
Making Critiquing Practical: Incremental Development of 
Educational Critiquing Systems 

Lin Qiu 
Department of Computer Science 

Northwestern University 
Evanston, Illinois 60201 USA 

847-467-1619 

qiu@cs.northwestern.edu 

Christopher  K. Riesbeck 
Department of Computer Science 

Northwestern University 
Evanston, Illinois 60201 USA 

847-491-7279 

riesbeck@cs.northwestern.edu
 
 

 
 

ABSTRACT 
Expert critiquing systems in education can support teachers in 
providing high quality individualized feedback to students. These 
systems, however, require significant development effort before 
they can be put into use. In this paper, we describe an incremental 
approach that facilitates the development of educational critiquing 
systems by integrating manual critiquing with critique authoring. 
As a result of the integration, the development of critiquing 
systems becomes an evolutionary process. We describe a system 
that we built, the Java Critiquer, as an exemplar of our model. 
Results from real-life usage of the system suggest benefits for 
supporting teachers in critiquing student code.   

Categories and Subject Descriptors 
K.3.1 [Computers and Education]:  Computer Uses in 
Education. D.2.2 [Software Engineering]: Design Tools and 
Techniques - evolutionary prototyping. H.5.2 [Information 
Interfaces and Presentation]: User Interfaces – prototyping. 
I.2.1 [Artificial Intelligence]: Applications and Expert Systems.  

General Terms 
Design, Human Factors. 

Keywords 
Intelligent assistants, critiquing, incremental authoring, evolution, 
educational software, education. 

1. INTRODUCTION 
Intelligent user interfaces for critiquing systems for performance 
support have proved effective in providing users with useful 
contexualized information such as design flaws and possible 
alternatives [8]. Meanwhile, in education, individualized feedback 
has been recognized as an important factor in fostering effective 
learning [2, 3]. It can provide learners with alerts to problematic 
situations, relevant information to the task at hand, directions for 
improvement, and prompts for reflection. It is not, however, often 
seen in schools because reviewing student work and personalizing 
critiques is labor-intensive and time consuming. 

Copyright is held by the author/owner(s). 

IUI'04, Jan. 13-16, 2004, Madeira, Funchal, Portugal. 

ACM 1-58113-815-6/04/0001. 

 

The need for providing teachers with practical assistance in 
critiquing has led to our work in developing critiquing systems for 
education. In this paper, we describe an incremental approach that 
facilitates the development of educational critiquing systems by 
integrating manual critiquing with critique authoring. 

2. APPROACH 
Based on our observations of critiquing in a real world 
educational setting, we believe critiques develop through several 
stages. First, a teacher sees a mistake in a student's solution and 
writes a specific critique. After critiquing the same mistake 
repeatedly in different forms and contexts, the teacher improves 
his or her understanding of the nature of the mistake and how to 
respond to it. The teacher sometimes forms general patterns for 
quickly recognizing the mistake in different contexts. With 
practice, the teacher optimizes this pattern and can very quickly 
recognize and critique the mistake. Finally, a critique becomes 
reliable enough so that the teacher can publicize it for use by other 
teachers, assistants, or by learners for self-assessment. These 
stages are show in Figure 1. Not all stages occur for all critiques, 
and different critiques will be at different points in the lifecycle at 
any given time. 

 
Figure 1.  Incremental development of critiquing systems. 

Based on the above observation, we propose a model that 
supports the natural critiquing development process by allowing 



the teacher to incrementally author critiques in a critiquing system 
during on-going use. In our approach, a teacher is part of a 
critiquing system’s feedback loop. Using a database of common 
critiques, the system uses pattern matching to automatically 
critique a student solution. The teacher reviews the critiques, 
modifying or removing inappropriate ones as needed. Using the 
same database, the teacher manually inserts additional critiques 
for mistakes not recognized by the current patterns, creates 
critiques for mistakes not previously seen, and optionally adds 
patterns to existing critiques that failed to match or matched 
incorrectly. The key point is that authoring is integrated with 
usage, so that usage guides improvement in the accuracy and 
scope of automatic critiquing.  

In this way, the development of a critiquing system becomes an 
incremental process in which situations for critiquing and 
corresponding critiques are realized, implemented into the system, 
assessed through practical use, and refined based on experience. 
There is no need to anticipate and implement all possible 
critiquing situations up-front. Issues not anticipated during system 
design can be explored during real use. Furthermore, because a 
teacher is part of the critiquing loop, the system can be put in use 
at a much earlier stage and still deliver useful high-quality 
responses. Initially, the teacher does most of the work. The 
teacher is motivated to author critiques and critique patterns as a 
way to significantly reduce the teacher’s workload. Critique 
authoring is done at use time based on real examples. Instead of 
being built as intelligent at design time, the system gradually 
migrates into an intelligent system through real use.  

In the following, we describe the Java Critiquer, a system that we 
have built and been using, as an exemplar of our model. 

3. THE JAVA CRITIQUER 
A web-based critiquing system called the Java Critiquer was 
developed to teach students how to write clean, maintainable and 
efficient code. The Java Critiquer helps the teacher to detect and 
critique bad programming choices often seen in introductory 
programming courses.  

 
Figure 2. The interface of the Java Critiquer. 

Figure 2 illustrates the interface of the Java Critiquer. There are 
two panels on the interface, the Critiquer panel and the Critique 
Selector panel. To start critiquing, the teacher pastes student Java 
code into the large text box in the Critiquer panel. The system 

performs automatic critiquing on the code using pattern matching. 
Critiques generated are inserted right below the problematic code 
lines. The teacher can click on a critique and edit the critique text, 
or remove it entirely. Since a large number of typical mistakes 
made by novice programmers appear frequently in code, handling 
them by automatic critiquing can significantly reduce the teacher's 
workload. It also reduces the chance of missing critiques. Even 
when automatically generated critiques require editing to make 
the critique more appropriate, this is still easier than searching for 
the mistake and writing the critique manually. Allowing the 
teacher to review and modify automatically generated critiques 
ensures the quality of system critiquing. 

After reviewing the critiques generated by the system, the teacher 
performs manual critiquing on the code. The teacher can insert a 
critique by selecting an existing critique from the database, or 
typing in a new one. Searching and editing tools in the Critique 
Selector panel help the teacher find, use, and edit existing 
critiques and patterns. New critiques can be just added to the 
database. Optionally, the teacher can attach a pattern to enable 
automatic critiquing. Currently, two types of patterns are 
supported, general regular expressions, and JavaML [1] patterns. 
Regular expression patterns are applied directly to the Java 
source, and useful for short text segments. JavaML patterns are 
applied to the output of an internal Java parser, and useful for 
matching larger Java structures. To support the incremental 
authoring of patterns based on experience, the built-in pattern 
editor lets the teacher attach to each pattern examples of code that 
it should and should not match. The system automatically 
highlights each test case with either red or green to indicate 
whether the test result complies with expectation. The integration 
of test cases supports optimizing the patterns. It also helps 
publicize the database by documenting through examples the 
intent of both the pattern and the associated critique. Further 
publicizing occurs when the more reliable pattern-based critiques 
are made accessible through a web interface to students for self-
assessment. A student interface lets students run the automatic 
critiques on their code themselves, reducing turn-around time and 
teacher effort even more. 

The use of the Java Critiquer presents a practical approach 
because each stage in system development made by the teacher is 
motivated by its immediate benefit. The teacher adds a critique 
into the system to save the effort of typing a common response 
over and over again. This leads to a database of reusable critiques. 
The teacher creates a pattern for a critique when finding and 
applying the critique repeatedly becomes tedious and time-
consuming. The teacher refines a pattern when false matches are 
frequent enough to require significant effort for remedy. Thus, the 
teacher is motivated to gradually improve the intelligence in the 
system in order to reduce workload. 

4. EVALUATION 
The Java Critiquer has been used by two teachers together for 
over a year for critiquing Java, HTML and JSP code in university-
level introductory programming courses. A total of 436 critiques 
have been collected in the system (Fig. 3). Of these, 236 critiques 
are for Java. Forty Java critiques have regular expression patterns.  
Nineteen Java critiques have JavaML patterns. There are 56 
critiques for HTML with 14 of them having regular expression 
patterns.  There is also a Lisp Critiquer. It has 148 critiques for 



Lisp. 9 of them have Lisp patterns. The constant usage of the 
system suggests our model is practical and beneficial for 
supporting teachers to provide individualized feedback to 
students. 

 
Figure 3. Critiques in the Java Critiquer. 

5. RELATED WORK AND DISCUSSION 
A number of rule-based critiquing systems have been developed 
to support learning by doing, e.g., Lisp-Critic [4]. All of them 
however assume a substantial set of critiques is developed at 
design time. Our model can function without complete knowledge 
for critiquing. The knowledge acquisition process takes place 
gradually with use. 

Intelligent tutoring systems [9] employ detailed student models to 
provide individualized feedback to the student. They asked a 
student to solve a specific problem, and analyze the solution to 
update and refine an internal model of the student’s knowledge 
and misconceptions. Tutoring rules use the student model to guide 
the selection of feedback and future problems to pose. In order to 
do this, the system needs detailed knowledge of the problems, 
objectives of the lessons, and overall lesson plan. In contrast, our 
approach is much less knowledge-intensive and problem-specific, 
and avoids the complexity of user modeling. We put a teacher in 
the loop not only to handle the hard parts, but because our 
experience has been that teachers want to be part of the feedback 
process. 

In programming, there are some very useful tools, e.g., LINT [7] 
and CodeAdvisor [6], that analyze code for common errors in 
memory management, class design and implementation, and 
coding style. These tools are for professional programmers, 
however, and give feedback inappropriate for novices just 
learning to program. 

Seeding, evolutionary growth, reseeding (SER) is a model 
describing three stages in the evolutionary development of 
software systems [5]. Seeding is the first stage where a system is 
created with initial knowledge that enables the system to be used 
for practice. Evolutionary growth is where the system supports 
user work and collects information generated by use. Reseeding is 
where information collected during evolutionary growth is 
formalized and organized to support the next cycle of 

development. While our model also uses an evolutionary 
approach, it does not have a separate stage of reseeding. 
Critiquing rules collected by the system are already reusable. 
Individual rules can be refined independently at use time. There is 
no need for an explicit optimization stage. 

6. CONCLUSION 
We have described a development model that allows teachers to 
incrementally author a critiquing system during use. We describe 
the Java Critiquer, a critiquing system that we built, as an 
exemplar of our model. The Java Critiquer helps teachers to detect 
and critique bad programming choices in student Java code. We 
believe our model presents a practical and beneficial approach to 
developing critiquing systems for education. 

7. ACKNOWLEDGMENTS 
We would like to thank Paul Kleczka, Joshua Ochs and Zhi Qiu 
who helped to implement the current design. 

8. REFERENCES 
[1] Badros, G. (2000). JavaML: A Markup Language for Java 

Source Code. In Proceedings of the Ninth International 
Conference on the World Wide Web, Amsterdam, The 
Netherlands, May 13-15, 2000.  

[2] Bransford, J. D., Brown, A. L., & Cocking, R.R. (1999). 
How people learn: Brain, Mind, Experience, and School. 
Washington, DC. National Academy Press.  

[3] Collins, A., Brown, J.S., & Newman, S. (1989). Cognitive 
Apprenticeship: Teaching the Craft of Reading, Writing, and 
Mathematics, In L.B. Resnick (Ed.) Knowing, Learning, and 
Instruction: Essays in Honor of Robert Glaser, Lawrence 
Erlbaum Associates, Hillsdale, NJ.  

[4] Fischer, G. (1987). "A Critic for LISP," In Proceedings of 
the 10th International Joint Conference on Artificial 
Intelligence, Milan, Italy. 

[5] Fischer, G., (1998) Seeding, Evolutionary Growth and 
Reseeding: Constructing, Capturing and Evolving 
Knowledge in Domain-Oriented Design Environments. 
International Journal of Automated Software Engineering, 
Kluwer Academic Publishers, Dordrecht, Netherlands, Vol. 
5, No.4, October 1998, pp. 447-464, 

[6] Hewlett-Packard Company. (1998). SoftBench SDK: 
CodeAdvisor and Static Programmer's Guide. HP Part 
Number: B6454-90005.  

[7] Johnson, S.C. (1978). Lint, a C Program Checker. Unix 
Programmer's Manual. AT&T Bell Laboratories: Murray 
Hill, NJ. 

[8] Silverman, B. (1992). Survey of Expert Critiquing Systems: 
Practical and Theoretical Frontiers. CACM, Vol.35, No.4. 

[9] Wenger, E. (1987). Artificial Intelligence and Tutoring 
Systems: Computational and Cognitive Approaches to the 
Communication of Knowledge. Los Altos, CA: Morgan 
Kaufmann Publishers, Inc. 

 


	INTRODUCTION
	APPROACH
	THE JAVA CRITIQUER
	EVALUATION
	RELATED WORK AND DISCUSSION
	CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

