive call to deriveAdderTree().  The 

function continues until the range defined by the difference of high and low is less than 

three, meaning a leaf node has been reached.   
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/* calculate the “parent” adder index */ 
int log = (int) Math.ceil(Math.log((double)range)/Math.log(2.0)); 
int parentAdder = low + (int) Math.pow(2.0,log - 1); 
 
/* calculate the right sided adder input index */ 
range = high - parentAdder; 
log = (int) Math.ceil(Math.log((double)range)/Math.log(2.0)); 
int RHSIndex = ((int) Math.pow(2.0, log - 1)) + parentAdder; 
 
/* calculate the left sided adder input index */ 
range = parentAdder - low; 
log = (int) Math.ceil(Math.log((double)range)/Math.log(2.0)); 
int LHSIndex = ((int) Math.pow(2.0, log - 1)) + low; 
 
/* partition left hand side of parent adder recursively */ 
AIndex[parentAdder - 1] = LHSIndex - 1; 
deriveAdderTree(low, parentAdder); 
 
/* partition right hand side of parent adder recursively */ 
if (RHSIndex != parentAdder) 
{ 
   BIndex[parentAdder - 1] = RHSIndex - 1; 
   deriveAdderTree(parentAdder, high); 
} 
else /* required if there is an odd number of tree inputs */ 
{ 
   BIndex[parentAdder - 1] = treeInPort.length - 1; 
} 
 

Figure 3.4:  AdderTree input index computations and partitioning process 

 

3.6 Constant Coefficient Multiplier 

Multipliers are frequently used in digital signal processing systems.  In the discrete wave-

let transform filter bank, multipliers are required for the filter component implementation.   

Because filter coefficients remain constant during the entire duration of a transform, con-

stant coefficient multipliers (CCMs) were considered for the design.  Dinechin and Le-

fevre justify the use of constant-coefficient multipliers if the lifetime of the constant is 

substantially larger than the reconfiguration overhead time [27].  It is desirable to have a 

fast CCM that not only makes efficient use of FPGA resources, but one that lends itself to 

a straightforward implementation in FPGA hardware.  The Ken Chapman Multiplier 

(KCM) fulfills the above criteria [11]. 
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The KCM design provides an implementation of a constant coefficient multiplier that is 

ideally suited for RTR and the Virtex family architecture.  A KCM requires fewer re-

sources and results in less latency than variable coefficient multipliers.  The design stores 

precomputed partial product values in Virtex LUTs.  The partial products are computed 

by multiplying all values within a LUT address range by the desired constant value.  The 

width of the multiplier operand input is partitioned into fixed, even width sections.  The 

values corresponding to a particular section of the operand provide an index into a series 

of LUTs, which in turn produces the partial product.  The partial products of all sections 

then are summed to produce the product output.   

 

The JBits KCM core implementation is comprised of a series of DistributedROM cores 

with outputs summed together by an AdderTree core (Figure 3.5).  Several aspects of the 

JBits KCM core are reconfigurable.  In addition to being parameterized by the coefficient, 

the bit precision in which that coefficient is stored is also configurable.  This allows the 

fixed-point precision of coefficients to vary depending on the designer’s needs.  The bit-

width of the operand input bus is parameterizable as well.  The input width, however, is 

required to be an even multiple of four.   

 

DistributedROM cores of size N×16  are used for the KCM implementation, where N is 

equal to the coefficient resolution plus the input bus width.  During reconfiguration, each 

of the sixteen ROM locations is loaded with the value of coefficient k multiplied by the 

ROM location index.  The product is left shifted by a multiple of four, depending on in-

put lines addressing the ROM.   

 

The floor plan of an example 812 ×  JBits KCM core is shown in Figure 3.6.  A 812 ×  

KCM requires three 2016 ×  ROMs.  A 2016 ×  ROM uses 20 LUT4 primitives stacked 

together in a vertical column.  A single 2016 ×  ROM, therefore, has single slice width, 

and a height of ten CLBs.  The three ROM cores are placed horizontally adjacent to one 

another, requiring three Virtex slices.  The three four-bit bus partitions of the twelve-bit 

operand address their corresponding ROM and produce three partial products.  In this in-
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stance, the AdderTree core is comprised of two Adder cores and a Register.  In total, the 

812 ×  KCM is six slices wide and eleven CLBs high.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: An Nx4 input KCM core design 

 

 

 

 

 

 

 

 

 

  

 

Figure 3.6: 812 × KCM core floor plan 
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3.7 Summary 

The design of a large system is more easily approached if it is broken down into smaller 

subtasks.  With this idea in mind, the DWT system design was decomposed into smaller 

functional cores using the RTP core specification.  The DWT core library provides the 

components necessary for constructing the larger DWT system.  This chapter explored 

the implementation of the smaller cores designed for this research.  The next chapter dis-

cusses how these cores are used together to create the filter bank, the address generator 

logic, and the overall two-dimensional discrete wavelet transform system.  
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Chapter 4  

Discrete Wavelet Transform Core Design 

This chapter describes the implementation of a two-dimensional discrete wavelet trans-

form RTP core using the RTP core library.  A design overview is presented to familiarize 

the reader with the major components, interconnects, and functionality of the system.  

The FIR filter core design and address generation logic used in the DWT system are also 

discussed.    

4.1 Design Overview 

The DWT2D core performs the two-dimensional discrete wavelet transform on a speci-

fied image.  The core is parameterized with a core name, coefficient precision, and two 

SRAMProperties classes that define the external signal connections to memory.  The 

SRAMProperties class is elaborated on in Chapter 6.  The image height and width, along 

with the high-pass and low-pass synthesis filter coefficients are passed as parameters to 

the implement() method of the core.    

 

Figure 4.1 shows that the DWT2D core is comprised of two filters, delay registers, multi-

plexers for switching between filter and address generator outputs, and two memory ad-

dress generators that interact with the memory banks and control data flow direction.   

Two FIRFilter cores provide the focus of the core.  Depending on filter length, delay reg-

isters are added at run-time to balance latency between filter outputs for a given input.  
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The two filters are loaded at run-time with the high-pass and low-pass coefficients that 

defined the particular wavelet being used for the transform. 

 

It is desirable to have the DWT2D core function as an autonomous design entity within an 

FPGA.  For this to be a realizable goal, the core implementation requires internal control 

logic and address generation circuitry.  The wavelet transform core control logic is re-

sponsible for performing data multiplexing.  The address generator supplies the necessary 

memory address input and output buses to both memory banks.  It also generates the sig-

nals necessary for controlling the read/write operations of the external memory. 

 

 

 

 
 
 
 
 
 
 

 
 
 
 

 

 

Figure 4.1: Block diagram of DWT2D core 

4.2 Sequential FIR-Filter 

Two sequential FIRFilter cores act as the computation engine of the wavelet transform 

core.  The filter structure defines a sum-of-products hierarchy consisting of registers, 

constant coefficient multipliers, and adders.  Each core makes advantageous use of the 

low-level bitstream access afforded by JBits in order to provide the capabilities needed 

for efficient placement during reconfiguration of the filter.   
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The output of a linear filter can be described by the convolution equation: 

∑
=

−=
n

i

inhixny
0

)()()(  [4]                           (EQ. 4-1) 

The direct form implementation of the convolution equation is shown in Figure 4.2.  The 

FIRFilter core is based on the direct form structure [4].  The delays are implemented us-

ing a chain of register cores.  The coefficient multipliers are implemented with KCM co-

res.  The multiplier outputs are summed together using the AdderTree core.   

 

 

 

 

 

Figure 4.2: FIR filter direct-form structure 

The FIRFilter core is created in a three-step process.  Filter input and output buses are 

passed to the filter constructor during instantiation.  The widths of these buses define data 

path bit widths and filter resolution.  The filter core must then be anchored to physical 

coordinates on the FPGA.  This is accomplished by modifying the filter core’s offset 

field, in which CLB row and column coordinates are defined.  After placement, an array 

of doubles representing filter coefficients is passed to the core’s implement method, in 

which the parent FIRFilter core, along with all child cores, are instantiated, and the bit-

stream is configured accordingly.    

 

Assuming a given filter is of order n, then n registers and multipliers are required, as well 

as n-1 adders, to compute the sum of products.  The latency of the filter of l taps, and in-

put bit width n, is computed using the following equation: 
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A constant multiplier is instantiated for each coefficient in the double array and loaded 

with coefficient value.  An adder tree is responsible for summing the multiplier outputs.  

The resulting filter structure is shown in Figure 4.3.   The higher abstraction RTP cores 

required for filter design include KCM, Register, and AdderTree cores.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: RTP core composition of a four-tap FIR filter 

4.3 Address Generation 

The DWT2D core interfaces to two SRAMs.  During operation, one SRAM provides the 

necessary data input to both filters, while the other memory stores the transitory filter co-

efficient data.  As each level of wavelet transformation is completed, the roles of both 

memory banks are swapped.  The input and output address generators for the DWT2D 

core are implemented as separate RTP cores.   

 

Two address generator cores provide the necessary addresses for both SRAM memories.  

The address outputs were interfaced directly to the physical SRAM address lines.  One 
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address generator core computes the input addresses, while the other core computes the 

output addresses.  Both cores supply the necessary memory address input and output val-

ues to SRAMs.  The implementation of the input and output address generator cores is 

discussed in Sections 4.3.1 and 4.3.2, respectively.   

4.3.1 Input Address Generation  

The input address generator core supplies the memory address values for the SRAM 

responsible for providing data input into the transform core.   The implementation of this 

core is straightforward, since no row or column extension scheme is used for the 

transform.  Because no extension is used, the border of resulting transformed array 

contains invalid transform coefficients.  The resulting transformed image, therefore, 

requires cropping before applying the inverse transform.  The amount of cropping 

required is dependent on the filter length.   

 

The core implement() method is parameterized by an image height/width dimension 

value.  Two restrictions are placed on images used in the transform process.   

 

§ The height of the image was equal to the width of the image.   

§ The height/width parameter was an even power of two.      

 

Figure 4.4 provides a graphical depiction of the row and column address scanning 

process used for three levels of decomposition.  The two-dimensional transform requires 

that image rows are processed first, followed by a scan of the image columns.  The 

position of the row and column values are reversed in the output address register, thereby 

automatically transposing the matrix of coefficients as they are written to memory.  Using 

this methodology, the need for additional logic to scan the columns is eliminated, since a 

second row scan of the transposed matrix accomplishes the same function.  All image 

rows are scanned in the first level of transform.  After each level of transform, the 

available image width and height address ranges are divided by two.  This division is 

needed so that the following transform level operation processes only the detail 
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coefficient suband located in the upper left quadrant of the transformed coefficient 

matrix.  The input address generator repeates the row scan twice using the same image 

dimension value for each level of transform.  A second transposition during the second 

row scan restores the position of the transformed coefficients to their proper order. 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.4: Input address generator scanning process 

Two Counter cores provide the foundation for the row and column output address value 

computation.  Assuming n represents the image width and height, the width of both 

counters is computed by taking the log2 n.  The input address generator core constructor 

accepts an address bus on which the input address values were driven to the SRAM.   

Where the SRAM memory is larger than the image, the width of the memory address bus 

is larger than the combined widths of the row and column counters.  In this case, a Con-

stant core is used to drive the remaining bits of the address bus with zero values.  Figure 

4.5 illustrates the bit positioning of the constant, row and column output values within the 

input address value.  The image width and height in this example is 256 pixels.  As a re-

sult, eight bits are required to store the row and column address values.  The remaining 

four bits are driven low by a constant core.     
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Figure 4.5: Input address composition using an address bus width of 20 

 

After each level of transform, the working image height and width are halved, thereby 

decreasing the output memory space by a factor of four.  Implementing this in hardware 

requires manipulation of the column counter output bits.  Figure 4.6 shows the bit-wise 

generation of the row address output values.  A MUX2_1 core selects between counter 

output bit n and a constant zero value.  On reset, the shift register with the same width as 

the column counter is initialized to all ones.  During transitions between levels, the shift 

register is enabled and shifted, with a zero loaded into the MSB register value.  When a 

zero is driven on the MUX select line, the MUX outputs a zero, instead of the corre-

sponding counter bit.   This scheme effectively divides the range of row output addresses 

by a factor of two.   

 

 

 

 

 

 

 
 

Figure 4.6: Generation of row output address bit n 

Generation of the column input address uses the same multiplexing scheme as the row 

address generation to divide the address range by two between levels.  It should be noted 

that both the row and column address logic require their own shift register cores.   
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Additional logic is used in conjunction with the column address generation to generate 

the row counter enable  signal.  The combined logic for the column address and row 

counter enable signal is depicted in Figure 4.7.  The row counter enable signal requires 

asseration whenever the maximum column count is reached.  The maximum count value 

is already available in the shift register output.  A comparator is used to determine if the 

multiplexed counter output is equivalent to the shift register output.  The comparator 

output, along with the comparator outputs from all other counter bits are AND’d together 

to produce the row counter enable signal.   

 

 

 

 

 

 

 

 

 
 
 

Figure 4.7: Generation of column output address bit n 

4.3.2 Output Address Generation  

The output address generator core supplies the memory address values for the DWT2D 

output data being written to SRAM.  Generating the output addresses is less 

straightforward than the input addresses generation.  There are two significant differ-

ences.  First, the latency of the SRAM and filter output requires appropriate delay of the 

output address values.  Secondly, output data has to be written to its appropriate subband 

partition in memory.   To address these issues, generation of the output memory address 

requires variations on the logic used in the input address generation.     
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Several sources, including the filter cores and SRAM, contribute latency delay to valid 

output availability.  As a result, additional logic is required to delay the output address 

accordingly (Figure 4.8).  A Counter core counts latency cycles after a reset assertion.  A 

separate constant value stores the appropriate latency value for the current DWT2D core 

configuration.  The counter and constant outputs are compared together to generate the 

CE signal for the output address counter core.  An inverted comparator output signal en-

ables the latency counter.   In this manner, the counter is disabled after reaching the maxi-

mum latency count.       

 

 

 

 

 

 

 

 

Figure 4.8: Output address latency delay logic 

 
The positioning of the row and column address values is reversed in the output address 

value written to SRAM (Figure 4.9).  Doing so generates a transposed coefficient matrix 

in the output memory.  This allows the input address generator to perform a row and col-

umn transforms using two sequential row scans.   

 

 

 
 
 
 

Figure 4.9: Input address composition using an address bus width of 20 
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The process of generating output row and column address values is similar to the tech-

nique used to generate the input row and column address values.  As with the input ad-

dress core, two Counter cores provide the logic foundation for the row and column ad-

dress values.   

 

Unlike the input address generator, however, the output address memory space for a par-

ticular level is divided into two column partitions, one for the low-pass filter coefficients, 

the other for coefficients generated by the high-pass filter.  A MUX2_1 core toggles be-

tween filter outputs on every clock cycle.   An addressing scheme is therefore required to 

generate output addresses that alternate between these columns on successive clock cy-

cles.  An example column output address sequence for a 512x512 image using three lev-

els of transform is provided in Table 1. 

 

 

 

 

Table 1: Example column output address sequence for three transform levels 

 

The column switching process is realized in hardware by asserting the most significant 

bit of the column address on alternate clock cycles.  This is accomplished by rerouting bit 

zero of the column counter to the MSB of the column address.  The MSB position of the 

column address is dependent on the current level of transform.  Figure 4.10 shows the 

generation of a column output address bit n.    

 

The complication in logic results from the fact that the most significant bit position 

changes as the transform level changes.  An additional level of MUX2_1 cores provides a 

solution.  Column counter bit n+1 and bit zero provide the mux inputs.  Because the 

counter bit zero is rerouted to the MSB for the current output address range, the position 

of the other counter bits are shifted down, such that bit one becomes bit zero.  This bit 

position shift is implemented through mux routing.   

Level Column Width Column Output Address Sequence 
1 512 0, 256, 1, 257, 2, 258, … 255, 511 
2 256 0, 128, 1, 129, 2, 130, … 127, 255 
3 128 0, 64, 1, 65, 2, 66, … 63, 127 
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A second shift register is needed to control this additional mux level.  The shift register 

values are loaded with a zero in the most significant register, with ones in all other regis-

ters.  The shift register is enabled during transitions between levels, with a zero being 

shifted into the most significant register.  The shift register output controls the select lines 

of the MUX2_1 cores.  In this manner, column counter bit zero is always routed to the 

most significant column output address bit position.   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Generation of column input address bit n 

The output address row values are computed similarly to the input address values.  The 

row counter is enabled by the row counter enable signal generated by the column counter 

logic.   The counter is incremented after the maximum column count is reached.   

 

The shift registers for the input and output address generator cores are enabled using the 

logic scheme shown in Figure 4.11.  Comparator cores determine when the row and col-

umn address values are equivalent to the values stored in the shift registers. The AND of 

these signals generate the count enable signal of the transform level counter.  Bit zero of 
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the transform level counter is then AND’d with the counter enable signal to produce the 

shift register enable signal.  This guarantees that the enable signal is asserted after two 

sequential row scans.  The remaining level counter bits, bit one and up, indicated the cur-

rent level of transform.  The same logic is used for both the input and output address gen-

erator cores. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.11: Shift register enable signal generation logic 

4.4 Summary 

The DWT2D core is defined by a hierarchical composition of RTP cores.  In this chapter, 

the implementation of the DWT2D core is described, along with a discussion of the FIR-

Filter core and address generation logic.  The DWT2D core is comprised of two FIR fil-

ters, input and output address generators, and control logic for multiplexing filter data.  

The FIRFilter RTP core is a JBits implementation of the direct-form FIR filter structure.  

The logic for both the input and output address generators is encapsulated within two 

separate RTP cores.   
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Chapter 5  

Simulation and Debugging  

This chapter explains the simulation and debugging processes used throughout the wave-

let transform system design.  The chapter begins with a discussion of how Java was used 

to simulate the operation of the discrete wavelet transform using classes that represented 

hardware counterparts.  Having this tool aided the debugging processes by providing a 

means in which test data could be extracted and viewed at any step of the simulation.  

The chapter also introduces the concept of bitstream level debugging, and discusses how 

the VirtexDS was used in conjunction with BoardScope to verify correct circuit operation 

before the bitstream was downloaded to physical hardware.    

5.1 Software Simulation 

Before beginning the hardware design process, a Java-based software simulator, 

DWTSimulator, was written to model the behavior of the wavelet transform in both the 

forward and inverse directions.  Methods DWT and IDWT performed the forward and in-

verse transforms for a selected image, respectively.  Classes were written to emulate the 

functionality of the individual hardware components comprising the DWT2D core.  The 

transform simulator was then constructed using these hardware model classes.  By mod-

eling the hardware behavior with Java classes, the theoretical transform output could be 

analyzed for correctness before implementing the system in hardware.  Another advan-

tage of using hardware model classes was that the wavelet transform simulation class 
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provided a template for the hardware system design, in which the model classes could be 

removed and replaced by their respective RTP Cores. 

 

A FIRFilter class was written to simulate the hardware filter implementation.  The filter 

was parameterized by a set a coefficients that defined filter length.  Method clock() ac-

cepted a data value, and performed the filter operation for the registered values.  Software 

truncation and masking techniques were applied to the filter input and output data in or-

der to achieve the same resolution as the hardware filter.  The FIRFilter class performed 

the signal processing for the simulator.  As with the simulator, the FIRFilter class acted 

as a model for the JBits RTP filter core implementation.   

 

Development of both forward and inverse transforms allowed images to be transformed 

and then reconstructed.  The Microsoft bitmap format was used for all images read and 

written by the simulator.  A separate class, Bitmap, provided functions for storing and 

retrieving image coefficient arrays from bitmap files.  The loadBitmap() method read a 

bitmap file and returned a two-dimensional integer array of pixel values.  Conversely, 

method saveBitmap() accepted a two-dimensional integer array and converted the array 

into bitmap format.  This conversion required scaling the integer array values to fit in the 

0 to 255 range.  

5.2 Debugging at the Bitstream Level  

The design cycle of each RTP core required a debug and validation design phase.  The 

BoardScope tool provided the environment of choice for bitstream level debugging.  Us-

ing the VirtexDS class in conjunction with BoardScope allowed cores to be thoroughly 

debugged in software before testing them out on physical hardware.  By running the core 

output bitstream under BoardScope, registered signal values could be monitored on a per 

clock cycle basis, either through the graphical flip-flop state indicators, or the Board-

Scope waveform viewer.  Although minor discrepancies existed between simulator and 

physical hardware behavior, correct core operation in the simulator often translated to 
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correct operation in hardware.  This section discusses the bitstream level debugging proc-

ess as it related to the Wavelet Transform core.   

 

Individual signal behavior is determined by monitoring the flip-flop state in which that 

signal traverses through.   As a result, knowledge of core placements and the locations of 

signals relative to those placements must be derived.  This information includes the CLB 

row and column positions, the slice, and the flip-flop within the slice.  With traditional 

simulators, this information is irrelevant since place and route algorithms have yet to be 

applied to the design.  Another difference is that JBits signal visibility is limited to the 

logic states of the CLB and IOB flip-flops due to the read back information obtainable 

from the FPGA.  Because the device simulator models the system level hardware, it can 

only generate synchronous flip-flop state output as well.  As a result, asynchronous signal 

activity cannot be viewed, as is usually possible with traditional simulators.  The majority 

of the cores used in the DWT implementation featured registered outputs however, mak-

ing this simulation environment acceptable.   

5.3 Testbench I/O Generation Techniques 

In FPGA design, test benches are often used to provide an automated testing environment 

wrapper around the design.  Test bench design is nonstandard when compared to tradi-

tional simulation environments due to the bitstream level output generated by JBits cores, 

however.  The bitstream level output distinguishes JBits test benches from traditional test 

benches in several regards.   

 

A significant distinction between JBits and standard HDL test benches is the methodol-

ogy in which the test vector core stimuli are generated.  Several techniques were used to 

provide test input vector stimuli into the RTP cores used in the DWT implementation.  

These techniques included placing hard-coded vectors in the circuit with the TestInput-

Vector RTP core, using the SimulatorClient class to provide stimulus through the 

VirtexDS [43], and using BRAMs to store vectors.  Each technique was utilized for the 

DWT core library debugging process, and warrants further discussion.   
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The first method involved using a TestInputVector RTP core.  The core is parameterized 

with depth, clock signal, and data bus parameters.  The depth parameter defines how 

many vectors should be written during simulation.  The width of the input vectors is de-

fined by the width of the output data bus.  The file containing input vectors values is 

specified as an implement() method parameter.  These vectors are then coded into LUTs 

operating in SRL16 mode.   

 

Generating vectors with an RTP core is unique in the sense that the vectors themselves 

are coded into the bitstream.  This methodology has both advantages and disadvantages.  

A major disadvantage results from the resource consumption requirements of the core.  

The depth of the core is limited by the space remaining on the device after core imple-

mentation.  For signal processing cores, including the FIRFilter core, it is difficult to 

store signals of any significant length.  As a result, the TestInputVector core was used 

only for debugging smaller cores, including the adder and comparator cores. 

 

Test vectors are also obtainable through a direct interface to the device BRAMs.  This 

scheme was used to create a streaming data interface for cores.  The streaming interface 

required two BRAMs to provide input and store output data.  An RTP Counter core gen-

erated the memory addresses.  While this method proved effective for filter debugging, 

available memory was too small to store entire images.  This approach suffers from the 

disadvantage that the test vectors must be stored in the bitstream, as with the TestInput-

Vector core.   

 

The most flexible solution involves using the SimulatorClient class to provide input 

stimulus.  Upon instantiation, the SimulatorClient establishes a TCP/IP connection to the 

VirtexDS already running.  The class provides methods for setting and retrieving the 

logic values of FPGA pins.  Using these methods, vectors are injected into the core at 

register input pins.  This methodology is much more desirable than the previous two be-

cause it eliminates the reliance on bitstream resources to store vectors.  The client became 
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available late in development, so its usage was limited to debugging higher abstraction 

cores developed in the later stages of design.   
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Chapter 6  

Hardware Interfacing 

This chapter describes how the DWT2D core is interfaced to the Slaac1V SRAM memo-

ries.   The motivation for RTR I/O is presented first, followed by the introduction of a set 

of JBits classes that provide RTR I/O interfacing support for JBits designs.  Only recently 

has the support to route to non-CLB tile resources, including BRAMs and IOBs, been 

included in the JBits distribution.  These RTR I/O classes extend on the routing support, 

and provide automated I/O configuration and interfacing support for top-level RTP cores.  

Following the introduction of the RTR I/O classes, the chapter discusses how these 

classes were used to interface the DWT2D core to the Slaac1V hardware.   

6.1 I/O and Run-Time Reconfiguration 

As with most image processing applications, the discrete wavelet transform requires ac-

cess to large quantities of data.   A 512512 ×  grayscale image with eight bits per pixel 

requires 256 K bytes of memory storage.  A three-level DWT, using the 512512 ×  image 

has a data throughput requirement of 672K bytes.  The large data requirement forces the 

DWT2D core to use an alternate approach to the distributed RAM CLB configuration ap-

proach.  Although the Block RAM (BRAM) provides a possible on-chip memory storage 

solution, the size of the memory is insufficient for large images.  The XCV3200E is cur-

rently the largest Virtex extended memory device and offers 851,968 BRAM bits [12].  



 
 

51

This is still inadequate storage for a 512512 ×  grayscale image.   It is evident that an off-

chip memory solution is needed to provide data to the core.   

 

In the past, JBits designs requiring external I/O have utilized bitstreams containing I/O 

frameworks generated from other HDLs and synthesized using the standard tool flow.  

Dynamic circuit design, therefore, has been restricted to internal circuit logic, leaving I/O 

data paths static.  There is significant motivation for providing I/O reconfiguration capa-

bilities with JBits, however.  The most apparent advantage is the elimination of the reli-

ance on other tools.  Supporting I/O reconfiguration allows complete design realization 

with JBits.  Designs offering variable degrees of output accuracy [13] could make advan-

tageous use of variable width I/O data paths.  These designs could allot additional I/O 

resources or free IOBs for use by other cores during reconfiguration.  Providing auto-

mated I/O interfacing capabilities eases the process of porting JBits system level designs 

between Virtex devices. 

 

The DWT2D core is designed with the inherent memory addressing and control logic 

needed for it to function as an autonomous entity without the assistance of any additional 

FPGA circuitry derived from other HDLs.  As a result, the top-level DWT2D core re-

quires direct connections to SRAM data, address, and control signals.   It is desired to 

have the DWT2D core and I/O data paths generated entirely from a null bitstream during 

instantiation.  This goal requires that each port contained in the DWT2D core interface be 

routed directly to a corresponding IOB or IOBs, which in turn provides access to the ap-

propriate SRAM signals.  

 

Although the Slaac1V board is used as the hardware-testing platform, it is undesirable to 

hard code the core with routing calls specific to a particular fixed IOB configuration.  Do-

ing so effectively makes the core device package and hardware platform dependent.  

Porting to other platforms would require an entirely new set of IOB routing calls.  An-

other disadvantage of hard coding the routing calls is the introduction of human error.  

With large designs, this process is not only tedious, but error prone as well.    
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As a reBsult of these disadvantages, an additional layer of abstraction is needed within 

JBits to automate the interfacing of an RTP core to different FPGA based hardware plat-

forms.  Introducing such a layer allows RTP cores using IOBs to become Virtex device 

independent.  Section 6.2 presents a series of JBits classes that generate an external I/O 

interface wrapper around a JBits RTP core, using the specifications given in a traditional 

user constraints (UCF) file.   

6.2 JBits RTR I/O Interfacing Classes 

This section introduces a set of JBits classes that automate the process of interfacing a top 

level RTP core to the underlying FPGA hardware platform.  These classes were devel-

oped as a coauthored research effort1.  Using the RTP core template specification, these 

classes are encapsulated within a single RTP Core, the Board class.  A system level dia-

gram of the hardware interfacing JBits components is shown in Figure 6.1.  The Board 

class provides a single core RTR solution for I/O mapping and configuration.  The func-

tionality of the Board class is discussed, along with the supporting I/O classes that are 

used by Board during the interfacing process. 

 

 

 

 

 

 

 

 

 

Figure 6.1: System level diagram of JBits RTR I/O interfacing classes 

                                                          
1 Design of the RTR I/O classes was a collaborative effort with Scott McMillan on the Loki team.  Scott 
was responsible for taking the existing interfacing methodology designed for this research, and encapsulat-
ing it within the Board, InputCore, and OutputCore RTP cores.  He also extended the classes by adding 
automated I/O configuration support to the RTP cores and enhancing the UCF parser.  
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6.2.1 The Board Class 

The Board RTP core class provides a physical FPGA hardware framework for accom-

plishing run-time mapping and reconfiguration of I/O resources.  In essence, the Board 

class is an overall abstraction of the underlying board and device hardware.  Fields are 

provided for defining hardware specific information, such as the board global clock and 

FPGA device package pin to pad mappings.  The mappings of a particular Virtex device 

package are stored in an XCVPackage class.  The XCVPackge class warrants further ex-

planation and is discussed in detail in Section 6.2.3.  By extending the Board base class, a 

designer can assign values to these fields accordingly, thereby creating a user defined 

board class.  As an example, the code for the Slaac1VBoard class is provided in Figure 

6.2.  The global clock line for the Slaac1V board is defined as GCLK 2.  Three  

xcv1000_fg680 devices constitute the XCVPackage FPGA device array.  These device 

specifiers correspond to the three processing elements on the Slaac1V board.   

 

public class Slaac1VBoard extends Board  
{ 
 
   public Slaac1VBoard(String name) throws CoreParameterException  
   { 
      super(name); 
      setXCVPackage(xcvPackage); 
      setGCLK(GCLK); 
   };  
 
   private XCVPackage xcvPackage[] =  
   { 
      new xcv1000_fg680(), new xcv1000_fg680(), new xcv1000_fg680() 
   }; 
 
   private static int GCLK = 2; 
 
}; /* end of Slaac1V board class. */ 

 

Figure 6.2: Slaac1VBoard.java code 

The Board class provides methods for manipulating FPGA IOB resources, however such 

resource configurations calls refer processing to the resource configuration methods in 

InputCore and OutputCore classes.   An RTP core abstraction of IOB resources is repre-

sented using InputCore and OutputCore RTP core classes.  Both cores are elaborated on 

in later sections.  I/O cores are added to a board using the addInput() and addOutput() 
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methods.   These methods accept a string name of the I/O core and a Signal instance.  The 

board class maintains array lists of all added cores.   Methods are also provided for con-

figuring specific IOB resources.  The JBits code in Figure 6.3 demonstrates the process of 

adding and configuring an output core to a board.  In this case, a Bus signal XBar of 

width 20 is instantiated.  Next, a Slaac1VBoard instance is created.   A new I/O output is 

then added to the board, using the slaac1V.addOutput() method.   In order to drive the 

physical I/O pad, the IOB tristate is inverted using the slaac1V.setOutputInvertT() 

method, since the tristate enable is active low and the unconnected tristate wire are de-

signed to float high in the Virtex architecture.   

 

/* create a signal to run to the cross bar pins on the Slaac1V X2 */ 
Bus XBar = new Bus("XP_XBAR", null, 20); 
 
/* create a new board */ 
Slaac1VBoard slaac1V = new Slaac1VBoard("SLAAC1V"); 
 
/* add a cross bar output core to slaac1V board instance */ 
int XBarOutput = slaac1V.addOutput(Xbar.getName(), XBar); 
 
/* configure the IOB resources output operation */ 
slaac1V.setOutputInvertT(XBarOutput, true); 
 
/* implement the slaac1V board */ 
slaac1V.implement(0, "slaac1V.ucf"); 

 

Figure 6.3: Adding and configuring an OutputCore 

After the desired input and outputs have been added to the board and appropriately con-

figured, the implement() method must be called.  The implement() method accepts two 

parameters, the targeted FPGA device number and the UCF name to use in the net name 

to pin mapping process. The method performs two tasks.  A hash table containing net 

name to device pin translations is first generated using the UCF class.  The implement() 

methods are then invoked for every InputCore and OutputCore that had been added to the 

board.   
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6.2.2 The InputCore and OutputCore Classes 

The InputCore and OutputCore classes provide software core abstractions of the physical 

FPGA IOB resources.  Because the Board class manages the functionality of these cores, 

their operation is hidden from the designer.  The core constructors are parameterized by a 

name and an associated signal instance.  Core methods are provided setting particular 

IOB configuration parameters.  These parameters are used by method implement() to 

make the IOB bitstream modifications necessary to realize these configurations.  This 

method accepts an XCVPackage instance, as well as the UCF hash table created in the 

Board class.  Using these classes, the implement() method is able to map the signal in-

stance to a corresponding IOB or group of IOBs.  The process of mapping signals to JBits 

IOB resources is shown below in Figure 6.4.  The depicted mapping process deserves fur-

ther elaboration.   

 

 

 

 

 

 

 

 

 

   

 

 

 

Figure 6.4: Mapping JBits Signals to IOB Pins 
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The InputCore and OutputCore classes have an inherent Signal associated with each in-

stance. The implement() method considers every net within the signal on an individual 

basis.  To begin, a net is mapped to a physical pin location using the net name to pin en-

tries in the UCF hash table.  After determining the pin location, the pin is translated to the 

connecting I/O pad within the FPGA.  This is accomplished using the pin to pad transla-

tions contained in the XCVPackage hash table.  The JBits IOB resource can then be com-

puted based on the pad identifier.  Finally, a JBits Pin can be attached to the endpoint of 

the net using the indices that identify the JBits IOB resource. 

 

Once the hash table has been created for the constraints file, operation of the generate 

method continues by examining the port interface of the RTP core.  The port examination 

process involves determining which net or bus that specific port has connected as an ex-

ternal signal.  After extracting the net/bus, the string name assigned to the signal is used 

as an index into the constraints file hash table.  The return value, a device pin identifier, is 

then used to index the XCVPackage hash table.  The XCVPackage hash table returns the 

pad number corresponding to the device pin.  By using the JBits device row and column, 

the corresponding JBits IOB resource is identified.   

6.2.3 XCVPackage Class  

The XCVPackage provides a base class framework for storing device pin to I/O pad map-

pings specific to a particular Virtex device package.  By instancing an XCVPackage 

class, a hash table member field is defined with the chip pin String identifier as the hash 

key and the corresponding Integer pad number as the return value.   It is the responsibil-

ity of any class extending the XCVPackage to define the contents of the table.  Sets of 

such classes that extend XCVPackage were created in order to provide pin to pad hash 

tables for every Virtex package currently available.  The class names are representative of 

the device package names, for ease of use.   As an example, the xcv800_bg560 class 

represents the Virtex 800 part with a BG560 package.   The class also provides methods 

for retrieving the number of CLB rows and columns for the particular Virtex package.  
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The xcvPackage array field of the Board class stores XCVPackge classes for every FPGA 

device on the hardware platform.   

6.2.4 UCF Class 

The UCF class provides a user constraints file parser that creates a hash table in which 

the net string name identifier provides the key, while a corresponding UCFValues in-

stance provides the return value.  The UCFValues class holds configuration parameters, 

including skew, drive, pull, and the iostandard for a specific IOB.  The designer never 

deals directly with the parser, however, as Board method implement() is responsible for a 

calling the parser automatically, after receiving a constraints file from the parameter list.   

 

It was decided to use the standard user constraints files (UCF) file format to map Signal 

names to physical device pins.  This format was used for two reasons.  First, the format is 

consistent with the format used by the Xilinx tool chain.  Secondly, since this is the pre-

ferred format, user constraints files already exist for the majority of hardware platforms.  

Although the UCF parser can extract IOB behavior commands, such as skew rate and 

drive strength, only the nets to pin mapping commands are considered in the route deter-

mination process.   The format of the net to pin mapping is shown below in Figure 6.5.  

The code features an excerpt from the Slaac1V board’s UCF file in which SRAM 1’s 

control signals are mapped to pin locations.   Net names are preceded by “net” and the 

pin location identifiers are preceded by “loc=”.  In this case, the first line gives a pin loca-

tion of C30 for the “XP_MEM1_CE_N” net.   

 
 
# Slaac1V memory 1 control signals 
 
net XP_MEM1_CE_N  loc=C30; 
net XP_MEM1_LD_N  loc=A31; 
net XP_MEM1_WE_N  loc=B30; 

 

Figure 6.5: Excerpt from Slaac1V UCF file 
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6.3 Interfacing to the SLAAC1V-Board 

The DWT2D core was tested using the Slaac1V board.  The bitstream containing the 

wavelet transform system was loaded and run on the X2 XCV1000 processing element.   

The Slaac1V board provided four 256k SRAMs per processing element, providing 

enough storage for a 512512 ×  image.  The core implementation required that data be 

read from one memory, while filter output was written to a second memory during a sin-

gle clock cycle.  As a result, the DWT2D core required access to two of the processing 

element’s four 25632 × k SRAMs.  The core required direct interfacing to the physical 

memory data, address, and control signals for both memories.  SRAM zero was initially 

configured to provide input to the core, while SRAM one was configured for output.  

Sections 6.3.1 and 6.3.2 detail how the core was interfaced to the physical SRAM memo-

ries, using the JBits RTR I/O classes.   

6.3.1 The SRAM Core 

An SRAM RTP core was created using the core template specification to hide the 

Slaac1V SRAM hardware interfacing details from the designer.  Using the RTR JBits I/O 

calls provided by the Board class, the SRAM core attaches the appropriate SRAM control, 

address, and data signals to their respective JRoute IOB Pins, and configures the neces-

sary IOB resources for either input or output depending on the signal.  Because signals 

are mapped to IOB resources based on their name attribute, the physical targeted SRAM 

is selected by the choice of memory signal names.  As a result, the core provides a gen-

eral abstraction for defining interfaces to any SRAM available to a particular processing 

element.  Figure 6.6 shows the declaration of SRAM address and data signals for SRAMs 

zero and one on the Slaac1V board.  Note that the two SRAMs are distinguished by the 

choice of names; in this case “XP_MEM0_” designated SRAM memory one, while 

“XP_MEM1_” designated SRAM memory two.  These signal names correspond to the 

SRAM net names provided in the Slaac1V constraints file. 
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/* define memory signals for Slaac1V X2 memories 0 and 1 */ 
 
Bus addr[] = new Bus[2]; 
Bus data[] = new Bus[2]; 
 
/* memory address */ 
 
addr[0] = new Bus("XP_MEM0_ADDR", null, 18); /* SRAM 0 */ 
addr[1] = new Bus("XP_MEM1_ADDR", null, 18); /* SRAM 1 */ 
 
/* memory data */ 
 
data[0] = new Bus("XP_MEM0_DATA", null, 12); /* SRAM 0 */ 
data[1] = new Bus("XP_MEM1_DATA", null, 12); /* SRAM 1 */ 

 

Figure 6.6: Code showing how Slaac1V SRAMs are distinguished through signal names. 

The external signals that connect to the port interface of a SRAM core are defined in a 

separate SRAMProperties class. An SRAMProperties object is passed to the SRAM core 

constructor, thereby allowing external signals to be associated with ports.  Figure 6.7 

shows the signals and port interface of the SRAM core.  This class includes methods for 

setting and retrieving standard memory signals, including chip enable, write enable, ad-

dress, and data I/O signals.  Because the data direction is known for each signal field of 

the SRAMProperties class, the IOBs are configured within the SRAM.implement() method 

using Board calls, thereby hiding the configuration calls away from the user.   

 

 

 

 

 

 

 

 

 

 

Figure 6.7: SRAM RTP core port interface 
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6.3.2 The SlaacWavelet Class 

The SlaacWavelet class contains the code necessary for generating a complete two-

dimensional DWT system from a null Virtex bitstream.  By defining the appropriate 

cores and signal interconnects, the class interfaces the DWT2D core to two SRAM 

memories on the Slaac1V board.  This section describes how the DWT2D core is inter-

faced to the Slaac1V hardware.   

 

Several RTP cores are required for the system implementation.  A DWT2D core performs 

the forward transform, and two SRAM cores provide memory interfaces that connect to 

the transform core.  A Slaac1VBoard class provides an abstraction of the physical 

Slaac1V platform.  Signals are defined that attach to the control, data, and address lines 

of the two SRAM cores.  The name attributes given to these signals corresponds to the net 

names used in the Slaac1V users constraints file.  This allows the nets to map to the cor-

rect IOBs on the FPGA device.    

 

The memory signals are passed to the DWT2D constructor and define core I/O.  The sig-

nals are associated with the physical SRAM signals by instancing and defining two 

SRAMProperties classes.  The SRAMProperites instances, along with the Slaac1V Board 

instance define the two SRAM core external signal connections.  Implementing the SRAM 

cores associates the memory signals with I/O cores defined on the Slaac1VBoard object.  

After these cores are implemented, the Slaac1VBoard is implemented, thereby attaching 

JRoute Pins to each signal, and also configuring the appropriate IOBs for input or output.  

The memory signal connections are implemented in the bitstream using separate Bit-

stream.connect() calls for each signal.   

6.4 Summary 

Two SRAMs are required by the DWT2D core to store image data and transform output.  

Access to these memories is obtained by routing the core directly to the FPGA IOBs that 

connect to the physical Slaac1V SRAM signals.   It is desirable to perform all IOB inter-
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facing and configurations using JBits, rather than using an I/O framework generated by 

an additional tool flow.  To meet this goal, a set of classes was developed that automated 

the interfacing of a top-level RTP core to surrounding FPGA IOB resources.  These 

classes were developed as a coauthored research effort.  An additional SRAM core pro-

vides a software abstraction of the Slaac1V SRAM and was used in conjunction with the 

JBits RTR I/O classes to interface the DWT2D core to two SRAM banks on the Slaac1V 

board.   
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Chapter 7  

Discussion of Operation  

Performing the discrete wavelet transform on the Slaac1V board required the develop-

ment of a host application to control the FPGA.  This chapter introduces the RunWavelet 

host application and describes its responsibilities in the PC-FPGA shared processing en-

vironment.  The operation of the RunWavelet application is discussed, including the pa-

rameters that define its functionality.  A brief discussion is given on the two output files 

generated by the host application.    

7.1 The Host Application 

The DWT2D core was executed in a PC-FPGA shared processing environment.  In this 

case, a host PC controlled the operation of the Slaac1V board.  Control of the board was 

administered through a series of calls to Slaac1V API functions.  The Slaac1V API in-

cluded functions for writing and retrieving data from the Slaac1V memories, as well as 

loading and reading device configurations.  The API also provided functions for perform-

ing partial reconfiguration of the FPGA processing elements.   These function calls were 

implemented inside of the host application, RunWavelet.  The RunWavlet application was 

written in C++.  This application was responsible for loading configurations onto the cor-

rect processing element, executing the DWT, and storing the output to file.   
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7.2 Parameterization 

Several parameters defined the operation of the RunWavelet application.  A bitmap file 

identifier specified the image to be transformed.  Only bitmap files were supported by the 

application.  The MS bitmap format was acceptable since it provided an uncompressed 

representation of the image data.  The host application generated two files containing dif-

ferent representations of the transform output.  These output files were specified by two 

filename string parameters.  The operating frequency of the Slaac1V’s programmable 

clock was specified by a clock-frequency value in MHz.  Finally, the number of DWT 

decomposition levels to be performed was determined by an application parameter.   

7.3 Operation 

The RunWavelet application began by creating a Slaac1VBoard object.  Communication 

with the board via the host code occurred through method calls to the Slaac1VBoard in-

stance.  An initialization call readied the board for use.  The Slaac1V programmable 

clock, PCLK, was stopped before loading the configuration bitstream onto the FPGA.  

The bitstream containing the DWT2D core and additional I/O interfacing was then loaded 

on processing element X2.  An assertion of the global set/reset (GSR) signal placed the 

bitstream in the initial state, and ensured all register values were cleared.   

 

The host program loaded an image into memory before executing the transform.  The im-

age coefficients were read from a bitmap file and stored in the SRAM 0 of the Slaac1V’s 

processing element X2.   Functions were written in C++ to load and save MS bitmap 

files.  Only 256 grayscale images were used in the testing of the transform core.  Each 

pixel value was masked with 0xff to obtain the corresponding eight-bit grayscale value as 

it was read from the input file.   

 

After loading the image, the transform was ready for execution.  The host application de-

termined the appropriate number of cycles to step the PE, based on the specified number 

of DWT decomposition levels.  Additional clock steps were included to compensate for 
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the latency generated by the filters and SRAM.  The clock was then run for the corre-

sponding number of clock cycles.   

 

After executing the transform, the host application recorded the core output into two 

separate files using different formats.  In the first format, the output was saved as a bit-

map image representation.  This allowed easy viewing of the transformed output using 

standard graphics packages.  Saving the output in bitmap format required scaling the co-

efficients to fit in the range of 0 to 255, however.   Because the scaling process was lossy, 

the data stored in bitmap file could not be used in the inverse transform.  The second out-

put format was a raw, unscaled integer dump of the transformed image coefficients.  The 

coefficients in this file were used for in the reconstruction process.   
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Chapter 8  

Results and Analysis 

8.1 Overview 

This chapter presents the results and findings of this research.  The performance of the 

DWT2D core is evaluated using several performance metrics.  These metrics include 

speed of operation, time required for reconfiguration, and resource consumption.  The 

speed of the DWT2D core is compared and contrasted against other wavelet transform 

implementations.  The maximum clock speeds of FIR filter cores with varied resolution 

and number of taps are given.  The chapter also provides the reconfiguration times ob-

tained using partial reconfiguration.  Bitstream generation and reconfiguration times were 

obtained using JDK1.2.2 with the HotSpot Performance Engine under Windows 2000.  

The machine used was a one GHz Pentium III with one gigabyte of RAM.   

8.2 Validation  

A bitstream was generated using the SlaacWavelet Java application.  The DWT2D core 

was parameterized with 12-bit filters using the orthogonal Daubechies’s N=3 wavelet fil-

ter coefficients.  The filters used eight bits of coefficient precision.  The bitstream was 

executed using the RunWavelet application.   A three-level DWT decomposition was per-

formed on the peppers grayscale image.  Figure 8.1 shows a three-dimensional plot of the 
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pixel intensity values for the untransformed peppers image.  It is important to note that 

the image energy is distributed across the pixel array.  With this in mind, the output of the 

DWT2D core was observed after the DWT was executed. 

 

 

Figure 8.1: Plot showing the pixel values for the original peppers grayscale image    

 

Figure 8.2 shows a three-dimensional plot of the output generated by the RunWavelet ap-

plication after a three-level DWT transform of the peppers image.  Note that the x and y 

axis of the plot correspond to the rows and columns of the 512512 ×  output array.  The 

graph shows that the signal energy from the original image has been decorrelated and 

then concentrated in a much smaller region corresponding to upper-left sub image as ex-

pected.  This concentration of signal energy shows how large compression ratios can be 

achieved by removing the extraneous information contained in the less-important sub-

bands.   
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Figure 8.2: Plot showing transformed output resulting from a three-level DWT decompo-

sition of the peppers image using Daubechies’s N=3 wavelet.  

8.3 DWT2D Results 

Table 2 shows the performance statistics of the DWT2D core using 12-bit high-pass and 

low-pass filters for a 512512 ×  grayscale image using several common wavelet filter 

configurations.  The first column specifies the number of filter taps in terms of l/h, where 

l represents the number of low-pass filter taps, and h represents the number of high-pass 

filter taps.  The 5/3 and 9/7 configurations correspond to the lossless and lossy JPEG200 

wavelet filters, respectively.  The orthogonal Haar wavelet filters defined the 2/2 

configuration.  The 6/6 filter bank used the Daubechies’s N=3 orthogonal, compactly 

supported wavelet filters.  The second column of Table 2 shows the maximum clock 

speed of the DWT2D core for each filter bank configuration.  The JBits to Bitstream 

column provides the time interval required to run the SlaacWavelet Java application 
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the time interval required to run the SlaacWavelet Java application class, which includes 

reading a null bitstream, instantiating a DWT2D core, routing the core, making the neces-

sary bitstream modifications, and writing the modified bitstream to a file.  It does not, 

however, include routing to IOBs.  Inclusion of the IOB routing calls required an addi-

tional 23.554 seconds to execute.  The maximum clock frequency, therefore, is based on 

routing delays internal to the core, and does not include any delays incurred from external 

interfacing. The Filter Configuration column gives the time required to implement both 

FIR filter cores.  The CLBs column indicates how many CLBs resources were consumed 

by each DWT2D core configuration.   

 
 

 

Table 2: Performance results for the DWT2D core, including maximum clock frequency, 

time to configure a null bitstream, filter bank instantiation time, and CLBs consumed by 

the core.  Clock frequency values were computed using an XCV1000 device with a speed 

grade of six as parameters for M3.1 timing analyzer.   

From Table 2 it is apparent that the time it takes to instantiate the filter bank is a small 

portion of the total time it takes to execute the SlaacWavelet application.  The 6/6 12-bit 

filter bank consumes 480 CLBs.  The 6/6 filter bank configuration, therefore represents 

80 percent of the total core resources (600), however instantiation of the core only takes 

25.7 percent of the total time required to generate the bitstream.   This comparison shows 

that there is significant overhead outside of the filter core instantiations.  Figure 8.3 com-

pares the amount of time needed by different processes (i.e. time required for a bitstream 

read, time needed to implement the DWT2D core, etc.) relative to the total time required 

for the SlaacWavelet application to run.   

 

Filters Frequency (MHz) JBits to Bitstream (sec) Filter Configuration (sec) CLBs 
5/3 84.154 12.978 2.524 450 
2/2 84.154 11.909 1.242 280 
9/7 84.154 15.642 5.258 770 
6/6 84.154 13.910 3.575 600 
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Figure 8.3: Comparison of the times required for several processes to execute within the 

SlaacWavelet application.  The application required a total of 13.91 seconds using the 

DWT2D core with the 6/6 filter bank configuration. 

As shown in Figure 8.3, the time required to read the configuration is significantly longer 

than the time required to write the modified bitstream to file.  It is important to note the 

implication of this comparison.  If several reconfigurations are required during the dura-

tion of an application’s lifetime, the associated reconfiguration times can be reduced if 

the bitstream is only read once and cached in memory.  Because the bitstream write times 

are small, multiple bitstream writes will not significantly impact the reconfiguration time.  

Figure 8.3 shows that implementing the DWT2D core required 80.27 percent of the 

SlaacWavelet’s execution time.  Figure 8.4 provides a similar comparison of the required 

process times within the DWT2D core’s implement() method.   
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Figure 8.4: Comparison of the times required for several processes to execute within the 

DWT2D implement() method.  The method required a total of 11.17 seconds using a 6/6 

filter bank parameter. 
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Figure 8.4 shows the time required to implement the filter bank is 31.84 percent of the 

total DWT2D implement() time.  A change in wavelet requires only a reconfiguration of 

the filter bank, and the rest of the design can remain static assuming the size of the filters 

remains constant.  As a result, the time associated with implementing the address genera-

tor cores can be eliminated, since the logic remains static between reconfigurations.  Par-

tial reconfiguration can be used to configure only the dynamic part of the design, and fur-

ther reduce reconfiguration times.  This concept is elaborated upon in Section 8.4.  The 

times incurred by internal core routing, relative to the core implementation time, are 

shown to be negligible.   

 

The maximum clock frequency of the DWT2D core was determined to be 84.1 MHz.   

This number was obtained by using the XDL core output option in JBits.  The XDL file 

was converted to NCD format and then run through Xilinx Foundation Series 3.1 Timing 

Analyzer tool.  At this frequency, the core had a throughput of 1.01 Gbps using 12-bit I/O 

buses.  A one-level transform of a 512512 ×  image, therefore, required 6.23 msec.  Table 

3 compares the DWT2D one-level transform period of a 512512 ×  image against other 

DWT implementations. 

 

Table 3: Comparison of one-level DWT transform period for a 512512 ×  image 

 

Several assumptions were made to make the comparison of transform periods.  It was as-

sumed that the StarCore processor operates at 300Mhz, as stated in [36].  It takes ap-

proximately 510,000 cycles to transform a 128128 ×  pixel tile.  At 300Mhz, this gives a 

period of 1.7 msec for a 128128 ×  pixel tile.  A 512512 ×  image has sixteen 128128 ×  

tiles, and therefore requires 27.2 msec.  The vertical wavelet transform function for the 

TMS320C62x library requires 4144 cycles for 512 columns.  The horizontal wavelet 

transform function requires 2058 cycles.  With 512 rows, this gives the total number of 

cycles required to perform a one-level DWT as 512 x 2058 (row transform) + 512 x 4144 

 Benkrid et al [39] DWT2D TMS320C62x [37] StarCore [36] 
Period (msec) 3.50 6.23  15.8 27.2 
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(column transform) = 3175424 cycles.  Assuming a clock frequency of 200 MHz, this 

gives a transform period of 15.8 msec. 

 
As shown in Table 3, the Benkrid et al design performs a one-level DWT 78 percent 

faster than the RTR DWT2D core.  This is a reasonable increase since the Benkrid et al 

design uses a non-folded architecture with a period of only N2 clock cycles, where N 

represents the height and width of the image in pixels.  Because the RTR DWT2D uses 

the direct approach in which the filter bank is reused for row and column processing, the 

core requires 2N2 cycles.  The Benkrid et al design using a biorthogonal 9/7 configuration 

occupied 4720 Virtex-E slices.  In contrast the DWT2D core using the 9/7 configuration 

occupied approximately 1540 Virtex slices.  The Benkrid et al design uses BRAM to 

store intermediate data, while the DWT2D core requires an additional memory of size N2.  

The RTR DWT2D core outperforms both the DWT software implementations for the 

StarCore and TMS320C6x series processors.    

 

Table 4 lists the maximum clock speeds and number of required CLBs for FIRFilter 

cores with three different resolutions and varying number of taps.  These taps correspond 

to the wavelet filter configurations given in Table 2.  When compared to the frequencies 

listed given in Table 2, it is apparent the bottleneck occurs in the address generation 

logic.  Further investigation using the M3.1 timing analyzer showed the critical path ex-

isting in the output address generation logic.   

 

Table 4: Maximum FIRFilter core frequencies and CLBs used for different filter resolu-

tions with varying number of taps.  Clock frequency values were computed using an 

XCV1000 device with a speed grade of six as parameters for the M3.1 timing analyzer.   

             8-bit         12-bit          16-bit  
Taps Freq. (MHz) CLBs Freq. (MHz) CLBs Freq. (MHz) CLBs 

2 186.71 40 176.44 80 167.67 108 
3 177.34 64 172.98 120 166.83 168 
5 172.06 104 164.88 210 153.35 276 
6 166.81 120 157.36 240 152.86 324 
7 171.67 144 151.76 280 145.90 384 
9 166.42 192 147.51 370 136.95 504 
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8.4 Partial Reconfiguration Results 

It was desirable to further reduce the reconfiguration times listed in Figure 8.3, as these 

times were still considerably lengthy.  The filter reconfiguration times reported in Figure 

8.3 involved a complete instantiation of the filter bank, including core implementation 

and internal routing.  There was significant overhead associated with this approach.  If 

only the filter coefficients were modified, however, the filter reconfiguration times could 

be reduced significantly.  The reduced processing time advantages gained through recon-

figuration of the coefficients were extended to the bitstream level using the JBits JRTR 

partial reconfiguration engine to produce a partial bitstream containing only the frames 

that have been altered during the reconfiguration process [42].   

 

Given the location of the DWT2D core in the FPGA CLB grid, along with a set of new 

high-pass and low-pass filter coefficients, the JBits application DWTReconfig reconfig-

ured the filter coefficients and made the necessary JRTR calls to produce the partial bit-

stream.   Modification of the filter coefficients involved changing the KCM constant val-

ues.  DWTReconfig mimicked the placement behavior used by the FIR filter core to de-

termine the location of each KCM core in the filter.  New values were then computed for 

each ROM within a given KCM, and the underlying LUT arrays were modified accord-

ingly using a series of JBits.set() calls.  Table 5 shows the time required to perform a re-

configuration of both FIR filters, the time required to write the partial bitstream file, and 

the size of the resulting partial bitstream under different filter bank configurations. For 

each configuration, the number of taps in the high-pass and low-pass filters was set equal 

to balance latency.   
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Table 5: Times required for filter reconfiguration and writing partial bitstreams for filter 

banks of varying number of taps.  The partial bitstream file size is also reported for each 

configuration.   

It is interesting to note that the reconfiguration times remained fairly constant between 

the four configurations.  These times are a significant improvement on the times reported 

in Figure 8.3.  All four partial bitstream files sizes were smaller when compared to the 

original DWT2D XCV10000 bitstream size of 766,040 bytes.  The partial bitstream size 

decreased with the filter size as well.  This is logical, since the JRTR only writes frames 

to the partial bitstream file that have been altered since the last reconfiguration.   

 9/9 6/6 5/5 3/3 
Filter Reconfiguration 0.122 sec 0.120 sec 0.121 sec 0.120 sec 
Partial Bitstream Write 0.071 sec 0.060 sec 0.050 sec 0.040 sec 
Partial Bitstream Size 72,234 bytes 48,185 bytes 40,169 bytes 24,137 bytes 
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Chapter 9  

Conclusions 

9.1 Summary 

This thesis documented the design of a run-time reconfigurable two-dimensional discrete 

wavelet transform core for use on Xilinx Virtex FPGAs.  The implementation, simula-

tion, debugging, and interfacing design phases were discussed.  The design was imple-

mented entirely using the JBits API.  This section briefly summarizes the content of each 

chapter.   

 

In Chapter 1, the concept of RTR was introduced in relation to FPGA designs.  Wavelets 

were discussed in terms of their advantages over traditional transform methodologies and 

their suitability for image compression and other applications.  Following this discussion, 

the chapter motivated the application of RTR techniques to the wavelet transform.  The 

concept of the shared processing environment was presented to show how an FPGA 

could function as a coprocessor under the control of a host PC running a JBits applica-

tion.  The JBits environment was presented as an enabler of RTR FPGA designs.  The 

chapter concluded with a discussion of thesis contributions. 

 

Background information was presented in Chapter 2.  The JBits environment was further 

elaborated upon, along with an explanation of the RTP core specification and JBits IOB 
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resources.  The DWT was explained in terms of Mallat’s pyramid algorithm and its de-

pendency on filter banks.  The Slaac1V specifications were provided with a diagram il-

lustrating the system components.  A brief survey of existing DWT implementations 

ended the chapter. 

 

The purpose and composition of the DWT core library was presented in Chapter 3.  The 

overall core hierarchy was illustrated with a figure.  The functionality and implementa-

tion of each core designed for this research was described.   

 

Chapter 4 presented the implementation of the DWT2D core.  The chapter began with a 

design overview, including a system-level diagram of the core.  The higher abstraction 

cores were discussed, including the input and output address generators and FIR filter.   

 

The simulation and debugging design phases were discussed in Chapter 5.  A Java-based 

software implementation of the DWT was used for simulation.  By modeling the Java 

classes after hardware components, the simulator also provided a framework for the core-

based hardware design.  The chapter discussed bitstream level simulation using the 

BoardScope graphical debugger.  Bitstream level test benches were distinguished from 

traditional HDL test benches.   

 

Chapter 6 described the process in which the DWT2D core was interfaced to the Slaac1V 

board.   The chapter began with a discussion of the need for RTR I/O in JBits designs.  A 

set of JBits RTR I/O classes was designed to automate the process of interfacing a top-

level RTP core to FPGA IOBs.  Each RTR I/O class is discussed and several code ex-

cerpts are provided to illustrate key concepts.  The chapter continued with interfacing 

techniques specific to the Slaac1V board, including a discussion on the SRAM core and 

SlaacWavelet class.   

 

The operation of the wavelet transform system was described in Chapter 7.  This included 

an explanation of how the host program controlled the execution of the DWT2D core on 
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the FPGA.   The technique used to bring image data in and out of the system was also 

mentioned. 

 

Chapter 8 discussed the results of the research.  The DWT2D core was found to have a 

maximum clock speed of 84.154 MHz.  This implementation under-performed the Benk-

rid et al FPGA DWT design, but outperformed two DSP implementations as expected.  

The speeds of several filter resolutions with varying number of taps were presented, with 

the slowest filter, a 16-bit filter with nine taps, running at 135.95 MHz.  The advantages 

of using partial reconfiguration were also presented.   

9.2 Future Work 

Although the research accomplished the stated goals, there remains room for improve-

ment and exploration.   The structural core-based HDL provided by the RTP core specifi-

cation is not well suited for complex control logic.  As a result, the current DWT2D core 

is based on a folded architecture where filters are reused in order to keep control logic 

relatively simple.  This was an important issue that was considered during the initial 

stages of design.  Although this approach is very straightforward, the folded architecture 

is wasteful in terms of memory usage and number of operations required per transform 

period.  If the core were going to be used in a commercial application, it would require a 

redesign that uses a more efficient architecture [6,7,39].  Exploiting parallelism in filters 

relying on a single data bus requires arbitration, which is difficult to implement without 

behavioral synthesis.     

 

Another issue with the current design is the lack of a row-extension scheme.  Again, this 

was left out to minimize the complexity of the control logic.  This lack of extension 

scheme invalidates the border pixels of the transformed image.  Implementing symmetric 

reflection at the boundaries would correct the border errors.   

 

Because the wavelet transform design is implemented as a core, it can be easily inte-

grated with other components.  The core is particularly well suited for image compression 
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applications.  In this case, a quantizer core may be added to the DWT2D core, along with 

an entropy coder to produce an image compression system.  With the current research 

being done to integrate JBits with other design flows, the DWT2D core could be inte-

grated with systems generated in other languages.   

 

9.3 Conclusions 

The majority of goals defined at the start of the research were completed. A functional 

RTR wavelet transform core was created and tested on the Slaac1V PCI-accelerator 

board.  The core illustrates how RTP cores can be used in a hierarchical manner to create 

a high-level system with relatively simple control logic.  The design was successfully in-

terfaced to two SRAM banks and achieved a high data throughput rate without using 

other tools.   

 

Although a simple design approach was used, the speed of the core was reasonable when 

compared against other DWT implementations.  A redesign of the control logic could 

possibly eliminate the critical path, and increase the design speed dramatically.   

 

The reconfiguration times achieved through a complete bitstream reconfiguration are still 

too lengthy for most applications.  Using constant folding to change filter coefficients, 

and partial reconfiguration to update the bitstream provides more reasonable reconfigura-

tion times, however.   

 

The RTR DWT design distinguishes itself from other designs in two regards.  The 

DWT2D core is one of the first FPGA designs with a dependency on external I/O to be 

developed without any reliance on the traditional vendor tools.  Previously, designs using 

I/O required interfacing to a framework generated externally.  Secondly, the design offers 

a wavelet transform core with a degree of parameterization and reconfigurability that is 

usually available only in software implementations.   
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