

An FPGA-based Run-time Reconfigurable 2-D Discrete Wavelet

Transform Core

Jonathan B. Ballagh

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Electrical Engineering

Dr. Peter Athanas – chair

Dr. Mark Jones

Dr. Amy Bell

Dr. Cameron Patterson

June 2001

Blacksburg, Virginia

Keywords: FPGA, Reconfiguration, Wavelets, JBits

Copyright 2001, Jonathan B. Ballagh

 ii

An FPGA-based Run-time Reconfigurable 2-D Discrete Wavelet
Transform Core

Jonathan B. Ballagh

(ABSTRACT)

FPGAs provide an ideal template for run-time reconfigurable (RTR) designs. Only re-

cently have RTR enabling design tools that bypass the traditional synthesis and bitstream

generation process for FPGAs become available. The JBits tool suite is an environment

that provides support for RTR designs on Xilinx Virtex and 4K devices. This research

provides a comprehensive design process description of a two-dimensional discrete

wavelet transform (DWT) core using the JBits run-time reconfigurable FPGA design tool

suite. Several aspects of the design process are discussed, including implementation,

simulation, debugging, and hardware interfacing to a reconfigurable computing platform.

The DWT lends itself to a straightforward implementation in hardware, requiring rela-

tively simple logic for control and address generation circuitry. Through the application

of RTR techniques to the DWT, this research attempts to exploit certain advantages that

are unobtainable with static implementations. Performance results of the DWT core are

presented, including speed of operation, resource consumption, and reconfiguration over-

head times.

 iii

Acknowledgments

I would first like to thank my advisor Dr. Peter Athanas for the support and guidance he

has given me during my two years as a graduate student. His enduring patience, motiva-

tion, and creativity have made it a pleasure to work for him in the CCM lab at Virginia

Tech. I would also like to thank Dr. Mark Jones for providing me with advice and an

endless supply of new ideas, for both this research and other projects I have been a part of

in the lab. Both Dr. Athanas and Dr. Jones have inspired and challenged me to push the

boundaries of what is possible in the field of Configurable Computing.

I extend a sincere thanks to Dr. Amy Bell and her students who were patient enough to

explain many of the difficult wavelet concepts I would not have grasped otherwise. I also

thank them for the help with Matlab. Their assistance and help on this research is greatly

appreciated.

To everyone on the Loki team at Virginia Tech and Xilinx, I am grateful for the support

and help you have provided me with during this research. It has been a great pleasure

working on the team for the last two years. I am particularly thankful to Cameron Patter-

son and Steve Guccione for the unique internship opportunity and guidance they provided

me with last summer. I would especially like to thank Eric Keller for the ideas, motiva-

tion, and assistance he has contributed (and for keeping me off the streets during my stay

in Boulder). Thanks to Scott McMillan for his effective and efficient work in helping me

bring the RTR I/O JBits classes to fruition. A special thanks to Phil James-Roxby and

Brandon Blodget for supporting the EDIF and XDL tools I used to obtain performance

results. Thanks to Dan Downs for keeping me up to date with JBits release information.

 iv

To all my friends in the lab who helped with this research, I sincerely thank you. Thanks

to Jon Scalera, who is always willing to take time out to lend a hand. I would like to

thank Santiago Leon, Jim Hendry, and Scott Harper for their help with the Slaac1V

board. Thanks to Jae Hong Park for all the wavelet discussions. To my fellow col-

leagues on the Loki team here at VT: Jing Ma, Neil Steiner, and Dennis Goetz; it has

been a pleasure working with you and I wish you the best of luck in your future careers.

The CCM lab is full of extremely talented individuals who will find success at every cor-

ner.

Lastly, I dedicate this thesis to my family and my fiancée, Lisa.

 v

Table of Contents

Acknowledgments ... iii

Table of Contents ... v

List of Figures ... viii

List of Tables .. x

Introduction.. 1

1.1 FPGAs and Run-Time Reconfiguration.. 1

1.2 Wavelets ... 2

1.3 Justifying Run-Time Reconfiguration .. 4

1.4 Shared Processing Environment ... 5

1.5 JBits .. 6

1.6 Thesis Contributions... 7

1.7 Organization ... 8

Background .. 9

2.1 JBits Environment .. 9

2.1.1 The Run-Time Parameterizable Core Specification..................................... 12

2.1.2 Routing to JBits IOB Resources .. 15

2.2 The Discrete Wavelet Transform.. 16

2.3 Slaac1V Board.. 19

2.4 Existing DWT Implementations ... 21

Wavelet Transform RTP Core Library ... 23

3.1 Library Overview ... 23

3.2 Comparator ... 25

 vi

3.3 Shift-Register.. 25

3.4 Variable-Width Adder .. 26

3.5 Adder Tree.. 26

3.6 Constant Coefficient Multiplier .. 29

3.7 Summary .. 32

Discrete Wavelet Transform Core Design ... 33

4.1 Design Overview .. 33

4.2 Sequential FIR-Filter .. 34

4.3 Address Generation .. 36

4.3.1 Input Address Generation .. 37

4.3.2 Output Address Generation.. 40

4.4 Summary .. 44

Simulation and Debugging .. 45

5.1 Software Simulation ... 45

5.2 Debugging at the Bitstream Level .. 46

5.3 Testbench I/O Generation Techniques.. 47

Hardware Interfacing.. 50

6.1 I/O and Run-Time Reconfiguration.. 50

6.2 JBits RTR I/O Interfacing Classes.. 52

6.2.1 The Board Class... 53

6.2.2 The InputCore and OutputCore Classes .. 55

6.2.3 XCVPackage Class... 56

6.2.4 UCF Class.. 57

6.3 Interfacing to the SLAAC1V-Board... 58

6.3.1 The SRAM Core ... 58

6.3.2 The SlaacWavelet Class ... 60

6.4 Summary .. 60

Discussion of Operation... 62

7.1 The Host Application.. 62

7.2 Parameterization ... 63

 vii

7.3 Operation .. 63

Results and Analysis .. 65

8.1 Overview .. 65

8.2 Validation ... 65

8.3 DWT2D Results .. 67

8.4 Partial Reconfiguration Results .. 72

Conclusions... 74

9.1 Summary .. 74

9.2 Future Work.. 76

9.3 Conclusions .. 77

Bibliography... 78

Vita.. 83

 viii

List of Figures

Figure 1.1: DWT frequency partitioning based on time. ... 3

Figure 1.2: Configuring F and G look-up tables with JBits ... 7

Figure 2.1: JBits environment.. 10

Figure 2.2: BoardScope graphical debugging environment ... 12

Figure 2.3: FPGA CLB array with offset origin located in lower-left corner 14

Figure 2.4: Diagram showing relation between internal and external signals.................. 15

Figure 2.5: Example of JBits setIOB() method illustrated by an FPGA diagram showing

side, secondary, and tertiary IOB resource indices. .. 16

Figure 2.6: Frequency response of Daubechies’s N=3 wavelet filter coefficients 17

Figure 2.7: One-level decomposition using the two-dimensional DWT, where LPF x

represents low-pass filtering of the image rows, HPF x represents high-pass filtering

of image rows, LPF y represents low-pass filtering of image columns, and HPF y

represents high-pass filtering of image columns. .. 19

Figure 2.8: Slaac1V diagram ... 20

Figure 3.1: Hierarchical core decomposition of the overall DWT system. Blocks

containing section numbers point to the particular section that describes the core

implementation.. 24

Figure 3.2: AdderTree core composition where the circled numbers designate the

particular adder index and the horizontal lines partition the addition operations into

different clock cycles. ... 27

Figure 3.3: Ten-input AdderTree core floor plan... 28

Figure 3.4: AdderTree input index computations and partitioning process..................... 29

Figure 3.5: An Nx4 input KCM core design... 31

 ix

Figure 3.6: 812 × KCM core floor plan .. 31

Figure 4.1: Block diagram of DWT2D core ... 34

Figure 4.2: FIR filter direct-form structure .. 35

Figure 4.3: RTP core composition of a four-tap FIR filter .. 36

Figure 4.4: Input address generator scanning process.. 38

Figure 4.5: Input address composition using an address bus width of 20 39

Figure 4.6: Generation of row output address bit n.. 39

Figure 4.7: Generation of column output address bit n .. 40

Figure 4.8: Output address latency delay logic .. 41

Figure 4.9: Input address composition using an address bus width of 20 41

Figure 4.10: Generation of column input address bit n .. 43

Figure 4.11: Shift register enable signal generation logic.. 44

Figure 6.1: System level diagram of JBits RTR I/O interfacing classes 52

Figure 6.2: Slaac1VBoard.java code ... 53

Figure 6.3: Adding and configuring an OutputCore .. 54

Figure 6.4: Mapping JBits Signals to IOB Pins ... 55

Figure 6.5: Excerpt from Slaac1V UCF file .. 57

Figure 6.6: Code showing how Slaac1V SRAMs are distinguished through signal names.

.. 59

Figure 6.7: SRAM RTP core port interface ... 59

Figure 8.1: Plot showing the pixel values for the original peppers grayscale image 66

Figure 8.2: Plot showing transformed output resulting from a three-level DWT

decomposition of the peppers image using Daubechies’s N=3 wavelet.................... 67

Figure 8.3: Comparison of the times required for several processes to execute within the

SlaacWavelet application. The application required a total of 13.91 seconds using

the DWT2D core with the 6/6 filter bank configuration. ... 69

Figure 8.4: Comparison of the times required for several processes to execute within the

DWT2D implement() method. The method required a total of 11.17 seconds using a

6/6 filter bank parameter. .. 69

 x

List of Tables

Table 1: Example column output address sequence for three transform levels 42

Table 2: Performance results for the DWT2D core, including maximum clock frequency,

time to configure a null bitstream, filter bank instantiation time, and CLBs consumed

by the core. Clock frequency values were computed using an XCV1000 device with

a speed grade of six as parameters for M3.1 timing analyzer.................................... 68

Table 3: Comparison of one-level DWT transform period for a 512512 × image 70

Table 4: Maximum FIRFilter core frequencies and CLBs used for different filter

resolutions with varying number of taps. Clock frequency values were computed

using an XCV1000 device with a speed grade of six as parameters for the M3.1

timing analyzer.. 71

Table 5: Times required for filter reconfiguration and writing partial bitstreams for filter

banks of varying number of taps. The partial bitstream file size is also reported for

each configuration... 73

1

Chapter 1

Introduction

1.1 FPGAs and Run-Time Reconfiguration

Hardware applications that utilize run-time reconfiguration (RTR) and parameterization

have been the topic of considerable research in the field of configurable computing [29-

32]. Run-time reconfigurable designs are capable of dynamically tailoring circuit routing

and logic to better suit the current application task. Run-time parameterizable (RTP) sys-

tems, on the other hand, define logic and routing just prior-to run-time, based on a set of

parameters that define circuit behavior. Research into field programmable gate array

(FPGA) RTR application design, however, has been hindered by the lack of software

tools that enable true RTR design for these devices.

FPGAs provide a hardware environment in which physical logic and routing resources

can be reprogrammed by a configuration bitstream in order to perform a specific func-

tion. As a result, they provide an ideal template for dynamic circuit specialization and

logic reconfiguration. With the exception of research on the Xilinx XC6200 device

[14,15], access to configuration bitstreams of commodity devices has been restricted.

Designers, therefore, have been required to generate configuration bitstreams using tradi-

tional vendor tool flows.

 2

The vendor tools attempt to provide optimum speed and efficiency for static circuits by

using complex routing and placement algorithms. With the contemporary tool flow, one

must typically cope with lengthy synthesis and bitstream generation times. For static de-

signs, this time penalty is usually acceptable. These times are impractical for RTR de-

signs that require fast bitstream reconfigurations. As a result, traditional FPGA tools and

design methodologies have prohibited true RTR designs, simply because they could not

meet the reconfiguration time constraints required by the design.

The development of the JBits API has opened access into the configuration bitstream of

Xilinx 4K and Virtex FPGA devices [2]. Using the JBits API, the designer can bypass

the logical synthesis and physical implementation steps, allowing rapid bitstream recon-

figurations. When compared with ASICs, JBits has been used to create higher perform-

ance circuits in FPGAs using RTR [18]. The JBits API, therefore, provides the necessary

tools for implementing an effective FPGA-based run-time reconfigurable and parame-

terizable design.

1.2 Wavelets

Wavelets have been receiving increased attention, mainly due to their wide appeal for a

variety of applications, ranging from image editing and compression to electrocardiogram

analysis. As today’s applications become more graphically intensive, the need for effi-

cient image compression techniques has grown extensively. This need is most apparent

in the case of network applications, where bandwidth limitations are present. Before an

image can be compressed, it must first be transformed into a domain where higher com-

pression ratios can be achieved, rather than applying the compression algorithms directly

to the original image itself. JPEG, the predominant image compression format for the

World Wide Web, uses the discrete cosine transform as its transform technique [33].

The wavelet transform improves on the discrete cosine transform (DCT), however. The

DCT divides a signal’s frequency content into fixed, equal bandwidth partitions. By pro-

viding only the frequency content of the signal, the DCT is unable to represent non-

 3

stationary signal properties in the transform domain. Images are often non-stationary.

To circumvent this problem, the JPEG algorithm uses a block-based transform in which

the DCT is applied to image block partitions separately. Because each block is trans-

formed on an individual basis, there are often inefficiencies between blocks. The wavelet

transform rectifies this problem by providing a representation of a given signal in both

time and scale domains [8]. The discrete wavelet transform (DWT) provides coarser

resolution at low frequencies, while providing finer resolution at higher frequencies

(Figure 1.1). The DWT can transform the entire image and preserve non-stationary in-

formation, rather than using block partitions. Because of this, the wavelet transform has

been shown to significantly outperform the DCT in image compression applications,

leading to their inclusion in the JPEG 2000 standard [5]. The DWT is a reversible trans-

form and can be either a “lossly” or “lossless” process depending on the selection of

wavelet. Besides image compression, wavelets are also aptly suited for image editing

and progressive transmission applications since they provide a multiresolution decompo-

sition of a signal.

Figure 1.1: DWT frequency partitioning based on time.

To date, the majority of wavelet transform implementations have existed in software.

Software provides greater flexibility of operation, however, performance is often too

sluggish for high-end multimedia applications such as video and sound compression. It is

often desirable to offload repetitive computations, such as compression coding and signal

filtering, to a hardware accelerator in order to free the processor for other tasks.

Time

F
re

qu
en

cy

 4

1.3 Justifying Run-Time Reconfiguration

The purpose of this research is to explore the advantages of RTR and RTP when applied

to the DWT algorithm. For the design of an RTR application to be justifiable, it should

exhibit clear advantages over a similar, static circuit. Although a number of architectures

for static ASIC-based wavelet transform architectures have been explored [6,7], they of-

fer little in the way of operation customization. Advantages that can be exploited through

RTR include circuit speed increases through decreased latency or increased clock fre-

quency, and decreased resource consumption when compared to the static implementa-

tion counterpart. These advantages were considered in relation to the discrete wavelet

transform core implementation.

The DWT relies on digital filtering to perform the transform operation. Although param-

eterization of the control logic is possible and even required to guarantee design portabil-

ity between devices, the speed advantages gained by applying RTR are negligible.

Therefore, focus was placed on the advantages gained from dynamic specialization of the

filter circuitry.

The primary advantage of specializing filters at run-time is that the coefficients can be

hard-coded into the circuit. Although a static transform implementation could also be

implemented that would provide similar features, filter coefficients would have to be

clocked into registers during an initialization procedure. This would not only require ex-

tra host interfacing circuitry to provide access to FPGA registers, but would also compli-

cate the control logic required for circuit operation. Guccione notes that the elimination

of system interface circuitry through RTR results in lowered system costs if a smaller de-

vice can be used on the reduced circuit [26]. Another advantage is that specialized filter

circuitry can be defined that optimizes latency and resource usage based on a set of filter

coefficients. It was perceived that the possible advantages gained by RTR warranted the

design of a two-dimensional discrete wavelet transform core.

 5

1.4 Shared Processing Environment

The use of JBits for RTR requires a separate “host” processor and Java Virtual Machine

(JVM) to execute the Java classes that perform bitstream reconfigurations. It was desir-

able, therefore, to have the wavelet transform application benefit from the required PC-

FPGA shared processing environment. More specifically, the DWT core could be used

to accelerate computationally intensive signal processing tasks offloaded from the host

processor.

Image processing applications have been shown to benefit from shared processing envi-

ronments, in which the FPGA is utilized as a co-processor [16,17]. This concept can be

extended to utilize RTR for the wavelet transform core, in which the “host” process de-

fines a specialized circuit coprocessor instance to accelerate computation of the current

image-processing task.

Designing specialized circuitry is useful in wavelet-based image coding applications,

where the performance of the coding algorithm is dependent on the image itself [19].

The optimizations occur through the selection of wavelet family, directly affecting the

signal-to-noise ratio for reconstructed images in the case of image compression. In this

situation, the host process can select a wavelet that provides optimum performance for an

image, or video stream, and tailor an FPGA circuitry accordingly. It is feasible, there-

fore, for the coder to store the circuit optimizations as instructions for circuit rebuilding,

and transmit them with the compressed image as a header. In other words, the decom-

pression circuit is passed along with the image data. The host on the decoder end can

construct a specialized circuit based on the circuit instructions in the header, and decom-

press the image. For wavelets, these instructions are defined in terms of filter coeffi-

cients. These concepts can be extended to video compression, where the compression

ratio may need to be periodically adjusted to provide necessary throughput requirements.

Again, the selection of filter coefficients can alter the compression ratio.

 6

1.5 JBits

JBits [2] is a Java-based API that enables direct modification of Xilinx 4K and Virtex

device bitstreams by providing access to all FPGA SRAM-based configuration resources.

Sample configuration resources include configurable-logic block (CLB) elements, rout-

ing switches, input/output blocks (IOB), block RAM (BRAM), and routing MUXes. A

Java JBits class and set of configuration constants represent these resources. The re-

source classes provide methods for configuring the functionality of the corresponding

FPGA resource by setting the SRAM values to a particular configuration constant.

Each resource is identified by a series of indices that identify its position in the resource

array. The majority of reconfigurable resources are located within the CLB array. The

resources in this array are indexed by the row and column of the CLB tile that the re-

sources are located in. JBits locates the origin of the CLB array in the lower-left corner

of the device.

A typical JBits application accepts a bitstream as input, modifies and analyzes the appro-

priate configuration resources as necessary, and then saves the modified bitstream to file.

The JBits API also provides the ability to perform readback of selected resources from

the FGPA during execution, thereby providing a powerful debug utility at the bitstream

level.

Figure 1.2 provides sample JBits code in which F and G look-up tables (LUTs) are con-

figured. The JBits Expr() method converts a string representation of a Boolean equation

into a sixteen-bit integer vector that can be loaded into a LUT. In this case, the four F-

LUT input pins are being AND’d together, while the four G-LUT input pins are OR’d to-

gether. The “~” character negates the expression. The negation is required since LUT

values are inverted when written to the configuration bitstream.

 7

/* define row and column values */
int row = 5; int col = 4;

/* define logic function for F LUT */
int[] F_LUT_Vals = Expr.F_LUT(“~(F1&F2&F3&F4)”);

/* define logic function for G LUT */
int[] G_LUT_Vals = Expr.G_LUT(“~(F1|F2|F3|F4)”);

/* set the F LUT value for slice 0 */
jbits.set(row, col, LUT.SLICE0_F, F_LUT_Vals);

/* set the G LUT value for slice 1 */
jbits.set(row, col, LUT.SLICE1_G, G_LUT_Vals);

Figure 1.2: Configuring F and G look-up tables with JBits

Using this API, bitstreams can be modified in relatively short amounts of time when

compared to the time required for traditional FPGA vendor tools to produce bitstreams.

Whereas synthesis tools can take on the order of a few hours to complete, a JBits stand-

alone application can produce bitstreams in a matter of seconds. These times can be fur-

ther reduced if only a portion of the bitstream requires modification, as is the case with

partial reconfiguration.

Although direct JBits calls occur at a very low level, higher-level tools have been built on

the foundation of configuration calls using the object-oriented model afforded by the

Java. These tools have transformed JBits into a powerful FPGA design and debug envi-

ronment. Chapter 2 discusses the higher level tools built on the JBits foundation that are

pertinent to the implementation of the wavelet transform system.

1.6 Thesis Contributions

The most significant contribution of this thesis is the presentation of run-time reconfigur-

able and parameterizable two-dimensional discrete wavelet transform core. Although the

design was tested and run on the Slaac1V PCI-accelerator platform, the design can be

easily ported to other platforms. The implementation of the wavelet transform core re-

quired the development of a core library. Among the most pertinent of these cores is the

RTP FIRFilter core, which offers full parameterization in terms of coefficient precision

 8

and number of taps. Several of the cores in the library have uses outside of the wavelet

transform implementation and are included in the JBits release distribution.

In addition, this research provides a means for automatically interfacing a JBits design to

IOBs. A designer was previously required to determine the JBits Pin resources that at-

tached to each signal end-point of the design. Because a large number of IOBs were of-

ten required, this was a tedious and error-prone process. Hard coding IOB routes also

restricted an IOB dependent core to a particular FPGA device. For this reason, a utility

was created that automated the process of interfacing a top-level RTP core to IOBs based

on the specifications given in a standard user constraint’s files.

1.7 Organization

Chapter 2 provides a brief background on the tools and subject material of this research.

More specifically, JBits, the discrete wavelet transform theory, and the Slaac-1V board

are introduced. The chapter also provides a brief survey of existing DWT implementa-

tions. Chapter 3 describes the design and implementation of the core library that pro-

vided the design building blocks. Understanding the operation of the smaller cores is

critical in understanding the composition and operation of the larger wavelet transform

system. After a discussion of the DWT core library, the overall two-dimensional discrete

wavelet transform core is presented in Chapter 4, including the filter bank design and ad-

dress generator logic. Chapter 5 describes how the core was simulated using a behavioral

Java representation of the hardware. The chapter continues by describing the bitstream

level debugging process used during core design. Chapter 6 introduces a set of JBits

classes that automate the interfacing of cores to FPGA I/O resources. The chapter also

describes how the discrete wavelet transform core was interfaced to the Slaac1V board.

Chapter 7 describes the operation of the “host” PC application that controls operation and

reconfiguration of the target FPGA platform. Chapter 8 presents the performance results

of the core. The research is summarized along with a postulation of future work in Chap-

ter 9.

 9

Chapter 2

Background

This chapter introduces the software, hardware, and theory used throughout this research.

The JBits design environment is presented as a series of tools that aid RTR design. The

run-time parameterizable core specification is introduced separately, as it defines a struc-

tural hardware description language that is at a higher level of abstraction than the origi-

nal low-level JBits functions. A brief introduction is provided on IOB routing, which is

necessary in understanding how the DWT implementation was interfaced to FPGA I/O

resources. The DWT theory is explained in relation to the implementation in FPGA

hardware. The specifications of the Slaac1V PCI accelerator board are also discussed.

The chapter concludes with the introduction of several existing DWT implementations on

different hardware devices.

2.1 JBits Environment

The JBits environment provides users with the tools needed to implement RTR and RTP

designs for Xilinx Virtex and 4K series FPGAs. These tools aid in the coding, debug-

ging, simulation, and validation aspects of the design process. Each component offers

different levels of abstraction, allowing the design process to take place at the level of

detail required by the designer. Figure 2.1 shows a component view of the JBits envi-

ronment. The following sections discuss each component in greater detail.

 10

JRoute – The JRoute API is a run-time reconfigurable router for use with JBits designs

[22]. Choosing individual routing resources, selecting a route template, or using the auto-

router are the supported techniques for specifying routes. These three routing method-

ologies allow the designer the level of routing abstraction he or she desires. At the lowest

level, the user can specify a list of all individual routing resources that define a point-to-

point connection. At a higher level of abstraction, the user can select between templates

that dictate which routing resources should be considered by JRoute when connecting

endpoints. An auto-router provides the highest level of abstraction; however, it offers the

user little control over how the connection is defined.

Figure 2.1: JBits environment

XHWIF – The Xilinx Hardware Interface API provides generic; non-device specific

calls for communicating with FPGA based hardware platforms. XHWIF methods let the

user step the clock, reset the device, read and write to memory, load bitstream configura-

tions, and perform device readback. Communication with the FPGA is done through the

XVPI interface [21]. Using the Java Native Interface (JNI) to perform non-JVM func-

tions, an API specific to any Xilinx Virtex/4K FPGA hardware platform can be ported to

XHWIF, assuming the device API provides basic readback and clock stepping capabili-

RTP Core

Library

JRoute

API

Device

Simulator

User
Code

BoardScope
Debugger

XHWIF

JBits
API

TC
FPGA

Hardware

Remote

Hardware

TCP/IP

 11

ties. XHWIF provides a single communication interface for a variety of FPGA based

hardware platforms.

VirtexDS – The VirtexDS [20] is a Java based simulator for Virtex devices. The simula-

tor models the system level hardware functionality of the Virtex family. The specific

Virtex device, along with a global clock identifier parameterizes the VirtexDS. The be-

havior of RTR designs is accurately depicted since the hardware itself is being simulated,

rather than using the fixed circuit netlist approach often used by traditional simulators.

The simulator interface has been ported to XHWIF, allowing communication to take

place with the simulator in the same manner as physical hardware. The interface also al-

lows for seamless integration with the BoardScope debugging environment. As a result,

designs can be safely validated in software before being tested on the physical FPGA.

BoardScope – BoardScope is a graphical FPGA debugging environment that operates at

the bitstream level. Communication with hardware takes place using an underlining

XHWIF layer. This allows BoardScope to use any hardware platform that has been

ported to XHWIF. The BoardScope environment displays FPGA read-back information

in a graphical context. This information includes CLB flip-flop states, LUT configura-

tions, BRAM data, and IOB register states. The debugging process is started with a con-

nection to a supported FPGA hardware platform, either locally, or remotely using a net-

work connection. After connecting to desired hardware, bitstreams can be loaded on the

device. Debugging in BoardScope allows the user to switch between hardware platforms,

including the VirtexDS. Figure 2.2 provides a screen shot of the BoardScope debugging

environment, along with captions that explain features.

The debugging environment features different graphical views in which the operation of

the FPGA hardware is shown in different contexts. Possible views include State, Core,

Power, and Routing Density. As an example, the State view provides a graphical display

of read back state information. The main grid representing the CLB layout shows the

state information of all four flip-flops within a single grid square. Clicking on a CLB

 12

grid square causes the look-up table configuration to be displayed in the graphical CLB

viewer. These views create a robust debugging environment for RTR applications.

Figure 2.2: BoardScope graphical debugging environment

2.1.1 The Run-Time Parameterizable Core Specification

The JBits run-time parameterizable (RTP) core specification [3] provides a means for ab-

stracting away the low level JBits configuration calls, thereby creating an environment

similar to traditional hardware design languages (HDL)s. By taking advantage of the

Java object-oriented paradigm, bitstream configuration calls are encapsulated by low-

 SLICE 1 SLICE 0

LOGIC 0

LOGIC 1

CLB STATE

INFORMATION

 YQ

 XQ

ZOOM

LOOK-UP TABLE
VALUES

COMMAND
WINDOW

VIEW SELECTION

CLOCK STEP AND
READBACK

 13

level primitive cores, such as MUXes, LUTs, and gate-level logic. These primitive cores

can then be used together to create higher abstraction cores.

The distinction between JBits RTP cores and cores used in traditional structural HDLs is

that each core must be physically placed on the FPGA device during implementation.

The RTP core template specification provides two methods for placing cores. The de-

signer can choose between placing cores relative to other cores and explicitly defining the

core location within the CLB grid.

The Place class allows cores to be placed in relation to previous child core placements

and parents’ core boundaries. The class defines a series of placement directives such as

ABOVE_PREV_ALIGN_LEFT, which determines the placement of the current child

core relative to the placement of other child cores. Other included placement directives,

such as LOWER_LEFT and LOWER_RIGHT allow the working child core to be aligned

with the parent core’s boundaries. The core is placed when a child core is added to the

parent using the addChild() method.

As an alternative to using Place directives, core offsets can be calculated and defined ex-

plicitly by the designer. This is accomplished through the use of an offset class. Every

RTP core has an offset class as a member field. The offset class allows the designer to

anchor an RTP core to the desired location within the FPGA CLB array. A core offset is

defined in terms of both a horizontal and vertical offsets. These offset values are defined

relative to the offset of the core’s parent. The relative offset is measured from the origin

(0,0) located at the lower-left corner of the parent core (Figure 2.3).

The sizing and placement of an RTP core depends on the core’s horizontal and vertical

granularity. The granularity of a core specifies the coordinate grid in which the core is

aligned. The three granularities include CLB, slice, and LE granularities. LE provides

logic element alignment resolution, where a logic element is comprised of a LUT and

flip-flop. Providing different granularities allows the designer to make more efficient use

of FPGA resources.

 14

Figure 2.3: FPGA CLB array with offset origin located in lower-left corner

Net and bus signals provide the interconnections between core interfaces. Both Net and

Bus classes extend from the base class Signal. The Bus class is a collection of Net sig-

nals. A core’s interface is defined by a series of I/O ports. A port is realized in JBits by

the Port class. A Port allows for both internal and external signal connections. External

signals provide connections between cores. Child cores within a parent core, on the other

hand, are connected together by internal signals. Figure 2.4 provides a graphical view of

this relationship.

Because ports are only an abstraction, they do not explicitly bind signal routing to physi-

cal resources. At the primitive core level, signal sources and sinks must be bound to

physical pins within the FPGA. The Pin class allows physical signal endpoints to be de-

fined and instanced. A Pin is defined by four parameters: a tile type, two location coor-

dinates, and the JBits resource to use within a particular tile. The tile types provide rout-

ing to all FPGA resources, including CLB, IOB, BRAM, and clock DLLs. Pins are at-

tached to ports using the Port.setPin() method.

By making the appropriate JRoute API calls, the bitstream is modified so that the core

interconnections are implemented in physical hardware. The RTP core specification es-

sentially transforms JBits from a low-level language to a high-level language using a

structural design approach requiring physical placement of cores.

Horizontal
Offset

0,0

Vertical
Offset

RTP Core

CLB, Slice

 C

LB
, L

E

 15

Figure 2.4: Diagram showing relation between internal and external signals

2.1.2 Routing to JBits IOB Resources

In order to route and configure an IOB using JBits, the specific JBits IOB resource class

must first be determined. Three indices are required to distinguish a JBits IOB resource.

An FPGA diagram showing the three indices is shown in Figure 2.5. The figure also

provides an example of a JBits setIOB() call that sets the initial IOB register state to one.

The creation of these indices was dictated by the arrangement of the configuration col-

umns within the configuration bitstream [23]. The side on which the IOB is located pro-

vides the first index of the resource. The secondary index determines which IOB group is

being accessed from the particular side. IOBs are grouped together in pairs for the top

and bottom sides, and are grouped as threes for the left and right sides. The third index

corresponds to the individual IOB that should be configured from a given group. After

determining the three indices, IOB pins and configuration resources can be accessed ac-

cordingly.

CHILD CORE

INTERNAL
SIGNAL

EXTERNAL
SIGNAL

PARENT
RTP CORE

- RTP Core

- Port

- Bus

- Net

 16

Figure 2.5: Example of JBits setIOB() method illustrated by an FPGA diagram showing

side, secondary, and tertiary IOB resource indices.

2.2 The Discrete Wavelet Transform

The two-dimensional discrete wavelet transform (DWT) was implemented using JBits

because it lent itself to a straightforward implementation, requiring relatively simple logic

for control and address generation circuitry. The focus of DWT operation, the FIR filter,

provided a core that could be implemented with a regular structure and layout. The DWT

core also provided a good example of how a hierarchy of JBits RTP child cores can be

used together to implement a larger system.

The DWT converts a signal from the time domain into the time-scale domain. Although

the Fourier transform provides information about the frequency content of a signal, it

does not preserve the time information that indicates when those frequencies occur.

Based on a multiresolution analysis framework, the DWT captures both time and fre-

quency information [24]. This section focuses on the DWT theory as it pertains to the

implementation of the DWT in hardware.

jBits.setIOB(IOB.BOTTOM, 3, IobI0.Init.Init, IobI0.Init.ONE);

CLB

CLB

RIGHT LEFT

TOP

BOTTOM

SECONDARY
INDEX

TERTIARY
INDEX CLB

CLB

CLB

CLB

CLB

CLB

CLB CLB CLB CLB

PRIMARY INDEX - SIDE
(TOP, BOTTOM, LEFT, RIGHT)

 17

The DWT of a signal can be computed by passing a signal through a two-channel filter

bank (Figure 2.7). For orthogonal wavelets, these filters are responsible for dividing the

signal bandwidth and are referred to as a quadrature mirror filter (QMF) pair, where the

frequency responses are reflections of one another [9]. A QMF pair is comprised of a

high-pass and low-pass filter. For example, the frequency response of the low pass syn-

thesis filter derived from the Daubechies’s N=3 orthogonal, compactly supported wavelet

is shown in Figure 2.6. The low-pass filter coefficients [10] that correspond to this par-

ticular wavelet are given below:

332671.0

806892.0

459878.0

135011.0

085441.0

035226.0

5

4

3

2

1

0

=

=

=

−=

−=

=

h

h

h

h

h

h

The low-pass filter branch generates the average DWT coefficients of the signal, while

the high-pass branch generates the detail DWT coefficients.

Figure 2.6: Frequency response of Daubechies’s N=3 wavelet filter coefficients

 18

The down sampled output of the high-pass filter constitutes the first octave output. As

the filter pair processes the signal, the output is decimated by a factor of two. Filtering

the signal controls the resolution of the signal, while the subsampling process controls the

scale. Scale and frequency are inversely proportional such that higher frequencies corre-

spond to lower (i.e. finer) scales, while lower frequencies correspond to higher (i.e.

coarser) scales. Because the filters separate the frequency bandwidth, the filter pairs pro-

duce different resolutions, or levels, of detail.

Down sampling the filter output allows the output to be stored in the original signal

space. The average coefficients are stored in the first half of the space, and the detail co-

efficients are stored in the latter half. The average coefficients are then processed again

through the same set of filters producing a second set of average and detail coefficients.

This DWT decomposition of the signal continues until the desired scale is achieved.

Mallat illustrates this process in the Pyramid Algorithm [25].

Two-dimensional signals, such as images, are transformed using the two-dimensional

DWT. The two-dimensional DWT operates in a similar manner, with only slight varia-

tions from the one-dimensional transform. Given a two-dimensional array of samples,

the rows of the array are processed first with only one level of decomposition. This es-

sentially divides the array into two vertical halves, with the first half storing the average

coefficients, while the second vertical half stores the detail coefficients. This process is

repeated again with the columns, resulting in four subbands within the array defined by

filter output. Figure 2.7 shows a one level decomposition using the two-dimensional

DWT. The filter output that results from two low-pass filters, labeled LL in Figure 2.7, is

then processed again in the same manner. The process is repeated for as many levels of

decomposition as are desired. The JPEG2000 standard specifies five levels of decompo-

sition, although three is usually considered acceptable in hardware.

 19

Figure 2.7: One-level decomposition using the two-dimensional DWT, where LPF x

represents low-pass filtering of the image rows, HPF x represents high-pass filtering of

image rows, LPF y represents low-pass filtering of image columns, and HPF y represents

high-pass filtering of image columns.

2.3 Slaac1V Board

The Slaac1V PCI-board [1] was designed by the SLAAC group at the Information Sci-

ences Institute-East. A block diagram of the Slaac1V board components and intercon-

nects are provided in Figure 2.8. The board provides an ideal platform for reconfigurable

computing applications with its usage of high-density FPGA devices that provide a tem-

plate for reprogramable logic circuits. It also provides a unique test platform since a host

computer can interact with the PEs through memory and FIFO accesses using the

Slaac1V API. Since the API provides access to each PE’s XVPI registers, partial recon-

figuration and read back commands can be performed on the FPGA. The advantages af-

forded by the ability of the host to interact with the hardware made the Slaac1V the

hardware platform of choice for this research.

IMAGE

L

H

LL

HL

LH

HH

LPF x

HPF x

 2

 2

LPF y

HPF y

 2

 2

LPF y

HPF y

 2

 2

 20

Computation on the board takes place in one of three separate processing elements, or

PEs. All PEs are implemented in hardware using Xilinx XCV1000 devices. The three

PEs are designated as X0, X1, and X2.

Interconnects are provided between the PEs to enable communication between the de-

vices. Communication between PEs can take place over the crossbar and across the di-

rect connects to adjacent PEs. As shown in Figure 2.8, each PE has two 72-bit data ports

that allow direct connections with the PE on either its left or right side. In this manner,

the interconnect buses connect the PEs in a systolic “ring” arrangement. In addition to

the direct connects, a 72-bit cross bar allows for unidirectional broadcast between PEs.

As a result, there are three 72-bit data paths provided to connect a PE with other PEs.

Figure 2.8: Slaac1V diagram

Designated SRAM and FIFO interfaces are provided to each PE as well, allowing data

flow through the board. The Slaac1V board has a total of ten K25636 × SRAM banks.

PEs X1 and X2 have access to four K25636 × SRAM banks. X0 on the other hand, can

X1 X2

72 72

 72

X0

XCV1000

72

SRAM

PCI BUS

SRAM

60 60

FIFO FIFO

FIFO

XCV1000 XCV1000

 21

access the remaining two SRAM banks, and can also access any of the other eight

SRAMs. While having access to two of its own SRAMs, X0 can swap one of its SRAMs

with any of X1’s SRAMs and can swap its other SRAM with any of X2’s SRAMs. The

host retains the ability to take control of a PE’s memory at any time during operation.

2.4 Existing DWT Implementations

DWT designs have been implemented on a variety of devices, including standard com-

mercial processors, DSPs, ASICs, and FPGAs. Although the slowest, software imple-

mentations for PCs provide the greatest deal of flexibility in terms of the selection of

wavelet, bits per pixel, precision, number of transform levels, and image size. DSP im-

plementations operate faster than generic processor designs since the instruction set is

tailored to signal processing applications. Their flexibility is more limited than a generic

microprocessor, however. ASIC designs provide the fastest operation since they use

dedicated hardware to perform the transform. The tradeoff for speed, however, is lack of

support for parameterization. FPGA implementations are located somewhere between

ASICs and DSPs in terms of speed and parameterization capabilities. This section pro-

vides a brief survey of existing DWT implementations for processors, DSPs, ASICs, and

FPGAs.

The majority of DWT designs are software-based algorithms. The JPEG2000 [5] and

MPEG4 [34] standards both incorporate the DWT in their compression algorithms. The

JPEG2000 uses a 9/7 wavelet to perform lossy compression, and uses a 5/3 wavelet for

lossless compression. Both JPEG2000 and MPEG4 feature a variety of software imple-

mentations based on the underlying standards. The Matlab technical computing envi-

ronment, designed by MathWorks [35], features a Wavelet Toolkit add-on that provides

DWT support. The toolkit offers a wide variety of wavelets that can be used for signal

processing and analysis computations.

 22

Several DSP manufactures provide DWT implementations through source code or library

functions. Motorola offers an application note for implementing a JPEG2000 version of

the DWT for the StarCore DSP processor [36]. Texas Instruments includes functions for

computing the vertical and horizontal wavelet transforms of image data in its image/video

processing library for its TMS320C62x series DSP devices [37]. These functions allow

specification of the filter bank coefficients, number of filter taps, and image size. The

functions accept only 16-bit input and output data.

Several DWT ASIC architectures have been investigated [6,7]. Such research has at-

tempted to find optimal architectures and efficient DWT designs that maximize parallel-

ism, reduce the transform period, and reduce the amount of memory storage required for

intermediate output. In the commercial sector, Analog Devices [38] has recently released

the first JPEG2000 image compression chip. Analog Devices also produces the ADV601

Multiformat Video Codec chip that features a wavelet kernel. The wavelet coefficients

are fixed for both devices.

FPGAs have experienced explosive growth in the number of system gates available for

designs. The growth in size has allowed for the exploration of DWT implementations on

FPGAs [39-41]. Benkrid et al have designed a two-dimensional biorthogonal DWT for

the Xilinx XCV600E-8 device. This design uses a non-folded architecture to perform the

DWT of an NxN image in N2 clock cycles. The Benkrid et al design uses a biorthogonal

9/7 wavelet in the transform. Parameterization of the wavelet and image size requires a

resynthesis of the design.

23

Chapter 3

Wavelet Transform RTP Core Library

3.1 Library Overview

The RTP Core specification provides a mechanism for describing designs as a conglom-

erate of functional cores and interconnects using the JBits API. The DWT system makes

advantageous use of the RTP core specification in that it is hierarchical composition of

smaller child cores that each performs a unique function (Figure 3.1). Each core used in

the design offers full parameterization capabilities for the designer.

The DWT system was implemented using a bottom-up approach in which the smaller

RTP cores were created first before moving to higher abstraction cores. The creation of

these smaller cores led to the formation of a DWT RTP core library. The library included

cores written specifically for this research and already existing JBits cores. The follow-

ing sections provide a detailed description of the lower abstraction cores developed for

this research.

 24

Figure 3.1: Hierarchical core decomposition of the overall DWT system. Blocks contain-

ing section numbers point to the particular section that describes the core implementation.

2-D DWT
Core

Filters

Address
Generation

ShiftRegister
Section 3.3

Comparator
Section 3.2

LUT4

Constant

Register

Counter

KCM
Section 3.6

AdderTree
Section 3.5

AdderTree

DistributedROM

MUX2_1

16x1ROM

Register

Adder
Section 3.4

Register

MUX2_1

Register

MUX2_1

 25

3.2 Comparator

The Comparator core determines the equivalency of two input signals. The core is pa-

rameterized by a core name, two input signals, and an output net. The output net, dOut,

is asserted when the data on input bus AIn is equal to the data on input bus BIn. Signals

AIn and BIn must have the same width. Two signals with a maximum width of two are

compared together using a ComparatorStage core. Each comparator stage occupies a

single Virtex LUT, and are stacked on top of each other to implement wide comparators.

The carry chain is used to propagate an “equivalence” output signal between stages. The

core can exhibit either synchronous or asynchronous behavior, depending on whether a

clock signal is passed to the constructor. The core features CLB height granularity, and

SLICE width granularity.

3.3 Shift-Register

The ShiftRegister core implements a shift register function in hardware. The core con-

structor is parameterized by an instance name, an input net, dIn, an output bus, dOut, and

an enable signal, CE. The input net, dIn, drives the data bit that is shifted into the regis-

ter on each shift operation. The output signal, dOut, is driven by the register outputs.

The shift register size is determined by the width of the dOut signal. An assertion of the

CE signal enables the shift operation. This enable signal is asynchronous. The shifting

direction is specified as a parameter in the implement() method. The initial value of the

shift register is also defined in the implement() method. An assertion of the global

set/reset line (GSR) causes the initial values to be loaded into the registers. Individual

bits of the shift register are implemented using ShiftRegisterStage child cores. A stage

occupies a single LUT. Each consecutive stage is placed vertically on top of the previ-

ous stage. Assuming the dOut signal is N bits wide, the ShiftRegister is N/2 CLBs high,

and one slice wide.

 26

3.4 Variable-Width Adder

The Adder core adds data on the two input buses and drives the data out bus with the re-

sult. The core provides unique parameterization capabilities. The widths of the two in-

puts buses do not have to match, allowing for variable input width of both inputs. Also,

the designer can choose synchronous or asynchronous operation by passing a clock net to

the constructor. The constructor also provides the option to use a carry in, if a carry in

net is passed as a parameter. The Adder core features slice width granularity, and CLB

height granularity.

3.5 Adder Tree

The AdderTree core allows any number of tree inputs to be summed together. The core

is comprised of variable width Adder cores that sum two inputs together, as well as Reg-

ister cores that provide required delay in the case of unbalanced trees. An unbalanced

tree results in a case where the number of tree inputs is not an even power of two. A

stipulation of the current core implementation is that although the inputs can be of any

width, all tree inputs widths must be equal. The output bus width of the core can be of

two possible widths, depending on designer configuration. The width is either the same

width as the tree inputs, or is the width of the tree input plus  n2log in order to preserve

adder carries, where n is the number of tree inputs.

The number of adders required for a tree with n inputs is simply n-1. The AdderTree core

exemplifies the advantages of run-time reconfiguration, since an efficient tree is derived

for any given number of inputs during core instantiation. Each addition stage is pipe-

lined, thereby allowing for increased clock frequencies at the expense of increased output

latency. The latency of the core from input to output is given by  n2log . Each Adder

core is placed horizontally adjacent to the previous adder. If necessary, delay between

addition stages is implemented using registers. Figure 3.2 illustrates the above concepts

by providing an unbalanced, ten-input adder tree. As shown in the figure, the tree has a

 27

latency of four clock cycles. Two registers are required between the adder labeled eight

and the adder labeled nine.

Routing between adders follows the hierarchical tree structure shown in Figure 3.2. Us-

ing this approach to placement, routing distance between adder levels is optimized. The

optimization results from the fact that two adders providing input for the next stage adder

are spaced an equidistant apart, except in the case where the adder core is located in an

unbalanced stage. Figure 3.3 shows the horizontal placement scheme used for the adder

tree.

Figure 3.2: AdderTree core composition where the circled numbers designate the particu-

lar adder index and the horizontal lines partition the addition operations into different

clock cycles.

Deriving the necessary interconnections between adders presented several challenges.

First, the adder tree was designed so that adder carrys are preserved between addition

stages. Secondly, the tree interconnect structure must be known before instantiating the

Adder cores, since the Adder core constructor accepted both input and output buses.

Lastly, some tree configurations required registers to be interspersed with adders in order

to balance latency between addition stages.

9

10

SUM

CYCLE 1

CYCLE 2

CYCLE 3

CYCLE 4

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

 28

Figure 3.3: Ten-input AdderTree core floor plan

Two integer arrays are used to store indices of the Adder core outputs that provided the

two inputs into that particular adder. As an example, in Figure 3.2 for the adder labeled

two, the first array identifies the first input as coming from adder labeled one’s output,

while the second array identifies the second input as coming from adder three’s output.

Such values are stored for every adder, and define the adder interconnect structure. A

function was written to calculate the values for both arrays, as well as the number of reg-

isters required for a particular adder instance. The function uses recursive partitioning of

the tree in order to determine adder interconnects, based on an adder range defined by

high and low parameter values. Partitions are created using the highest and lowest pow-

ers of two for a particular range of adders. Figure 3.4 provides a Java code excerpt from

the AdderTree core illustrating this process.

Method deriveAdderTree() accepts two adder tree indices, low and high, that define the

current partition. Input A of the parent adder is stored in Aindex[parentAdder – 1], while

input B is stored in BIndex[parentAdder –1]. After computing the adder input indices,

left and right hand partitions are defined using a recursive call to deriveAdderTree(). The

function continues until the range defined by the difference of high and low is less than

three, meaning a leaf node has been reached.

Slice

- LEVEL 1 ADDER

- LEVEL 2 ADDER

- LEVEL 3 ADDER

- LEVEL 4 ADDER

- REGISTER

 C
LB

 29

/* calculate the “parent” adder index */
int log = (int) Math.ceil(Math.log((double)range)/Math.log(2.0));
int parentAdder = low + (int) Math.pow(2.0,log - 1);

/* calculate the right sided adder input index */
range = high - parentAdder;
log = (int) Math.ceil(Math.log((double)range)/Math.log(2.0));
int RHSIndex = ((int) Math.pow(2.0, log - 1)) + parentAdder;

/* calculate the left sided adder input index */
range = parentAdder - low;
log = (int) Math.ceil(Math.log((double)range)/Math.log(2.0));
int LHSIndex = ((int) Math.pow(2.0, log - 1)) + low;

/* partition left hand side of parent adder recursively */
AIndex[parentAdder - 1] = LHSIndex - 1;
deriveAdderTree(low, parentAdder);

/* partition right hand side of parent adder recursively */
if (RHSIndex != parentAdder)
{
 BIndex[parentAdder - 1] = RHSIndex - 1;
 deriveAdderTree(parentAdder, high);
}
else /* required if there is an odd number of tree inputs */
{
 BIndex[parentAdder - 1] = treeInPort.length - 1;
}

Figure 3.4: AdderTree input index computations and partitioning process

3.6 Constant Coefficient Multiplier

Multipliers are frequently used in digital signal processing systems. In the discrete wave-

let transform filter bank, multipliers are required for the filter component implementation.

Because filter coefficients remain constant during the entire duration of a transform, con-

stant coefficient multipliers (CCMs) were considered for the design. Dinechin and Le-

fevre justify the use of constant-coefficient multipliers if the lifetime of the constant is

substantially larger than the reconfiguration overhead time [27]. It is desirable to have a

fast CCM that not only makes efficient use of FPGA resources, but one that lends itself to

a straightforward implementation in FPGA hardware. The Ken Chapman Multiplier

(KCM) fulfills the above criteria [11].

 30

The KCM design provides an implementation of a constant coefficient multiplier that is

ideally suited for RTR and the Virtex family architecture. A KCM requires fewer re-

sources and results in less latency than variable coefficient multipliers. The design stores

precomputed partial product values in Virtex LUTs. The partial products are computed

by multiplying all values within a LUT address range by the desired constant value. The

width of the multiplier operand input is partitioned into fixed, even width sections. The

values corresponding to a particular section of the operand provide an index into a series

of LUTs, which in turn produces the partial product. The partial products of all sections

then are summed to produce the product output.

The JBits KCM core implementation is comprised of a series of DistributedROM cores

with outputs summed together by an AdderTree core (Figure 3.5). Several aspects of the

JBits KCM core are reconfigurable. In addition to being parameterized by the coefficient,

the bit precision in which that coefficient is stored is also configurable. This allows the

fixed-point precision of coefficients to vary depending on the designer’s needs. The bit-

width of the operand input bus is parameterizable as well. The input width, however, is

required to be an even multiple of four.

DistributedROM cores of size N×16 are used for the KCM implementation, where N is

equal to the coefficient resolution plus the input bus width. During reconfiguration, each

of the sixteen ROM locations is loaded with the value of coefficient k multiplied by the

ROM location index. The product is left shifted by a multiple of four, depending on in-

put lines addressing the ROM.

The floor plan of an example 812 × JBits KCM core is shown in Figure 3.6. A 812 ×

KCM requires three 2016 × ROMs. A 2016 × ROM uses 20 LUT4 primitives stacked

together in a vertical column. A single 2016 × ROM, therefore, has single slice width,

and a height of ten CLBs. The three ROM cores are placed horizontally adjacent to one

another, requiring three Virtex slices. The three four-bit bus partitions of the twelve-bit

operand address their corresponding ROM and produce three partial products. In this in-

 31

stance, the AdderTree core is comprised of two Adder cores and a Register. In total, the

812 × KCM is six slices wide and eleven CLBs high.

Figure 3.5: An Nx4 input KCM core design

Figure 3.6: 812 × KCM core floor plan

DATA_IN

 [0..3]

 [4..7]

[N-3..N]

PRODUCT

ROM
16xN

ROM
16xN

ROM
16xN

 ADDER TREE

CORE

Slice

- 16x20 ROM 1

- 16x20 ROM 2

- 16x20 ROM3

- AdderTree

 32

3.7 Summary

The design of a large system is more easily approached if it is broken down into smaller

subtasks. With this idea in mind, the DWT system design was decomposed into smaller

functional cores using the RTP core specification. The DWT core library provides the

components necessary for constructing the larger DWT system. This chapter explored

the implementation of the smaller cores designed for this research. The next chapter dis-

cusses how these cores are used together to create the filter bank, the address generator

logic, and the overall two-dimensional discrete wavelet transform system.

33

Chapter 4

Discrete Wavelet Transform Core Design

This chapter describes the implementation of a two-dimensional discrete wavelet trans-

form RTP core using the RTP core library. A design overview is presented to familiarize

the reader with the major components, interconnects, and functionality of the system.

The FIR filter core design and address generation logic used in the DWT system are also

discussed.

4.1 Design Overview

The DWT2D core performs the two-dimensional discrete wavelet transform on a speci-

fied image. The core is parameterized with a core name, coefficient precision, and two

SRAMProperties classes that define the external signal connections to memory. The

SRAMProperties class is elaborated on in Chapter 6. The image height and width, along

with the high-pass and low-pass synthesis filter coefficients are passed as parameters to

the implement() method of the core.

Figure 4.1 shows that the DWT2D core is comprised of two filters, delay registers, multi-

plexers for switching between filter and address generator outputs, and two memory ad-

dress generators that interact with the memory banks and control data flow direction.

Two FIRFilter cores provide the focus of the core. Depending on filter length, delay reg-

isters are added at run-time to balance latency between filter outputs for a given input.

34

The two filters are loaded at run-time with the high-pass and low-pass coefficients that

defined the particular wavelet being used for the transform.

It is desirable to have the DWT2D core function as an autonomous design entity within an

FPGA. For this to be a realizable goal, the core implementation requires internal control

logic and address generation circuitry. The wavelet transform core control logic is re-

sponsible for performing data multiplexing. The address generator supplies the necessary

memory address input and output buses to both memory banks. It also generates the sig-

nals necessary for controlling the read/write operations of the external memory.

Figure 4.1: Block diagram of DWT2D core

4.2 Sequential FIR-Filter

Two sequential FIRFilter cores act as the computation engine of the wavelet transform

core. The filter structure defines a sum-of-products hierarchy consisting of registers,

constant coefficient multipliers, and adders. Each core makes advantageous use of the

low-level bitstream access afforded by JBits in order to provide the capabilities needed

for efficient placement during reconfiguration of the filter.

OUTPUT INPUT
MEMORY 1

FIR FILTER

FIR FILTER

DELAY

MEMORY 2

MEMORY
ADDRRESS

GENERATOR

MEMORY
ADDRESS

GENERATOR

MUX

MUX MUX

MUX

35

The output of a linear filter can be described by the convolution equation:

∑
=

−=
n

i

inhixny
0

)()()([4] (EQ. 4-1)

The direct form implementation of the convolution equation is shown in Figure 4.2. The

FIRFilter core is based on the direct form structure [4]. The delays are implemented us-

ing a chain of register cores. The coefficient multipliers are implemented with KCM co-

res. The multiplier outputs are summed together using the AdderTree core.

Figure 4.2: FIR filter direct-form structure

The FIRFilter core is created in a three-step process. Filter input and output buses are

passed to the filter constructor during instantiation. The widths of these buses define data

path bit widths and filter resolution. The filter core must then be anchored to physical

coordinates on the FPGA. This is accomplished by modifying the filter core’s offset

field, in which CLB row and column coordinates are defined. After placement, an array

of doubles representing filter coefficients is passed to the core’s implement method, in

which the parent FIRFilter core, along with all child cores, are instantiated, and the bit-

stream is configured accordingly.

Assuming a given filter is of order n, then n registers and multipliers are required, as well

as n-1 adders, to compute the sum of products. The latency of the filter of l taps, and in-

put bit width n, is computed using the following equation:

 l
n

latency 22 log
4

log1 +



+= (EQ. 4-2)

 x(n) Z-1

 h(0) h(1) h(2) h(3) h(M-2) h(M-1)

 y(n)

Z-1 Z-1 Z-1 Z-1

36

A constant multiplier is instantiated for each coefficient in the double array and loaded

with coefficient value. An adder tree is responsible for summing the multiplier outputs.

The resulting filter structure is shown in Figure 4.3. The higher abstraction RTP cores

required for filter design include KCM, Register, and AdderTree cores.

Figure 4.3: RTP core composition of a four-tap FIR filter

4.3 Address Generation

The DWT2D core interfaces to two SRAMs. During operation, one SRAM provides the

necessary data input to both filters, while the other memory stores the transitory filter co-

efficient data. As each level of wavelet transformation is completed, the roles of both

memory banks are swapped. The input and output address generators for the DWT2D

core are implemented as separate RTP cores.

Two address generator cores provide the necessary addresses for both SRAM memories.

The address outputs were interfaced directly to the physical SRAM address lines. One

REG REG REG REG

KCM KCM KCM KCM

FILTER
INPUT

REGISTER

FILTER
OUTPUT

REGISTER

ADDER TREE
CORE

37

address generator core computes the input addresses, while the other core computes the

output addresses. Both cores supply the necessary memory address input and output val-

ues to SRAMs. The implementation of the input and output address generator cores is

discussed in Sections 4.3.1 and 4.3.2, respectively.

4.3.1 Input Address Generation

The input address generator core supplies the memory address values for the SRAM

responsible for providing data input into the transform core. The implementation of this

core is straightforward, since no row or column extension scheme is used for the

transform. Because no extension is used, the border of resulting transformed array

contains invalid transform coefficients. The resulting transformed image, therefore,

requires cropping before applying the inverse transform. The amount of cropping

required is dependent on the filter length.

The core implement() method is parameterized by an image height/width dimension

value. Two restrictions are placed on images used in the transform process.

§ The height of the image was equal to the width of the image.

§ The height/width parameter was an even power of two.

Figure 4.4 provides a graphical depiction of the row and column address scanning

process used for three levels of decomposition. The two-dimensional transform requires

that image rows are processed first, followed by a scan of the image columns. The

position of the row and column values are reversed in the output address register, thereby

automatically transposing the matrix of coefficients as they are written to memory. Using

this methodology, the need for additional logic to scan the columns is eliminated, since a

second row scan of the transposed matrix accomplishes the same function. All image

rows are scanned in the first level of transform. After each level of transform, the

available image width and height address ranges are divided by two. This division is

needed so that the following transform level operation processes only the detail

38

coefficient suband located in the upper left quadrant of the transformed coefficient

matrix. The input address generator repeates the row scan twice using the same image

dimension value for each level of transform. A second transposition during the second

row scan restores the position of the transformed coefficients to their proper order.

Figure 4.4: Input address generator scanning process

Two Counter cores provide the foundation for the row and column output address value

computation. Assuming n represents the image width and height, the width of both

counters is computed by taking the log2 n. The input address generator core constructor

accepts an address bus on which the input address values were driven to the SRAM.

Where the SRAM memory is larger than the image, the width of the memory address bus

is larger than the combined widths of the row and column counters. In this case, a Con-

stant core is used to drive the remaining bits of the address bus with zero values. Figure

4.5 illustrates the bit positioning of the constant, row and column output values within the

input address value. The image width and height in this example is 256 pixels. As a re-

sult, eight bits are required to store the row and column address values. The remaining

four bits are driven low by a constant core.

512

512

LEVEL 1 ROWS LEVEL 1 COLUMNS LEVEL 2 ROWS

 LEVEL 2 COLUMNS LEVEL 3 ROWS LEVEL 3 COLUMNS

256

256 512

 512

256

256

128

128

128

128

39

Figure 4.5: Input address composition using an address bus width of 20

After each level of transform, the working image height and width are halved, thereby

decreasing the output memory space by a factor of four. Implementing this in hardware

requires manipulation of the column counter output bits. Figure 4.6 shows the bit-wise

generation of the row address output values. A MUX2_1 core selects between counter

output bit n and a constant zero value. On reset, the shift register with the same width as

the column counter is initialized to all ones. During transitions between levels, the shift

register is enabled and shifted, with a zero loaded into the MSB register value. When a

zero is driven on the MUX select line, the MUX outputs a zero, instead of the corre-

sponding counter bit. This scheme effectively divides the range of row output addresses

by a factor of two.

Figure 4.6: Generation of row output address bit n

Generation of the column input address uses the same multiplexing scheme as the row

address generation to divide the address range by two between levels. It should be noted

that both the row and column address logic require their own shift register cores.

ROW COUNTER
 BIT n

CONSTANT 0
BIT

SHIFT REGISTER
BIT n

ROW ADDRESS
 REGISTER BIT n

2-1 MUX

A0 A19

CONSTANT ZERO ROW ADDRESS COLUMN ADDRESS

Z2 Z1 Z0 R7 R6 R5 R4 R3 R2 R1 R0 C7 C6 C5 C4 C3 C2 C1 C0 Z3

40

Additional logic is used in conjunction with the column address generation to generate

the row counter enable signal. The combined logic for the column address and row

counter enable signal is depicted in Figure 4.7. The row counter enable signal requires

asseration whenever the maximum column count is reached. The maximum count value

is already available in the shift register output. A comparator is used to determine if the

multiplexed counter output is equivalent to the shift register output. The comparator

output, along with the comparator outputs from all other counter bits are AND’d together

to produce the row counter enable signal.

Figure 4.7: Generation of column output address bit n

4.3.2 Output Address Generation

The output address generator core supplies the memory address values for the DWT2D

output data being written to SRAM. Generating the output addresses is less

straightforward than the input addresses generation. There are two significant differ-

ences. First, the latency of the SRAM and filter output requires appropriate delay of the

output address values. Secondly, output data has to be written to its appropriate subband

partition in memory. To address these issues, generation of the output memory address

requires variations on the logic used in the input address generation.

= BIT
 COMPARATOR

COLUMN COUNTER
 BIT n

CONSTANT 0 BIT

SHIFT REGISTER
BIT n

COLUMN ADDRESS
 REGISTER n

2-1 MUX

ROW COUNTER
 ENABLE

COMPARATOR
OUTPUTS

WIDE
AND

41

Several sources, including the filter cores and SRAM, contribute latency delay to valid

output availability. As a result, additional logic is required to delay the output address

accordingly (Figure 4.8). A Counter core counts latency cycles after a reset assertion. A

separate constant value stores the appropriate latency value for the current DWT2D core

configuration. The counter and constant outputs are compared together to generate the

CE signal for the output address counter core. An inverted comparator output signal en-

ables the latency counter. In this manner, the counter is disabled after reaching the maxi-

mum latency count.

Figure 4.8: Output address latency delay logic

The positioning of the row and column address values is reversed in the output address

value written to SRAM (Figure 4.9). Doing so generates a transposed coefficient matrix

in the output memory. This allows the input address generator to perform a row and col-

umn transforms using two sequential row scans.

Figure 4.9: Input address composition using an address bus width of 20

CONSTANT ZERO ROW ADDRESS COLUMN ADDRESS

A0 A19

Z2 Z1 Z0 C7 C6 C5 C4 C3 C2 C1 C0 R7 R6 R5 R4 R3 R2 R1 R0 Z3

MAX

LATENCY
CONSTANT

LATENCY
COUNTER

CORE

 CE

=

COLUMN
COUNTER

CORE

 CE

42

The process of generating output row and column address values is similar to the tech-

nique used to generate the input row and column address values. As with the input ad-

dress core, two Counter cores provide the logic foundation for the row and column ad-

dress values.

Unlike the input address generator, however, the output address memory space for a par-

ticular level is divided into two column partitions, one for the low-pass filter coefficients,

the other for coefficients generated by the high-pass filter. A MUX2_1 core toggles be-

tween filter outputs on every clock cycle. An addressing scheme is therefore required to

generate output addresses that alternate between these columns on successive clock cy-

cles. An example column output address sequence for a 512x512 image using three lev-

els of transform is provided in Table 1.

Table 1: Example column output address sequence for three transform levels

The column switching process is realized in hardware by asserting the most significant

bit of the column address on alternate clock cycles. This is accomplished by rerouting bit

zero of the column counter to the MSB of the column address. The MSB position of the

column address is dependent on the current level of transform. Figure 4.10 shows the

generation of a column output address bit n.

The complication in logic results from the fact that the most significant bit position

changes as the transform level changes. An additional level of MUX2_1 cores provides a

solution. Column counter bit n+1 and bit zero provide the mux inputs. Because the

counter bit zero is rerouted to the MSB for the current output address range, the position

of the other counter bits are shifted down, such that bit one becomes bit zero. This bit

position shift is implemented through mux routing.

Level Column Width Column Output Address Sequence
1 512 0, 256, 1, 257, 2, 258, … 255, 511
2 256 0, 128, 1, 129, 2, 130, … 127, 255
3 128 0, 64, 1, 65, 2, 66, … 63, 127

43

A second shift register is needed to control this additional mux level. The shift register

values are loaded with a zero in the most significant register, with ones in all other regis-

ters. The shift register is enabled during transitions between levels, with a zero being

shifted into the most significant register. The shift register output controls the select lines

of the MUX2_1 cores. In this manner, column counter bit zero is always routed to the

most significant column output address bit position.

Figure 4.10: Generation of column input address bit n

The output address row values are computed similarly to the input address values. The

row counter is enabled by the row counter enable signal generated by the column counter

logic. The counter is incremented after the maximum column count is reached.

The shift registers for the input and output address generator cores are enabled using the

logic scheme shown in Figure 4.11. Comparator cores determine when the row and col-

umn address values are equivalent to the values stored in the shift registers. The AND of

these signals generate the count enable signal of the transform level counter. Bit zero of

= BIT
 COMPARATOR

CONSTANT 0 BIT

SHIFT REGISTER 2
BIT n

COLUMN ADDRESS
 REGISTER n

2-1 MUX

ROW COUNTER
 ENABLE

WIDE
AND

COMPARATOR
OUTPUTS

SHIFT REGISTER 1
BIT n

2-1 MUX

COLUMN COUNTER
 BIT 0

COLUMN COUNTER
 BIT n+1

44

the transform level counter is then AND’d with the counter enable signal to produce the

shift register enable signal. This guarantees that the enable signal is asserted after two

sequential row scans. The remaining level counter bits, bit one and up, indicated the cur-

rent level of transform. The same logic is used for both the input and output address gen-

erator cores.

Figure 4.11: Shift register enable signal generation logic

4.4 Summary

The DWT2D core is defined by a hierarchical composition of RTP cores. In this chapter,

the implementation of the DWT2D core is described, along with a discussion of the FIR-

Filter core and address generation logic. The DWT2D core is comprised of two FIR fil-

ters, input and output address generators, and control logic for multiplexing filter data.

The FIRFilter RTP core is a JBits implementation of the direct-form FIR filter structure.

The logic for both the input and output address generators is encapsulated within two

separate RTP cores.

ROW
SHIFT

REGISTER

LEVEL
COUNTER

 CE

=

ROW
VALUE

COLUMN
SHIFT

REGISTER

COLUMN
VALUE

=

 BIT0
 SHIFT_REGISTER_ENABLE

45

Chapter 5

Simulation and Debugging

This chapter explains the simulation and debugging processes used throughout the wave-

let transform system design. The chapter begins with a discussion of how Java was used

to simulate the operation of the discrete wavelet transform using classes that represented

hardware counterparts. Having this tool aided the debugging processes by providing a

means in which test data could be extracted and viewed at any step of the simulation.

The chapter also introduces the concept of bitstream level debugging, and discusses how

the VirtexDS was used in conjunction with BoardScope to verify correct circuit operation

before the bitstream was downloaded to physical hardware.

5.1 Software Simulation

Before beginning the hardware design process, a Java-based software simulator,

DWTSimulator, was written to model the behavior of the wavelet transform in both the

forward and inverse directions. Methods DWT and IDWT performed the forward and in-

verse transforms for a selected image, respectively. Classes were written to emulate the

functionality of the individual hardware components comprising the DWT2D core. The

transform simulator was then constructed using these hardware model classes. By mod-

eling the hardware behavior with Java classes, the theoretical transform output could be

analyzed for correctness before implementing the system in hardware. Another advan-

tage of using hardware model classes was that the wavelet transform simulation class

46

provided a template for the hardware system design, in which the model classes could be

removed and replaced by their respective RTP Cores.

A FIRFilter class was written to simulate the hardware filter implementation. The filter

was parameterized by a set a coefficients that defined filter length. Method clock() ac-

cepted a data value, and performed the filter operation for the registered values. Software

truncation and masking techniques were applied to the filter input and output data in or-

der to achieve the same resolution as the hardware filter. The FIRFilter class performed

the signal processing for the simulator. As with the simulator, the FIRFilter class acted

as a model for the JBits RTP filter core implementation.

Development of both forward and inverse transforms allowed images to be transformed

and then reconstructed. The Microsoft bitmap format was used for all images read and

written by the simulator. A separate class, Bitmap, provided functions for storing and

retrieving image coefficient arrays from bitmap files. The loadBitmap() method read a

bitmap file and returned a two-dimensional integer array of pixel values. Conversely,

method saveBitmap() accepted a two-dimensional integer array and converted the array

into bitmap format. This conversion required scaling the integer array values to fit in the

0 to 255 range.

5.2 Debugging at the Bitstream Level

The design cycle of each RTP core required a debug and validation design phase. The

BoardScope tool provided the environment of choice for bitstream level debugging. Us-

ing the VirtexDS class in conjunction with BoardScope allowed cores to be thoroughly

debugged in software before testing them out on physical hardware. By running the core

output bitstream under BoardScope, registered signal values could be monitored on a per

clock cycle basis, either through the graphical flip-flop state indicators, or the Board-

Scope waveform viewer. Although minor discrepancies existed between simulator and

physical hardware behavior, correct core operation in the simulator often translated to

47

correct operation in hardware. This section discusses the bitstream level debugging proc-

ess as it related to the Wavelet Transform core.

Individual signal behavior is determined by monitoring the flip-flop state in which that

signal traverses through. As a result, knowledge of core placements and the locations of

signals relative to those placements must be derived. This information includes the CLB

row and column positions, the slice, and the flip-flop within the slice. With traditional

simulators, this information is irrelevant since place and route algorithms have yet to be

applied to the design. Another difference is that JBits signal visibility is limited to the

logic states of the CLB and IOB flip-flops due to the read back information obtainable

from the FPGA. Because the device simulator models the system level hardware, it can

only generate synchronous flip-flop state output as well. As a result, asynchronous signal

activity cannot be viewed, as is usually possible with traditional simulators. The majority

of the cores used in the DWT implementation featured registered outputs however, mak-

ing this simulation environment acceptable.

5.3 Testbench I/O Generation Techniques

In FPGA design, test benches are often used to provide an automated testing environment

wrapper around the design. Test bench design is nonstandard when compared to tradi-

tional simulation environments due to the bitstream level output generated by JBits cores,

however. The bitstream level output distinguishes JBits test benches from traditional test

benches in several regards.

A significant distinction between JBits and standard HDL test benches is the methodol-

ogy in which the test vector core stimuli are generated. Several techniques were used to

provide test input vector stimuli into the RTP cores used in the DWT implementation.

These techniques included placing hard-coded vectors in the circuit with the TestInput-

Vector RTP core, using the SimulatorClient class to provide stimulus through the

VirtexDS [43], and using BRAMs to store vectors. Each technique was utilized for the

DWT core library debugging process, and warrants further discussion.

48

The first method involved using a TestInputVector RTP core. The core is parameterized

with depth, clock signal, and data bus parameters. The depth parameter defines how

many vectors should be written during simulation. The width of the input vectors is de-

fined by the width of the output data bus. The file containing input vectors values is

specified as an implement() method parameter. These vectors are then coded into LUTs

operating in SRL16 mode.

Generating vectors with an RTP core is unique in the sense that the vectors themselves

are coded into the bitstream. This methodology has both advantages and disadvantages.

A major disadvantage results from the resource consumption requirements of the core.

The depth of the core is limited by the space remaining on the device after core imple-

mentation. For signal processing cores, including the FIRFilter core, it is difficult to

store signals of any significant length. As a result, the TestInputVector core was used

only for debugging smaller cores, including the adder and comparator cores.

Test vectors are also obtainable through a direct interface to the device BRAMs. This

scheme was used to create a streaming data interface for cores. The streaming interface

required two BRAMs to provide input and store output data. An RTP Counter core gen-

erated the memory addresses. While this method proved effective for filter debugging,

available memory was too small to store entire images. This approach suffers from the

disadvantage that the test vectors must be stored in the bitstream, as with the TestInput-

Vector core.

The most flexible solution involves using the SimulatorClient class to provide input

stimulus. Upon instantiation, the SimulatorClient establishes a TCP/IP connection to the

VirtexDS already running. The class provides methods for setting and retrieving the

logic values of FPGA pins. Using these methods, vectors are injected into the core at

register input pins. This methodology is much more desirable than the previous two be-

cause it eliminates the reliance on bitstream resources to store vectors. The client became

49

available late in development, so its usage was limited to debugging higher abstraction

cores developed in the later stages of design.

50

Chapter 6

Hardware Interfacing

This chapter describes how the DWT2D core is interfaced to the Slaac1V SRAM memo-

ries. The motivation for RTR I/O is presented first, followed by the introduction of a set

of JBits classes that provide RTR I/O interfacing support for JBits designs. Only recently

has the support to route to non-CLB tile resources, including BRAMs and IOBs, been

included in the JBits distribution. These RTR I/O classes extend on the routing support,

and provide automated I/O configuration and interfacing support for top-level RTP cores.

Following the introduction of the RTR I/O classes, the chapter discusses how these

classes were used to interface the DWT2D core to the Slaac1V hardware.

6.1 I/O and Run-Time Reconfiguration

As with most image processing applications, the discrete wavelet transform requires ac-

cess to large quantities of data. A 512512 × grayscale image with eight bits per pixel

requires 256 K bytes of memory storage. A three-level DWT, using the 512512 × image

has a data throughput requirement of 672K bytes. The large data requirement forces the

DWT2D core to use an alternate approach to the distributed RAM CLB configuration ap-

proach. Although the Block RAM (BRAM) provides a possible on-chip memory storage

solution, the size of the memory is insufficient for large images. The XCV3200E is cur-

rently the largest Virtex extended memory device and offers 851,968 BRAM bits [12].

51

This is still inadequate storage for a 512512 × grayscale image. It is evident that an off-

chip memory solution is needed to provide data to the core.

In the past, JBits designs requiring external I/O have utilized bitstreams containing I/O

frameworks generated from other HDLs and synthesized using the standard tool flow.

Dynamic circuit design, therefore, has been restricted to internal circuit logic, leaving I/O

data paths static. There is significant motivation for providing I/O reconfiguration capa-

bilities with JBits, however. The most apparent advantage is the elimination of the reli-

ance on other tools. Supporting I/O reconfiguration allows complete design realization

with JBits. Designs offering variable degrees of output accuracy [13] could make advan-

tageous use of variable width I/O data paths. These designs could allot additional I/O

resources or free IOBs for use by other cores during reconfiguration. Providing auto-

mated I/O interfacing capabilities eases the process of porting JBits system level designs

between Virtex devices.

The DWT2D core is designed with the inherent memory addressing and control logic

needed for it to function as an autonomous entity without the assistance of any additional

FPGA circuitry derived from other HDLs. As a result, the top-level DWT2D core re-

quires direct connections to SRAM data, address, and control signals. It is desired to

have the DWT2D core and I/O data paths generated entirely from a null bitstream during

instantiation. This goal requires that each port contained in the DWT2D core interface be

routed directly to a corresponding IOB or IOBs, which in turn provides access to the ap-

propriate SRAM signals.

Although the Slaac1V board is used as the hardware-testing platform, it is undesirable to

hard code the core with routing calls specific to a particular fixed IOB configuration. Do-

ing so effectively makes the core device package and hardware platform dependent.

Porting to other platforms would require an entirely new set of IOB routing calls. An-

other disadvantage of hard coding the routing calls is the introduction of human error.

With large designs, this process is not only tedious, but error prone as well.

52

As a reBsult of these disadvantages, an additional layer of abstraction is needed within

JBits to automate the interfacing of an RTP core to different FPGA based hardware plat-

forms. Introducing such a layer allows RTP cores using IOBs to become Virtex device

independent. Section 6.2 presents a series of JBits classes that generate an external I/O

interface wrapper around a JBits RTP core, using the specifications given in a traditional

user constraints (UCF) file.

6.2 JBits RTR I/O Interfacing Classes

This section introduces a set of JBits classes that automate the process of interfacing a top

level RTP core to the underlying FPGA hardware platform. These classes were devel-

oped as a coauthored research effort1. Using the RTP core template specification, these

classes are encapsulated within a single RTP Core, the Board class. A system level dia-

gram of the hardware interfacing JBits components is shown in Figure 6.1. The Board

class provides a single core RTR solution for I/O mapping and configuration. The func-

tionality of the Board class is discussed, along with the supporting I/O classes that are

used by Board during the interfacing process.

Figure 6.1: System level diagram of JBits RTR I/O interfacing classes

1 Design of the RTR I/O classes was a collaborative effort with Scott McMillan on the Loki team. Scott
was responsible for taking the existing interfacing methodology designed for this research, and encapsulat-
ing it within the Board, InputCore, and OutputCore RTP cores. He also extended the classes by adding
automated I/O configuration support to the RTP cores and enhancing the UCF parser.

UCF Class XCVPackage
Class

InputCore
Classes

OutputCore
Classes

Net to Pin
Hash Table

Board Class

UCF File

….
….
…..

Pin to Pad
Hash Table

53

6.2.1 The Board Class

The Board RTP core class provides a physical FPGA hardware framework for accom-

plishing run-time mapping and reconfiguration of I/O resources. In essence, the Board

class is an overall abstraction of the underlying board and device hardware. Fields are

provided for defining hardware specific information, such as the board global clock and

FPGA device package pin to pad mappings. The mappings of a particular Virtex device

package are stored in an XCVPackage class. The XCVPackge class warrants further ex-

planation and is discussed in detail in Section 6.2.3. By extending the Board base class, a

designer can assign values to these fields accordingly, thereby creating a user defined

board class. As an example, the code for the Slaac1VBoard class is provided in Figure

6.2. The global clock line for the Slaac1V board is defined as GCLK 2. Three

xcv1000_fg680 devices constitute the XCVPackage FPGA device array. These device

specifiers correspond to the three processing elements on the Slaac1V board.

public class Slaac1VBoard extends Board
{

 public Slaac1VBoard(String name) throws CoreParameterException
 {
 super(name);
 setXCVPackage(xcvPackage);
 setGCLK(GCLK);
 };

 private XCVPackage xcvPackage[] =
 {
 new xcv1000_fg680(), new xcv1000_fg680(), new xcv1000_fg680()
 };

 private static int GCLK = 2;

}; /* end of Slaac1V board class. */

Figure 6.2: Slaac1VBoard.java code

The Board class provides methods for manipulating FPGA IOB resources, however such

resource configurations calls refer processing to the resource configuration methods in

InputCore and OutputCore classes. An RTP core abstraction of IOB resources is repre-

sented using InputCore and OutputCore RTP core classes. Both cores are elaborated on

in later sections. I/O cores are added to a board using the addInput() and addOutput()

54

methods. These methods accept a string name of the I/O core and a Signal instance. The

board class maintains array lists of all added cores. Methods are also provided for con-

figuring specific IOB resources. The JBits code in Figure 6.3 demonstrates the process of

adding and configuring an output core to a board. In this case, a Bus signal XBar of

width 20 is instantiated. Next, a Slaac1VBoard instance is created. A new I/O output is

then added to the board, using the slaac1V.addOutput() method. In order to drive the

physical I/O pad, the IOB tristate is inverted using the slaac1V.setOutputInvertT()

method, since the tristate enable is active low and the unconnected tristate wire are de-

signed to float high in the Virtex architecture.

/* create a signal to run to the cross bar pins on the Slaac1V X2 */
Bus XBar = new Bus("XP_XBAR", null, 20);

/* create a new board */
Slaac1VBoard slaac1V = new Slaac1VBoard("SLAAC1V");

/* add a cross bar output core to slaac1V board instance */
int XBarOutput = slaac1V.addOutput(Xbar.getName(), XBar);

/* configure the IOB resources output operation */
slaac1V.setOutputInvertT(XBarOutput, true);

/* implement the slaac1V board */
slaac1V.implement(0, "slaac1V.ucf");

Figure 6.3: Adding and configuring an OutputCore

After the desired input and outputs have been added to the board and appropriately con-

figured, the implement() method must be called. The implement() method accepts two

parameters, the targeted FPGA device number and the UCF name to use in the net name

to pin mapping process. The method performs two tasks. A hash table containing net

name to device pin translations is first generated using the UCF class. The implement()

methods are then invoked for every InputCore and OutputCore that had been added to the

board.

55

6.2.2 The InputCore and OutputCore Classes

The InputCore and OutputCore classes provide software core abstractions of the physical

FPGA IOB resources. Because the Board class manages the functionality of these cores,

their operation is hidden from the designer. The core constructors are parameterized by a

name and an associated signal instance. Core methods are provided setting particular

IOB configuration parameters. These parameters are used by method implement() to

make the IOB bitstream modifications necessary to realize these configurations. This

method accepts an XCVPackage instance, as well as the UCF hash table created in the

Board class. Using these classes, the implement() method is able to map the signal in-

stance to a corresponding IOB or group of IOBs. The process of mapping signals to JBits

IOB resources is shown below in Figure 6.4. The depicted mapping process deserves fur-

ther elaboration.

Figure 6.4: Mapping JBits Signals to IOB Pins

Signal

Net

Net Net

Net

IOBs

PADs

PINs

56

The InputCore and OutputCore classes have an inherent Signal associated with each in-

stance. The implement() method considers every net within the signal on an individual

basis. To begin, a net is mapped to a physical pin location using the net name to pin en-

tries in the UCF hash table. After determining the pin location, the pin is translated to the

connecting I/O pad within the FPGA. This is accomplished using the pin to pad transla-

tions contained in the XCVPackage hash table. The JBits IOB resource can then be com-

puted based on the pad identifier. Finally, a JBits Pin can be attached to the endpoint of

the net using the indices that identify the JBits IOB resource.

Once the hash table has been created for the constraints file, operation of the generate

method continues by examining the port interface of the RTP core. The port examination

process involves determining which net or bus that specific port has connected as an ex-

ternal signal. After extracting the net/bus, the string name assigned to the signal is used

as an index into the constraints file hash table. The return value, a device pin identifier, is

then used to index the XCVPackage hash table. The XCVPackage hash table returns the

pad number corresponding to the device pin. By using the JBits device row and column,

the corresponding JBits IOB resource is identified.

6.2.3 XCVPackage Class

The XCVPackage provides a base class framework for storing device pin to I/O pad map-

pings specific to a particular Virtex device package. By instancing an XCVPackage

class, a hash table member field is defined with the chip pin String identifier as the hash

key and the corresponding Integer pad number as the return value. It is the responsibil-

ity of any class extending the XCVPackage to define the contents of the table. Sets of

such classes that extend XCVPackage were created in order to provide pin to pad hash

tables for every Virtex package currently available. The class names are representative of

the device package names, for ease of use. As an example, the xcv800_bg560 class

represents the Virtex 800 part with a BG560 package. The class also provides methods

for retrieving the number of CLB rows and columns for the particular Virtex package.

57

The xcvPackage array field of the Board class stores XCVPackge classes for every FPGA

device on the hardware platform.

6.2.4 UCF Class

The UCF class provides a user constraints file parser that creates a hash table in which

the net string name identifier provides the key, while a corresponding UCFValues in-

stance provides the return value. The UCFValues class holds configuration parameters,

including skew, drive, pull, and the iostandard for a specific IOB. The designer never

deals directly with the parser, however, as Board method implement() is responsible for a

calling the parser automatically, after receiving a constraints file from the parameter list.

It was decided to use the standard user constraints files (UCF) file format to map Signal

names to physical device pins. This format was used for two reasons. First, the format is

consistent with the format used by the Xilinx tool chain. Secondly, since this is the pre-

ferred format, user constraints files already exist for the majority of hardware platforms.

Although the UCF parser can extract IOB behavior commands, such as skew rate and

drive strength, only the nets to pin mapping commands are considered in the route deter-

mination process. The format of the net to pin mapping is shown below in Figure 6.5.

The code features an excerpt from the Slaac1V board’s UCF file in which SRAM 1’s

control signals are mapped to pin locations. Net names are preceded by “net” and the

pin location identifiers are preceded by “loc=”. In this case, the first line gives a pin loca-

tion of C30 for the “XP_MEM1_CE_N” net.

Slaac1V memory 1 control signals

net XP_MEM1_CE_N loc=C30;
net XP_MEM1_LD_N loc=A31;
net XP_MEM1_WE_N loc=B30;

Figure 6.5: Excerpt from Slaac1V UCF file

58

6.3 Interfacing to the SLAAC1V-Board

The DWT2D core was tested using the Slaac1V board. The bitstream containing the

wavelet transform system was loaded and run on the X2 XCV1000 processing element.

The Slaac1V board provided four 256k SRAMs per processing element, providing

enough storage for a 512512 × image. The core implementation required that data be

read from one memory, while filter output was written to a second memory during a sin-

gle clock cycle. As a result, the DWT2D core required access to two of the processing

element’s four 25632 × k SRAMs. The core required direct interfacing to the physical

memory data, address, and control signals for both memories. SRAM zero was initially

configured to provide input to the core, while SRAM one was configured for output.

Sections 6.3.1 and 6.3.2 detail how the core was interfaced to the physical SRAM memo-

ries, using the JBits RTR I/O classes.

6.3.1 The SRAM Core

An SRAM RTP core was created using the core template specification to hide the

Slaac1V SRAM hardware interfacing details from the designer. Using the RTR JBits I/O

calls provided by the Board class, the SRAM core attaches the appropriate SRAM control,

address, and data signals to their respective JRoute IOB Pins, and configures the neces-

sary IOB resources for either input or output depending on the signal. Because signals

are mapped to IOB resources based on their name attribute, the physical targeted SRAM

is selected by the choice of memory signal names. As a result, the core provides a gen-

eral abstraction for defining interfaces to any SRAM available to a particular processing

element. Figure 6.6 shows the declaration of SRAM address and data signals for SRAMs

zero and one on the Slaac1V board. Note that the two SRAMs are distinguished by the

choice of names; in this case “XP_MEM0_” designated SRAM memory one, while

“XP_MEM1_” designated SRAM memory two. These signal names correspond to the

SRAM net names provided in the Slaac1V constraints file.

59

/* define memory signals for Slaac1V X2 memories 0 and 1 */

Bus addr[] = new Bus[2];
Bus data[] = new Bus[2];

/* memory address */

addr[0] = new Bus("XP_MEM0_ADDR", null, 18); /* SRAM 0 */
addr[1] = new Bus("XP_MEM1_ADDR", null, 18); /* SRAM 1 */

/* memory data */

data[0] = new Bus("XP_MEM0_DATA", null, 12); /* SRAM 0 */
data[1] = new Bus("XP_MEM1_DATA", null, 12); /* SRAM 1 */

Figure 6.6: Code showing how Slaac1V SRAMs are distinguished through signal names.

The external signals that connect to the port interface of a SRAM core are defined in a

separate SRAMProperties class. An SRAMProperties object is passed to the SRAM core

constructor, thereby allowing external signals to be associated with ports. Figure 6.7

shows the signals and port interface of the SRAM core. This class includes methods for

setting and retrieving standard memory signals, including chip enable, write enable, ad-

dress, and data I/O signals. Because the data direction is known for each signal field of

the SRAMProperties class, the IOBs are configured within the SRAM.implement() method

using Board calls, thereby hiding the configuration calls away from the user.

Figure 6.7: SRAM RTP core port interface

DATA_OUT

 CE WE

SRAM CORE

DATA_IN

ADDR

CLK

60

6.3.2 The SlaacWavelet Class

The SlaacWavelet class contains the code necessary for generating a complete two-

dimensional DWT system from a null Virtex bitstream. By defining the appropriate

cores and signal interconnects, the class interfaces the DWT2D core to two SRAM

memories on the Slaac1V board. This section describes how the DWT2D core is inter-

faced to the Slaac1V hardware.

Several RTP cores are required for the system implementation. A DWT2D core performs

the forward transform, and two SRAM cores provide memory interfaces that connect to

the transform core. A Slaac1VBoard class provides an abstraction of the physical

Slaac1V platform. Signals are defined that attach to the control, data, and address lines

of the two SRAM cores. The name attributes given to these signals corresponds to the net

names used in the Slaac1V users constraints file. This allows the nets to map to the cor-

rect IOBs on the FPGA device.

The memory signals are passed to the DWT2D constructor and define core I/O. The sig-

nals are associated with the physical SRAM signals by instancing and defining two

SRAMProperties classes. The SRAMProperites instances, along with the Slaac1V Board

instance define the two SRAM core external signal connections. Implementing the SRAM

cores associates the memory signals with I/O cores defined on the Slaac1VBoard object.

After these cores are implemented, the Slaac1VBoard is implemented, thereby attaching

JRoute Pins to each signal, and also configuring the appropriate IOBs for input or output.

The memory signal connections are implemented in the bitstream using separate Bit-

stream.connect() calls for each signal.

6.4 Summary

Two SRAMs are required by the DWT2D core to store image data and transform output.

Access to these memories is obtained by routing the core directly to the FPGA IOBs that

connect to the physical Slaac1V SRAM signals. It is desirable to perform all IOB inter-

61

facing and configurations using JBits, rather than using an I/O framework generated by

an additional tool flow. To meet this goal, a set of classes was developed that automated

the interfacing of a top-level RTP core to surrounding FPGA IOB resources. These

classes were developed as a coauthored research effort. An additional SRAM core pro-

vides a software abstraction of the Slaac1V SRAM and was used in conjunction with the

JBits RTR I/O classes to interface the DWT2D core to two SRAM banks on the Slaac1V

board.

62

Chapter 7

Discussion of Operation

Performing the discrete wavelet transform on the Slaac1V board required the develop-

ment of a host application to control the FPGA. This chapter introduces the RunWavelet

host application and describes its responsibilities in the PC-FPGA shared processing en-

vironment. The operation of the RunWavelet application is discussed, including the pa-

rameters that define its functionality. A brief discussion is given on the two output files

generated by the host application.

7.1 The Host Application

The DWT2D core was executed in a PC-FPGA shared processing environment. In this

case, a host PC controlled the operation of the Slaac1V board. Control of the board was

administered through a series of calls to Slaac1V API functions. The Slaac1V API in-

cluded functions for writing and retrieving data from the Slaac1V memories, as well as

loading and reading device configurations. The API also provided functions for perform-

ing partial reconfiguration of the FPGA processing elements. These function calls were

implemented inside of the host application, RunWavelet. The RunWavlet application was

written in C++. This application was responsible for loading configurations onto the cor-

rect processing element, executing the DWT, and storing the output to file.

63

7.2 Parameterization

Several parameters defined the operation of the RunWavelet application. A bitmap file

identifier specified the image to be transformed. Only bitmap files were supported by the

application. The MS bitmap format was acceptable since it provided an uncompressed

representation of the image data. The host application generated two files containing dif-

ferent representations of the transform output. These output files were specified by two

filename string parameters. The operating frequency of the Slaac1V’s programmable

clock was specified by a clock-frequency value in MHz. Finally, the number of DWT

decomposition levels to be performed was determined by an application parameter.

7.3 Operation

The RunWavelet application began by creating a Slaac1VBoard object. Communication

with the board via the host code occurred through method calls to the Slaac1VBoard in-

stance. An initialization call readied the board for use. The Slaac1V programmable

clock, PCLK, was stopped before loading the configuration bitstream onto the FPGA.

The bitstream containing the DWT2D core and additional I/O interfacing was then loaded

on processing element X2. An assertion of the global set/reset (GSR) signal placed the

bitstream in the initial state, and ensured all register values were cleared.

The host program loaded an image into memory before executing the transform. The im-

age coefficients were read from a bitmap file and stored in the SRAM 0 of the Slaac1V’s

processing element X2. Functions were written in C++ to load and save MS bitmap

files. Only 256 grayscale images were used in the testing of the transform core. Each

pixel value was masked with 0xff to obtain the corresponding eight-bit grayscale value as

it was read from the input file.

After loading the image, the transform was ready for execution. The host application de-

termined the appropriate number of cycles to step the PE, based on the specified number

of DWT decomposition levels. Additional clock steps were included to compensate for

64

the latency generated by the filters and SRAM. The clock was then run for the corre-

sponding number of clock cycles.

After executing the transform, the host application recorded the core output into two

separate files using different formats. In the first format, the output was saved as a bit-

map image representation. This allowed easy viewing of the transformed output using

standard graphics packages. Saving the output in bitmap format required scaling the co-

efficients to fit in the range of 0 to 255, however. Because the scaling process was lossy,

the data stored in bitmap file could not be used in the inverse transform. The second out-

put format was a raw, unscaled integer dump of the transformed image coefficients. The

coefficients in this file were used for in the reconstruction process.

65

Chapter 8

Results and Analysis

8.1 Overview

This chapter presents the results and findings of this research. The performance of the

DWT2D core is evaluated using several performance metrics. These metrics include

speed of operation, time required for reconfiguration, and resource consumption. The

speed of the DWT2D core is compared and contrasted against other wavelet transform

implementations. The maximum clock speeds of FIR filter cores with varied resolution

and number of taps are given. The chapter also provides the reconfiguration times ob-

tained using partial reconfiguration. Bitstream generation and reconfiguration times were

obtained using JDK1.2.2 with the HotSpot Performance Engine under Windows 2000.

The machine used was a one GHz Pentium III with one gigabyte of RAM.

8.2 Validation

A bitstream was generated using the SlaacWavelet Java application. The DWT2D core

was parameterized with 12-bit filters using the orthogonal Daubechies’s N=3 wavelet fil-

ter coefficients. The filters used eight bits of coefficient precision. The bitstream was

executed using the RunWavelet application. A three-level DWT decomposition was per-

formed on the peppers grayscale image. Figure 8.1 shows a three-dimensional plot of the

66

pixel intensity values for the untransformed peppers image. It is important to note that

the image energy is distributed across the pixel array. With this in mind, the output of the

DWT2D core was observed after the DWT was executed.

Figure 8.1: Plot showing the pixel values for the original peppers grayscale image

Figure 8.2 shows a three-dimensional plot of the output generated by the RunWavelet ap-

plication after a three-level DWT transform of the peppers image. Note that the x and y

axis of the plot correspond to the rows and columns of the 512512 × output array. The

graph shows that the signal energy from the original image has been decorrelated and

then concentrated in a much smaller region corresponding to upper-left sub image as ex-

pected. This concentration of signal energy shows how large compression ratios can be

achieved by removing the extraneous information contained in the less-important sub-

bands.

67

Figure 8.2: Plot showing transformed output resulting from a three-level DWT decompo-

sition of the peppers image using Daubechies’s N=3 wavelet.

8.3 DWT2D Results

Table 2 shows the performance statistics of the DWT2D core using 12-bit high-pass and

low-pass filters for a 512512 × grayscale image using several common wavelet filter

configurations. The first column specifies the number of filter taps in terms of l/h, where

l represents the number of low-pass filter taps, and h represents the number of high-pass

filter taps. The 5/3 and 9/7 configurations correspond to the lossless and lossy JPEG200

wavelet filters, respectively. The orthogonal Haar wavelet filters defined the 2/2

configuration. The 6/6 filter bank used the Daubechies’s N=3 orthogonal, compactly

supported wavelet filters. The second column of Table 2 shows the maximum clock

speed of the DWT2D core for each filter bank configuration. The JBits to Bitstream

column provides the time interval required to run the SlaacWavelet Java application

68

the time interval required to run the SlaacWavelet Java application class, which includes

reading a null bitstream, instantiating a DWT2D core, routing the core, making the neces-

sary bitstream modifications, and writing the modified bitstream to a file. It does not,

however, include routing to IOBs. Inclusion of the IOB routing calls required an addi-

tional 23.554 seconds to execute. The maximum clock frequency, therefore, is based on

routing delays internal to the core, and does not include any delays incurred from external

interfacing. The Filter Configuration column gives the time required to implement both

FIR filter cores. The CLBs column indicates how many CLBs resources were consumed

by each DWT2D core configuration.

Table 2: Performance results for the DWT2D core, including maximum clock frequency,

time to configure a null bitstream, filter bank instantiation time, and CLBs consumed by

the core. Clock frequency values were computed using an XCV1000 device with a speed

grade of six as parameters for M3.1 timing analyzer.

From Table 2 it is apparent that the time it takes to instantiate the filter bank is a small

portion of the total time it takes to execute the SlaacWavelet application. The 6/6 12-bit

filter bank consumes 480 CLBs. The 6/6 filter bank configuration, therefore represents

80 percent of the total core resources (600), however instantiation of the core only takes

25.7 percent of the total time required to generate the bitstream. This comparison shows

that there is significant overhead outside of the filter core instantiations. Figure 8.3 com-

pares the amount of time needed by different processes (i.e. time required for a bitstream

read, time needed to implement the DWT2D core, etc.) relative to the total time required

for the SlaacWavelet application to run.

Filters Frequency (MHz) JBits to Bitstream (sec) Filter Configuration (sec) CLBs
5/3 84.154 12.978 2.524 450
2/2 84.154 11.909 1.242 280
9/7 84.154 15.642 5.258 770
6/6 84.154 13.910 3.575 600

69

SlaacWavelet

11.07%7.36%
1.15%

0.14%

80.27%

Bitstream read

DWT2D

GCLK routing

Bitstream write

Other

Figure 8.3: Comparison of the times required for several processes to execute within the

SlaacWavelet application. The application required a total of 13.91 seconds using the

DWT2D core with the 6/6 filter bank configuration.

As shown in Figure 8.3, the time required to read the configuration is significantly longer

than the time required to write the modified bitstream to file. It is important to note the

implication of this comparison. If several reconfigurations are required during the dura-

tion of an application’s lifetime, the associated reconfiguration times can be reduced if

the bitstream is only read once and cached in memory. Because the bitstream write times

are small, multiple bitstream writes will not significantly impact the reconfiguration time.

Figure 8.3 shows that implementing the DWT2D core required 80.27 percent of the

SlaacWavelet’s execution time. Figure 8.4 provides a similar comparison of the required

process times within the DWT2D core’s implement() method.

DWT2D

66.82%

31.84%

0.81%

0.54%

Adress generators

Filter bank

Internal routing

Other

Figure 8.4: Comparison of the times required for several processes to execute within the

DWT2D implement() method. The method required a total of 11.17 seconds using a 6/6

filter bank parameter.

70

Figure 8.4 shows the time required to implement the filter bank is 31.84 percent of the

total DWT2D implement() time. A change in wavelet requires only a reconfiguration of

the filter bank, and the rest of the design can remain static assuming the size of the filters

remains constant. As a result, the time associated with implementing the address genera-

tor cores can be eliminated, since the logic remains static between reconfigurations. Par-

tial reconfiguration can be used to configure only the dynamic part of the design, and fur-

ther reduce reconfiguration times. This concept is elaborated upon in Section 8.4. The

times incurred by internal core routing, relative to the core implementation time, are

shown to be negligible.

The maximum clock frequency of the DWT2D core was determined to be 84.1 MHz.

This number was obtained by using the XDL core output option in JBits. The XDL file

was converted to NCD format and then run through Xilinx Foundation Series 3.1 Timing

Analyzer tool. At this frequency, the core had a throughput of 1.01 Gbps using 12-bit I/O

buses. A one-level transform of a 512512 × image, therefore, required 6.23 msec. Table

3 compares the DWT2D one-level transform period of a 512512 × image against other

DWT implementations.

Table 3: Comparison of one-level DWT transform period for a 512512 × image

Several assumptions were made to make the comparison of transform periods. It was as-

sumed that the StarCore processor operates at 300Mhz, as stated in [36]. It takes ap-

proximately 510,000 cycles to transform a 128128 × pixel tile. At 300Mhz, this gives a

period of 1.7 msec for a 128128 × pixel tile. A 512512 × image has sixteen 128128 ×

tiles, and therefore requires 27.2 msec. The vertical wavelet transform function for the

TMS320C62x library requires 4144 cycles for 512 columns. The horizontal wavelet

transform function requires 2058 cycles. With 512 rows, this gives the total number of

cycles required to perform a one-level DWT as 512 x 2058 (row transform) + 512 x 4144

 Benkrid et al [39] DWT2D TMS320C62x [37] StarCore [36]
Period (msec) 3.50 6.23 15.8 27.2

71

(column transform) = 3175424 cycles. Assuming a clock frequency of 200 MHz, this

gives a transform period of 15.8 msec.

As shown in Table 3, the Benkrid et al design performs a one-level DWT 78 percent

faster than the RTR DWT2D core. This is a reasonable increase since the Benkrid et al

design uses a non-folded architecture with a period of only N2 clock cycles, where N

represents the height and width of the image in pixels. Because the RTR DWT2D uses

the direct approach in which the filter bank is reused for row and column processing, the

core requires 2N2 cycles. The Benkrid et al design using a biorthogonal 9/7 configuration

occupied 4720 Virtex-E slices. In contrast the DWT2D core using the 9/7 configuration

occupied approximately 1540 Virtex slices. The Benkrid et al design uses BRAM to

store intermediate data, while the DWT2D core requires an additional memory of size N2.

The RTR DWT2D core outperforms both the DWT software implementations for the

StarCore and TMS320C6x series processors.

Table 4 lists the maximum clock speeds and number of required CLBs for FIRFilter

cores with three different resolutions and varying number of taps. These taps correspond

to the wavelet filter configurations given in Table 2. When compared to the frequencies

listed given in Table 2, it is apparent the bottleneck occurs in the address generation

logic. Further investigation using the M3.1 timing analyzer showed the critical path ex-

isting in the output address generation logic.

Table 4: Maximum FIRFilter core frequencies and CLBs used for different filter resolu-

tions with varying number of taps. Clock frequency values were computed using an

XCV1000 device with a speed grade of six as parameters for the M3.1 timing analyzer.

 8-bit 12-bit 16-bit
Taps Freq. (MHz) CLBs Freq. (MHz) CLBs Freq. (MHz) CLBs

2 186.71 40 176.44 80 167.67 108
3 177.34 64 172.98 120 166.83 168
5 172.06 104 164.88 210 153.35 276
6 166.81 120 157.36 240 152.86 324
7 171.67 144 151.76 280 145.90 384
9 166.42 192 147.51 370 136.95 504

72

8.4 Partial Reconfiguration Results

It was desirable to further reduce the reconfiguration times listed in Figure 8.3, as these

times were still considerably lengthy. The filter reconfiguration times reported in Figure

8.3 involved a complete instantiation of the filter bank, including core implementation

and internal routing. There was significant overhead associated with this approach. If

only the filter coefficients were modified, however, the filter reconfiguration times could

be reduced significantly. The reduced processing time advantages gained through recon-

figuration of the coefficients were extended to the bitstream level using the JBits JRTR

partial reconfiguration engine to produce a partial bitstream containing only the frames

that have been altered during the reconfiguration process [42].

Given the location of the DWT2D core in the FPGA CLB grid, along with a set of new

high-pass and low-pass filter coefficients, the JBits application DWTReconfig reconfig-

ured the filter coefficients and made the necessary JRTR calls to produce the partial bit-

stream. Modification of the filter coefficients involved changing the KCM constant val-

ues. DWTReconfig mimicked the placement behavior used by the FIR filter core to de-

termine the location of each KCM core in the filter. New values were then computed for

each ROM within a given KCM, and the underlying LUT arrays were modified accord-

ingly using a series of JBits.set() calls. Table 5 shows the time required to perform a re-

configuration of both FIR filters, the time required to write the partial bitstream file, and

the size of the resulting partial bitstream under different filter bank configurations. For

each configuration, the number of taps in the high-pass and low-pass filters was set equal

to balance latency.

73

Table 5: Times required for filter reconfiguration and writing partial bitstreams for filter

banks of varying number of taps. The partial bitstream file size is also reported for each

configuration.

It is interesting to note that the reconfiguration times remained fairly constant between

the four configurations. These times are a significant improvement on the times reported

in Figure 8.3. All four partial bitstream files sizes were smaller when compared to the

original DWT2D XCV10000 bitstream size of 766,040 bytes. The partial bitstream size

decreased with the filter size as well. This is logical, since the JRTR only writes frames

to the partial bitstream file that have been altered since the last reconfiguration.

 9/9 6/6 5/5 3/3
Filter Reconfiguration 0.122 sec 0.120 sec 0.121 sec 0.120 sec
Partial Bitstream Write 0.071 sec 0.060 sec 0.050 sec 0.040 sec
Partial Bitstream Size 72,234 bytes 48,185 bytes 40,169 bytes 24,137 bytes

74

Chapter 9

Conclusions

9.1 Summary

This thesis documented the design of a run-time reconfigurable two-dimensional discrete

wavelet transform core for use on Xilinx Virtex FPGAs. The implementation, simula-

tion, debugging, and interfacing design phases were discussed. The design was imple-

mented entirely using the JBits API. This section briefly summarizes the content of each

chapter.

In Chapter 1, the concept of RTR was introduced in relation to FPGA designs. Wavelets

were discussed in terms of their advantages over traditional transform methodologies and

their suitability for image compression and other applications. Following this discussion,

the chapter motivated the application of RTR techniques to the wavelet transform. The

concept of the shared processing environment was presented to show how an FPGA

could function as a coprocessor under the control of a host PC running a JBits applica-

tion. The JBits environment was presented as an enabler of RTR FPGA designs. The

chapter concluded with a discussion of thesis contributions.

Background information was presented in Chapter 2. The JBits environment was further

elaborated upon, along with an explanation of the RTP core specification and JBits IOB

75

resources. The DWT was explained in terms of Mallat’s pyramid algorithm and its de-

pendency on filter banks. The Slaac1V specifications were provided with a diagram il-

lustrating the system components. A brief survey of existing DWT implementations

ended the chapter.

The purpose and composition of the DWT core library was presented in Chapter 3. The

overall core hierarchy was illustrated with a figure. The functionality and implementa-

tion of each core designed for this research was described.

Chapter 4 presented the implementation of the DWT2D core. The chapter began with a

design overview, including a system-level diagram of the core. The higher abstraction

cores were discussed, including the input and output address generators and FIR filter.

The simulation and debugging design phases were discussed in Chapter 5. A Java-based

software implementation of the DWT was used for simulation. By modeling the Java

classes after hardware components, the simulator also provided a framework for the core-

based hardware design. The chapter discussed bitstream level simulation using the

BoardScope graphical debugger. Bitstream level test benches were distinguished from

traditional HDL test benches.

Chapter 6 described the process in which the DWT2D core was interfaced to the Slaac1V

board. The chapter began with a discussion of the need for RTR I/O in JBits designs. A

set of JBits RTR I/O classes was designed to automate the process of interfacing a top-

level RTP core to FPGA IOBs. Each RTR I/O class is discussed and several code ex-

cerpts are provided to illustrate key concepts. The chapter continued with interfacing

techniques specific to the Slaac1V board, including a discussion on the SRAM core and

SlaacWavelet class.

The operation of the wavelet transform system was described in Chapter 7. This included

an explanation of how the host program controlled the execution of the DWT2D core on

76

the FPGA. The technique used to bring image data in and out of the system was also

mentioned.

Chapter 8 discussed the results of the research. The DWT2D core was found to have a

maximum clock speed of 84.154 MHz. This implementation under-performed the Benk-

rid et al FPGA DWT design, but outperformed two DSP implementations as expected.

The speeds of several filter resolutions with varying number of taps were presented, with

the slowest filter, a 16-bit filter with nine taps, running at 135.95 MHz. The advantages

of using partial reconfiguration were also presented.

9.2 Future Work

Although the research accomplished the stated goals, there remains room for improve-

ment and exploration. The structural core-based HDL provided by the RTP core specifi-

cation is not well suited for complex control logic. As a result, the current DWT2D core

is based on a folded architecture where filters are reused in order to keep control logic

relatively simple. This was an important issue that was considered during the initial

stages of design. Although this approach is very straightforward, the folded architecture

is wasteful in terms of memory usage and number of operations required per transform

period. If the core were going to be used in a commercial application, it would require a

redesign that uses a more efficient architecture [6,7,39]. Exploiting parallelism in filters

relying on a single data bus requires arbitration, which is difficult to implement without

behavioral synthesis.

Another issue with the current design is the lack of a row-extension scheme. Again, this

was left out to minimize the complexity of the control logic. This lack of extension

scheme invalidates the border pixels of the transformed image. Implementing symmetric

reflection at the boundaries would correct the border errors.

Because the wavelet transform design is implemented as a core, it can be easily inte-

grated with other components. The core is particularly well suited for image compression

77

applications. In this case, a quantizer core may be added to the DWT2D core, along with

an entropy coder to produce an image compression system. With the current research

being done to integrate JBits with other design flows, the DWT2D core could be inte-

grated with systems generated in other languages.

9.3 Conclusions

The majority of goals defined at the start of the research were completed. A functional

RTR wavelet transform core was created and tested on the Slaac1V PCI-accelerator

board. The core illustrates how RTP cores can be used in a hierarchical manner to create

a high-level system with relatively simple control logic. The design was successfully in-

terfaced to two SRAM banks and achieved a high data throughput rate without using

other tools.

Although a simple design approach was used, the speed of the core was reasonable when

compared against other DWT implementations. A redesign of the control logic could

possibly eliminate the critical path, and increase the design speed dramatically.

The reconfiguration times achieved through a complete bitstream reconfiguration are still

too lengthy for most applications. Using constant folding to change filter coefficients,

and partial reconfiguration to update the bitstream provides more reasonable reconfigura-

tion times, however.

The RTR DWT design distinguishes itself from other designs in two regards. The

DWT2D core is one of the first FPGA designs with a dependency on external I/O to be

developed without any reliance on the traditional vendor tools. Previously, designs using

I/O required interfacing to a framework generated externally. Secondly, the design offers

a wavelet transform core with a degree of parameterization and reconfigurability that is

usually available only in software implementations.

78

Bibliography

[1] Information Sciences Institute – East, SLAAC Project Page, World Wide Web page,

http://www.east.isi.edu/projects/SLAAC.

[2] S. Guccione and D. Levi, “XBI: A Java-Based Interface to FPGA Hardware,” Configurable

Computing Technology and its uses in High Performance Computing, DSP and Systems

Engineering, Proc. SPIE Photonics East, SPIE – The International Society for Optical En-

gineering, Bellingham, WA, November 1998.

[3] S. Guccione and D. Levi, “Run-Time Parameterizable Cores,” Proceedings of the 9th Inter-

national Workshop on Field Programmable Logic and Applications, Lecture Notes in

Computer Science 1673, pp. 215-222, 1999.

[4] J. Proakis and D. Manolakis, Digital Signal Processing. Prentice Hall 1996.

[5] Joint Photographic Experts Group, World Wide Web page,

http://www.jpeg.org/JPEG2000.htm, 2001.

[6] C. Chakrabarti and C. Mumford, “Efficient Realizations of Encoders and Decoders Based

on the 2-D Discrete Wavelet Transform,” IEEE Trans. of VLSI Systems, pp. 289-298, 1999.

[7] C. Chakrabarti, M. Vishwanath, and R. Owens, “Architectures for Wavelet Transforms: A

Survey,” J. of VLSI Signal Processing Systems for Signal Image and Video Technology, pp.

171-192, Nov. 1996.

79

[8] I. Daubechies, “The Wavelet Transform, Time-Frequency Localization and Signal Analy-

sis,” IEEE Trans. Inform. Theory, vol. 36, pp. 961-1005, Sept. 1990.

[9] A. Croisier, D. Esteban, and C. Galand, “Perfect Channel Splitting by Use of Interpola-

tion/Decimation/Tree Decomposition Techniques,” International Conference of Informa-

tion Science and Systems, 1976.

[10] I. Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics,

Philadelphia, Pennsylvania, pp. 195, 1992.

[11] K. Chapman, “Fast Integer Multipliers Fit in FPGAs,” Electronic Design News, May 12,

1994.

[12] VirtexTM-E 1.8 V Field Programmable Gate Arrays – Preliminary Product Specification,

http://www.xilinx.com/partinfo/ds022.pdf, DS022 (v1.9) February 12, 2001.

[13] E. Keller, "Dynamic Circuit Specialization of a CORDIC Processor," Reconfigurable

Technology: FPGAs for Computing and Applications II, Proc. SPIE Photonics East, SPIE -

The International Society for Optical Engineering, November 7-8, 2000.

[14] E. Lechner and S. Guccione, “The Java Environment for Reconfigurable Computing,”

Field-Programmable Logic and Applications, pp. 284-293, Springer-Verlag, Berlin, Sep-

tember 1997. Proc. of the 7th International Workshop on Field-Programmable Logic and

Applications, FPL 1997.

[15] S. Nisbet and S. Guccione, “The XC6200DS Development System,” Field-Programmable

Logic and Applications, pp. 61-68, Springer-Verlag, Berlin, September 1997, Proceedings

of the 7th International Workshop on Field-Programmable Logic and Applications, FPL

1997.

[16] G. Knittel, “A PCI-Compatible FPGA-Coprocessor for 2D/3D Image Processing,” IEEE

Symposium on FPGAs for Custom Computing Machines, pp. 136-145, Los Alamitos, CA,

April 1996, IEEE Computer Society Press.

80

[17] G. Gent, S. Smith, and R. Haviland, “An FPGA-Based Custom Coprocessor for Automatic

Image Segmentation Applications,” IEEE Workshop on FPGAs for Custom Computing

Machines, pp. 172-179, Los Alamitos, CA, April 1994, IEEE Computer Society Press.

[18] C. Patterson, “High Performance DES Encryption in Virtex FPGAs using JBits,” IEEE

Symposium on FPGAs for Custom Computing Machines, Napa Valley, CA, April 2000.

[19] S. Saha and R. Vemuri, “Adaptive Wavelet Coding of Multimedia Images, “ In Proc. ACM

Multimedia, Orlando, Florida 1999.

[20] S. McMillan, B. Blodget, and S. Guccione, “VirtexDS: A Device Simulator for Virtex,”

Reconfigurable Technology: FPGAs for Computing and Applications II, Proc. SPIE 4212,

pp. 50-56, Bellingham, WA, November 2000, SPIE – The International Society for Optical

Engineering. November 2000.

[21] P. Sundararajan and S. Guccione, “XVPI: A Portable Hardware / Software Interface for

Virtex,” Reconfigurable Technology: FPGAs for Computing and Applications II, Proc.

SPIE 4212, pp. 90-95, Bellingham, WA, November 2000, SPIE – The International Society

for Optical Engineering. November 2000.

[22] E. Keller, “JRoute: A Run-Time Routing API for FPGA Hardware,” 7th Reconfigurable

Architectures Workshop, Lecture Notes in Computer Science 1800, pp. 874-881, Cancun,

Mexico, May 2000.

[23] Xilinx Application Note: Virtex Series, Virtex Series Configuration Architecture User

Guide, XAPP151 (v1.4), August 3, 2000.

[24] S. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet Representa-

tion,” IEEE Trans. Pattern Analysis and Mach. Intell, 11(7), pp. 674-693, July 1989.

[25] S. Mallat, “Multifrequency Channel Decompositions of Images and Wavelet Models,”

IEEE Trans. Acoustics Speech and Sig. Proc, 37(12), pp. 2091-2110, Dec 1989.

81

[26] S. Guccione and D. Levi, “The Advantages of Run-Time Reconfiguration.” Configurable

Computing Technology and its Uses in High Performance Computing, DSP and Systems

Engineering, Proc. SPIE Photonics East, SPIE - The International Society for Optical Engi-

neering, pp. 87-92, Bellingham, WA, September 1999.

[27] F. de Dinechin and V. Lefvre, “Constant Multipliers for FPGAs,” in Second International

Workshop on Engineering of Reconfigurable Hardware/Software Objects (ENREGLE

2000), Las Vegas, Nevada, June 2000.

[28] Xilinx, Inc., World Wide Web page, http:///www.xilinx.com, 2001.

[29] J. Hess, D. Lee, S. Harper, M. Jones, and P. Athanas, "Implementation and Evaluation of a

Prototype Reconfigurable Router," IEEE Symposium on FPGAs for Custom Configurable

Computing Machines, Napa, California, April 1999.

[30] R. Bittner Jr. and P. Athanas, “Wormhole Run-Time Reconfiguration,” in Proc. 5th Interna-

tional Symposium on Field Programmable Gate Arrays, Monterey, California, 1997.

[31] J. Eldredge and B. Hutchings, “Run-Time Reconfiguration: A Method for Enhancing the

Functional Density of SRAM-Based FPGAs,” in Journal of VLSI Signal Processing, Vol-

ume 12, 1996.

[32] S. Guccione, D. Levi, and D. Downs, “A Reconfigurable Content Addressable Memory,”

Parallel and Distributed Processing, Springer-Verlag, Berlin, May 2000, Proceedings of

the 15th International Parallel and Distributed Processing Workshops, IPDPS 2000.

[33] JPEG Frequency Asked Questions, World Wide Web page, http://www.faqs.org/faqs/jpeg-

faq/, 2001.

[34] Overview of the MPEG-4 Standard, World Wide Web page,

http://www.cselt.it/mpeg/standards/mpeg-4/mpeg-4.htm, 2001.

[35] The MathWorks, Inc., World Wide Web page, http://www.mathworks.com, 2001.

82

[36] S. Twelves, M. Wu, and A. White, JPEG2000 Wavelet Transform Using StarCore: Appli-

cation Note, http://www.motorola.com, 2001.

[37] Texas Instruments, Inc., TMS32062x Image/Video Processing Library Programmer’s Ref-

erence, March 2000.

[38] Analog Devices, Inc., World Wide Web page, http://www.analog.com, 2001.

[39] A. Benkrid, D. Crookes, and K. Benkrid, “Design and Implementation of a Generic 2-D

Biorthogonal Discrete Wavelet Transform on an FPGA,” IEEE Symposium on FPGAs for

Custom Computing Machines, Rohnert Park, CA, April, 2001.

[40] C. Dick, B. Turney, and A. Reza, “Configurable Logic for Digital Signal Processing,” Xil-

inx Application Note: Other FPGA Applications, April 28, 1999.

[41] P. Wasilewski, “Two-Dimensional Discrete Wavelet-transform implementation in FPGA

device for real-time image processing,” Wavelet Applications in Signal and Image Process-

ing V, Proc. SPIE Vol. 3169, SPIE – The International Society for Optical Engineering,

Bellingham, WA, August 1997.

[42] S. McMillan and S. Guccione, “Partial Run-Time Reconfiguration Using JRTR,” Field-

Programmable Logic and Applications, pp. 352-360, Proc. of the 10th International Work-

shop on Field-Programmable Logic and Applications, FPL 2000.

[43] J. Ballagh, P. Athanas, and E. Keller, “Java Debug Hardware Models using JBits,” 8th Re-

configurable Architectures Workshop, San Francisco, CA, April 27, 2001.

83

Vita

Jonathan Ballagh was born on August 19th 1977 in historic Leesburg, Virginia. He began

his collegiate studies at Virginia Tech in the fall of 1995 as a Computer Science major.

After spending his freshmen year contemplating future career goals, he decided to switch

into engineering. During his undergraduate studies, Jonathan spent three summers work-

ing as an intern at E.I.T. designing and programming a variety of test fixtures for printed

circuit boards. He completed his undergraduate studies in May 1999 and graduated with

a B.S. degree in Computer Engineering. Following graduation, Jonathan remained at

Virginia Tech in pursuit of a master’s degree in Electrical Engineering. His curiosity and

interest in FPGAs led him to the Configurable Computing Laboratory, where he worked

primarily on run-time reconfigurable tools and applications for FPGA based hardware

platforms. Jonathan spent the summer of 2000 working as an intern at Xilinx in Boulder,

Colorado. Upon completion of his M.S. degree in Electrical Engineering, Jonathan plans

to return to Colorado, where he’ll begin his new job at Xilinx.

