
GUARANTEEING THE DIVERSITY OF NUMBERGENERATORSADI SHAMIR AND BOAZ TSABANAbstra
t. A major problem in using iterative number generatorsof the form xi = f(xi�1) is that they 
an enter unexpe
tedly short
y
les. This is hard to analyze when the generator is designed, hardto dete
t in real time when the generator is used, and 
an havedevastating 
ryptanalyti
 impli
ations. In this paper we de�nea measure of se
urity, 
alled sequen
e diversity, whi
h generalizesthe notion of 
y
le-length for non-iterative generators. We thenintrodu
e the 
lass of 
ounter assisted generators, and show howto turn any iterative generator (even a bad one designed or seededby an adversary) into a 
ounter assisted generator with a provablyhigh diversity, without redu
ing the quality of generators whi
hare already 
ryptographi
ally strong.
1. Introdu
tionIn this paper we 
onsider the problem of generating long 
rypto-graphi
ally se
ure sequen
es by iterative number generators whi
h startat some seed value x0 = s, and extend it by 
omputing xi = f(xi�1)where f is some fun
tion. The ith output of the generator is a (typi-
ally shorter) value yi = g(xi) derived from the internal state by someoutput fun
tion g (Figure 1). If f is a se
ret keyed fun
tion, then gmay be the identity.
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2 ADI SHAMIR AND BOAZ TSABANA major appli
ation of number generators is to en
rypt 
leartextsby xoring them with the generated outputs. In this 
ase, the seed sis a se
ret key whi
h is shared by the 
ommuni
ating parties, but isunknown to the eavesdropping adversary.Sin
e the state spa
e is �nite, the sequen
e of internal states xi willeventually be
ome periodi
 with some period p, i.e., xi = xi+p forall i larger than some i0. Any 
y
ling of the state sequen
e 
auses a
y
ling of the output sequen
e with period at most p. A parti
ularlyworrisome problem is the possibility that i0 and p may be unexpe
tedlysmall, and therefore the 
y
ling point i0 + p is a
tually a
hieved. This
an happen even in very 
omplex generators. An interesting exampleis Knuth's \Super-random" number generator (AlgorithmK) [9, x3.1℄,whi
h 
onverges rapidly to a �xed point (that is, i0 is very small, andp = 1).If the 
y
ling point i0 + p is a
hieved, then the xor of the ith andi+pth 
iphertexts is equal to the xor of the ith and i+pth 
leartexts,for all i � i0. If the 
leartexts have a suÆ
iently high redundan
y,the 
ryptanalyst 
an dete
t the 
y
ling by noti
ing the non-uniformstatisti
s of su
h xor's, and then re
over the a
tual 
leartexts fromtheir known pairwise xor's. Even if the 
leartexts have no redun-dan
y, knowledge of some 
leartexts will make it possible to �nd other
leartexts en
rypted with the same repeated values.1.1. Partial solutions.1.1.1. Online monitoring. A possible solution to this problem is tomonitor ea
h exe
ution in real time. If a parti
ular seed leads to early
y
ling, the 
ryptographi
 operation is stopped and the seed is re-pla
ed. However, this 
an be very disruptive if the ex
hange of newseeds is time 
onsuming or diÆ
ult to arrange. Note further that realtime dete
tion of 
y
ling behavior using hash tables requires a verylarge memory, whereas other methods su
h as Floyd's two pointer 
y-
le dete
tion algorithm (see, e.g., [9, p. 7℄) are not guaranteed to dete
t
y
les as soon as they are entered.1.1.2. Experimental testings. The designer of the generator 
an test itsbehavior by applying f a limited number of times to a limited numberof random seeds (see [2℄). However, su
h testing 
annot be exhaustive,and thus even if no 
y
ling is ever dete
ted in these tests, the next seedor the next step 
an lead to a 
y
ling.1.1.3. Pseudorandom fun
tions. Pseudorandom fun
tions f : X ! Xare fun
tions whi
h are 
hosen from the spa
e of all possible fun
tionsg : X ! X with a relatively low-entropy distribution, but whi
h are



GENERATORS WITH GUARANTEED DIVERSITY 3diÆ
ult to tell apart from truly random fun
tions (whi
h are sele
tedfrom the spa
e of all possible fun
tions g : X ! X with uniform distri-bution). For any adversary with unlimited 
omputational power anda

ess to a polynomial (in log jXj) number of values of a pseudoran-dom fun
tion f , the probability that the adversary 
an tell that thesevalues 
ame from f rather than from a truly random g should be neg-ligible. Pseudorandom permutations and pseudorandom sequen
es arede�ned similarly to be low-entropy but diÆ
ult to distinguish fromtruly random permutations and sequen
es, respe
tively. For more pre-
ise de�nitions see, [20℄, [7℄, [10℄, [13, x2.2℄, and referen
es therein.It is easy to see (and well known) that sequen
es generated by itera-tive number generators with pseudorandom fun
tions f are pseudoran-dom. Thus, the probability that su
h a generator enters a small 
y
leis negligible. However, all known 
onstru
tions of pseudorandom fun
-tions are slow and are based on unproved 
onje
tures (see [16, x17.9℄).In fa
t, all pra
ti
al fun
tions used in 
ryptography are ad-ho
 
on-stru
tions whi
h are not proved to be pseudorandom, and nothing isknown about the a
tual stru
ture of the 
y
les they generate.1 Thisis parti
ularly worrisome for the user, sin
e there is no guarantee thatthe generators that he uses do not 
ontain a trapdoor leading to short
y
les.21.1.4. Mathemati
ally stru
tured generators. The need to avoid short
y
les is the major motivation behind the development of several fam-ilies of generators based on mathemati
al stru
tures. These familiesin
lude: Linear 
ongruential generators, linear feedba
k shift registers(LFSR's), 
lo
k-
ontrolled LFSR's, additive generators, feedba
k with
arry shift registers, 1=p generators (see [16, xx16{17℄ and referen
estherein), and TSR's [18℄. Under 
ertain 
onditions, these families 
anbe proved to have large 
y
les.The drawba
k of this approa
h is that their mathemati
al stru
ture
an be often used to 
ryptanalyze them (see [16, lo
. 
it.℄ for referen
esto 
ryptanalysis of various implementations of the mentioned genera-tors).1.1.5. Re-keying. Chambers [3℄ suggested a te
hnique to redu
e the riskof short 
y
les by restarting the generator's internal state every �xednumber of iterations, with a new key seed taken from a \re-keying"1A notable ex
eption appears in [8℄ and [5℄, where the 
y
le stru
ture of non-linear feedba
k shift registers is studied. However, the obtained results 
over onlydegenerate 
ases. Moreover, in [8℄ it is proved that the studied generators musthave short 
y
les.2Knuth's example 
ould be viewed as su
h a trapdoor generator.



4 ADI SHAMIR AND BOAZ TSABANgenerator whi
h has a provably large 
y
le (e.g., one of the generatorsmentioned in Se
tion 1.1.4).Given an iterative generator, let pk, k = 1; 2; : : : , be the probabilitythat the 
y
ling point of the generator o

urs after at least k iterations.Assume that we use the generator to get an output sequen
e of sizem. The probability that we do not rea
h the 
y
ling point in the usualiterative mode is pm. Now, if we re-key the generator every k iterations,then the probability that we do not rea
h the 
y
ling point even on
eis pm=kk . As nothing is known on the 
y
le stru
ture of the generator,there is no guarantee that pm=kk is greater than pm. It may thus bethe 
ase that the re-keying mode is worse than the standard iterativemode.Moreover, if the re-keying generator is 
ryptographi
ally weak, thenit 
ould be 
ryptanalyzed from the outputs whi
h 
ome immediatelyafter the re-keying phases.One should note further that, as S
hneier points out in [16, x17.11℄,algorithms that have a long key setup routine are not suitable for thismode.1.1.6. Similarity transformations and 
ounter-mode. Another possiblesolution is to take some simple permutation u whi
h is guaranteed tohave long 
y
les (e.g., u(x) = x + 1 (mod n), or any of the examplesfrom Se
tion 1.1.4), and then to use fuf�1 (instead of f) as the it-eration fun
tion. This similarity transformation has the same 
y
lestru
ture as u.Su
h a 
onstru
tion is, though, rather degenerate. Let hf; gi standfor a generator whose iteration fun
tion is f , and whose output fun
tionis g. Consider a generator of the form hfuf�1; gi. De�ne ~g = g Æ f .Then for all seeds s, setting ~s = f�1(s) implies that the ith outputis g((fuf�1)i(s)) = g(fuif�1(s)) = (g Æ f)(ui(~s)) = ~g(ui(~s)), thatis, the generator is equivalent to the generator hu; ~gi. This meansthat the modi�ed generator is equivalent to another generator with a
ryptographi
ally weak iteration fun
tion.For u(x) = x+1 (mod n) we 
on
lude that for some ~g, the ith outputof the generator equals ~g(~s+i). Generators of the form yi = g(s+i) are
alled 
ounter-mode generators, and are a standard mode of operation[16, x9.9℄. However, su
h generators have the following unpleasantproperty: The di�eren
e of any two input values s+ i and s+ j to g issimply i� j. If i is 
lose to j, then i� j has a small Hamming weight.This fa
t 
ould be used in di�erential or 
orrelation 
ryptanalysis of g.This is also the 
ase for other 
hoi
es of u, e.g., if u is an LFSR, thenui(s) and uj(s) are equal in all ex
ept for i� j bits.



GENERATORS WITH GUARANTEED DIVERSITY 52. The diversity of sequen
e generatorsIn this se
tion we propose a new notion of se
urity for sequen
egenerators, whi
h generalizes the 
ryptographi
ally desirable 
on
eptof long 
y
les.We �rst de�ne the notion of diversity for a single in�nite sequen
e.De�nition 2.1. The diversity of a sequen
e ~x = (x0; x1; x2; : : :) is thefun
tion D~x(k) for k = 1; 2; 3; : : : de�ned as the minimum number ofdistin
t values o

urring in any 
ontiguous subsequen
e xi; xi+1; : : : ; xi+k�1of length k in ~x.All of the sequen
es 
onsidered in this paper have a �nite samplespa
e of jXj = n possible values. For any sequen
e ~x in X,1 � D~x(k) � D~x(k + 1) � D~x(k) + 1 � n:In other words, the diversity grows monotoni
ally and at most linearlywith k, and 
annot ex
eed n.We now generalize the 
on
ept from sequen
es to generators. We�rst de�ne the types of generators 
onsidered in this paper:De�nition 2.2. An iterative generator is a stru
ture G = hX; Y; f :X ! X; g : X ! Y i, where for all x 2 X, f(x) and g(x) 
an be
omputed in polynomial time from x. X is the state spa
e, and Y isthe output spa
e. We may write G = hf; gi for short, or G : xi = f(xi�1)if the output fun
tion is not relevant. For a generator G : xi = f(xi�1)and seed s 2 X, we denote the state sequen
e (x0 = s; x1; : : : ) of thegenerated internal states by G(s).We wish to bound from below the diversity of the sequen
es of in-ternal states generated from possible seeds.De�nition 2.3. The diversity of an iterative generator G : xi =f(xi�1) is the fun
tionDG(k) = minfDG(s)(k) : s 2 Xgde�ned for k = 1; 2; 3; : : :. The total diversity of G is the limit limk!1DG(k).3Iterative generators on �nite spa
es have simple diversity fun
tions.Lemma 2.4. Assume that G : xi = f(xi�1) is an iterative generator.3Anderson, et. al., [2℄ suggested a statisti
ally-oriented notion of diversity forrandom number generators, based on experimental testings of the generator. Thesetestings give estimations for the average 
ase behavior, whereas our notion boundsthe worst 
ase behavior of the generator. Moreover, the 
ombinatorial nature ofour notion will make it possible to use mathemati
al theory in order to apply itto 
ases where experimental testings are not suitable (e.g., when the state spa
e ishuge). See also Se
tion 1.1.2.



6 ADI SHAMIR AND BOAZ TSABAN(1) Let ~x be a sequen
e (of internal states) 
reated by G. ThenD~x(k) = minfk; pg where p is the length of the 
y
le that ~xenters into.(2) DG(k) = minfk; pg where p is the length of the shortest 
y
lein f .Proof. ~x has distin
t values before it enters the 
y
le and while it 
om-pletes the �rst traversal of the 
y
le. This implies (1), and (2) followsfrom (1). �The diversity of an iterative generator is thus dire
tly related to thesize of its smallest 
y
le. It is intended to 
apture one aspe
t of theworst 
ase behavior of a generator, in the sense that generators withprovably high diversity 
annot repeat a small number of internal statesa large number of times as a result of an unlu
ky or adversarial 
hoi
eof seed.The diversity measure 
an be applied to noniterative generators, inwhi
h the 
omputation of xi may depend on its index i as well.De�nition 2.5. A 
ounter-dependent generator is a stru
ture G =hX; Y; F : X � N ! X; g : X ! Y i, where for all x 2 X and i 2 N ,F (x; i) and g(x) 
an be 
omputed in polynomial time from x. X is thestate spa
e, and Y is the output spa
e. In this type of generators, thenext state is 
al
ulated by xi = F (xi�1; i). Here too, we denote thestate sequen
e (x0 = s; x1; : : : ) of generated internal states by G(s).Note that iterative as well as 
ounter-mode generators are parti
ular
ases of 
ounter-dependent generators. A straightforward generaliza-tion of De�nition 2.3 for 
ounter-dependent generators is:De�nition 2.6.(1) The diversity of a 
ounter-dependent generator G : xi = F (xi�1; i)is the fun
tion DG(k) = minfDG(s)(k) : s 2 Xg de�ned fork = 1; 2; 3; : : :. The total diversity DtotalG of G is the limitlimk!1DG(k).(2) A 
ounter-dependent generator G : xi = F (xi�1; i) is g(k)-diverse if DG(k) � g(k) for all k = 1; 2; : : :.The diversity of a general 
ounter-dependent generator 
an grow andfreeze in an irregular way when k in
reases, sin
e these generators arenot for
ed into a 
y
le when they a

identally repeat the same xi value.The diversity fun
tion is thus a natural generalization of the notion of
y
le size.



GENERATORS WITH GUARANTEED DIVERSITY 73. Modifying generatorsIn this se
tion we 
onsider several ways in whi
h we 
an modify agiven iterative generator in order to in
rease its diversity. The mainintuitive 
onditions we impose on this pro
ess are:Condition 3.1. We do not want to design the new generator froms
rat
h. We usually prefer to use known and well studied primitivessu
h as DES, RC5 or nonlinear feedba
k shift registers, for whi
h highlyoptimized 
ode 
an be easily obtained or reused from other parts ofthe appli
ation. We thus want the modi�ed design to use the same
ryptographi
 ingredients as the original design.Condition 3.2. The 
omputational 
omplexity of the modi�ed next-state fun
tion must not be signi�
antly greater that that of the originalone.Condition 3.3. The modi�
ation te
hnique should be uniformly ap-pli
able to all iterative generators, treating them as bla
k boxes. Wedo not want the modi�
ation to be based on the mathemati
al or sta-tisti
al properties of the given iteration fun
tion f . In parti
ular, we
an not assume that we know the stru
ture of its 
y
les.Condition 3.4. We are more interested in in
reasing the diversity ofthe interval values xi than in in
reasing the diversity of the outputvalues yi = g(xi): If the given generator uses an output fun
tion gwith a small range (e.g., a single bit) applying diversity measures tothe output values is meaningless.The modi�
ation should be a win/win situation: If the given genera-tor has a low diversity, the problem should be re
ti�ed, but if the givengenerator is already strong, we do not want the modi�
ation to weakenit. The problem is that we do not have a general quantitative de�nitionof the \goodness" of generators, ex
ept when they are \perfe
t". Wethus 
on
entrate in this paper on the following formal interpretation.Condition 3.5.(1) For any given iteration fun
tion, the modi�ed generator shouldbe g(k)-diverse for some g(k) whi
h is exponential in logn.(2) If the iteration fun
tion f is pseudorandom, then the state se-quen
es generated from random seeds by the modi�ed generatorshould be pseudorandom.As in 
ounter-mode (see Se
tion 1.1.6), our bla
k box modi�
ationte
hnique is based on turning the iterative generator into a 
ounter-dependent generator, allowing xi to depend on i in addition to xi�1.To sharpen our intuition, let us 
onsider some bad 
onstru
tions. (Inthe following examples and throughout the paper, the state spa
e X is



8 ADI SHAMIR AND BOAZ TSABANidenti�ed with the set f0; 1; : : : ; n� 1g, and addition in the state spa
eis 
arried modulo n.)Example 3.6. xi = i. This fun
tion has maximal diversity, but poor
ryptographi
 quality.Example 3.7. xi = f(i). This is the standard 
ounter-mode. Perfe
tgenerators remain perfe
t, but for a 
onstant f the diversity is 1.Example 3.8. xi = f(i) + i. This is a simple 
ombination of theprevious two examples. Perfe
t generators remain perfe
t, but forf(x) = �x, all the generated xi are 0, and thus the diversity is 1.Example 3.9. xi = f(xi�1 + i). This is an attempt to for
e the nextstate to depend both on the previous state and on the index. Perfe
tgenerators remain perfe
t, but the generated sequen
e has diversity 1when f is a 
onstant fun
tion.Example 3.10. xi = f(xi�1 + i) + i. This is the \kit
hen sink" ap-proa
h, trying to 
ombine all the ingredients in all possible ways. How-ever, when the fun
tion f is f(x) = �x, the sequen
e generated fromany initial seed x0 = s is s;�s; s;�s; s;�s; : : : whi
h 
ontains at mosttwo values.Considering these 
ounterexamples, the reader may suspe
t that allbla
k box modi�
ations are bad (for some f). In the next se
tion weshow that this is not the 
ase.4. A provably good modifi
ation te
hniqueGiven an iterative generator hf; gi, we apply the following bla
k-boxmodi�
ation.De�nition 4.1. A 
ounter-assisted generator hf; gi is a generator inwhi
h x0 = s, and for all i � 1 xi = f(xi�1) + i (mod n), where n isthe size of the state spa
e, and the ith output is g(xi) (see Figure 2).
f
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GENERATORS WITH GUARANTEED DIVERSITY 9Sin
e it is easy to maintain or obtain a 
ounter for the number ofvalues produ
ed so far (in many appli
ations, one 
an use either theloop 
ounter or the running blo
k-number as a 
ounter for the 
ounter-assisted mode), and no 
hange is made in the fun
tion f or g, themodi�
ation te
hnique is 
ompletely trivial and 
an be applied to anyiterative generator without in
reasing its 
omplexity.Formally, for all generators hX; Y; f; gi, the 
ounter assisted modi�edgenerator is in fa
t the iterative generator hX�f0; : : : ; n�1g; Y; F;Gi,where F (x; i) = (f(x) + i (mod n); i+ 1 (mod n))G(x; i) = g(x)(1)However, note that:(1) The only se
ret part is lo
ated in the x 
oordinate,(2) in
rementing i has no 
ryptographi
al signi�
an
e, and(3) the output 
al
ulationG(x; i) is independent of the i-
oordinate.Thus applying diversity measures on the whole state spa
eX�f0; : : : ; n�1g|that is, measuring the diversity of the sequen
es of pairs (xi; i),i = 1; 2; : : :|is misleading (and, in fa
t, not informative). This iswhy the diversity measure is fo
used on the a
tual state sequen
esG(s) = (x0 = s; x1; : : : ) rather than on the sequen
e of pairs (xi; i).Lemma 4.2. Let ~x = (x0; x1; x2; : : :) be a state sequen
e of a 
ounterassisted generator. Then for all i 6= j (mod n), if xi = xj then xi+1 6=xj+1 and xi�1 6= xj�1.Proof. We argue modulo n. By de�nition, xi+1 = f(xi) + (i + 1) andxj+1 = f(xj)+(j+1). If xi = xj but i 6= j, then ne
essarily xi+1 6= xj+1.Now, for the very same reason, xi�1 = xj�1 would imply xi 6= xj, whi
his not the 
ase. �In other words, the sequen
e ~x has the interesting property thatequality at any pair of lo
ations implies inequality at the pair of theirimmediate su

essors and the pair of their immediate prede
essors. We
all this the isolated equality property. This is the intuitive reason why
ounter assisted generators 
annot enter short 
y
les: If they a

iden-tally generate the same value at several lo
ations, all the subsequent
omputations are guaranteed to diverge rather than 
onverge.Theorem 4.3.(1) The bla
k box modi�
ation te
hnique modifying G : xi = f(xi�1)to G 0 : xi = f(xi�1) + i (mod n) is maxfg(k); h(k)g-diverse,



10 ADI SHAMIR AND BOAZ TSABANwhereg(k) = (pk � 1 k � npn n < k ; and h(k) = (k=j Im(f)j k � nn=j Im(f)j n < k :(2) If the iteration fun
tion f is pseudorandom, then the state se-quen
es generated from random seeds by the modi�ed generatorare pseudorandom.Proof. (1) We �rst show that g(k) � DG0(k) for all k = 1; 2; : : : . Con-sider any sequen
e of k 
onse
utive values xi; xi+1; : : : ; xi+k�1 (k �n+1), and assume that it 
ontains exa
tly � distin
t values. There are�2 possible ordered pairs of these values (a; b), and by Lemma 4.2 ea
hone of them 
an o

ur at most on
e in a 
onse
utive pair of lo
ations(xj; xj+1) along the sequen
e. Sin
e there are k � 1 su
h lo
ations,�2 � k � 1, whi
h yields the desired lower bound on �.Next, we need to show that h(k) � DG0(k) for all k = 1; 2; : : : . In asequen
e of k 
onse
utive values xi; xi+1; : : : ; xi+k�1 (k � n + 1), ea
hxj is of the form 
j + j, where 
j 2 Im(f). Sin
e we add k distin
tvalues to at most j Im(f)j values, we get at least k=j Im(f)j distin
tvalues.(2) We now sket
h the proof of the pseudorandomness part. Considerthe following sequen
e of ora
les, whi
h a

ept a number k (whi
his polynomial in logn) and output a sequen
e x1; : : : ; xk 2 X. (Byrandom we mean statisti
ally independent and uniformly distributed.)Ora
le 1: Returns a random sequen
e xi 2 X (i = 1; 2; : : : ; k).Ora
le 2: Chooses a random seed x0 = s, and de�nes an f : X ! X onthe 
y, as follows:(1) A 
ag Birthday is initially set to 0.(2) For ea
h i = 1; 2; : : : ; k:{ If f(xi�1) is unde�ned, then 
hoose a random y 2 Xand de�ne f(xi�1) = y.{ Otherwise, set Birthday = 1.(3) Set xi = f(xi�1) + i.The remaining values of f are 
hosen randomly.Ora
le 3: Chooses a parti
ular fun
tion f with uniform probability fromthe set of all fun
tions from X to X, 
hooses a random seedx0 = s, and returns the sequen
e xi with xi = f(xi�1) + i,i = 1; 2; : : : ; k.Ora
le 4: Same as Ora
le 3, but with f pseudorandom instead of trulyrandom.We say that two ora
les are distinguishable if there exists a (not ne
-essarily polynomial time) algorithm (
alled distinguisher) whi
h, for



GENERATORS WITH GUARANTEED DIVERSITY 11some 
onstant 
 > 0, given a sequen
e of length polynomial in logn,
an tell with probability greater than 1= log(n)
 whi
h ora
le has gen-erated this sequen
e. Otherwise, the ora
les are indistinguishable. Itis 
lear that Ora
les 2,3 are indistinguishable. That Ora
les 3,4 areindistinguishable follows from the fa
t that any distinguisher of theseora
les 
an be used to 
onstru
t a distinguisher of pseudorandom fun
-tions from random ones.It remains to show that Ora
les 1,2 are indistinguishable. The onlypossible 
onstraint on the output of Ora
le 2 happens when f is appliedtwi
e to the same argument, that is, Birthday is set to 1. It is well-knownthat for k << n, the probability that no birthday o

urs is 
lose to k22n[17℄, whi
h is negligible if k is polynomial in logn. �Remark 4.4. The upper bound k22n on the distinguishing probability istight: In probability 
lose to k22n , a birthday xi = xj o

urs and thedistinguisher 
an 
he
k that xi+1 � (i + 1) = xj+1 � (j + 1). Providedthis, the probability that the output 
ame from Ora
le 1 is 1=n.5. Asymptoti
 tightness of the provable diversityThe square root lower bound on the diversity may seem to be an arti-fa
t of the proof te
hnique. We �rst 
onsider the purely 
ombinatorialversion of the problem: What is the longest sequen
e one 
an 
onstru
tfrom � distin
t symbols whi
h has the isolated equality property?Lemma 5.1. For any positive integer �, there exists a sequen
e oflength �2 + 1 
onsisting of � symbols and having the isolated equalityproperty.Proof. Let C be a 
omplete dire
ted graph with � verti
es and �2 di-re
ted edges (in
luding self loops). As the graph is 
onne
ted and theindegree and outdegree of ea
h vertex in C is the same (= �), thegraph is Eulerian. Let v0e0v1e1 : : : v�2�1e�2�1v0 be an Eulerian tour,whi
h in
ludes ea
h dire
ted edge exa
tly on
e. Assume that for somedistin
t i and j, vi = vj. If vi+1 = vj+1, then ne
essarily ei = ej,whi
h is disallowed in Eulerian tours. Similarly, vi�1 = vj�1 would im-ply ei�1 = ej�1. Consequently, the sequen
e has the isolated equalityproperty. �This 
ombinatorial result does not rule out the possibility that se-quen
es 
reated by 
ounter assisted generators must satisfy additional
onstrains, and as a result the lower bound in Theorem 4.3 
an be im-proved signi�
antly. We will show that this is not the 
ase: We provethe asymptoti
 tightness of our lower bound by 
onstru
ting for ea
h
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i�
 
ounter-assisted generator, su
h that the total diversitiesof these 
ounter-assisted generators are O(pn).Theorem 5.2. There exist fun
tions fn, n = 1; 2; : : : su
h that thetotal diversities DtotalGn of the 
ounter assisted generators Gn : xi =fn(xi�1) + i (mod n) are O(pn).Proof. Fix a natural number n. We will write for short f and G insteadof fn and Gn, respe
tively.The state sequen
e of G will be based on two sequen
es: a0; a1; : : : ; a��1and b0; b1; : : : ; b��1 (the values of � and � will be determined later). Thesequen
es are \meshed" as follows:(1) Lo
ations with even indi
es 
ontain only the ai values, and lo-
ations with odd indi
es 
ontain only the bj values.(2) The ai values o

ur in blo
k order: The �rst � o

urren
es area0, the next � o

urren
es are a1, and so on.(3) The bj values o

ur in 
y
li
 order: The �rst � o

urren
esare b0; : : : ;b��1 in this order, the next � o

urren
es are againb0; : : : ; b��1 in this order, and so on.Putting these blo
ks in 
onse
utive rows, we get a matrix C = (
ij)of size �� 2�, where 
i;2j = ai and 
i;2j+1 = bj:C = 0BB� a0 b0 a0 b1 � � � a0 b��1a1 b0 a1 b1 � � � a1 b��1... ... ... ... ... ...a��1 b0 a��1 b1 � � � a��1 b��11CCAWe de�ne a fun
tion f for whi
h the 
ounter assisted generator G :xi = f(xi�1) + i, seeded by x0 = a0, has state sequen
e equal to ourmeshed sequen
e.We begin with a few simple restri
tions on our parameters. For
y
li
ity the 
ounter must return to 0 after 2�� steps, that is, 2�� = 0(mod n). We will 
onsider �'s and �'s su
h that 2�� = n to make thesequen
e shorter. The isolated equality property implies that all of theai and bj values are distin
t. Thus, the total diversity will be � + �.Under these restri
tions, we 
an see via elementary 
al
ulus that the
hoi
e � = � = pn=2 yields the minimum possible total diversity of�+ � = p2n values.We thus begin with n's for whi
h n=2 is a square, and 
hoose � =� =pn=2.We now 
onsider the spe
i�
 values of the elements in our meshedsequen
e. The 
onditions are: 
i;j+1 = f(
ij) + 2�i + (j + 1), 
i+1;0 =f(
i;2��1) + 2�(i + 1) � 1, and 
00 = f(
��1;2��1) + 2��. In terms of



GENERATORS WITH GUARANTEED DIVERSITY 13the ai and bj this is:bj = f(ai) + 2�i+ (2j + 1)ai = f(bj) + 2�i+ (2j + 2) (j = 0; : : : ; � � 2)ai = f(b��1) + 2�iSetting x = f(a0), the �rst equation yields bj = x + (2j + 1) fori = 0. Putting this ba
k in the equation we get that f(ai) = x � 2�ifor all i. Similarly, the se
ond equation implies (setting y = f(b0))ai = y + 2�i + 2 and f(bj) = y � 2j for all j < � � 1. The thirdequation with i = 0 gives f(b��1) = a0 = y + 2.We therefore have, for any 
hoi
e of x; y, the following requirements:ai = y + 2 + 2�i f7! x� 2�ibj = x + 1 + 2j f7! y � 2j (j < � � 1)b��1 = x� 1 + 2� f7! y + 2It is easy to 
he
k that any su
h de�nition yields the desired sequen
e ofstates, as long as the resultant ai and bj's are disjoint. As we assumethat n is even, 
hoosing any x and y having the same parity (e.g.,x = y = 0) will do.The values of f on X n fai; bjg 
an be arbitrary. It remains to 
he
kthat the sequen
e is repeated after every � � 2� steps. Indeed, the
ounter will be 2�� = 0 (mod n), and thus x2�� = f(x2���1) + 0 =f(b��1) = a0, so we are right where we begun.We now treat the 
ases where n=2 is not a square. Set � = � =bpn=2 
, and de�ne ai, bj, and f as above. Now modify f(x) tof(x mod 2��). The above argument shows that if we proje
t the state-sequen
e ~x modulo 2��, we get diversity at most � + � = O(pn).Therefore, the a
tual diversity 
an be no more thanO(pn)�dn=(2��) e =O(pn) � 2 = O(pn). �Remark 5.3. In most pra
ti
al 
ases, n=2 is not a square and thus we
annot a
hieve the exa
t p2n upper bound using our meshing 
on-stru
tion. However, in many 
ases n is an even power of 2 (e.g, 224,232, 264, 2128, et
.), so we 
an 
hoose � = pn and � = pn=2 (note that2�� = n) to get total diversity � + � = 3pn=2, whi
h is 
lose to thep2n upper bound a
hieved in the 
ase where n=2 was a square.Our 
onstru
tion showed that the bound pn for the total diversityis asymptoti
ally tight. However, we do not have a 
onstru
tion whereDG(k) is O(pk) for all k simultaneously.



14 ADI SHAMIR AND BOAZ TSABANOpen problem 5.4. Does there exist a 
onstant 
 su
h that for allsuÆ
iently large n, there exists a 
ounter-assisted generator G (withstate spa
e of size n) su
h that DG(k) � 
pk for all k?6. Cas
ade 
ounter-assisted generatorsIn this se
tion we generalize the notion of 
ounter-assisted genera-tors.A Latin square is a binary fun
tion whi
h is uniquely invertible givenits output and any one of the inputs. For example, the operationsx+ y (mod n), x� y (mod n) and x� y are Latin square operations.Moreover, every group operation is a Latin square operation, and ifx ? y is a Latin square operation and P;Q; Z are permutations, thenZ(P (x) ? Q(y)) is a Latin square operation. Let ? be a Latin squareoperation.It is easy to see that the proof of Theorem 4.3 applies when the +imodi�
ation is repla
ed by any Latin square operation ?i (unique in-vertibility with respe
t to the i input guarantees the isolated equalityproperty, and unique invertibility with respe
t to the xi input guar-antees the pseudorandomness of the states). We 
an thus extend the
on
ept of 
ounter assisted generators to in
lude these 
ases as well.Remark 6.1. When n is a power of 2, we 
an use essentially the same
onstru
tion as in the proof of Theorem 5.2 to show the optimality ofthe 
(pn) lower bound when the +i (mod n) modi�
ation is repla
edby a �i modi�
ation.The next lemma shows that 
ounter-mode generators are a degener-ated 
ase of 
ounter-assisted generators.Lemma 6.2. Every 
ounter-mode generator is a 
ounter-assisted gen-erator.Proof. A 
ounter-mode generator with ith output g(s ? i) is equivalentto the 
ounter-assisted generator G = hf; gi, where f � s, and the Latinsquare operation is ?, sin
e in this 
ase, xi = f(xi�1) ? i = s ? i. �We 
an extend the notion of 
ounter-assisted generators further.Assume that G = hf; g;X; Y i is an iterative generator, and let ~
 =h
0; 
1; : : :i be any sequen
e of elements in X. De�ne the sequen
e-assisted generator G ? ~
 to be the generator whose ith state is xi =f(xi�1) ? 
i (and whose ith output is g(xi)).Theorem 6.3. Let G = hf; gi ? ~
 be a sequen
e-assisted generator.Then:(1) DG(k) �pD~
(k)� 1 for all k = 1; 2; : : : .



GENERATORS WITH GUARANTEED DIVERSITY 15(2) If the the sequen
e ~
 is pseudorandom, then the state sequen
eof G is pseudorandom.(3) If f is pseudorandom, then the state sequen
e of G is pseudo-random.Proof. (1) As in Lemma 4.2, we 
an show that 
i 6= 
j implies (xi�1; xi) 6=(xj�1; xj). The rest of the proof is similar to the proof of Theorem4.3(1).(2) If the state sequen
e of G is not pseudorandom, then the sequen
e~
 
an be distinguished from pseudorandom noise by 
onsidering hf; gi?~
, and looking at the state sequen
e of G.(3) This is proved as in Theorem 4.3(2); the only di�eren
e is in thede�nition of Ora
le 3. �Thus, any sequen
e ~
 with large diversity 
an be used instead of a
ounter. In parti
ular, we 
an use the output of any of the generatorsmentioned in Se
tion 1.1.4 as the assisting sequen
e. In general, assumethat C is any generator with output in X. De�ne G ? C = G ? ~
, where~
 = h
0; 
1; : : :i is the output sequen
e of C (note that the sequen
e ~
depends of the initialization of C). The following de�nition is indu
tive.De�nition 6.4. G is a 
as
ade 
ounter-assisted generator if:(1) G is a (standard) 
ounter-assisted generator, or(2) G = F ?C, where F is an iterative generator, ? is a Latin squareoperation, and C is a 
as
ade 
ounter-assisted generator.In parti
ular, we have:Lemma 6.5. Every iterative generator is a 
as
ade 
ounter-assistedgenerator.Proof. If G is an iterative generator, and C is a generator with outputfun
tion 0, then G+C = G is a 
as
ade 
ounter-assisted generator. �Thus the notion of 
as
ade 
ounter-assisted generators extends thoseof iterative, 
ounter-mode and 
ounter-assisted generators.Ideally, all internal states of the 
as
aded generators (in
luding thestarting position of the 
ounter i) should be initialized by random,independent seeds. If this is not feasible, one 
an, e.g., initialize the\driving" generator or the 
ounter with a random seed, and then 
lo
kthe 
as
ade a few times to make all internal states depend on theseed. In this 
ase, however, 
aution must be taken to make sure thatparti
ular 
hoi
e of output fun
tions does not make the in
uen
e ofthe seed \vanish" while going down the 
as
ade.Example 6.6. Assume that the generators A, B, and C have statespa
es of size n = 2256 (256 bits). Assume further that the generator
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ounter-based with an invertible output fun
tion gC, and that theoutput fun
tion gB of B is invertible as well. Consider the total diversityof the 
as
ade generator A + (B � C) (see Figure 3): As C is 
ounter-based, we have DC(n) = n. Thus by Theorem 6.3 (and dis
reteness),DB�C(n) � dpn� 1e = 2128, and DA+(B�C)(n) � dpDB�C(n)� 1e �264. Moreover, if the output fun
tion of C, or any of the iterationfun
tions of B, A is pseudorandom, then the state sequen
e of A ispseudorandom as well. (We 
an also use, e.g., a maximal length LFSRinstead of the 
ounter-based generator C to get the same results.)

6

5

+

+

i

+1

fB

fA
gB

gA

gC

1

2

3

4

Figure 3Remark 6.7. In this se
tion we have seen that every iterative generator
an be viewed as a 
as
ade 
ounter-assisted generator (in a degeneratemanner). On the other hand, as mentioned in Se
tion 4, every 
ounter-assisted generator 
an be viewed as an iterative generator (with a largerstate spa
e). The advantage of our approa
h is that we fo
us on the
ryptographi
al part of the generator, from whi
h the output is 
al
u-lated, rather than on the state of the whole system.7. Generating sequen
es with maximal diversityIf we allow the design of a new output fun
tion g, then we 
an modifyany generator to have the maximal possible diversity DG(k) = k for allk = 1; 2; : : : ; n.De�nition 7.1. Let G be any iterative generator. Modify its next-state fun
tion as follows:x2i+1 = f(x2i)x2i+2 = f(x2i+1) + i
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ounter is in
remented and added to the state value onlyon
e every two iterations of the generator. The pair of generatedvalues (x2i; x2i+1) is used as the argument of a new output fun
tiong0 : X � X ! Y � Y . We 
all this mode of operation the two-step
ounter-assisted mode. More generally, the t-step 
ounter-assisted modeis de�ned by in
rementing and adding the 
ounter on
e every t iter-ations, and using ea
h t-tuple as the input of a new output fun
tionĝ : X t ! Y t. Formally, the t-step generator G = hf; g;X; Y i with Latinsquare operation ?i is the 
ounter-assisted generator Gt = hf̂ ; ĝ; X t; Y tiwith the (inje
tive) operation ?̂i, where� f̂(x0; : : : ; xt�1) = (f(xt�1); f 2(xt�1); : : : ; f t(xt�1)),� (x0; : : : ; xt�1)?̂i = (x0; : : : ; xt�1 ? i), and� i is a 
y
li
 
ounter in the range 0; 1; : : : ; n� 1.Note that t-step 
ounter-assisted generators require a state bu�er ofsize t.
x2

x1

f

x1

2

x’

g’

+3

+1

i

4

Figure 4. A two-step 
ounter-assisted generatorFor all t � 2, any t-step 
ounter-assisted generator has maximalpossible diversity:Theorem 7.2. For any generator G = hf; gi, and for all t � 2, wehave the following:(1) If f is pseudorandom, then the state sequen
es of Gt are pseu-dorandom.(2) DGt(k) = k for all k = 1; : : : ; n.Proof. The proof of the pseudorandomness part is similar to that inTheorem 4.3.To prove the diversity part, assume that for some i 6= j (mod n) wehave equality between the t-tuples (xit; : : : ; xit+t�1) and (xjt; : : : ; xjt+t�1).In parti
ular, xit+t�2 = xjt+t�2. But this implies xit+t�1 = f(xit+t�2) +i 6= f(xjt+t�2) + j = xit+t�1 (mod n), a 
ontradi
tion. �



18 ADI SHAMIR AND BOAZ TSABAN7.1. Bla
k-box modi�
ations of the output fun
tion g. If the
omputational 
omplexity of evaluating the new output fun
tion g0 inthe two-step mode is at most double that of evaluating g, then onaverage, the 
omputational 
omplexity of obtaining the next outputdoes not 
hange: We 
lo
k the generator twi
e, but we get two outputsat on
e. If the output spa
e Y is equal to X then we 
an get very 
loseto this without designing a new output fun
tion.We will use the terminology of [13℄. For a fun
tion g : X ! X,de�ne the Feistel permutation Dg : X � X ! X �X by Dg(L;R) def=(R;L � g(R)). (Here too, any Latin square operation ? 
an be usedinstead of �.)If the output fun
tion g is key-dependent, then we 
an use a Luby-Ra
ko� 
onstru
tion. Denote the key spa
e by K, and assume that thesize of the key spa
e is exponential in logn.Theorem 7.3. Assume that the mapping � 7! g� is pseudorandom,and that �1, �2, and �3 are pseudorandom elements of K. Then forall fun
tions f : X ! X and seeds x0 2 X, the two-step generatorhf̂ ; Dg�1 ÆDg�2 ÆDg�3 i has pseudorandom output.Proof. By Theorem 7.2, for all iteration fun
tions f and seeds x0 2 X,the inputs to Dg�1 Æ Dg�2 Æ Dg�3 are all distin
t. By a result of Lubyand Ra
ko� [11℄, this implies pseudorandomness of the output. �This 
onstru
tion makes the output 
al
ulation slower by a fa
tor of3:2. The 
omputational 
omplexity of the following alternative is 
loserto the desired optimum, and is a more straightforward modi�
ation.Theorem 7.4. Assume that g : X ! X is pseudorandom, and assumethat h : X ! X is pseudorandomly 
hosen from a family H of fun
tionssu
h that for all distin
t x; y 2 X and for all z 2 X, the probabilitythat h(x) � h(y) = z (h 2 H) is negligible. Then for all fun
tionsf : X ! X and seeds x0 2 X, the two-step 
ounter-assisted generatorhf̂ ; Dg ÆDg ÆDhi has pseudorandom output.Proof. By a result of Lu
ks [12℄ (see also [13℄), Dg ÆDg ÆDh is pseudo-random. The rest of the proof is like in Theorem 7.3. �There exist very eÆ
ient families H with the property mentioned inTheorem 7.4 (see [13℄ for examples and referen
es). Thus, the 
ompu-tational overhead of applying h is small, and the resulting generatoris almost as eÆ
ient as the original one. Note that, unlike the resultsin earlier se
tions, we get here a bla
k-box modi�
ation of an iterativegenerator hf; gi whi
h has maximal output diversity, and if either one
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tions f or g is pseudorandom, then the output sequen
e ispseudorandom.Example 7.5. Let f = DES [14℄, g = RC5 [15℄, and h� : f0; 1g64 !f0; 1g64 be a fun
tion from Vazirani's shift family (the ith bit of h�(x) isPni=1 xi�j+i�1 mod 2, see [13℄ and [19℄). The two-step 
ounter-assistedgenerator hdDES; DRC5 Æ DRC5 Æ Dh�i has maximal (state and output)diversity k for all k = 1; 2; : : : ; 264. On average, the 
al
ulation of anyoutput 64 bit blo
k requires a single invo
ation of DES and a singleinvo
ation of RC5. The exe
ution time overhead of the rest of theoperations is negligible. Furthermore, if either one of the two fun
tionsDES and RC5 is diÆ
ult to distinguish from random, then the outputsequen
e will be diÆ
ult to distinguish from random as well.Open problem 7.6. Assume that both f and g are (truly) random,and 
onsider an output sequen
e of length m generated from a randomseed by the two-step 
ounter-assisted generator G2 = hf̂ ; Dg Æ Dgi.What is the highest distinguishing probability between su
h a sequen
eand a random sequen
e?Remark 7.7. Using the results from [13℄, we get that for all t, theoutput fun
tion of the t-step 
ounter-assisted mode 
an be modi�ed ina bla
k-box manner with a small 
omputational overhead, to get thesame diversity and pseudorandomness results. See [13℄ for details.Remark 7.8. In 
ertain 
ases, when t is large (e.g., t � 4) it is desirablethat the inputs to the t-step output fun
tion are distin
t in as manyentries as possible (for example, this guarantees many a
tive S-boxesin di�erential 
ryptanalysis of the output fun
tion). We 
an a
hievethis goal via letting the next state be the same as when 
lo
king the(standard) 
ounter-assisted generator t times (that is, the 
ounter isin
remented and added to the xi value every 
lo
k). By the isolatedequality property, this guarantees that any two t-tuples are distin
t inat least bt=2
 entries. In this mode of operation, the diversity remainsmaximal as long as k < n=t.7.2. Safe transition to new generations of 
ryptographi
 fun
-tions. A 
ommon pra
ti
e in the design of new generations of 
rypto-graphi
 fun
tions is to double the input and output length. Nowadays,we experien
e the evolution from 64 bit fun
tions (su
h as DES, RC5,et
.) to 128 bit fun
tions (su
h as the AES 
andidates [1℄). The advan-tage of old generation fun
tions is that they have gone through years ofextensive a
ademi
 resear
h, and are thus well understood. It will takea long time to gain similar 
on�den
e in the new generation fun
tions.



20 ADI SHAMIR AND BOAZ TSABANOur two-step 
ounter-assisted mode suggests a natural and straight-forward way to 
ombine new and old generation fun
tions in a way thatif either one of them is pseudorandom, then the resulting generator ispseudorandom: Assume that f is an old generation fun
tion and g isa new generation fun
tion with double input size. Then we simply usethe two-step 
ounter-assisted generator hf̂ ; gi.Example 7.9. In Example 7.5, we 
an use RC6 instead ofDRC5ÆDRC5ÆDh� as the output fun
tion. This results in a faster and more elegantgenerator. Here too, the diversity is maximal for all k = 1; : : : ; 264, andthe generator is diÆ
ult to distinguish from random if either DES orRC6 is.7.3. Cas
aded multiple-step 
ounter-assisted generators. If wehave enough state-spa
e (this is usually the 
ase with software en-
ryption), we 
an 
as
ade multiple-step 
ounter-assisted generatorswithout de
reasing the diversity. Consider for example generatorsG0;G1; : : : ;Gm�1 having the same state-spa
e and output-spa
e. Forany sequen
e of positive integers t0 < t1 < : : : < tm�1, and Latin-square operations ?t0 ; : : : ; ?tm�2 (on spa
es of size t0; t1; : : : ; tm�2 blo
ks,respe
tively), the (t0; t1; : : : ; tm�1)-step 
as
ade is de�ned to beG
as
ade = Gtm�1m�1 ?̂tm�2 : : : ?̂t1Gt11 ?̂t0Gt00 :In the sense of de�nition 6.4. Here, (x0; : : : ; xtj+1�1)?̂tj (y0; : : : ; ytj�1) isde�ned as the 
on
atenation of (x0; : : : ; xtj+1�tj�1) and (xtj+1�tj ; : : : ; xtj+1�1)?tj(y0; : : : ; ytj�1).Using this notation, we have the following:Theorem 7.10. For all generators G0;G1; : : : ;Gm�1 having the samestate-spa
e and output-spa
e, and for any Latin-square operations ?t0 ; : : : ; ?tm�2(on spa
es of size t0 < t1 < : : : < tm�2 blo
ks, respe
tively), the(t0; t1; : : : ; tm�1)-step 
as
ade G
as
ade = Gtm�1m�1 ?̂tm�2 : : : ?̂t1Gt11 ?̂t0Gt00 hasthe following properties:(1) DG
as
ade(k) = k for all k = 1; 2; : : : n.(2) If either the iteration or the output fun
tion of any of the 
as-
aded generators is pseudorandom, then the output of G
as
ade ispseudorandom as well.Proof. (1) follows from Theorem 7.2, by indu
tion on m. (2) followsreadily from Theorem 6.3. �



GENERATORS WITH GUARANTEED DIVERSITY 218. Con
luding remarks and further resear
hWe have presented a new mode of operation whi
h makes the diver-sity of every state sequen
e provably large with a negligible 
omputa-tional 
ost. Unlike other solutions, this mode does not introdu
e new(trivial) risks. The well known threat of \no available theory" on the
y
le stru
ture of 
ompli
ated iterative generators (see, e.g., [4, p. 525℄,[3, p. 22℄, [16, x17.6℄, and [6, p. 347℄) is eliminated. It is important tostress, however, that the diversity measures only one aspe
t of se
urity,and is 
learly not suÆ
ient for evaluating the 
ryptographi
al strengthof the generator.Our new mode has various possible implementations via multiple-stepping and/or 
as
ading, whi
h allow the user a wide range of 
hoi
eto �t the implementation to his 
onstraints and needs. All of thesuggested modes require a 
ounter, but in most of the appli
ationsa 
ounter either already exists or is easy to maintain. The 
as
adedmode redu
es the provable diversity with respe
t to the simple 
ounter-assisted mode, but it suggests an interesting new way to 
ombine the
ryptographi
 strength of several generators. The multiple-steppingmode requires a larger state bu�er (thus may be more suitable in soft-ware appli
ations), but assures perfe
t diversity.The 
ryptographi
al impa
t of our modi�
ation te
hnique when thefun
tions f or g are not pseudorandom remains open. It is easy to�nd pathologi
al examples of output fun
tions where the modi�
ationmakes things worse, but we believe that su
h pathologi
al 
ases will beeasy to inspe
t. However, if the user wants 
omplete 
on�den
e, thenhe may wish to repla
e the output fun
tion g by one that he trusts.In this 
ase, it may be worthwhile to use the generator in the two-stepmode and gain the maximal possible diversity as in Se
tion 7.As we have proved, in the multiple-stepping modes it is enough thateither the iteration or the output fun
tion is pseudorandom to obtainpseudorandom output. This suggests 
ombining two fun
tions from\orthogonal" sour
es, su
h as in Example 7.5, and 
ombining strengthof well studied primitives with with new, promising ones, as in Example7.9.The 
ounter-assisted mode suggests many open problems. Some ofthese problems are mentioned in the paper. To these we 
an addpra
ti
al problems su
h as the 
hallenge of �nding a seed s for whi
hthe 
ounter-assisted generator with DES as the iteration fun
tion hasDDES(s)(k) t pk for some large k, and theoreti
al problems su
h asstatisti
al analysis of the behavior of the state sequen
e of 
ounter-assisted generators.
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