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Abstract

e propose a metric for surface parameterization specialized to its signal that can be used to create more ef cient,
high-quality texture maps. Derived from Taylor expansion of signal error, our metric predicts the signal approxi-
mation error - the difference between the original surface signal and its reconstruction from the sampled texture.
Unlike previous methods, our metric assumes piecewise-linear reconstruction, and thus makes a good approxima-
tion to bilinear reconstruction employed in graphics hardware. We achieve signi cant savings in texture area for
a desired signal accuracy compared to the signal-specialized parameterization metric proposed by Sander et al.

in the 2002 Eurographics Workshop on Rendering.

Categories and Subject Descriptors (accordingto ACM CCS): 1.3.7 [Computer Graphics]: Color, shading, shadowing

and texture

1. Introduction

Texture mapping featuresin graphics hardware are being in-
creasingly used in real-time rendering. Surface signals play
an important rolein achieving anumber of rendering effects.
While these rendering effects can also be stored per vertex
on a high resolution mesh, using a coarser mesh with tex-
turesisgeneraly more ef cient [COM98].

Texture mapping requires a surface to be parameterized
onto atexture domain by assigning texture coordinatesto its
vertices. Given this parameterization, the surface signd is
sampled into a texture image of a given resolution. Texture
memory can become a scarce resource in complex scenes
with many textured objects. In this paper we examine how to
construct a parameterization to best represent a given surface
signal using textures as compact as possible. We construct
such a parameterization as an off-line, automatic preprocess.

The majority of surface parameterization schemes assume
no apriori knowledge of the signal and instead minimize for
various geometric distortion measures such as preservation
of area and angles. Sander et al. build a surface parameteri-
zation optimized for aspeci ¢ signal by trying to reduce the
signal approximation error - the difference between the re-

¢ The Eurographics Association 2004.

constructed signal and the original signal [SGSHO02]. While
their approach already produces more ef cient texture maps
than signal-independent parameterizations, it is based on
the assumption that the reconstruction is piecewise constant.
Theintegrated metric tensorsin their signal-specialized met-
ric distinguish between constant and linear signal s but do not
differentiate between linear and higher-order signals. Given
that graphics hardware employs bilinear interpolation, their
metric could lead to over or undersampling, depending upon
the surface signal.

In this paper, we examine minimizing the signal approx-
imation error with the assumption that the reconstruction is
piecewise linear. Based on Taylor polynomial expansion of
signal error our metric consists of aweighted sum of squares
of second derivatives of the mapping h from the texture do-
main (s;t) to an n dimensional surface signal. These second
derivatives allow our metric to distinguish between linear
and higher order signals and thus provide greater sensitivity
to signal detail. Thisresultsin reduced signal approximation
error for agiven texture size (see Fig. 7).

The speci ¢ contributions of this paper are:

e A novel error metric that integrates signal approximation
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error over the surface. It is derived using Taylor expansion
of signal error with the assumption that the reconstruction
is piecewise linear.

e A method to compute Hessians, second derivatives of the
mapping h between the texture domain and the surface
signal, using a least squares tting method in order to
evaluate the terms of the metric. These terms are precom-
puted and integrated over each face.

e An a ne transformation rule for ef cient evaluation of
the metric during the parameterization process.

We implement an ef cient algorithm that minimizes the sig-
nal error over the parameterization, while maintaining an
embedding. Our optimization algorithm incorporates a mul-
tiresolution hierarchy [SGSHO02] to propagate metric infor-
mation from ne-to-coarse and creates the parameterization
in acoarse-to- ne manner. In Section 6 we compare the sig-
nal approximation error of texture maps created using our
metric with that of Sander et al., and show that our metric
achieves signi cant savingsin texture areafor adesired sig-
nal accuracy.

2. Previous Work

Signal Independent Parameterizations The problem of
minimizing distortion while attening a surface chart into
2D has been studied in great detail since 1995 as noted in
the survey by Floater and Hormann [FHO4].

Pinkall and Polthier rst introduce the notion of using
cotangent weights as a discrete measurement of Dirichlet
energy with the aim of computing minimal surfaces [PP93].
Eck et a. propose the use of Dirichlet energy minimization
to parameterizing a mesh using harmonic maps [EDD*95].
The texture coordinates for boundary vertices, however,
must be xed a priori and harmonic maps may contain face

ips (adjacent faces in texture space with opposite orien-
tation) which violate the bijectivity of a parameterization.
Duchamp et al. investigate multiresol ution methods for com-
puting harmonic maps [DCDA97]. Based on earlier work
by Tutte [Tut60], Floater [Fl097] proposes a different set of
weightsfor the edge spring model that guarantees an embed-
ding if the texture coordinates of the boundary are xed to
aconvex polygon. Desbrun et a. de ne a space of measures
spanned by a discrete version of the Dirichlet energy, and a
discrete authalic energy [DMAOQ2].

Hormann and Greiner propose the M1 PS parameterization
[HGO00], which maximizes the conformality of the piecewise
linear mapping without demanding the mesh boundary to
be mapped onto a xed shape. Another approach to mini-
mize angular distortion is proposed by Sheffer and de Sturler
[SdS01]. They de neanon-linear energy in terms of the cor-
ner angles of the mesh in texture space. Levy et a. formu-
late the discrete conformality problem as a quadratic mini-
mization problem and prove the unigueness and existence of
its solution [LPRM02]. Using standard numerical conjugate

gradient solver they are able to compute least squares ap-
proximations to continuous conformal maps very ef ciently
without requiring xed boundary texture coordinates.

There are some methods to compute parameterizations
over a non-planar domain. Haker et a. compute confor-
mal maps from a spherical domain onto a three dimen-
sional surface [HAT*00]. Lee et a. use mesh simpli cation
to parameterize a surface over a base mesh [LSS*98]. K ho-
dakovsky et al. employ asimilar approach but with emphasis
on globally smooth derivatives [KLS03]. Praun et a. intro-
duce a robust technique for directly parametrizing a genus-
zero surface onto a spherical domain employing minimiza-
tion of a stretch-based measure, to reduce scale-distortion
and thereby prevent undersampling [PHO3]. Gu and Yau
solve directly for global " ow elds' over a mesh of arbi-
trary genus, that can be "integrated” to obtain paramterized
charts [GY03].

Few approaches explicitly optimize global area or global
length distortion. Maillot et a. minimize an edge length
distortion, but cannot guarantee the absence of face ips
[MYV93]. They also propose an area preserving energy and
combine both energies in a convex combination. Levy and
Mallet use ametric that combines orthogonality and isopara-
metric terms [LM98]. Sander et al. minimize the average or
maximum singular value of the Jacobian to prevent under-
sampling of the surface [SSGHO1]. To optimize for a uni-
form sampling, Sorkine et a. minimize the maximum of the
maximum singular value and the inverse of the minimal sin-
gular value, which penalizes both under- and oversampling
[SCOGLO02].

Signal-specialized parameterizations Until recently,
there has been little emphasis on exploiting knowledge of
the surface signal in optimizing the parameterization.

Given an existing parameterization, Sloan et al. warp the
texture domain onto itself to more evenly distribute a scalar
importance eld [SWB98]. Unlike importance, our metric
is derived directly from signal approximation error, and is
integrated over the surface. Terzopoulos and Vasilescu ap-
proximate a 2D image using awarped grid of sample values
[TV91]. The warping is achieved using a dynamic simula-
tion where grid edge weights are set according to local image
content. We consider signals mapped onto surfaces in 3D,
de nethe parameterization on a coarser, irregular mesh, and
store the signal in atexture image mapped onto this mesh.

Sander et a. build asignal-specialized parameterizationin
amutigrid hierarchy and minimize the signal approximation
error, the error between the original surface signa anditsre-
construction from the sampled texture with the assumption
that the reconstruction is piecewise constant [SGSHO02]. In
contrast, our metric is derived assuming that our reconstruc-
tion method is piecewise linear. This more closely matches
texture reconstruction hardware which does bilinear inter-
polation. This also holds true if the parameterization is used
for remeshing since the output remesh is typically made up
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of triangleswhich linearly interpolatethe vertices.In Sec-
tion 6 we demonstratsigni cantimprovementn thequality
of texture mapsobtainedfor a desiredlevel of signalaccu-
ragy overavarietyof differentmodels.

Balmelli et al. createspace-etient texture mapsby dis-
tributing frequeng contentuniformly acrossainimageusing
awaveletpacletdecompositionechniqueanddenoisingl-
ter[BBT02]. Thefrequeny mapcapturesherelativeimpor-
tanceof differentregionsin theimage,andcausesheimage
to bestretchedn highfrequeng areasandcontractedn low
frequeny areasTherearetwo maindifferencedbetweerour
approachandthatadoptedby Balmelli et al. First, our met-
ric isderivedspeci cally to reducereconstructiorrrors It is
ableto differentiatedirectionaldifferencesn the variability
of the signal,andit agreeswith optimality resultsfrom ap-
proximationtheory Secondgivensomesignalover amesh,
our methodsimply solvesfor a parametrizatiomf themesh,
andthensamplesand storesthat signalas a singletexture.
In contrastBalmelli et al. begin with the signalrepresented
asaninput texture andwith associatedexture coordinates.
They warptheimagein orderto moreef ciently usethetex-
ture spaceand subsequentlyipdatethe texture coordinates
to accountfor the warping. However, sincethe warpingis
performedon a differentgrid thanthe triangulationof the
mesh,this necessarilycreatessomeslipping of the texture
overthesurface.

3. Signalsover Meshes

Let thesurfacesignalbedenotedy thefunctiong: S! Q,
wherethe signal-spaceQ can be vectorvalued (e.g. RGB
coloris a3-vectorin Q).

P

Figure 1: We examinethemappingh= g f.

Therearea numberof waysa surfacesignalmay be de-
ned over the mesh.For example,a signalmay resultfrom
the evaluationof a proceduraltexture computation.n this
context, we wish to parameterizeS and samplethis signal
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over the domainD. One also may bagin with a signalde-

ned by a high-resolutionimage-teture and a given map-
pingontoS. In this casewe maywish to parameteriz&, and
resamplehe original signalat somelower resolution.

Onecanalsode ne asignaloveralow resolutionmeshS,
usinga highresolutionmeshof thesamemodel.If attributes
(e.g.RGB color, or normals)arespeci ed at eachvertex of
this high resolutionmesh,linear interpolationthen de nes
a signalat eachpoint on the high resolutionmesh.Normal
shooting[SGG 00] canthenbe usedto createa correspon-
dancebetweerS andthe high resolutionmesh thusde ning
asignalover S All of our examplesareof thistype.

Normal shootinginvolves interpolatingsurface normals
of the faceon which a sulvertex lies on the low resolution
meshS and shootingraysin the direction of theseinter-
polatednormalsto the high resolutionmesh.During ray-
shooting,a ray mayfail to hit the high resolutionmodel,in
which casewe usethe nearesthigh resolutionmeshvertex
to the subvertex to estimatéts signal.

4. Signal-SpecializedParameterization Metric
4.1. Metric Derivation

To nd thesurfaceparameterizatior, we examinehow well
the functionh = g f (from the texture domainD to the
signal-spac®)) is approximatedvhenreconstructedrom a
discretesamplingover D (seeFig. 1).

In this sectionwe derive a metric for signalapproxima-
tion error, Ep(s;t), de ned asthe differencebetweenh and
its reconstructiorh from adiscretesamplingwith spacingd
in D with theassumptions(1) h is a piecaviselinearrecon-
struction,and(2) the samplingis asymptoticallydense.

We assumehatthe domainD containsa regular grid of
samplepoints(s;tj), spaced2d aparton eachaxis asillus-
tratedin Fig.2.Let(§f) 2 [ d;+d] [ d;+d]bealocalco-
ordinatesystemwithin the grid square? i j abouteachsam-
ple,suchthat(s;t) = (s + §t;+ f) 2 2ij. Giventhattexture

Figure 2: Aregular grid of samplepointsin the texture do-
main.

mappingin hardware employs bilinear interpolation,a po-
tentialreconstructiorfunction h in the neighborhoo@ i j of



