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Abstract. In this work, we present Paraconsistent Well-Founded Se-

mantics with eXplicit negation (WFSXp) by introducing a frame-based
semantics. As far as we know, this is the first time that a declarative ap-
proach for WFSXp is effectively characterised in terms of a model theory.
Dismissing usual techniques based on immediate consequence operators,
our definition depicts WFSXp by minimising models satisfying particular
criteria. Aware that WFSXp captures a large deal of logic programming
semantics (including the main well-founded ones), our approach sub-
sumes indirectly a semantics for them. Then assuming an illustrative
tone, by adding some conditions, we also show how it can be adjusted to
define Well-Founded Semantics with eXplicit negation (WFSX ), Well-

Founded Semantics (WFS) as well as Answer Sets. Given its declarative
aspects, our work paves the way to define a logical representation of the
family of well-founded semantics.

1 Introduction

During much time, unsuccessful attempts to elaborate a model theoretical def-
inition for Well-Founded Semantics with eXplicit negation (WFSX ) [11, 2] and
its paraconsistent variant (WFSXp) [1, 4] have challenged researchers. One of the
main difficulties is that in some cases, due to Coherence Principle1, non-standard
conditions are introduced to consider an interpretation as satisfiable. This issue
is illustrated with the following program:

Example 1. Let P be the logic program containing the following rules:

P =
{

b→ a not b→ b ¬a
}

As it is known, coherence is one of the distinguishing characteristics of WFSXp .
According to this semantics, “b” is assigned truth-value undefined in P , whilst
given that “¬a” is assigned true, we can conclude applying coherence “not a” is
also true, i.e. “a” is false. The first rule of P is satisfied by this interpretation,

1 According to this principle, explicit negation entails default negation.



even with false head and undefined body. However, if we withdraw the rule “¬a”
from P , the very interpretation assigning false to head and undefined to body
will not satisfy the first rule of P ! The intuition is that rule “¬a” overrides the
undefinedness of “a” obtained on the basis of the first rule, justifying to accept
this assignment as satisfiable. In other words, the same assignment of values
to head and body of a rule when coherence does not intervene is considered
unsatisfiable. The problem is how a model theory can characterise declaratively
such a quite unusual behaviour of WFSX and WFSXp .

Since Lifschitz’s work [9], stable models semantics has been defined on a
fully model theoretical ground. Crowning it all, D. Pearce in [10] established
that stable models/answer sets are particular minimal models under Heyting’s
monotonic (superintuitionistic) logic of here-and-there. As for Well-Founded Se-
mantics (WFS ) [19], it is usually described operationally by an alternate fixpoint
operator. However in [7], Dung redefined declaratively WFS as an admissibil-
ity semantics. More recently, in [3] Cabalar captured WFS by employing a
two-dimensional extension of the logic here-and-there.

Pursuing a declarative characterisation of WFSXp , we were motivated by
G. Restall’s work on Substructural Logics [14]. As defined by him, substructural
logics are non-classical logics notable for the absence of structural rules present in
classical logic. In addition, techniques from substructural logics are useful in the
study of traditional logics such as classical and intuitionistic logic. In particular
substructural logics can be elegantly interpreted via frame-based semantics.

In this paper our aim is to present (declaratively) Paraconsistent Well-
Founded Semantics with eXplicit negation (WFSXp) in terms of a model theory.
Indeed, even extending Pearce’s original motivation, we exhibit our approach by
sticking to frame-based semantics as presented by Greg Restall. This shall be
done by employing a three-dimensional version of the constructions presented
by Pearce in [10] to capture Answer Sets. The two additional dimensions are
introduced to deal with explicit negation, and incomplete information. No imme-
diate consequences operator is required, and the definition of WFSXp is reduced
to a simple minimisation process among models satisfying certain conditions.
As WFSXp embeds many logic programming semantics, including WFS and
WFSX , our approach is also suited to define them. Consequently, as well as for
answer sets, we can guarantee that the family of well-founded semantics may
also be characterised logically.

This paper is structured as follows: in Section 2 we present WFSXp resorting
to Przymusinski’s operator [12]. Section 3 is the core of our work where we show
our main contributions: the definition of WFSXp as a frame-based semantics and
how we can easily adjust it to grasp WFSX , WFS and Answer Sets. Finally, we
draw conclusions, and mention future works.

2 A fixpoint definition of WFSXp

In the first semantics for extended logic programs, explicitly negated atoms are
simply interpreted as new atoms. As result explicit negation and default negation



are unrelated. This is the case of Przymusinski’s Extended Stable Models [13] and
Sakama’s Extended Well-founded Semantics [15]. By embodying the coherence
principle (if ¬L holds then not L should too), Well-Founded Semantics with
eXplicit negation WFSX [11, 2], and its paraconsistent version (WFSXp) [1, 4]
fill this missing link. It is also know that WFSXp embeds a great deal of well-
known logic programming semantics [5]. In this section, at once we recall the
definition of extended logic programs and then we show how to interpret them
via WFSXp by resorting to Przymusinski’s operator alike [12].

Definition 1 (Extended Logic Programs). An extended rule is a formula2

b1 ∧ . . . ∧ bk ∧ ¬c1 ∧ . . .∧ ¬cl∧ (1)

not d1 ∧ . . . ∧ not dm ∧ not ¬e1 . . . ∧ not ¬en → L

in which L is a literal (it is either an atom a or its explicit negation ¬a), br, 0 ≤
r ≤ k, cs, 0 ≤ s ≤ l, dt, 0 ≤ t ≤ m, and eu, 0 ≤ u ≤ n are atoms. When k = 0,
l = 0, m = 0 and n = 0, the extended rule is denoted by fact and may be seen
as t → L, in which t is a syntactical representation for the truth value “true”.

An extended logic program is defined as a set of extended rules.

In an extended logic program context, throughout this paper, we reserve
the letters a, b, c, d and e (eventually subscripted) to refer to atoms, whilst
L refers to a literal. A literal is an atom “a” (positive literal) or its explicit
negation “¬a” (negative literal), and L = ¬¬L holds. As usual we semantically
identify an extended logic program with its ground program, which is the possibly
infinite set of all ground rules from the program. An objective logic program is
an extended logic program P such that for each rule (1) of P , m = n = 0
(there is no not L in P , in which L is a literal). In extended logic programs,
as negative literals have the same status as positive literals, we consider the
Extended Herbrand base of a program P contains the set of all ground literals,
denoted by Lit , found in P . Additionally if L ∈ Lit , then ¬L ∈ Lit . Assuming
a set of literals Lit , formulae are defined as usual: if φ and ψ are formulae, and
L ∈ Lit , then the truth constant t, L, ¬φ, not φ, φ∧ψ, φ∨ψ, and ψ → φ are also
formulae. Semantically, literals are interpreted by extending the usual notion of
interpretation:

Definition 2 (Extended interpretation). An extended interpretation S is a
subset of Lit, in which a literal L is true if and only L ∈ S; otherwise it is false.
The set of all extended interpretations of formulae with respect to an extended
logic program P is denoted by SP .

The immediate consequences operator is given by extending van Emden and
Kowalski [18] to handle negative literals is crucial to the operational definition
of WFSXp :

2 In order to keep uniformity with the usual notation of implication symbol in Logic,
logic programming rules are represented by ψ → φ instead of φ← ψ.



Definition 3 (Immediate Consequences Operator). Let P be an objec-
tive logic program. Define the immediate consequences operator TP : SP → SP ,
mapping extended interpretations to extended interpretations:

TP (S) = {L | if there is a rule L1, . . . , Lm → L ∈ P where Li ∈ S, 1 ≤ i ≤ m} .

An additional definition is required to capture default negation:

Definition 4 (Partial Interpretations). A partial interpretation is a pair of
extended interpretations < Ih, It >3. By convention when referring to partial
interpretations, we adopt the capital letters I, J or K (eventually subscripted) as
a short form for respectively < Ih, It >, < Jh, J t > or < Kh,Kt >. The set of
all partial interpretations is Ip.

When referring to partial or extended interpretations we usually omit the set
of literals Lit , which is implicitly provided. By Ih we mean to represent what
certainly holds in the partial interpretation, whilst It contains what may hold
(i.e. the “complement” of what certainly does not hold). The annotations h and
t then capture, respectively, what is “true” and what is “true or undefined”
(“non-false”). It is also important to mark that Ih ⊆ It is not imposed and, con-
sequently, paraconsistency is allowed, i.e. something may certainly hold and not
hold (by being simultaneously “true” and not “non-false”). Two orders among
partial interpretations are useful:

Truth ordering: I1 ⊆T I2 iff Ih
1 ⊆ Ih

2 and It
1 ⊆ It

2.
Knowledge ordering: I1 ⊆K I2 iff Ih

1
⊆ Ih

2
and It

2
⊆ It

1
.

in which I1 and I2 are partial interpretations. A minimal model with respect to
⊆T (resp. ⊆K) is said to be T-minimal (resp. K-minimal)

The next definition is based on the usual way of interpreting default negation
in well-founded and stable model semantics for logic programs. It is a Gelfond-
Lifschitz like division operator [8] which transforms extended logic programs
into objective ones, for which we know how to compute the corresponding least
models through the immediate consequences operator.

Definition 5 (Program Division). Consider an extended logic program P and
an extended interpretation S. The division of program P by S, denoted by P

S
,

is the objective logic program obtained from P by removing all rules containing
a default literal not L such that L ∈ S, and by then removing all the remaining
default literals from P .

The program division P
S

evaluates according to S all occurrences of default
literals in P . Then the least model of the resulting program can be determined
according to the following definition:

Definition 6. Consider an extended logic program P and a partial interpreta-
tion < Ih, It >. Define

CP (< Ih, It >) = T P

It

(Ih)

3 In order to unify notation we do not adopt that one used in [6], in which Ih and It

are respectively denoted as It and Itu.



Coherence principle, which ensures that explicit negation entails default nega-
tion (¬L⇒ not L), is imposed by Alferes and Pereira [11, 2] by resorting to the
semi-normal version of an extended logic program:

Definition 7 (Semi-normal program). Let P be an extended logic program.
The semi-normal version of P , denoted Ps, is the extended logic program obtained
by replacing every extended rule “Body → L” belonging to P by “Body ,not ¬L→
L”, in which ¬L is the complement of L with respect to explicit negation.

Operator CP maps partial interpretations to extended interpretations. We
now define a new operator mapping partial interpretations to partial interpre-
tations in the same spirit of Przymusinski’s [12]:

Definition 8 (Partial Consequences Operator). Let P be an extended logic
program, and I and J be two partial interpretations. The partial consequences
operator is given by the equation:

ΘJ
P (I) =

〈

CP (< Ih, J t >), CPs
(< It, Jh >)

〉

.

Given that ΘJ
P is a monotonic operator with respect to Truth ordering [6],

its fixpoint is guaranteed to exist (Knaster-Tarski fixpoint theorem [17]) and is
important to our objectives. We also say that a pair of partial interpretations
[K, J ] is a pre-model of P whenever ΘJ

P (K) ⊆T K, i.e. both CP (< Kh, J t >) ⊆
Kh and CPs

(< Kt, Jh >) ⊆ Kt.

Definition 9. Let P be an extended logic program and J be a partial inter-
pretation. Define ΩP (J) = I such that I is a T-minimal partial interpretation
satisfying ΘJ

P (I) ⊆T I.

Consequently we can say that pre-models fully characterise operator ΩP (J).
Given that ΩP (J) is monotonic with respect to ⊆K [6], we conclude immedi-
ately again by Knaster-Tarski fixpoint theorem that ΩP (J) has a least fixpoint
under the knowledge ordering of partial interpretations: the paraconsistent well-
founded model.

Definition 10 (Paraconsistent Well-founded Semantics). Consider an ex-
tended logic program P . The partial stable models of P are the fixpoints of the
operator ΩP (J), i.e. J is a partial interpretation of P such that ΩP (J) = J . The
paraconsistent well-founded model of P, WFMp(P ), is the K-minimal partial
stable model of P .

As motivated in [4], given WFMp(P ) = < Jh, J t > a literal L holds in
WFMp(P ) iff L ∈ Jh, whilst not L holds in WFMp(P ) iff L 6∈ J t.

Example 2. Let P be an extended logic program:

P =
{

not b→ c a not d→ d a→ b ¬a
}

whose WFMp(P ) = < Jh, J t > in which Jh = {a,¬a, b, c} and J t = {d}.



Due to coherence principle, one of the distinguishing features of WFSXp

is that it does not enforce default consistency, i.e. “L” and “not L” may be
simultaneously true. In Example 2 this is the case of “a”, “¬a”, “b”, and “c”. As
usual in well-founded semantics, a literal may also be undefined, i.e. both “L”
and “not L” may be false. This is the case of “d” in the example above.

Considering the importance of WFSXp to the understanding of the effects of
paraconsistent reasoning in logic programming, in the next section we show how
to capture this semantics entirely in terms of logical concepts.

3 A frame-based semantics for WFSXp

In various complex forms of reasoning, it is allowable to draw intuitive conclu-
sions unattained in the realm of Classical Logic. Blamed by some logicians as
responsible for this weakness, the plain two-valued semantics of Classical Logic
has been enriched in distinct ways in order to couple with the expected results.
Nonetheless, resorting to multi-valued semantics is not the only solution; indeed
one can even preserve the two-valued settlement and make robust the semantics
instead by offering more places at which sentences may be evaluated.

That is the core approach of semantics for Modal Logic, in which propositions
are evaluated at many different possible worlds via accessibility relations. Here
we shall exhibit a similar approach to introduce an entirely logical definition for
WFSXp . However, as stressed by Greg Restall [14], in our context it is preferable
to denote these semantics by frames rather than possible worlds semantics.

In this section, by resorting to frames, we provide a complete declarative
version for WFSXp . We commence its presentation by showing the three requisite
components of a frame: point sets, accessibility relations, and truth sets.

Definition 11 (Point Set). [14] A point set P = 〈Q,⊑〉 is a set Q together
with a partial order ⊑ on Q. The set Prop(P) of propositions on P is the set of
all subsets X of Q closed upwards, that is, if x ∈ X and x ⊑ x′ then x′ ∈ X.

As usual in the Substructural Logics literature, we shall employ accessibility
relations to evaluate intensional connectives:

Definition 12 (Accessibility Relations). [14]

– A binary relation C is a plump negative two-place accessibility relation on
the point set P if and only if for any x, y, x′, y′ ∈ P, in which xCy, x′ ⊑ x

and y′ ⊑ y it follows that x ′Cy ′.
– A ternary relation R is a plump three-place accessibility relation on the point

set P if and only if for any x, y, z, x′, y′, z′ ∈ P, in which Rxyz , x′ ⊑ x, y′ ⊑ y

and z ⊑ z′ then Rx ′y ′z ′.

Plump negative two-place accessibility relations shall be associated with
negations, whilst plump three-place accessibility relations with conditionals. Be-
low we define truth sets to collect subsets of Prop(P) whose interpretation makes
them eligible to define the truth constant t.



Definition 13 (Truth Sets). [14] If R is a (plump) three-place accessibility
relation on a point set P then for any subset T ∈ Prop(P)

– T is a left truth set for R if and only if for each x, y ∈ P, x ⊑ y if and only
if for some z ∈ T , Rzxy.

– T is a right truth set for R if and only if for each x, y ∈ P, x ⊑ y if and
only if for some z ∈ T , Rxzy.

Now that we have defined a point set, accessibility relations and truth sets,
the notion of frame can be introduced straightforwardly:

Definition 14 (Frame). [14] A frame is a point set P together with any number
of accessibility relations and truth sets on P.

We reserve F to denote a frame we shall use in the definition of WFSXp :

1. The point set P = 〈Q,⊑〉, which is represented graphically in Fig 1, such
that Q = {hhp, hhn, htp, htn, thp, thn, ttp, ttn}, and the partial order ⊑ is
indicated through the sense pointed by the arrows.

htn

ttnthp

hhp hhn

ttp thn

htp

Fig. 1. Point Set for WFSXp

2. The accessibility relations defined on P : R,R¬, Rnot and R
∼

, being that R
is exhibited in Table 1, and R¬, Rnot and R

∼
are respectively shown in Figs

2, 3 and 4, in which the existence of an arrow from point x to y denotes that
there is an accessibility relation from x to y. As the reader can check, R is
a plump three-place accessibility relation, whilst R¬ and Rnot are plump
negative two-place accessibility relations. Furthermore, R

∼
was introduced

to capture the semi-normal transformation presented in the previous section.

R hhp hhp hhp R hhp hhp thp R hhp hhp ttn R hhp hhp htn R hhp thp thp R hhp thp ttn

R hhp thp htn R htp htp htp R htp htp ttp R htp htp thn R htp htp hhn R htp ttp ttp

R htp ttp thn R htp ttp hhn R thp hhp thp R thp hhp ttn R thp hhp htn R thp thp thp

R thp thp ttn R thp thp htn R ttp htp ttp R ttp htp thn R ttp htp hhn R ttp ttp ttp

R ttp ttp thn R ttp ttp hhn R ttn hhp ttn R ttn hhp htn R ttn thp ttn R ttn thp htn

R thn htp thn R thn htp hhn R thn ttp thn R thn ttp hhn R htn hhp htn R hhn htp hhn

Table 1. Accessibility Relation R



htn

htp

hhp

hhn

ttn

ttp

thp

thn

htn

htp

hhp

hhn

ttn

ttp

thp

thn

htn

htp

hhp

hhn

ttn

ttp

thp

thn

Fig. 2. Accessibil-
ity relation R¬

Fig. 3. Accessibil-
ity relation Rnot

Fig. 4. Accessibil-
ity relation for R∼

3. The unique (right) truth set of R (see Definition 13) is

{hhp, hhn, htp, htn, thp, thn, ttp, ttn}

The frame F was motivated by the works presented by Pearce [10], Ca-
balar [3], and Restall [14], and the final goal is to guarantee that the partial
interpretations K and J employed in the previous section to present pre-models
are respectively captured by truth-values induced by {hhp, hhn, htp, htn} and
{thp, thn, ttp, ttn} (see Definition 16).

In addition, in the point set P = 〈Q,⊑〉 each element xyz ∈ Q is resultant
of the three-dimensional character of our frame, being part of a complex logical
engineering: the dimension x was borrowed from Pearce’s work and is related to
the minimisation process; the dimension y was borrowed from Cabalar’s work
and was introduced to deal with partial interpretations; finally, we have intro-
duced the dimension z to handle explicit negation appropriately. Alternatively,
explicit negation could be treated in terms of a partial Kripke-style semantics
as Pearce did. In this case a two-dimensional frame would be enough, whilst the
semantics would be four-valued at each point in order to deal with paraconsis-
tency. However, influenced by Greg Restall’s directions, we prefer to preserve
the two-valued assessment applied to a three-dimensional frame. Anyway, both
approaches could be interchangeably employed to capture WFSXp .

The partial order ⊑ in P is motivated by the original definition of the logic
of here-and-there and by the intuition behind the Coherence principle.

The accessibility relations R, R¬ and Rnot are obtained by adapting N-
valuations used in [10] to characterise respectively the operators →, ¬ and not
into our frame. Furthermore, extra relations should be introduced due to the
requirements exhibited in Definition 12. The final result allows us to extend
the above cited N-valuations, and to make them suitable to be used to capture
WFSXp

4.

4 In [10] N-valuations are used to determine Answer Sets.



As for R
∼

, its objective is to simulate through the unary operator ∼ the
behaviour of the semi-normal transformation (see Definition 19).

The main idea is using the frame F above to characterise WFSXp accordingly.
In order to do that, we disclose in the sequel some definitions to handle the
semantical part.

Definition 15 (Belief Sets). By belief set, we mean a 4-tuple (Shp, Shn, Stp,

Stn), in which Shp, Shn, Stp, and Stn are sets of atoms. In other words, an
atom A is true in Sx if and only if A ∈ Sx; otherwise, A is false in Sx, with
x ∈ {hp, hn, tp, tn}.

Belief sets are a key concept in our work. In fact, WFSXp shall be defined
by minimising pair of belief sets satisfying some conditions. Firstly we should
notice that as WFSXp is worked out in terms of partial interpretations, in order
to put on a complete declarative frame-based version for WFSXp , a translation
between partial interpretations and belief sets shall be used to support us to
obtain our intended results:

Definition 16 (Translation). Let B = (Shp, Shn, Stp, Stn) be a belief set and
I a partial interpretation. A translation between them is defined as follows:

A ∈ Ih iff A ∈ Shp A ∈ It iff A ∈ Stp

¬A ∈ Ih iff A 6∈ Shn ¬A ∈ It iff A 6∈ Stn

in which A is an atom in Lit.

We say a pair of belief sets is a pre-model of a program P iff their corre-
sponding translation is also a pre-model of P . Furthermore, as side effect of
Definition 16, the truth and knowledge ordering presented in Section 2 can also
be mimicked in a relationship involving belief sets:

Definition 17 (Truth and knowledge ordering between belief sets). Let

B1 = (Shp
1
, Shn

1 , S
tp
1
, Stn

1 ) and B2 = (Shp
2
, Shn

2 , S
tp
2
, Stn

2 ) be two belief sets. The
truth and knowledge orderings among belief sets are defined by

Truth: B1 ⊆T B2 iff S
hp
1

⊆ S
hp
2

, Stp
1

⊆ S
tp
2

, Shn
2 ⊆ Shn

1 and Stn
2 ⊆ Stn

1 .

Knowledge: B1 ⊆K B2 iff S
hp
1

⊆ S
hp
2

, Stp
2

⊆ S
tp
1

, Shn
2 ⊆ Shn

1 and Stn
1 ⊆ Stn

2 .

As usual B1 ⊂T B2 (resp. B1 ⊂K B2 ) iff B1 ⊆T B2 (resp. B1 ⊆K B2 ) and
B1 6= B2. The mechanism behind truth and knowledge ordering between belief
sets is crucial to guarantee the expected characterisation of WFSXp . Pursuing
this aim, firstly we use ⊆T to define HT 3−Interpretations:

Definition 18 (HT 3−Interpretation). A HT 3−interpretation is defined as
the pair [Bh, Bt], in which Bh and Bt are belief sets satisfying Bh ⊆T Bt. If
B = Bh = Bt, then [B,B] is total.



In order to expunge any misunderstanding, we shall reserve the letters B and
S for respectively denote belief sets and sets of atoms, using the notation

– Bh = (Shhp, Shhn, Shtp, Shtn)
– Bt = (Sthp, Sthn, Sttp, Sttn)

We are going to associate each Sx in [Bh, Bt] to a x in the point set of F .
That is made clear in the next definition:

Definition 19 (HT 3−Model). Let M = [Bh, Bt] be a HT 3−interpretation, w
be a three-dimensional point of a frame F , A be an atom, and both φ and ψ be
formulae. We say φ is satisfied by M in w, written (M,w) |= φ, iff

1. (M,w) |= A iff A ∈ Sw

2. (M,w) |= t for all w in F
3. (M,w) |= φ ∧ ψ iff (M,w) |= φ and (M,w) |= ψ

4. (M,w) |= φ ∨ ψ iff (M,w) |= φ or (M,w) |= ψ

5. (M,w) |= ¬φ iff for each w′ in F s.t. wR¬w
′, (M,w′) 6|= φ

6. (M,w) |= not φ iff for each w′ in F s.t. wRnot w
′, (M,w′) 6|= φ

7. (M,w) |=∼ φ iff it exists w′ in F s.t. wR
∼
w′, (M,w′) 6|= φ

8. (M,w) |= ψ → φ iff for each w′, w′′ in F s.t. R w w′ w′′, if (M,w′) |= ψ,
then (M,w′′) |= φ

In particular, M is a HT 3−model of a theory T iff for each φ in T, (M,w) |=
φ for all w in F .

As it shall be clear soon, the operator ∼ introduced in item 7 of Definition
19 captures the behaviour of the semi-normal transformation (Definition 7). In
order to obtain the expected results, we interpret each rule φ→ L of an extended
logic program P as the formula φ → (L∨ ∼ L). Let us refer to these programs
as P

∼
. Thus the unusual behaviour addressed in Example 1 can be treated by

rewriting in P
∼

the extended logic programs rules of P . In the remaining of this
section we are going to show which criteria we apply to minimise theHT 3−model
of P

∼
to obtain the corresponding extended logic program P .

An interesting point is that the satisfaction relation relies totally on the usual
two truth values, i.e. given M and w, any formula φ is either satisfied or not. In
the sequel we interrelate a HT 3-model of a program P

∼
to a pre-model of P , as

per the proposition below.

Proposition 1. Let M = [Bh, Bt] be a pair of belief sets. If M is a HT 3-model
of a program P

∼
, then M is a pre-model of an extended logic program P .

Next we define the set SUBTOTAL(P ), which shall be used to show that any
pre-model M 6∈ SUBTOTAL(P ) is worthless for computing the partial stable
models of P .

Definition 20. Let P be an extended logic program, and both Bh and Bt be
belief sets. We define SUBTOTAL(P ) = {[Bh, Bt] | Bh ⊆T Bt, where both
[Bh, Bt] and [Bt, Bt] are pre-models of P}.



The following theorem assures us that SUBTOTAL(P ) corresponds to the
set of HT 3-models of P

∼
.

Theorem 1. The pair of belief sets [Bh, Bt] is a HT 3-model of a program P
∼

iff [Bh, Bt] ∈ SUBTOTAL(P ).

Adducing Theorem 1 we conclude that only HT 3-models in SUBTOTAL(P )
should be taken into account to obtain WFSXp(P ). Before proving the main
result of this paper, we introduce below an ordering relation between pair of
belief sets:

[Bh, Bt] ⊆h [Ch, Ct] iff Bt = Ct and Bh ⊆T Ch.

So in ⊆h, whilst fixing the belief set Bt, we minimise Bh according to ⊆T . A
minimal pair of belief sets with respect to ⊆h is said to be h-minimal. The
next theorem show us how to define partial stable models of a program P via
h-minimal HT 3-models of P

∼
.

Theorem 2. Total h-minimal HT 3-models of P
∼

correspond to partial stable
models of P .

As a corollary from this theorem, WFSXp(P ) can be obtained by finding
among partial stable models of P the K-minimal one. Hence just by minimising
the HT 3-models of P

∼
as shown in this section, we can determine WFSXp(P ).

We recall Example 2 to illustrate our results:

P =
{

not b→ c a not d→ d a→ b ¬a
}

Based on Definition 20, in SUBTOTAL(P ) there are 650 elements (HT 3-
models of P

∼
); 75 being h-minimal; out of which only the two ones shown below

are total:

M1 = [({a, b, c}, {b, c, d}, {d}, {a, b, c, d}), ({a, b, c}, {b, c, d}, {d}, {a, b, c, d})]

and

M2 = [({a, b, c, d}, {b, c, d}, { }, {a, b, c, d}), ({a, b, c, d}, {b, c, d}, { }, {a, b, c, d})].

Notice that pairs of belief sets, belief sets, and sets of atoms are respectively
enclosed by using [ ], (), and {} such that M1 and M2 above obey the fol-
lowing organisation: [(Shhp, Shhn, Shtp, Shtn), (Sthp, Sthn, Sttp, Sttn)]. Based on
our results, the belief sets B1 = ({a, b, c}, {b, c, d}, {d}, {a, b, c, d}) and B2 =
({a, b, c, d}, {b, c, d}, { }, {a, b, c, d}) are the paraconsistent stable models of P .
As K-minimal partial stable model, B1 is WFMp(P ). Translating accordingly
B1 to a partial interpretation I, we conclude that “a”, “¬a”, “b”, and “c” as
well as “not a”, “not ¬a”, “not b”, and “not c” are true in I. On the other hand,
neither “d” nor “not d” are true in I (confer Example 2).

We can easily capture semantics as WFSX and WFS . Apropos, WFSX can
be seen as the explosive version of WFSXp , i.e. in order to define it, we should im-
pose default consistency by neglecting the models belonging to SUBTOTAL(P )



in which both an atom and its default negation are present. Alternatively, start-
ing from F , we can tailor a new frame to define WFSX by guaranteeing that
hhp ⊑ htp, thp ⊑ ttp, ttn ⊑ thn, htn ⊑ hhn . Furthermore, the frame used by
Pearce in [10] to characterise Answer Sets can also be captured by collapsing hhp
into htp, thp into ttp, ttn into thn, and htn into hhn . Thus for both WFSX and
Answer Sets, contradictory interpretations are avoided. In order to couple with
the requirements expressed in Definition 12, we should also add new instances
to R,R¬ and Rnot . Subsequent definitions hold ipsi litteris to define these se-
mantics. Following a similar reasoning, WFS can be seen as a WFSX version
free of explicit negation. For a program P without explicit negation this can be
achieved by considering just those elements in SUBTOTAL(P ) such that, for
each atom A, A ∈ Shhn, A ∈ Shtn, A ∈ Sthn, and A ∈ Sttn hold. This process
is also enough to obtain Cabalar’s proposal [3] to define WFS .

4 Conclusion

In this work, we have defined a fully declarative approach for WFSXp grounded
on a three-dimensional frame-based semantics. Although this is an elegant tech-
nique tailored to be employed within substructural logics, it can be naturally
adjusted to deal with logic programs. In contrast to the usual operational ap-
proach based on program division, our proposal characterises WFSXp by re-
sorting to a plain minimisation process among models satisfying particular con-
ditions. Considering that WFSXp embeds many logic programming semantics,
including WFSX and WFS , we are also presenting a declarative approach to
them. We have shown too how one can easily embed WFSX , WFS and Answer
Sets via frames.

Following other motivations, R. Schweimeier and M. Schroeder have declar-
atively captured WFSXp in a recent work [16] by resorting to an argumentation
approach. However, as far as we know, this is the first time that a declarative
proposal for WFSXp is effectively characterised in terms of a model theory.

Because of some problems resulting from coherence principle applied to dis-
junctions, we have deliberately postponed to a next paper to approach theories
with them in the rule heads. This task accomplished, we acquire the capability
of not only to capture WFSXp for extended logic programs, but also for any
theory with full nesting of formulae for all programs connectives.

We can see this work as a first step in the exploration of interesting points
related to a declarative/logical representation of WFSXp . In particular it may
provide useful information to compare one semantics with another and relate it
to other formalisms. Furthermore, there are several interesting open issues con-
nected with well-founded semantics as the exploration of links between explicit
negation and other kinds of “strong negation”, the presentation of a suitable
treatment for disjunction, and analyses of paraconsistency in WFSXp on the
ground of paraconsistent logics. By employing our frame-based structure, we
expect to address these issues in future work.
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