
GUARANTEEING THE DIVERSITY OF NUMBERGENERATORSADI SHAMIR AND BOAZ TSABANAbstrat. A major problem in using iterative number generatorsof the form xi = f(xi�1) is that they an enter unexpetedly shortyles. This is hard to analyze when the generator is designed, hardto detet in real time when the generator is used, and an havedevastating ryptanalyti impliations. In this paper we de�nea measure of seurity, alled sequene diversity, whih generalizesthe notion of yle-length for non-iterative generators. We thenintrodue the lass of ounter assisted generators, and show howto turn any iterative generator (even a bad one designed or seededby an adversary) into a ounter assisted generator with a provablyhigh diversity, without reduing the quality of generators whihare already ryptographially strong.
1. IntrodutionIn this paper we onsider the problem of generating long rypto-graphially seure sequenes by iterative number generators whih startat some seed value x0 = s, and extend it by omputing xi = f(xi�1)where f is some funtion. The ith output of the generator is a (typi-ally shorter) value yi = g(xi) derived from the internal state by someoutput funtion g (Figure 1). If f is a seret keyed funtion, then gmay be the identity.
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2 ADI SHAMIR AND BOAZ TSABANA major appliation of number generators is to enrypt leartextsby xoring them with the generated outputs. In this ase, the seed sis a seret key whih is shared by the ommuniating parties, but isunknown to the eavesdropping adversary.Sine the state spae is �nite, the sequene of internal states xi willeventually beome periodi with some period p, i.e., xi = xi+p forall i larger than some i0. Any yling of the state sequene auses ayling of the output sequene with period at most p. A partiularlyworrisome problem is the possibility that i0 and p may be unexpetedlysmall, and therefore the yling point i0 + p is atually ahieved. Thisan happen even in very omplex generators. An interesting exampleis Knuth's \Super-random" number generator (AlgorithmK) [9, x3.1℄,whih onverges rapidly to a �xed point (that is, i0 is very small, andp = 1).If the yling point i0 + p is ahieved, then the xor of the ith andi+pth iphertexts is equal to the xor of the ith and i+pth leartexts,for all i � i0. If the leartexts have a suÆiently high redundany,the ryptanalyst an detet the yling by notiing the non-uniformstatistis of suh xor's, and then reover the atual leartexts fromtheir known pairwise xor's. Even if the leartexts have no redun-dany, knowledge of some leartexts will make it possible to �nd otherleartexts enrypted with the same repeated values.1.1. Partial solutions.1.1.1. Online monitoring. A possible solution to this problem is tomonitor eah exeution in real time. If a partiular seed leads to earlyyling, the ryptographi operation is stopped and the seed is re-plaed. However, this an be very disruptive if the exhange of newseeds is time onsuming or diÆult to arrange. Note further that realtime detetion of yling behavior using hash tables requires a verylarge memory, whereas other methods suh as Floyd's two pointer y-le detetion algorithm (see, e.g., [9, p. 7℄) are not guaranteed to detetyles as soon as they are entered.1.1.2. Experimental testings. The designer of the generator an test itsbehavior by applying f a limited number of times to a limited numberof random seeds (see [2℄). However, suh testing annot be exhaustive,and thus even if no yling is ever deteted in these tests, the next seedor the next step an lead to a yling.1.1.3. Pseudorandom funtions. Pseudorandom funtions f : X ! Xare funtions whih are hosen from the spae of all possible funtionsg : X ! X with a relatively low-entropy distribution, but whih are



GENERATORS WITH GUARANTEED DIVERSITY 3diÆult to tell apart from truly random funtions (whih are seletedfrom the spae of all possible funtions g : X ! X with uniform distri-bution). For any adversary with unlimited omputational power andaess to a polynomial (in log jXj) number of values of a pseudoran-dom funtion f , the probability that the adversary an tell that thesevalues ame from f rather than from a truly random g should be neg-ligible. Pseudorandom permutations and pseudorandom sequenes arede�ned similarly to be low-entropy but diÆult to distinguish fromtruly random permutations and sequenes, respetively. For more pre-ise de�nitions see, [20℄, [7℄, [10℄, [13, x2.2℄, and referenes therein.It is easy to see (and well known) that sequenes generated by itera-tive number generators with pseudorandom funtions f are pseudoran-dom. Thus, the probability that suh a generator enters a small yleis negligible. However, all known onstrutions of pseudorandom fun-tions are slow and are based on unproved onjetures (see [16, x17.9℄).In fat, all pratial funtions used in ryptography are ad-ho on-strutions whih are not proved to be pseudorandom, and nothing isknown about the atual struture of the yles they generate.1 Thisis partiularly worrisome for the user, sine there is no guarantee thatthe generators that he uses do not ontain a trapdoor leading to shortyles.21.1.4. Mathematially strutured generators. The need to avoid shortyles is the major motivation behind the development of several fam-ilies of generators based on mathematial strutures. These familiesinlude: Linear ongruential generators, linear feedbak shift registers(LFSR's), lok-ontrolled LFSR's, additive generators, feedbak witharry shift registers, 1=p generators (see [16, xx16{17℄ and referenestherein), and TSR's [18℄. Under ertain onditions, these families anbe proved to have large yles.The drawbak of this approah is that their mathematial struturean be often used to ryptanalyze them (see [16, lo. it.℄ for referenesto ryptanalysis of various implementations of the mentioned genera-tors).1.1.5. Re-keying. Chambers [3℄ suggested a tehnique to redue the riskof short yles by restarting the generator's internal state every �xednumber of iterations, with a new key seed taken from a \re-keying"1A notable exeption appears in [8℄ and [5℄, where the yle struture of non-linear feedbak shift registers is studied. However, the obtained results over onlydegenerate ases. Moreover, in [8℄ it is proved that the studied generators musthave short yles.2Knuth's example ould be viewed as suh a trapdoor generator.



4 ADI SHAMIR AND BOAZ TSABANgenerator whih has a provably large yle (e.g., one of the generatorsmentioned in Setion 1.1.4).Given an iterative generator, let pk, k = 1; 2; : : : , be the probabilitythat the yling point of the generator ours after at least k iterations.Assume that we use the generator to get an output sequene of sizem. The probability that we do not reah the yling point in the usualiterative mode is pm. Now, if we re-key the generator every k iterations,then the probability that we do not reah the yling point even oneis pm=kk . As nothing is known on the yle struture of the generator,there is no guarantee that pm=kk is greater than pm. It may thus bethe ase that the re-keying mode is worse than the standard iterativemode.Moreover, if the re-keying generator is ryptographially weak, thenit ould be ryptanalyzed from the outputs whih ome immediatelyafter the re-keying phases.One should note further that, as Shneier points out in [16, x17.11℄,algorithms that have a long key setup routine are not suitable for thismode.1.1.6. Similarity transformations and ounter-mode. Another possiblesolution is to take some simple permutation u whih is guaranteed tohave long yles (e.g., u(x) = x + 1 (mod n), or any of the examplesfrom Setion 1.1.4), and then to use fuf�1 (instead of f) as the it-eration funtion. This similarity transformation has the same ylestruture as u.Suh a onstrution is, though, rather degenerate. Let hf; gi standfor a generator whose iteration funtion is f , and whose output funtionis g. Consider a generator of the form hfuf�1; gi. De�ne ~g = g Æ f .Then for all seeds s, setting ~s = f�1(s) implies that the ith outputis g((fuf�1)i(s)) = g(fuif�1(s)) = (g Æ f)(ui(~s)) = ~g(ui(~s)), thatis, the generator is equivalent to the generator hu; ~gi. This meansthat the modi�ed generator is equivalent to another generator with aryptographially weak iteration funtion.For u(x) = x+1 (mod n) we onlude that for some ~g, the ith outputof the generator equals ~g(~s+i). Generators of the form yi = g(s+i) arealled ounter-mode generators, and are a standard mode of operation[16, x9.9℄. However, suh generators have the following unpleasantproperty: The di�erene of any two input values s+ i and s+ j to g issimply i� j. If i is lose to j, then i� j has a small Hamming weight.This fat ould be used in di�erential or orrelation ryptanalysis of g.This is also the ase for other hoies of u, e.g., if u is an LFSR, thenui(s) and uj(s) are equal in all exept for i� j bits.



GENERATORS WITH GUARANTEED DIVERSITY 52. The diversity of sequene generatorsIn this setion we propose a new notion of seurity for sequenegenerators, whih generalizes the ryptographially desirable oneptof long yles.We �rst de�ne the notion of diversity for a single in�nite sequene.De�nition 2.1. The diversity of a sequene ~x = (x0; x1; x2; : : :) is thefuntion D~x(k) for k = 1; 2; 3; : : : de�ned as the minimum number ofdistint values ourring in any ontiguous subsequene xi; xi+1; : : : ; xi+k�1of length k in ~x.All of the sequenes onsidered in this paper have a �nite samplespae of jXj = n possible values. For any sequene ~x in X,1 � D~x(k) � D~x(k + 1) � D~x(k) + 1 � n:In other words, the diversity grows monotonially and at most linearlywith k, and annot exeed n.We now generalize the onept from sequenes to generators. We�rst de�ne the types of generators onsidered in this paper:De�nition 2.2. An iterative generator is a struture G = hX; Y; f :X ! X; g : X ! Y i, where for all x 2 X, f(x) and g(x) an beomputed in polynomial time from x. X is the state spae, and Y isthe output spae. We may write G = hf; gi for short, or G : xi = f(xi�1)if the output funtion is not relevant. For a generator G : xi = f(xi�1)and seed s 2 X, we denote the state sequene (x0 = s; x1; : : : ) of thegenerated internal states by G(s).We wish to bound from below the diversity of the sequenes of in-ternal states generated from possible seeds.De�nition 2.3. The diversity of an iterative generator G : xi =f(xi�1) is the funtionDG(k) = minfDG(s)(k) : s 2 Xgde�ned for k = 1; 2; 3; : : :. The total diversity of G is the limit limk!1DG(k).3Iterative generators on �nite spaes have simple diversity funtions.Lemma 2.4. Assume that G : xi = f(xi�1) is an iterative generator.3Anderson, et. al., [2℄ suggested a statistially-oriented notion of diversity forrandom number generators, based on experimental testings of the generator. Thesetestings give estimations for the average ase behavior, whereas our notion boundsthe worst ase behavior of the generator. Moreover, the ombinatorial nature ofour notion will make it possible to use mathematial theory in order to apply itto ases where experimental testings are not suitable (e.g., when the state spae ishuge). See also Setion 1.1.2.



6 ADI SHAMIR AND BOAZ TSABAN(1) Let ~x be a sequene (of internal states) reated by G. ThenD~x(k) = minfk; pg where p is the length of the yle that ~xenters into.(2) DG(k) = minfk; pg where p is the length of the shortest ylein f .Proof. ~x has distint values before it enters the yle and while it om-pletes the �rst traversal of the yle. This implies (1), and (2) followsfrom (1). �The diversity of an iterative generator is thus diretly related to thesize of its smallest yle. It is intended to apture one aspet of theworst ase behavior of a generator, in the sense that generators withprovably high diversity annot repeat a small number of internal statesa large number of times as a result of an unluky or adversarial hoieof seed.The diversity measure an be applied to noniterative generators, inwhih the omputation of xi may depend on its index i as well.De�nition 2.5. A ounter-dependent generator is a struture G =hX; Y; F : X � N ! X; g : X ! Y i, where for all x 2 X and i 2 N ,F (x; i) and g(x) an be omputed in polynomial time from x. X is thestate spae, and Y is the output spae. In this type of generators, thenext state is alulated by xi = F (xi�1; i). Here too, we denote thestate sequene (x0 = s; x1; : : : ) of generated internal states by G(s).Note that iterative as well as ounter-mode generators are partiularases of ounter-dependent generators. A straightforward generaliza-tion of De�nition 2.3 for ounter-dependent generators is:De�nition 2.6.(1) The diversity of a ounter-dependent generator G : xi = F (xi�1; i)is the funtion DG(k) = minfDG(s)(k) : s 2 Xg de�ned fork = 1; 2; 3; : : :. The total diversity DtotalG of G is the limitlimk!1DG(k).(2) A ounter-dependent generator G : xi = F (xi�1; i) is g(k)-diverse if DG(k) � g(k) for all k = 1; 2; : : :.The diversity of a general ounter-dependent generator an grow andfreeze in an irregular way when k inreases, sine these generators arenot fored into a yle when they aidentally repeat the same xi value.The diversity funtion is thus a natural generalization of the notion ofyle size.



GENERATORS WITH GUARANTEED DIVERSITY 73. Modifying generatorsIn this setion we onsider several ways in whih we an modify agiven iterative generator in order to inrease its diversity. The mainintuitive onditions we impose on this proess are:Condition 3.1. We do not want to design the new generator fromsrath. We usually prefer to use known and well studied primitivessuh as DES, RC5 or nonlinear feedbak shift registers, for whih highlyoptimized ode an be easily obtained or reused from other parts ofthe appliation. We thus want the modi�ed design to use the sameryptographi ingredients as the original design.Condition 3.2. The omputational omplexity of the modi�ed next-state funtion must not be signi�antly greater that that of the originalone.Condition 3.3. The modi�ation tehnique should be uniformly ap-pliable to all iterative generators, treating them as blak boxes. Wedo not want the modi�ation to be based on the mathematial or sta-tistial properties of the given iteration funtion f . In partiular, wean not assume that we know the struture of its yles.Condition 3.4. We are more interested in inreasing the diversity ofthe interval values xi than in inreasing the diversity of the outputvalues yi = g(xi): If the given generator uses an output funtion gwith a small range (e.g., a single bit) applying diversity measures tothe output values is meaningless.The modi�ation should be a win/win situation: If the given genera-tor has a low diversity, the problem should be reti�ed, but if the givengenerator is already strong, we do not want the modi�ation to weakenit. The problem is that we do not have a general quantitative de�nitionof the \goodness" of generators, exept when they are \perfet". Wethus onentrate in this paper on the following formal interpretation.Condition 3.5.(1) For any given iteration funtion, the modi�ed generator shouldbe g(k)-diverse for some g(k) whih is exponential in logn.(2) If the iteration funtion f is pseudorandom, then the state se-quenes generated from random seeds by the modi�ed generatorshould be pseudorandom.As in ounter-mode (see Setion 1.1.6), our blak box modi�ationtehnique is based on turning the iterative generator into a ounter-dependent generator, allowing xi to depend on i in addition to xi�1.To sharpen our intuition, let us onsider some bad onstrutions. (Inthe following examples and throughout the paper, the state spae X is



8 ADI SHAMIR AND BOAZ TSABANidenti�ed with the set f0; 1; : : : ; n� 1g, and addition in the state spaeis arried modulo n.)Example 3.6. xi = i. This funtion has maximal diversity, but poorryptographi quality.Example 3.7. xi = f(i). This is the standard ounter-mode. Perfetgenerators remain perfet, but for a onstant f the diversity is 1.Example 3.8. xi = f(i) + i. This is a simple ombination of theprevious two examples. Perfet generators remain perfet, but forf(x) = �x, all the generated xi are 0, and thus the diversity is 1.Example 3.9. xi = f(xi�1 + i). This is an attempt to fore the nextstate to depend both on the previous state and on the index. Perfetgenerators remain perfet, but the generated sequene has diversity 1when f is a onstant funtion.Example 3.10. xi = f(xi�1 + i) + i. This is the \kithen sink" ap-proah, trying to ombine all the ingredients in all possible ways. How-ever, when the funtion f is f(x) = �x, the sequene generated fromany initial seed x0 = s is s;�s; s;�s; s;�s; : : : whih ontains at mosttwo values.Considering these ounterexamples, the reader may suspet that allblak box modi�ations are bad (for some f). In the next setion weshow that this is not the ase.4. A provably good modifiation tehniqueGiven an iterative generator hf; gi, we apply the following blak-boxmodi�ation.De�nition 4.1. A ounter-assisted generator hf; gi is a generator inwhih x0 = s, and for all i � 1 xi = f(xi�1) + i (mod n), where n isthe size of the state spae, and the ith output is g(xi) (see Figure 2).
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GENERATORS WITH GUARANTEED DIVERSITY 9Sine it is easy to maintain or obtain a ounter for the number ofvalues produed so far (in many appliations, one an use either theloop ounter or the running blok-number as a ounter for the ounter-assisted mode), and no hange is made in the funtion f or g, themodi�ation tehnique is ompletely trivial and an be applied to anyiterative generator without inreasing its omplexity.Formally, for all generators hX; Y; f; gi, the ounter assisted modi�edgenerator is in fat the iterative generator hX�f0; : : : ; n�1g; Y; F;Gi,where F (x; i) = (f(x) + i (mod n); i+ 1 (mod n))G(x; i) = g(x)(1)However, note that:(1) The only seret part is loated in the x oordinate,(2) inrementing i has no ryptographial signi�ane, and(3) the output alulationG(x; i) is independent of the i-oordinate.Thus applying diversity measures on the whole state spaeX�f0; : : : ; n�1g|that is, measuring the diversity of the sequenes of pairs (xi; i),i = 1; 2; : : :|is misleading (and, in fat, not informative). This iswhy the diversity measure is foused on the atual state sequenesG(s) = (x0 = s; x1; : : : ) rather than on the sequene of pairs (xi; i).Lemma 4.2. Let ~x = (x0; x1; x2; : : :) be a state sequene of a ounterassisted generator. Then for all i 6= j (mod n), if xi = xj then xi+1 6=xj+1 and xi�1 6= xj�1.Proof. We argue modulo n. By de�nition, xi+1 = f(xi) + (i + 1) andxj+1 = f(xj)+(j+1). If xi = xj but i 6= j, then neessarily xi+1 6= xj+1.Now, for the very same reason, xi�1 = xj�1 would imply xi 6= xj, whihis not the ase. �In other words, the sequene ~x has the interesting property thatequality at any pair of loations implies inequality at the pair of theirimmediate suessors and the pair of their immediate predeessors. Weall this the isolated equality property. This is the intuitive reason whyounter assisted generators annot enter short yles: If they aiden-tally generate the same value at several loations, all the subsequentomputations are guaranteed to diverge rather than onverge.Theorem 4.3.(1) The blak box modi�ation tehnique modifying G : xi = f(xi�1)to G 0 : xi = f(xi�1) + i (mod n) is maxfg(k); h(k)g-diverse,



10 ADI SHAMIR AND BOAZ TSABANwhereg(k) = (pk � 1 k � npn n < k ; and h(k) = (k=j Im(f)j k � nn=j Im(f)j n < k :(2) If the iteration funtion f is pseudorandom, then the state se-quenes generated from random seeds by the modi�ed generatorare pseudorandom.Proof. (1) We �rst show that g(k) � DG0(k) for all k = 1; 2; : : : . Con-sider any sequene of k onseutive values xi; xi+1; : : : ; xi+k�1 (k �n+1), and assume that it ontains exatly � distint values. There are�2 possible ordered pairs of these values (a; b), and by Lemma 4.2 eahone of them an our at most one in a onseutive pair of loations(xj; xj+1) along the sequene. Sine there are k � 1 suh loations,�2 � k � 1, whih yields the desired lower bound on �.Next, we need to show that h(k) � DG0(k) for all k = 1; 2; : : : . In asequene of k onseutive values xi; xi+1; : : : ; xi+k�1 (k � n + 1), eahxj is of the form j + j, where j 2 Im(f). Sine we add k distintvalues to at most j Im(f)j values, we get at least k=j Im(f)j distintvalues.(2) We now sketh the proof of the pseudorandomness part. Considerthe following sequene of orales, whih aept a number k (whihis polynomial in logn) and output a sequene x1; : : : ; xk 2 X. (Byrandom we mean statistially independent and uniformly distributed.)Orale 1: Returns a random sequene xi 2 X (i = 1; 2; : : : ; k).Orale 2: Chooses a random seed x0 = s, and de�nes an f : X ! X onthe y, as follows:(1) A ag Birthday is initially set to 0.(2) For eah i = 1; 2; : : : ; k:{ If f(xi�1) is unde�ned, then hoose a random y 2 Xand de�ne f(xi�1) = y.{ Otherwise, set Birthday = 1.(3) Set xi = f(xi�1) + i.The remaining values of f are hosen randomly.Orale 3: Chooses a partiular funtion f with uniform probability fromthe set of all funtions from X to X, hooses a random seedx0 = s, and returns the sequene xi with xi = f(xi�1) + i,i = 1; 2; : : : ; k.Orale 4: Same as Orale 3, but with f pseudorandom instead of trulyrandom.We say that two orales are distinguishable if there exists a (not ne-essarily polynomial time) algorithm (alled distinguisher) whih, for



GENERATORS WITH GUARANTEED DIVERSITY 11some onstant  > 0, given a sequene of length polynomial in logn,an tell with probability greater than 1= log(n) whih orale has gen-erated this sequene. Otherwise, the orales are indistinguishable. Itis lear that Orales 2,3 are indistinguishable. That Orales 3,4 areindistinguishable follows from the fat that any distinguisher of theseorales an be used to onstrut a distinguisher of pseudorandom fun-tions from random ones.It remains to show that Orales 1,2 are indistinguishable. The onlypossible onstraint on the output of Orale 2 happens when f is appliedtwie to the same argument, that is, Birthday is set to 1. It is well-knownthat for k << n, the probability that no birthday ours is lose to k22n[17℄, whih is negligible if k is polynomial in logn. �Remark 4.4. The upper bound k22n on the distinguishing probability istight: In probability lose to k22n , a birthday xi = xj ours and thedistinguisher an hek that xi+1 � (i + 1) = xj+1 � (j + 1). Providedthis, the probability that the output ame from Orale 1 is 1=n.5. Asymptoti tightness of the provable diversityThe square root lower bound on the diversity may seem to be an arti-fat of the proof tehnique. We �rst onsider the purely ombinatorialversion of the problem: What is the longest sequene one an onstrutfrom � distint symbols whih has the isolated equality property?Lemma 5.1. For any positive integer �, there exists a sequene oflength �2 + 1 onsisting of � symbols and having the isolated equalityproperty.Proof. Let C be a omplete direted graph with � verties and �2 di-reted edges (inluding self loops). As the graph is onneted and theindegree and outdegree of eah vertex in C is the same (= �), thegraph is Eulerian. Let v0e0v1e1 : : : v�2�1e�2�1v0 be an Eulerian tour,whih inludes eah direted edge exatly one. Assume that for somedistint i and j, vi = vj. If vi+1 = vj+1, then neessarily ei = ej,whih is disallowed in Eulerian tours. Similarly, vi�1 = vj�1 would im-ply ei�1 = ej�1. Consequently, the sequene has the isolated equalityproperty. �This ombinatorial result does not rule out the possibility that se-quenes reated by ounter assisted generators must satisfy additionalonstrains, and as a result the lower bound in Theorem 4.3 an be im-proved signi�antly. We will show that this is not the ase: We provethe asymptoti tightness of our lower bound by onstruting for eah



12 ADI SHAMIR AND BOAZ TSABANn a spei� ounter-assisted generator, suh that the total diversitiesof these ounter-assisted generators are O(pn).Theorem 5.2. There exist funtions fn, n = 1; 2; : : : suh that thetotal diversities DtotalGn of the ounter assisted generators Gn : xi =fn(xi�1) + i (mod n) are O(pn).Proof. Fix a natural number n. We will write for short f and G insteadof fn and Gn, respetively.The state sequene of G will be based on two sequenes: a0; a1; : : : ; a��1and b0; b1; : : : ; b��1 (the values of � and � will be determined later). Thesequenes are \meshed" as follows:(1) Loations with even indies ontain only the ai values, and lo-ations with odd indies ontain only the bj values.(2) The ai values our in blok order: The �rst � ourrenes area0, the next � ourrenes are a1, and so on.(3) The bj values our in yli order: The �rst � ourrenesare b0; : : : ;b��1 in this order, the next � ourrenes are againb0; : : : ; b��1 in this order, and so on.Putting these bloks in onseutive rows, we get a matrix C = (ij)of size �� 2�, where i;2j = ai and i;2j+1 = bj:C = 0BB� a0 b0 a0 b1 � � � a0 b��1a1 b0 a1 b1 � � � a1 b��1... ... ... ... ... ...a��1 b0 a��1 b1 � � � a��1 b��11CCAWe de�ne a funtion f for whih the ounter assisted generator G :xi = f(xi�1) + i, seeded by x0 = a0, has state sequene equal to ourmeshed sequene.We begin with a few simple restritions on our parameters. Foryliity the ounter must return to 0 after 2�� steps, that is, 2�� = 0(mod n). We will onsider �'s and �'s suh that 2�� = n to make thesequene shorter. The isolated equality property implies that all of theai and bj values are distint. Thus, the total diversity will be � + �.Under these restritions, we an see via elementary alulus that thehoie � = � = pn=2 yields the minimum possible total diversity of�+ � = p2n values.We thus begin with n's for whih n=2 is a square, and hoose � =� =pn=2.We now onsider the spei� values of the elements in our meshedsequene. The onditions are: i;j+1 = f(ij) + 2�i + (j + 1), i+1;0 =f(i;2��1) + 2�(i + 1) � 1, and 00 = f(��1;2��1) + 2��. In terms of



GENERATORS WITH GUARANTEED DIVERSITY 13the ai and bj this is:bj = f(ai) + 2�i+ (2j + 1)ai = f(bj) + 2�i+ (2j + 2) (j = 0; : : : ; � � 2)ai = f(b��1) + 2�iSetting x = f(a0), the �rst equation yields bj = x + (2j + 1) fori = 0. Putting this bak in the equation we get that f(ai) = x � 2�ifor all i. Similarly, the seond equation implies (setting y = f(b0))ai = y + 2�i + 2 and f(bj) = y � 2j for all j < � � 1. The thirdequation with i = 0 gives f(b��1) = a0 = y + 2.We therefore have, for any hoie of x; y, the following requirements:ai = y + 2 + 2�i f7! x� 2�ibj = x + 1 + 2j f7! y � 2j (j < � � 1)b��1 = x� 1 + 2� f7! y + 2It is easy to hek that any suh de�nition yields the desired sequene ofstates, as long as the resultant ai and bj's are disjoint. As we assumethat n is even, hoosing any x and y having the same parity (e.g.,x = y = 0) will do.The values of f on X n fai; bjg an be arbitrary. It remains to hekthat the sequene is repeated after every � � 2� steps. Indeed, theounter will be 2�� = 0 (mod n), and thus x2�� = f(x2���1) + 0 =f(b��1) = a0, so we are right where we begun.We now treat the ases where n=2 is not a square. Set � = � =bpn=2 , and de�ne ai, bj, and f as above. Now modify f(x) tof(x mod 2��). The above argument shows that if we projet the state-sequene ~x modulo 2��, we get diversity at most � + � = O(pn).Therefore, the atual diversity an be no more thanO(pn)�dn=(2��) e =O(pn) � 2 = O(pn). �Remark 5.3. In most pratial ases, n=2 is not a square and thus weannot ahieve the exat p2n upper bound using our meshing on-strution. However, in many ases n is an even power of 2 (e.g, 224,232, 264, 2128, et.), so we an hoose � = pn and � = pn=2 (note that2�� = n) to get total diversity � + � = 3pn=2, whih is lose to thep2n upper bound ahieved in the ase where n=2 was a square.Our onstrution showed that the bound pn for the total diversityis asymptotially tight. However, we do not have a onstrution whereDG(k) is O(pk) for all k simultaneously.



14 ADI SHAMIR AND BOAZ TSABANOpen problem 5.4. Does there exist a onstant  suh that for allsuÆiently large n, there exists a ounter-assisted generator G (withstate spae of size n) suh that DG(k) � pk for all k?6. Casade ounter-assisted generatorsIn this setion we generalize the notion of ounter-assisted genera-tors.A Latin square is a binary funtion whih is uniquely invertible givenits output and any one of the inputs. For example, the operationsx+ y (mod n), x� y (mod n) and x� y are Latin square operations.Moreover, every group operation is a Latin square operation, and ifx ? y is a Latin square operation and P;Q; Z are permutations, thenZ(P (x) ? Q(y)) is a Latin square operation. Let ? be a Latin squareoperation.It is easy to see that the proof of Theorem 4.3 applies when the +imodi�ation is replaed by any Latin square operation ?i (unique in-vertibility with respet to the i input guarantees the isolated equalityproperty, and unique invertibility with respet to the xi input guar-antees the pseudorandomness of the states). We an thus extend theonept of ounter assisted generators to inlude these ases as well.Remark 6.1. When n is a power of 2, we an use essentially the sameonstrution as in the proof of Theorem 5.2 to show the optimality ofthe 
(pn) lower bound when the +i (mod n) modi�ation is replaedby a �i modi�ation.The next lemma shows that ounter-mode generators are a degener-ated ase of ounter-assisted generators.Lemma 6.2. Every ounter-mode generator is a ounter-assisted gen-erator.Proof. A ounter-mode generator with ith output g(s ? i) is equivalentto the ounter-assisted generator G = hf; gi, where f � s, and the Latinsquare operation is ?, sine in this ase, xi = f(xi�1) ? i = s ? i. �We an extend the notion of ounter-assisted generators further.Assume that G = hf; g;X; Y i is an iterative generator, and let ~ =h0; 1; : : :i be any sequene of elements in X. De�ne the sequene-assisted generator G ? ~ to be the generator whose ith state is xi =f(xi�1) ? i (and whose ith output is g(xi)).Theorem 6.3. Let G = hf; gi ? ~ be a sequene-assisted generator.Then:(1) DG(k) �pD~(k)� 1 for all k = 1; 2; : : : .



GENERATORS WITH GUARANTEED DIVERSITY 15(2) If the the sequene ~ is pseudorandom, then the state sequeneof G is pseudorandom.(3) If f is pseudorandom, then the state sequene of G is pseudo-random.Proof. (1) As in Lemma 4.2, we an show that i 6= j implies (xi�1; xi) 6=(xj�1; xj). The rest of the proof is similar to the proof of Theorem4.3(1).(2) If the state sequene of G is not pseudorandom, then the sequene~ an be distinguished from pseudorandom noise by onsidering hf; gi?~, and looking at the state sequene of G.(3) This is proved as in Theorem 4.3(2); the only di�erene is in thede�nition of Orale 3. �Thus, any sequene ~ with large diversity an be used instead of aounter. In partiular, we an use the output of any of the generatorsmentioned in Setion 1.1.4 as the assisting sequene. In general, assumethat C is any generator with output in X. De�ne G ? C = G ? ~, where~ = h0; 1; : : :i is the output sequene of C (note that the sequene ~depends of the initialization of C). The following de�nition is indutive.De�nition 6.4. G is a asade ounter-assisted generator if:(1) G is a (standard) ounter-assisted generator, or(2) G = F ?C, where F is an iterative generator, ? is a Latin squareoperation, and C is a asade ounter-assisted generator.In partiular, we have:Lemma 6.5. Every iterative generator is a asade ounter-assistedgenerator.Proof. If G is an iterative generator, and C is a generator with outputfuntion 0, then G+C = G is a asade ounter-assisted generator. �Thus the notion of asade ounter-assisted generators extends thoseof iterative, ounter-mode and ounter-assisted generators.Ideally, all internal states of the asaded generators (inluding thestarting position of the ounter i) should be initialized by random,independent seeds. If this is not feasible, one an, e.g., initialize the\driving" generator or the ounter with a random seed, and then lokthe asade a few times to make all internal states depend on theseed. In this ase, however, aution must be taken to make sure thatpartiular hoie of output funtions does not make the inuene ofthe seed \vanish" while going down the asade.Example 6.6. Assume that the generators A, B, and C have statespaes of size n = 2256 (256 bits). Assume further that the generator



16 ADI SHAMIR AND BOAZ TSABANC is ounter-based with an invertible output funtion gC, and that theoutput funtion gB of B is invertible as well. Consider the total diversityof the asade generator A + (B � C) (see Figure 3): As C is ounter-based, we have DC(n) = n. Thus by Theorem 6.3 (and disreteness),DB�C(n) � dpn� 1e = 2128, and DA+(B�C)(n) � dpDB�C(n)� 1e �264. Moreover, if the output funtion of C, or any of the iterationfuntions of B, A is pseudorandom, then the state sequene of A ispseudorandom as well. (We an also use, e.g., a maximal length LFSRinstead of the ounter-based generator C to get the same results.)
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Figure 3Remark 6.7. In this setion we have seen that every iterative generatoran be viewed as a asade ounter-assisted generator (in a degeneratemanner). On the other hand, as mentioned in Setion 4, every ounter-assisted generator an be viewed as an iterative generator (with a largerstate spae). The advantage of our approah is that we fous on theryptographial part of the generator, from whih the output is alu-lated, rather than on the state of the whole system.7. Generating sequenes with maximal diversityIf we allow the design of a new output funtion g, then we an modifyany generator to have the maximal possible diversity DG(k) = k for allk = 1; 2; : : : ; n.De�nition 7.1. Let G be any iterative generator. Modify its next-state funtion as follows:x2i+1 = f(x2i)x2i+2 = f(x2i+1) + i



GENERATORS WITH GUARANTEED DIVERSITY 17That is, the ounter is inremented and added to the state value onlyone every two iterations of the generator. The pair of generatedvalues (x2i; x2i+1) is used as the argument of a new output funtiong0 : X � X ! Y � Y . We all this mode of operation the two-stepounter-assisted mode. More generally, the t-step ounter-assisted modeis de�ned by inrementing and adding the ounter one every t iter-ations, and using eah t-tuple as the input of a new output funtionĝ : X t ! Y t. Formally, the t-step generator G = hf; g;X; Y i with Latinsquare operation ?i is the ounter-assisted generator Gt = hf̂ ; ĝ; X t; Y tiwith the (injetive) operation ?̂i, where� f̂(x0; : : : ; xt�1) = (f(xt�1); f 2(xt�1); : : : ; f t(xt�1)),� (x0; : : : ; xt�1)?̂i = (x0; : : : ; xt�1 ? i), and� i is a yli ounter in the range 0; 1; : : : ; n� 1.Note that t-step ounter-assisted generators require a state bu�er ofsize t.
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Figure 4. A two-step ounter-assisted generatorFor all t � 2, any t-step ounter-assisted generator has maximalpossible diversity:Theorem 7.2. For any generator G = hf; gi, and for all t � 2, wehave the following:(1) If f is pseudorandom, then the state sequenes of Gt are pseu-dorandom.(2) DGt(k) = k for all k = 1; : : : ; n.Proof. The proof of the pseudorandomness part is similar to that inTheorem 4.3.To prove the diversity part, assume that for some i 6= j (mod n) wehave equality between the t-tuples (xit; : : : ; xit+t�1) and (xjt; : : : ; xjt+t�1).In partiular, xit+t�2 = xjt+t�2. But this implies xit+t�1 = f(xit+t�2) +i 6= f(xjt+t�2) + j = xit+t�1 (mod n), a ontradition. �



18 ADI SHAMIR AND BOAZ TSABAN7.1. Blak-box modi�ations of the output funtion g. If theomputational omplexity of evaluating the new output funtion g0 inthe two-step mode is at most double that of evaluating g, then onaverage, the omputational omplexity of obtaining the next outputdoes not hange: We lok the generator twie, but we get two outputsat one. If the output spae Y is equal to X then we an get very loseto this without designing a new output funtion.We will use the terminology of [13℄. For a funtion g : X ! X,de�ne the Feistel permutation Dg : X � X ! X �X by Dg(L;R) def=(R;L � g(R)). (Here too, any Latin square operation ? an be usedinstead of �.)If the output funtion g is key-dependent, then we an use a Luby-Rako� onstrution. Denote the key spae by K, and assume that thesize of the key spae is exponential in logn.Theorem 7.3. Assume that the mapping � 7! g� is pseudorandom,and that �1, �2, and �3 are pseudorandom elements of K. Then forall funtions f : X ! X and seeds x0 2 X, the two-step generatorhf̂ ; Dg�1 ÆDg�2 ÆDg�3 i has pseudorandom output.Proof. By Theorem 7.2, for all iteration funtions f and seeds x0 2 X,the inputs to Dg�1 Æ Dg�2 Æ Dg�3 are all distint. By a result of Lubyand Rako� [11℄, this implies pseudorandomness of the output. �This onstrution makes the output alulation slower by a fator of3:2. The omputational omplexity of the following alternative is loserto the desired optimum, and is a more straightforward modi�ation.Theorem 7.4. Assume that g : X ! X is pseudorandom, and assumethat h : X ! X is pseudorandomly hosen from a family H of funtionssuh that for all distint x; y 2 X and for all z 2 X, the probabilitythat h(x) � h(y) = z (h 2 H) is negligible. Then for all funtionsf : X ! X and seeds x0 2 X, the two-step ounter-assisted generatorhf̂ ; Dg ÆDg ÆDhi has pseudorandom output.Proof. By a result of Luks [12℄ (see also [13℄), Dg ÆDg ÆDh is pseudo-random. The rest of the proof is like in Theorem 7.3. �There exist very eÆient families H with the property mentioned inTheorem 7.4 (see [13℄ for examples and referenes). Thus, the ompu-tational overhead of applying h is small, and the resulting generatoris almost as eÆient as the original one. Note that, unlike the resultsin earlier setions, we get here a blak-box modi�ation of an iterativegenerator hf; gi whih has maximal output diversity, and if either one



GENERATORS WITH GUARANTEED DIVERSITY 19of the funtions f or g is pseudorandom, then the output sequene ispseudorandom.Example 7.5. Let f = DES [14℄, g = RC5 [15℄, and h� : f0; 1g64 !f0; 1g64 be a funtion from Vazirani's shift family (the ith bit of h�(x) isPni=1 xi�j+i�1 mod 2, see [13℄ and [19℄). The two-step ounter-assistedgenerator hdDES; DRC5 Æ DRC5 Æ Dh�i has maximal (state and output)diversity k for all k = 1; 2; : : : ; 264. On average, the alulation of anyoutput 64 bit blok requires a single invoation of DES and a singleinvoation of RC5. The exeution time overhead of the rest of theoperations is negligible. Furthermore, if either one of the two funtionsDES and RC5 is diÆult to distinguish from random, then the outputsequene will be diÆult to distinguish from random as well.Open problem 7.6. Assume that both f and g are (truly) random,and onsider an output sequene of length m generated from a randomseed by the two-step ounter-assisted generator G2 = hf̂ ; Dg Æ Dgi.What is the highest distinguishing probability between suh a sequeneand a random sequene?Remark 7.7. Using the results from [13℄, we get that for all t, theoutput funtion of the t-step ounter-assisted mode an be modi�ed ina blak-box manner with a small omputational overhead, to get thesame diversity and pseudorandomness results. See [13℄ for details.Remark 7.8. In ertain ases, when t is large (e.g., t � 4) it is desirablethat the inputs to the t-step output funtion are distint in as manyentries as possible (for example, this guarantees many ative S-boxesin di�erential ryptanalysis of the output funtion). We an ahievethis goal via letting the next state be the same as when loking the(standard) ounter-assisted generator t times (that is, the ounter isinremented and added to the xi value every lok). By the isolatedequality property, this guarantees that any two t-tuples are distint inat least bt=2 entries. In this mode of operation, the diversity remainsmaximal as long as k < n=t.7.2. Safe transition to new generations of ryptographi fun-tions. A ommon pratie in the design of new generations of rypto-graphi funtions is to double the input and output length. Nowadays,we experiene the evolution from 64 bit funtions (suh as DES, RC5,et.) to 128 bit funtions (suh as the AES andidates [1℄). The advan-tage of old generation funtions is that they have gone through years ofextensive aademi researh, and are thus well understood. It will takea long time to gain similar on�dene in the new generation funtions.



20 ADI SHAMIR AND BOAZ TSABANOur two-step ounter-assisted mode suggests a natural and straight-forward way to ombine new and old generation funtions in a way thatif either one of them is pseudorandom, then the resulting generator ispseudorandom: Assume that f is an old generation funtion and g isa new generation funtion with double input size. Then we simply usethe two-step ounter-assisted generator hf̂ ; gi.Example 7.9. In Example 7.5, we an use RC6 instead ofDRC5ÆDRC5ÆDh� as the output funtion. This results in a faster and more elegantgenerator. Here too, the diversity is maximal for all k = 1; : : : ; 264, andthe generator is diÆult to distinguish from random if either DES orRC6 is.7.3. Casaded multiple-step ounter-assisted generators. If wehave enough state-spae (this is usually the ase with software en-ryption), we an asade multiple-step ounter-assisted generatorswithout dereasing the diversity. Consider for example generatorsG0;G1; : : : ;Gm�1 having the same state-spae and output-spae. Forany sequene of positive integers t0 < t1 < : : : < tm�1, and Latin-square operations ?t0 ; : : : ; ?tm�2 (on spaes of size t0; t1; : : : ; tm�2 bloks,respetively), the (t0; t1; : : : ; tm�1)-step asade is de�ned to beGasade = Gtm�1m�1 ?̂tm�2 : : : ?̂t1Gt11 ?̂t0Gt00 :In the sense of de�nition 6.4. Here, (x0; : : : ; xtj+1�1)?̂tj (y0; : : : ; ytj�1) isde�ned as the onatenation of (x0; : : : ; xtj+1�tj�1) and (xtj+1�tj ; : : : ; xtj+1�1)?tj(y0; : : : ; ytj�1).Using this notation, we have the following:Theorem 7.10. For all generators G0;G1; : : : ;Gm�1 having the samestate-spae and output-spae, and for any Latin-square operations ?t0 ; : : : ; ?tm�2(on spaes of size t0 < t1 < : : : < tm�2 bloks, respetively), the(t0; t1; : : : ; tm�1)-step asade Gasade = Gtm�1m�1 ?̂tm�2 : : : ?̂t1Gt11 ?̂t0Gt00 hasthe following properties:(1) DGasade(k) = k for all k = 1; 2; : : : n.(2) If either the iteration or the output funtion of any of the as-aded generators is pseudorandom, then the output of Gasade ispseudorandom as well.Proof. (1) follows from Theorem 7.2, by indution on m. (2) followsreadily from Theorem 6.3. �



GENERATORS WITH GUARANTEED DIVERSITY 218. Conluding remarks and further researhWe have presented a new mode of operation whih makes the diver-sity of every state sequene provably large with a negligible omputa-tional ost. Unlike other solutions, this mode does not introdue new(trivial) risks. The well known threat of \no available theory" on theyle struture of ompliated iterative generators (see, e.g., [4, p. 525℄,[3, p. 22℄, [16, x17.6℄, and [6, p. 347℄) is eliminated. It is important tostress, however, that the diversity measures only one aspet of seurity,and is learly not suÆient for evaluating the ryptographial strengthof the generator.Our new mode has various possible implementations via multiple-stepping and/or asading, whih allow the user a wide range of hoieto �t the implementation to his onstraints and needs. All of thesuggested modes require a ounter, but in most of the appliationsa ounter either already exists or is easy to maintain. The asadedmode redues the provable diversity with respet to the simple ounter-assisted mode, but it suggests an interesting new way to ombine theryptographi strength of several generators. The multiple-steppingmode requires a larger state bu�er (thus may be more suitable in soft-ware appliations), but assures perfet diversity.The ryptographial impat of our modi�ation tehnique when thefuntions f or g are not pseudorandom remains open. It is easy to�nd pathologial examples of output funtions where the modi�ationmakes things worse, but we believe that suh pathologial ases will beeasy to inspet. However, if the user wants omplete on�dene, thenhe may wish to replae the output funtion g by one that he trusts.In this ase, it may be worthwhile to use the generator in the two-stepmode and gain the maximal possible diversity as in Setion 7.As we have proved, in the multiple-stepping modes it is enough thateither the iteration or the output funtion is pseudorandom to obtainpseudorandom output. This suggests ombining two funtions from\orthogonal" soures, suh as in Example 7.5, and ombining strengthof well studied primitives with with new, promising ones, as in Example7.9.The ounter-assisted mode suggests many open problems. Some ofthese problems are mentioned in the paper. To these we an addpratial problems suh as the hallenge of �nding a seed s for whihthe ounter-assisted generator with DES as the iteration funtion hasDDES(s)(k) t pk for some large k, and theoretial problems suh asstatistial analysis of the behavior of the state sequene of ounter-assisted generators.
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