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1 IntroductionWill a problem be soluble or insoluble? Will it be hard or easy? How can wedevelop heuristics for new problem domains? All these questions have been thesubject of intensive study in recent years in a large number of problem domainsincluding, for example, propositional satis�ability, graph colouring, constraintsatisfaction problems, and hamiltonian circuits [7, 43, 51, 57]. Here, we intro-duce some general methods which help to answer these questions in a wide rangeof problems. These methods are based on a de�nition of the constrainedness ofan ensemble of combinatorial problems. This de�nition uni�es and generalizesa wide variety of parameters used to study phase transition behaviour in thepast. We show that it predicts the location of a phase transition in solubility ina new problem domain, the asymmetric travelling salesperson problem. Meas-uring the constrainedness of problems during search also provides insight intowhy problems at phase transitions tend to be hard to solve. Such problems areon a constrainedness \knife-edge". Each successive branching decision gives asubproblem with a similar constrainedness as the original problem, neither moreobviously soluble or insoluble. Only deep in search does the constrainednesseventually change and the problem look more or less soluble. Heuristics that tryto get o� this knife-edge as quickly as possible by, for example, minimizing theconstrainedness are often therefore very e�ective.The paper is structured as follows. We begin in Section 2 with a introductionto phase transition behaviour in search problems. In Section 3, we de�ne theconstrainedness of search problems. We then show how our de�nition generalizesparameter used in the past to locate phase transition behaviour in a wide varietyof domains (Section 4), and in a new problem class, the asymmetric travellingsalesperson problem (Section 5). To model phase transition behaviour at �nitesizes, we borrow the technique of �nite-size scaling from statistical mechanics torescale our constrainedness parameter (Sections 6 and 7). We then show thatproblems at the phase transition are on a constrainedness \knife-edge" (Section8) and that we can predict the shape of this knife-edge using a simple lowerbound (Section 9). We investigate heuristics that try to get o� this knife-edge asquickly as possible by minimizing and maximizing the constrainedness (Sections10 and 11). We also show that many existing heuristics can be seen as minimizingconstrainedness or proxies for it (Section 12). Finally, we describe related work(Section 13) and draw conclusions (Section 14).2 Phase transitionsMany di�erent search problems display phase transition behaviour [7, 23, 43].Consider, for instance, colouring a graph with a �xed number of colours so thatneighbouring nodes have di�erent colours (see Figure 1). If the nodes in the graph2



are loosely connected, then problems tend to be soluble and it is usually easy toguess one of the many solutions. If nodes are highly connected, then problemstend to be insoluble and it is usually easy to identify why we have too few colours.At intermediate levels of connectivity, problems can be hard to solve since theyare neither obviously soluble nor insoluble. For ensembles of randomly generatedgraphs, there is a rapid transition between soluble and insoluble problems as wevary their connectivity, with the hardest graph colouring problems tending tooccur around the transition [7].
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Figure 1. Colouring graphs with four nodes using three colours: red, blue andgreen. Nodes connected by an edge must have di�erent colours. The connectivityof a node is the number of edges connected to the node. The connectivity of agraph is the average connectivity of its nodes. (A) An under-constrained andsoluble problem that requires only two of the three colours to solve. (B) Aproblem which is just soluble. It has an unique solution up to symmetry. (C)An over-constrained and insoluble problem consisting of a clique of four nodes.This requires more than the permitted three colours.We can use connectivity to develop a simple but e�ective heuristic for graphcolouring that colours the most constrained nodes �rst. The motivation is to workon the hardest part of the problem �rst. Consider colouring the nodes in Figure1B without such a heuristic, using instead their numerical order. We might colournode 1 red, then node 2 blue, and node 3 green. We would then be unable tocolour node 4 without giving it the same colour as one of its neighbours. Instead,suppose we seek to colour the most constrained nodes �rst. Both informallyand, as we show later, under our formal de�nition, the constrainedness of agraph is directly related to its connectivity. This then suggests the heuristic ofcolouring the nodes in decreasing order of their connectivity. As nodes 2 and 4have the highest connectivity, they are coloured �rst. If we colour node 2 redand node 4 blue, then nodes 1 and 3 can be coloured green. Ordering the nodesby their connectivity focuses on the hardest part of the problem, leaving the lessconstrained and easier parts till last. 3



3 ConstrainednessGiven a new search problem, how do we identify parameters like connectivitywhich measure the constrainedness and which can be used to develop heuristicsfor �nding a solution? This is a problem that has challenged other researchers.For example, Minton asks:\.. It is instructive to consider what sort of theory would be requiredto be able to prove that, in any given circumstance, a variable is mostlikely to be most constraining .." [author's emphasis] p.861 [42]Minton argues that this is too hard a problem to solve analytically, and proposesinstead an empirical approach. For example, the Multi-tac system constructsa set of candidate branching rules and benchmarks them to determine their ef-fectiveness as heuristics on a representative set of problems [41]. Our approachto this problem is more analytical and is motivated by studies of transitions insolubility. By comparing the parameters introduced in a variety of domains likegraph colouring and satis�ability, we are able to propose a general de�nition ofthe \constrainedness" of an ensemble of problems.We assume that each problem in an ensemble has a state space S with jSjelements and a number, Sol of these states are solutions. Any point in thestate space can be represented by a N -bit binary vector where N = log2(jSj).This logarithm provides us with a convenient measure of problem size. Theconstrainedness of an ensemble of problems depends on both the problem sizeand the expected number of solutions. Problems that are expected to have alarge number of solutions for their size are under-constrained. Problems that areexpected to have no or just a few solutions for their size are over-constrained.Let hSoli be the expected number of states that are solutions averaged over eachproblem in the ensemble. We de�ne the constrainedness, �, of an ensemble by,� =def 1� log2(hSoli)N (1)As it is often relatively straightforward to compute or, at least, estimate hSoli,we can often determine the constrainedness � without great di�culty. It is veryimportant to note that this de�nition is for the constrainedness of an ensemble ofproblems, not of an individual problem. In following sections, we will show thatthis de�nition generalizes, uni�es, and extends a large body of previous work onphase transition behaviour in randomly generated problems. In most of thesestudies, problems are generated by some well de�ned procedure. This de�nesan ensemble of problems and hence the constrainedness �. Recently, Hogg hasproposed a method based on computing the approximate entropy for estimatingfrom which ensemble a problem instance is likely to be drawn [27]. Such a methodcan be used to estimate � when presented with just a single problem instance.4



An alternative method to calculate � is in terms of �, the probability that arandomly selected state is a solution. Now � = hSoli=2N . Hence hSoli = �:2N .Thus an alternative, and often more convenient de�nition is,� =def � log2(�)NGiven that � 2 [0; 1] and N > 0, the constrainedness, � lies in the range [0;1).A value of � = 0 corresponds to a completely unconstrained ensemble in whichevery state is expected to be a solution, hSoli = jSj = 2N . A value of � = 1corresponds to a completely constrained ensemble in which no states are expectedto be solutions, hSoli = 0. In constraint satisfaction, a phase transition betweensoluble and insoluble problems has been predicted when hSoli � 1 [57, 51]. Gen-eralizing this prediction using (1), we predict that a phase transition occurs when� � 1. If � < 1, problems are under-constrained and are typically soluble. If� > 1, problems are over-constrained and are typically insoluble. The equality� � 1 only gives a �rst approximation of the location of the phase transition: wewill see that � is typically between about 0.5 and 1 at the phase transition. Morere�ned estimates can be achieved either by taking account of the variance in thenumber of solutions at the phase boundary [57, 51], or by �nding an equivalentproblem with fewer solutions at its phase transition [32, 13].There is a subtle di�erence between the prediction of a phase transition at � �1 and at hSoli � 1. While hSoli at the phase transition can grow exponentiallywith N , the value of � tends to vary more slowly. For example, with random 3-Sat problems, the expected number of solutions at the phase boundary grows asapproximately 20:18N [33]. By comparison, � at the phase boundary tends to varymuch more slowly. As we show later, the variation in � at the phase boundary canbe modelled by the technique of �nite size scaling using a low-order polynomial inN . In addition, as we show in the next section, � subsumes \order parameters"used by a number of di�erent authors to identify phase transition behaviour ina variety of problem classes. For the �rst time, we can see that these assortedparameters all measure the same thing.4 Comparison with existing parametersThis de�nition of constrainedness generalizes parameters introduced to studyphase transition behaviour in propositional satis�ability, constraint satisfaction,graph colouring, number partitioning and hamiltonian circuit problems. We pre-dict that it will prove useful in many other domains.4.1 Satis�abilityIn propositional satis�ability (or Sat), we are given a formula with n variablesand l clauses and wish to �nd an assignment of truth values to the variables such5



that each clause is satis�ed. A clause of length i rules out just one of the 2ipossible tuples of values of the variables in the clause. The assignment ruled outsets each literal in the clause to false. A clause of length i therefore permits afraction (1 � 12i ) of the 2n possible truth assignments. If there are li clauses oflength i then, assuming that the clauses are independently generated,hSoli = 2n:Yi (1� 12i )liHence, � = �Xi lin: log2(1� 12i ) (2)If all clauses are of a single length k (as in the random k-Sat problem class) then,� = � ln: log2(1� 12k )Note that this is directly proportional to l=n, the ratio of clauses to variables. Theratio l=n has been used as an \order parameter" for studying phase transitionsin many di�erent problem classes as a phase transition in solubility often occursaround a critical value of l=n [43, 21].For random 2-Sat, the phase transition has been proven to occur at l=n = 1 [8,25], which corresponds to � � 0:42. For random 3-Sat, the phase transition hasbeen shown to occur experimentally around l=n = 4:3 [43, 10], which correspondsto � � 0:82. Theoretical bounds put the phase transition for random 3-Sat inthe interval 3:003 < l=n < 4:598 [15, 34]. This corresponds to the interval0:58 < � < 0:89. For random 4-Sat, the phase transition has been shown tooccur experimentally around l=n = 9:8 [21], which corresponds to � � 0:91. Forlarge k, the phase transition for random k-Sat occurs at a value of l=n close to�1= log2(1� 12k ) [33]. This corresponds to � � 1 as predicted.Phase transition behaviour has also been observed in satis�ability problemclasses with clauses of mixed lengths. In the constant probability model, a literalis included in a clause with probability p, independently of the inclusion of otherliterals. As empty and unit clauses typically makes problems much easier, Hookerand Fedjki have proposed that such clauses should be discarded and longer clausesgenerated in their place [30]. Gent and Walsh show that if the expected clauselength is kept roughly constant by varying p as 1=n then the solubility phasetransition occurs around a constant value of l=n [21]. They approximate thebinomial distribution of clause lengths by a Poisson distribution with parameter2np adjusting for the omission of empty and unit clauses. As in [21], we let2np = 3 to give problems with an average clause length of 3 before removal ofempty and unit clauses. This gives,� � � ln log2(1� e�3=2 � �(0)� 12�(0)1� �(0)� �(1) )6



where �(k) = e�33k=k!. The phase transition for this problem class occurs aroundl=n = 2:80, which corresponds to � � 0:53.In [21], Gent and Walsh propose the mixed Sat model in which l clauses inn variables are generated with respect to a probability distribution �(i) on theirlength i. For example, in the 2-3-Sat model, �(2) = �(3) = 12 and binary andternary clauses are generated with equal probability. The frequency of occurrenceof an integer in the name of a mixed Sat model re
ects the frequency of occur-rence of clauses of this length in the problem. Hence in the 2-4-4-Sat problemclass, �(2) = 13 and �(4) = 23 , and clauses of length 2 appear with probability 13and of length 4 with probability 23 . Gent and Walsh conjecture that the locationof the phase transition for mixed Sat problems is approximated by the parallelsum, 1c � Xi �(i)ciwhere c is the ratio of l=n at the mixed Sat phase transition and ck is theratio of l=n at the random k-Sat phase transition [21]. For example, the phasetransition in random 2-3-Sat occurs around l=n = 1:76 compared to a parallelsum prediction of 1.62. As another example, the phase transition in random2-4-4-Sat occurs around l=n = 2:74 compared to a prediction of 2.49. As a�nal example, the phase transition in random 3-4-Sat occurs around l=n = 5:88compared to a prediction of 5.91.For the mixed Sat problem class, a simple calculation gives,� = � ln:Xi log2(1� 12i ):�(i)As usual, we predict the phase transition in solubility around � � 1. Thisprediction improves as the length of clauses in the mixed Sat problems increases.For example, the phase transition in random 2-3-Sat occurs around � = 0:53,in random 2-4-4-Sat around � = 0:55, and in random 3-4-Sat around � = 0:84.Note that�1=log2(1� 12k ) is the approximate location of the random k-Sat phasetransition. Hence, � � ln:Xi �(i)ciThis adds support to Gent and Walsh's parallel sum conjecture for the locationof the mixed-Sat phase transition.4.2 Graph colouringIn graph colouring, we are given a graph with n nodes and e edges, and wish tocolour it with m colours so that neighbouring nodes have di�erent colours. Each7



edge rules out m of the m2 possible pairs of colours for the nodes at either endof the edge. That is, each edge permits a fraction (1 � 1m) of the mn possiblecolourings. Assuming that the edges are independently generated,hSoli = mn:(1� 1m)eHence, � = en logm( mm� 1)This is a constant, namely logm( mm�1)=2, times the average degree of a node in thegraph. The average degree has been used as an order parameter for describing thephase transition in colouring problems [7]. A phase transition has been observedin random 3-colouring problems at an average degree of 4.6 [28], correspondingto � = 0:84. In random 4-colouring problems, the phase transition occurs aroundan average degree of 8.7 [53], corresponding to � = 0:90. In random 5-colouringproblems, the phase transition occurs around an average degree of 13.1 [53],corresponding to � = 0:91.4.3 Constraint satisfactionA constraint satisfaction problem (CSP) consists of a set of variables V and aset of constraints C, and we wish to �nd values for the variables so that the con-straints are not violated. Each variable v 2 V , has a domain of values Mv of sizemv. Each constraint c 2 C of arity a restricts a tuple of variables hv1; : : : ; vai,and rules out some proportion pc of possible values from the cartesian productMv1� : : :�Mva . We call pc the \tightness" of a constraint. To avoid trivial prob-lems we insist that all arities are at least one, but make no further restrictions.Problems may have variables with many di�erent domain sizes, and constraintsof many di�erent arities and tightnesses.The state space has size Qv2V mv. Each constraint rules out a proportion pcof these states, so we havehSoli = (Yv2V mv)� (Yc2C(1� pc))Substituting this into (1) gives� = �Pc2C log2(1� pc)Pv2V log2(mv) (3)In binary CSP's (in which constraints only have a binary arity), a standardmeans of generating test problems is to have n variables each with the same do-main size of m. Given a constraint density of p1, exactly p1n(n�1)=2 constraints8



are chosen, each with a tightness of p2 [47, 51]. Such problems are described bythe tuple, hn;m; p1; p2i. Using these values, (3) gives� = n� 12 p1 logm( 11� p2 )This has been used as a parameter for binary constraint satisfaction problems [20].For h20; 10; p1; p2i problems, the phase transition occurs between 0:75 � � � 1.For hn; 3; p1; 2=9i problems (which resemble 3-colouring problems in having threevalues), the phase transition occurs around � � 0:62. For h10; m; 1; p2i problems,the phase transition occurs around � � 1:02. For hn; n; 1; p2i problems (whichhave a complete constraint graph like n-queens problems), the phase transitionoccurs around � � 0:99.4.4 Number partitioningIn 2-way number partitioning, we have n numbers drawn uniformly and at randomfrom the range (0; l] and wish to �nd a partition into two bags with the same sum.To study this problem, Gent and Walsh have developed an \annealed" theory[22, 24] in which they average probabilities independently over the di�erent binarydigit positions. They call this an annealed theory by analogy with the annealedtheory of materials which averages independently over sources of disorder. Bothgive good approximations in the limit.We expect 1/2 the possible partitions of the n numbers to add up to a par-ticular parity in any binary digit position. Assuming independence between thelog2(l) digit positions, a fraction (1=2)log2(l) of the 2n partitions will add up tothe same sum. The expected number of exact partitions is thereforehSoli = 2n:(12)log2(l)This gives � = log2(l)n :A phase transition in the probability of a perfect 2-way partition has been ob-served around � = 0:96 [22, 24]. Using some complex analysis based on statisticalthermodynamics, Mertens predicts the location of this phase transition around a�xed value of a parameter given by � +O(1=nl) [40].In m-way number partitioning, we have n numbers drawn uniformly and atrandom from the range (0; l] and wish to �nd a partition into m bags with thesame sum. As there are mn possible partitions of n numbers into m bags, N =n log2m We assume that the numbers have a sum which is an exact multiple ofm. A similar but slightly more complex argument can be given when the sum is9



not an exact multiple. At each digit position, the �rst m�1 bags must each havea given sum modulo 2. This is expected to happen with probability p = (1=2)m�1as there is a 50% chance that any pair have the same sum modulo 2. The lastbag is guaranteed to have the right digit sum if the �rst m�1 do so we can ignoreit. Assuming independence between the log2(l) binary digit positions, a fractionplog2(l) of the mn partitions will add up to the same sum. The expected numberof perfect partitions is, hSoli = mn:(12)(m�1) log2(l):Hence, � = (m� 1) logm(l)n :In [22], Gent and Walsh identify a sharp phase transition in the probability of aperfect 3-way partition again around � = 0:96.4.5 Hamiltonian circuitsGiven an undirected graph, we wish to decide whether there is an ordered se-quence of nodes such that each pair of nodes in the sequence is connected byan edge, as well as the �rst and last nodes. Here, we consider graphs with nnodes, and e edges distributed randomly through the graph. Frank, Gent andWalsh have calculated � for this ensemble [14]. The probability that the �rstedge of any circuit is in the graph is 2e=n(n � 1). That leaves e � 1 edges and(n(n�1)=2)�1 places to put them. So the next edge is in the graph with chance(e� 1)=[(n(n� 1)=2)� 1]. Then the next with chance (e� 2)=[(n(n� 1)=2)� 2].Since there are n edges under investigation we get an overall probability of� = n�1Yi=0 (e� i)(n(n� 1)=2)� iSince we may designate a starting point arbitrarily, and because we may takecircuits in either direction, the number of distinct potential circuits is (n� 1)!=2.Hence, hSoli is �(n� 1)!=2 and N is log2((n� 1)!=2). Thus,� = �Pn�1i=0 log2 (e�i)(n(n�1)=2)�ilog2((n� 1)!=2) (4)For graphs with up to 30 nodes, the phase transition occurs around � � 0:7.Kor�sunov [36, 37] proves that if we �x e=(n logn), then as n!1, there is almostcertainly a circuit if e=(n logn) > 12 , and almost certainly not if e=(n logn) < 12 .This suggests that e=(n logn) is a more suitable parameter than �. However,10



Frank et al. show that the di�erence between the two is slight for the size ofproblems considered in [14]. This suggests that constrainedness can be a usefulparameter even in problem classes where it is asymptotically incorrect. It isinteresting to speculate that the discrepancy between the two parameters maybe related to the fact that hard problems do not seem to occur at the phasetransition [55].4.6 Comparing domainsWe thus see that our de�nition of � generalizes a number of parameters intro-duced in a variety of problem classes. This suggests that \constrainedness" isa fundamental property of problem ensembles. In addition to unifying existingparameters, we can now compare problems between classes. For example, thephase transition in 3-Sat problems occurs at l=n = 4:3 [43, 10] which corres-ponds to � � 0:82, roughly comparable to that in 3-colouring at � � 0:84, whilethe phase transition in number partitioning occurs at � � 0:96. This suggeststhat number partitioning problems at the phase transition may in some sensebe more constrained. Computational results appear to support this claim. Forexample, with problems at the phase transition Ckk, one of the best algorithmsknown for number partitioning [35], runs on average as approximately 20:85N [24]whilst Crawford's Tableau algorithm, one of the best algorithms known for sat-is�ability, runs on average as approximately 20:05N [11]. The de�nition of � alsoallows us to treat a wider range of problems within a class. For example, wenow deal with problems having mixed arity constraints, mixed domain sizes andmixed constraint tightnesses. This permits the computation of � during searchas domain sizes change and constraints are removed. We will see the value of thisin a later section.5 The travelling salesperson problemWe have shown that this de�nition of constrainedness generalizes parameters pre-viously introduced in a variety of problem classes, including satis�ability, graphcolouring, constraint satisfaction, and number partitioning. We now give a casestudy which uses this de�nition of constrainedness in a new problem class. Weconsider the asymmetric travelling salesperson problem (Atsp) with inter-citydistances drawn from a normal distribution with mean � and standard deviation�. We focus on the decision problem of determining if there is a tour of length dor less which visits all n cities. Most computational studies of the travelling sales-person problem have been on the optimisation rather than the decision problem[7, 58]. Although a phase transition has been observed for the decision problem ofthe two-dimensional Euclidean travelling salesperson problem [23], the parameterused was based on an asymptotic result and we do not understand its relation to11



constrainedness.The state space S contains all (n � 1)! possible distinct tours (one city isdesignated the starting point arbitrarily). Each of these tours has some lengthl. As the sum of n normal distributions, l has a normal distribution with meann� and standard deviation �pn. If we normalize l to l̂ = (l� n�)=�pn then l̂ isdistributed normally with mean 0 and standard deviation 1. The probability thata randomly chosen tour has a length l less than or equal to some given length dis prob(l � d) = Z d̂�1 e�x2=2p2� dxA standard handbook of integrals [1] gives the equalityZ z�1 e�x2=2p2� dx = e�z2=2p2�  1jzj +O( 1jzj3 )!The optimal tour length will tend to have d̂ << 0 so the error term will be small.Accordingly we use the approximationprob(l � d) � e�d̂2=2jd̂jp2�Multiplying this by (n�1)!, the number of distinct tours, gives hSoli, the expectednumber of tours less than or equal to d. Substituting this into (1) gives,� = d̂2 log2(e)=2 + log2(jd̂jp2�)log2(n� 1)!Although further approximations could be made, for example using Stirling'sapproximation, this de�nition can easily be calculated numerically by computer.We expect a phase transition in the decision problem when � � 1. We testedthis experimentally using a branch and bound algorithm with the Hungarianheuristic for branching [6]. For n=6 to 48, we randomly generated 1000 problemswith inter-city distances independently and normally distributed with �=106 and�=105. Figure 2 shows the probability that there was a tour less than distanced, plotted against �. There is a clear phase transition from soluble to insolubleproblems that becomes sharper with more cities. Except for problems with 6cities, there is a critical value of � = 0:75 which gives the probability of a tourexisting of 0:45� 0:04 at all sizes.6 Finite size scalingWe can use the constrainedness, �, to predict the shape as well as the location ofphase transitions. Phase transitions in physical systems have been successfully12
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Figure 2. Probability of tour of required length existing inAtsp, plotted against� for 6 to 48 cities.described using �nite size scaling methods [3]. Around a critical temperature Tc,problems of all sizes tend to be indistinguishable except for a change of scalegiven by a power law in a characteristic length. Here we propose that the con-strainedness, �, plays the role of temperature whilst the problem size, N , playsthe role of the characteristic length. This analogy suggests that around somecritical constrainedness �c, problems of all sizes will tend to be indistinguishableexcept for a simple change of scale given by a power law in N . For example, weconjecture that a macroscopic property like the probability of a solution existingaveraged over an ensemble of problems will obey the equation,prob(Sol > 0) = f(�� �c�c : N1=�) (5)where f is some fundamental function, ���c�c is analogous to the reduced temper-ature T�TcTc , and N1=� provides the change of scale. Such scaling has been shownto model the probability of a solution in �nite size phase transitions in satis�ab-ility [33], constraint satisfaction [20], and number partitioning [22]. In physicalsystems, the size dependency usually depends on a correlation length. Points sep-arated by more than the correlation length behave independently. Despite thefact that lengths appear in travelling salesperson problems, the size dependencyobeys a simple power law with the problem size, N . Similar power law beha-13



viour in N has been seen in satis�ability [33, 21], constraint satisfaction [20], andnumber partitioning problems [22, 24].To test this scaling conjecture for the Atsp, in Figure 3 we replot our dataagainst the parameter ���c�c : N1=� using �c = 0:75 and � = 2, both values derivedfrom examination of the data. If (5) holds, the curves will line up when plottedagainst this rescaled parameter. As predicted, except at n = 6, �nite size scalingmodels the probability of a tour existing. A discrepancy at small problem sizeshas also been seen in other classes such as satis�ability [33] and suggests that�nite size scaling provides a very useful but incomplete description of scalingbehaviour.
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Figure 3. Probability of tour of required length existing in Atsp, against���c�c : N1=� for 6 to 48 cities.This case study clearly illustrates that our de�nition of constrainedness isuseful in new problem classes. A phase transition occurs, as predicted, at � � 1.And as expected, by means of �nite size scaling we are able to model scalingbehaviour of the phase transition.7 Search costModelling using �nite size scaling can be applied to measures of algorithmicbehaviour such as search cost [49, 20]. For the Atsp, we use the 90th percentile14



of the number of leaf nodes searched, as lower percentiles such as median costwere always trivial since almost no backtracking occurred. As in many otherproblem classes, e.g. satis�ability [43], search cost displays a distinctive easy-hard-easy pattern through the phase transition. We �tted the data to a simplemodel of exponential growth. We put aside the extremes of our data, i.e. n=6and 48, and constructed a model for values of the rescaled parameter from �3 to3 in steps of 0.25 using n=12 to 42. We then compared the modelled data withthe observed, as well as the search costs the model predicts at 6 and 48 cities.Figure 7 shows the accuracy of the modelling and predictions. For example,the model successfully predicts that at n = 6 we will explore just a single leafnode throughout the phase transition. It is remarkable that a simple model ofexponential growth does so well when search costs never reaches very large values,and granularity therefore plays an important role. [23] reports a phase transitionin the Euclidean travelling salesperson problem, but the parameter used there,d̂=pn was derived from asymptotic considerations and not from �. It would beinteresting to see if modelling of search cost for Euclidean problems works wellagainst this parameter. More generally, it would be valuable to combine thiskind of analysis of behaviour as problem size scales, with analyses which studythe distribution of search costs at a single problem size, such as those carried outby Frost, Rish and Villa, and Hoos and St�utzle [16, 48, 31].8 Constrainedness within searchA general rule of thumb in solving search problems is to tackle the hardest part�rst. Many heuristics therefore try to branch on the most constrained variable.To test their e�ectiveness at this, we measured the constrainedness of a prob-lem during search. We ran experiments in several di�erent domains, using bothrandom and non-random problems. In each case, we observe a constrainedness\knife-edge" in which critically constrained problems tend to remain criticallyconstrained. Here we report the results for propositional satis�ability. However,results were similar in the other domains which included graph colouring andnumber partitioning [56].We use the Davis-Putnam procedure with unit propagation but no pure literaldeletion. We branch with Mom's heuristic, picking the literal that occurs mostoften in the minimal size clauses, breaking ties with a static numerical order.Depth is measured by the number of assignments. Similar results are obtainedwhen depth is measured by the number of branch points, and with other branch-ing heuristics including random branching. In each experiment, we simply followthe heuristic down the �rst branch, averaging over 1000 problems. To reducevariance, we use the same ensemble of problems in all experiments. We adoptthe convention that initial parameters are in capitals and that values measuredduring search are in lower case. For instance, if we generate random 3-sat prob-15



1

10

100

1000

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

48
42
36
30
24
18
12
6

Figure 4. Modelled/predicted (lines) and observed (points) 90th percentile ofleaf nodes searched to solve Atsp instances (both on y-axis) against the rescaledparameter ���c�c : N1=� (x-axis) with �c = 0:75, � = 2.lems from the middle of the phase transition with an initial ratio of clauses tovariables, L=N of 4.3 then during search, the average clause length, k, and ratioof clauses to variables, l=n, may be di�erent from their starting values of 3 and4.3 respectively.In Figure 5, we plot the ratio of clauses to variables during search for random3-Sat problems from the middle of the phase transition with an initial clauseto variable ratio, L=N = 4:3. Since not all heuristic branches extend to largedepths, there is some noise at the end of each graph. As search deepens, theratio of clauses to variables drops approximately linearly. The gradient of thisdecay is inversely proportional to N . Plotting l=n against the fractional depth,i=N therefore gives graphs of similar slope despite N varying from 100 to 500.Other experiments show that the rate of decay increases as we increase the initialratio of clauses to variables, L=N .These results might seem to suggest that problems become less constrained assearch progresses. However, the average clause length also decreases, and shorterclauses will tighten the constrainedness of problems. In Figure 6, we plot theaverage clause length during search for the same random 3-Sat problems fromthe middle of the phase transition. Again, we see an approximate linear decay,with the gradient inversely proportional to N . Other experiments show that16



0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

l/n

depth/N

N=500
N=400
N=300
N=200
N=100
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Figure 6. Average clause length, k on the heuristic branch (y-axis) againstthe fractional depth (x-axis) for random 3-sat problems with an initial ratio ofclauses to variables, L=N = 4:3.istic) except that values of � are slightly greater. In addition, we observed similarknife-edge behaviour in other problems domains including graph colouring andnumber partitioning [56]. Figure 7 suggests an interesting analogy with statisticalmechanics. At the phase boundary in physical systems, problems tend to be \self-similar". That is, they look similar at every length scale. At the phase boundaryin computational systems, problems also display a form of self-similarity. Branch-ing decisions give subproblems that look neither more or less constrained. Thishelps to explain why such problems are di�cult to solve. Branching decisionstell us very little about the problem, giving subproblems that are neither moreobviously soluble nor more obviously insoluble. We will often have to search toa large depth either for a solution or for a refutation. By comparison, branch-ing on an over-constrained problem gives a subproblem that is often even moreconstrained and hopefully easier to show insoluble, whilst branching on an under-constrained problem gives a subproblem that is often even less constrained andhopefully easier to solve.9 Lower bound on constrainednessWhen we branch into a subproblem, the number of solutions remaining cannotincrease. The expected number of solutions, hSoli cannot therefore increase.18
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We can improve this bound slightly by noting that � is bounded below by zero.Hence, �i � max(0; N�0 � iN � i )In Figure 8, we plot this bound on � for random 3-sat problems with 100 variablesand varying initial ratio of clauses to variable, L=N . We see that in almost everycase the behaviour of � during search observed in Figure 7 is very similar to thatpredicted by the bound. The exception is at L=N = 5, corresponding to � � 0:96.As � < 1, the bound predicts that � converges to 0 as a solution is found. Inreality, however, � diverges to 1 as most problems are insoluble.
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Figure 8. Lower bound on the constrainedness, � (y-axis) against the fractionaldepth (x-axis) for random 3-sat problems with 100 variables and varying initialratio of clauses to variable.This lower bound suggests a very simple scaling result. If we let fi be thefractional depth in the search tree (that is, i=N) then,�i � max(0; �0 � fi1� fi )That is, the bound on �i is simply a function of �0, the initial value and fi, thefractional depth. It does not depend on the size of the problem. We therefore20



measured how �i scaled with problem size. We found that �i remained essentiallyunchanged if we �xed �0 and fi as problems increased from 100 to 500 variables.This is despite the fact that the size of the state spaces increases by over a factorof 10120.10 Minimizing constrainednessThe existence of the constrainedness knife-edge may help us design more e�ect-ive search procedures. For instance, it may be useful to design heuristics thatget us o� the knife-edge as quickly as possible. Many heuristics attempt thisby branching on the most constrained variable, resulting in the least constrainedsubproblem. Hence, we propose the heuristic of minimizing �. To test this idea,we performed experiments on randomly generated binary CSP's from the classhn;m; p1; p2i described earlier. We encoded minimizing � as a dynamic vari-able ordering heuristic within the algorithm FC-CBJ (i.e. forward checking withcon
ict-directed backjumping)[46]. After instantiating a variable, domain �lter-ing is performed. This may result in a reduction in the size of the domains offuture (i.e. uninstantiated) variables and consequently alter the tightness of fu-ture constraints (i.e. constraints acting between pairs of future variables). Thefuture sub-problem may then be non-uniform in domain sizes and constrainttightnesses. To measure � for this reduced problem, we assume it as a represent-ative of the ensemble of problems with the same number of variables, the samedomain sizes, and the same number of constraints each of the same tightness asthe reduced problem. This is a heuristic assumption which seems to be justi�edby our results. When considering a variable vi as the new current variable weremove it and all constraints involving it from the future sub-problem. We thencalculate � for the future sub-problem using equation (3) and take this as thecost of selecting variable vi. This is done for all future variables and the variablewith minimum cost is selected as the current variable.We compared the minimize-� heuristic with an encoding of the fail �rst (FF)principle [26] i.e. selecting the variable with smallest domain. Figure 9 shows theresults of experiments performed on h20; 10; p1; p2i problems (i.e. 20 variables,uniform domain size of 10). Constraint density p1 was varied from 0.2 up to1.0, for each value of p1, constraint tightness p2 was varied to traverse the phasetransition in solubility. At each value of p1 and p2, we generated 1,000 problems.1The contours shown are for the mean search e�ort, measured by the numberof consistency checks. The minimize-� heuristic outperforms the FF heuristic,especially around the phase transition. Although not shown, the same holdsfor median performance. When search e�ort is measured as the number of trialinstantiations of variables, minimize-� again shows superior mean and median1While technically these instances were subject to the 
aw identi�ed by [2], instances gen-erated with these parameters are never 
awed in practice [38].21
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Figure 9. Fail First (FF) and minimize-� heuristics on h20; 10; p1; p2i problemsusing FC-CBJ. Mean consistency checks on y-axis, and the constrainedness ofproblems, � on x-axis. Contours for p1 = 1:0 (top), p1 = 0:5 (middle), p1 = 0:2(bottom).performance. [18] reports more extensive experiments on the minimize-� heuristicwith similar results. At the peak in search costs, paired-sample t-tests gave valuesof t = 12:3 at p1 = 0:2, t = 24:4 at p1 = 0:5, and t = 46:3 at p1 = 1:0, all infavour of minimize-�. To check the validity of these values we performed anapproximate randomization of the test [9] with a sample of 1000 in each case,which never gave a value above t = 3:5. This provides strong statistical evidencethat the minimize-� heuristic is better than the FF heuristic in these problemclasses. [54] give results on the same problem classes seen in Figure 9, on a rangeof algorithm/heuristic combinations. For high values of p1 they report that FC-CBJ with the FF heuristic was the best combination studied for problems nearthe phase transition. The fact that the minimize-� heuristic can do better isstrong evidence that it is a good heuristic.The complexity of (3) leads to signi�cant overheads in computation. As aconsequence, the minimize-� heuristic does not reduce run-times on this problemclass. However, it is not di�cult to �nd problems in which it gives dramaticrun-time savings. Fail-�rst ignores the tightness of constraints. This is not agreat handicap in Figure 9 since problems start out with a uniform constrainttightness. If we start with problems in which the constraint tightnesses varies sig-ni�cantly, then the minimize-� heuristic can o�er up to four orders of magnitudeimprovement in performance, and o�er run-time savings. To construct problemswith varying constraint tightness, we generated problems in which exactly 20% of22



the constraints have tightness p2 = 0:8 (i.e. tight constraints) and the remaindertightness p2 = 0:2 (i.e. loose constraints). We set n = 30 and m = 10, andobserved a phase transition as we varied the constraint graph density, p1 from 187to 1 in steps of 187 . Results are plotted in Figure 10. The 50% solubility point is
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Figure 10. Fail First (FF) and minimize-� heuristics on binary constraint sat-isfaction problems using FC-CBJ. Mean consistency checks on y-axis, and theconstrainedness of problems, � on x-axis. Problems have n = 30, m = 10, vary-ing p1, and p2 = 0:2 for 80% of the constraints, and p2 = 0:8 for the remainder.at � � 0:64 when p1 = 2387 . The mean and worst case performance show the exist-ence of exceptionally hard problems for FF. The worst case for FF was 2:7�1010consistency checks at � � 0:39, in a region where 100% of problems were soluble.This was 8 orders of magnitude worse than the median of 659 checks at this point,and took 87 hours on a DEC Alpha 2004=166.11 Maximizing constrainednessFor soluble problems, the existence of the constrainedness knife-edge suggeststhat we try to get o� the knife-edge as quickly as possible by branching into thesubproblem that is as under-constrained as possible. That is, we branch intothe subproblem that minimizes �. For insoluble problems, it might be better to23



branch into the sub-problem that is as over-constrained as possible. That is, webranch into the subproblem that maximizes �. To test this idea, we ran exper-iments on some propositional satis�ability and constraint satisfaction problemsusing a maximize-� heuristic.For the satis�ability experiments, we implemented minimize-� and maximize-� branching heuristics for the Davis-Putnam procedure. In Table 1, we show howthese heuristics compare to Mom's heuristic on hard random 3-sat problemsfrom the middle of the phase transition. The results support the thesis that, forsoluble problems, it pays to minimize � and for insoluble problems, it pays tomaximize �. However, we should be careful to draw too many conclusions fromthese results. In the Davis-Putnam procedure, we are exploring a simple binarytree. In other domains, we may be searching trees in which the branching ratevaries. For example, when solving constraint satisfaction problems with a forwardchecking algorithm like FC-CBJ, the branching rate depends on the domain sizeof the variable being instantiated and this varies during search. Heuristics thatmaximize � will tend to branch on variables with large domains, resulting inbushy search trees which could be expensive to explore.Mom min�� max��satis�able problems 164 104 1487unsatis�able problems 3331 7419 2575Table 1: Median nodes searched by the Davis-Putnam procedure for random3-sat problems at n = 50 and l=n = 4:3 using di�erent heuristics.For the constraint satisfaction experiments, we were unable to test the h20; 10; p1; p2iproblems used in the previous section since they were too hard to solve in gen-eral using the maximize-� heuristic. For example, FC-CBJ failed to solve ah20; 10; 0:5; 0:37i problem (in the middle of the phase transition) in over 2 millionconsistency checks using a maximize-� heuristic. By comparison, FC-CBJ withthe FF heuristic took 61,200 consistency checks to solve this problem, and just39,177 checks with the minimize-� heuristic. We therefore ran our experimentson problems with fewer variables. As in [17] and [20], we used h10; 10; 1; p2i prob-lems varying p2 from 0.2 to 0.5 with a sample size of 50. In the middle of thephase transition, the maximize-� heuristic is an order of magnitude worse thanthe FF or minimize-� heuristic. As in Section 10, the minimize-� heuristic iscompetitive with the FF heuristic, on both soluble and insoluble problems.On very under-constrained and soluble problems, close inspection of the datashows that the maximize-� heuristic outperforms the FF and minimize-� heur-istics. On such problems, the maximize-� heuristic selects a variable with alarge domain, and forward checking then performs consistency checking againstvariables with small domains. By comparison, the FF and minimize-� heuristics,24



0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

maximise kappa heuristic
FF heuristic

minimise kappa heuristic

Figure 11. Fail First (FF), minimize-� and maximize-� heuristics onh10; 10; 1; p2i problems using FC-CBJ. Mean consistency checks on y-axis, andconstrainedness of problems, � on x-axis.select a variable with a small domain, and forward checking then performs consist-ency checking against variables with large domains. For very under-constrainedproblems that can be solved with little or no search, reducing the amount ofwork performed by forward checking may therefore result in computational sav-ings. By comparison, on more constrained problems, the maximize-� heuristicperforms poorly. As predicted, the heuristic branches on variables with largedomains, giving bushy search trees which are expensive to explore. We conjec-ture that maximize-� will perform even worse with a chronological backtrackingprocedure like forward checking. Our results suggest that, whilst minimizingconstrainedness can be an e�ective way to get o� the knife-edge for soluble and,in some cases, for insoluble problems, there are domains in which maximizingconstrainedness is ine�ective even on insoluble problems.12 Proxies for constrainednessAs mentioned in Section 10, it may be expensive to compute �. We may thereforeuse a proxy which is cheaper to compute. For example, in number partitioning,Gent and Walsh have shown that the Karmarkar-Karp heuristic minimizes anestimate for � that is based on the assumption that the numbers left to partitionremain uniformly distributed [22]. The Karmarkar-Karp heuristic is cheap tocompute as it merely requires us to maintain the numbers left to partition in25



sorted order.In constraint satisfaction problems, if we assume that all constraints in aproblem have the same tightness, and that each variable is in the same numberof constraints, we can ignore the numerator of (3) as it will be the same whichevervariable we instantiate. The variable chosen should then be the one that maxim-izes the denominator of (3), and is equivalent to instantiating the variable withsmallest domain. This is the fail-�rst (FF) heuristic [26] which is again cheap tocompute.An alternative assumption is that all variables have the same domain size.This is valid when all variables start out with identical domain sizes and we usea backward checking algorithm, i.e. an algorithm that does not perform domain�ltering of the future variables. The denominator will now be the same whichevervariable we instantiate. If we further assume that all constraint tightnesses arethe same, the numerator becomes the cardinality of the set of constraints actingbetween future variables and between future and past variables. We minimizethe numerator of (3) by choosing a variable that has most constraints with pastvariables. This corresponds to the maximum cardinality heuristic described in[12].We may take advantage of both numerator and denominator of (3). One wayto do this is to choose the variable with smallest domain size (maximizing thedenominator) and break ties by choosing the tied variable in most constraints(minimizing the numerator, assuming uniform constraint tightness). This is theBrelaz heuristic [5].Not all proposed heuristics are as successful as those mentioned above. Indeedin some cases intuition seems to have led designers in exactly the wrong direction.For example, in their backtracking algorithm for the Hamiltonian Cycle problem,Cheeseman, Kanefsky and Taylor selected the node to go to with the highestconnectivity at each choice point [7]. However, to minimise the numerator of (4),we should maximize the number of edges that remain in the graph after eachchoice point. This suggests picking the node with the lowest connectivity, notthe highest, and this is the approach taken by Martello's algorithm [39].Four state of the art heuristics can thus be seen as proxies for minimizing �.Domain knowledge may still be needed to convert the idea of minimizing � into aheuristic with low overheads. However, by considering how to minimize �, we canremove much of the intuition involved in developing heuristics for a new domain.While intuition is valuable, it can often be misleading or even wrong. Further-more, intuition about new domains can be hard to achieve. We therefore see thisreduction in the role of intuition in heuristic design as a signi�cant contribution.
26



13 Related workWe are not aware of any other work which both introduces a general measureof constrainedness and uses it to design heuristics. However, a number of otherworkers have studied one or other aspect, either measures of constrainedness orthe design of heuristics based on theoretical principles.Williams and Hogg present a closely related model for locating phase trans-ition behaviour and predicting search cost in graph colouring and constraint sat-isfaction problems [57]. Their \deep structure" model focuses on the number ofminimized nogoods. The approach presented here is more general as it can beapplied to a wider range of problem domains. Indeed, our analysis has made veryfew assumptions about the computational complexity of the search problems be-ing solved. We have merely assumed that we are looking for a solution withinsome �nite state space. Our framework is therefore applicable to the wide rangeof NP-complete problems. However, we can also apply these ideas to problems inother complexity classes. For example, we have modelled phase transition beha-viour and suggested new heuristics for polynomial problems like establishing arcconsistency in constraint satisfaction problems [19]. Whatever the complexityclass, our de�nition of constrainedness may be able to identify phase transitionbehaviour and suggest heuristics that help us solve search problems.Musick and Russell model search using an abstracted Markov process thatconsiders just the distance from a solution [44]. They identify regions whereproblems are easy and outside which it is very hard to �nd a solution. It wouldbe fruitful to explore the connections between constrainedness, and the transitionprobabilities of such Markov processes.Smith proposes a heuristic for binary constraint satisfaction problems thatsimply maximizes the expected number of solutions, hSoli [50]. Given a choice oftwo subproblems with equal hSoli, the heuristic of minimizing � will branch intothe smaller problem in the expectation that this is less constrained. Experimentsso far have failed to show which heuristic, if either, is better [18].Hooker and Vinay investigate the Jeroslow-Wang heuristic for satis�ability[29]. They propose the \satisfaction hypothesis", that it is best to branch intosubproblems that are more likely to be satis�able, but reject this in favour of the\simpli�cation hypothesis", that it is best to branch into simpler subproblemswith fewer and shorter clauses after unit propagation. Minimizing � is relatedbut not identical to both these hypotheses: in general it will seek out simpleproblems that are likely to be soluble.Nudel has proposed some theoretically motivated heuristics for binary CSP's[45]. Two classes of heuristic are presented, global and local. Global heuristics�x the instantiation order at the start of search, whereas local heuristics takeaccount of information made available during search, such as actual domain sizesand constraint tightness. Nudel's local heuristics are thus dynamic variable or-dering heuristics. It is interesting to contrast our approach with Nudel's as both27



give theory-based variable ordering heuristics. Nudel presents measure that es-timate the size of the remaining search tree, and then constructs heuristics whichseek to minimize these estimates. We have not related our measures directly tothe search tree. Instead we have sought to move into areas of the search treelikely to be unconstrained and therefore have solutions. When one makes certainsimpli�cations, both approaches can result in the same heuristic such as the FFheuristic. However, the detailed relationship between the approaches has not yetbeen fully analysed.Heuristics are, by their nature, inexact. It can therefore be di�cult to decidehow rigorously to apply a given theory about heuristic construction. Smith andGrant investigated this problem for the `fail �rst' principle in binary CSP's [52],a principle often used to justify the minimum domain size (FF) heuristic. Theyfound that a heuristic which did more work to maximize the probability of anearly failure did signi�cantly more search than a simpler heuristic that did lesswork, even in measures such as nodes searched which are independent of thecost of calculating the heuristics. Heuristics based upon theoretical principles,including that of minimizing constrainedness, have still to address problems suchas this.The constrainedness of a problem depends on the ensemble from which it isdrawn. We may not know the ensemble from which a problem is drawn, so naivemeasurements of � may mislead us. Hogg uses the \approximate entropy" todistinguish between problems drawn from a clustered ensemble and those froma random ensemble [27]. Approximate entropy may therefore be useful in es-timating constrainedness. However, as the approximate entropy depends on therepresentation used, the role of problem representation is also critical. Furtherwork in this area, perhaps along the lines of [4], is vital if this research is to beof practical value in understanding and solving real problems.14 ConclusionsBranching heuristics often try to make the most \constrained" choice, whilst hardproblems tend to be \critically constrained". We have developed a general de�n-ition of the constrainedness of search problems that uni�es these two notions ofconstrainedness. We have shown that our de�nition of constrainedness general-izes a number of parameters used to study phase transition behaviour in a widevariety of di�erent problem domains. It allows the rapid identi�cation of phasetransitions in new problem domains, and the comparison of phase transitions inpreviously incomparable classes. Our de�nition also provides insight into whyproblems at such phase transitions tend to be hard to solve. These problems areon a constrainedness \knife-edge", and we must search deep into the problembefore they look more or less soluble. Heuristics that try to get o� this knife-edge as quickly as possible by, for example, minimizing the constrainedness are28



often therefore very e�ective. Many existing heuristics can be seen as minimiz-ing constrainedness or proxies for it. Our de�nition of constrainedness thereforeo�ers a uni�ed understanding of many widely disparate heuristics, and providesa principled method for constructing heuristics for new domains.AcknowledgementsThe authors are members of the APES research group, http://www.cs.strath.ac.uk/~apes.We thank our colleagues in the group at the Universities of Strathclyde and Leeds,most especially Ewan MacIntyre. We also thank the members of the Mathem-atical Reasoning Group at Edinburgh University. The authors are supported byEPSRC awards GR/L/24014 and GR/K/65706. We thank Bob Craig and MarkStickel for code, and Vince Darley for correcting an error in the derivation ofhSoli for the Atsp.References[1] M. Abramowitz and I.A. Stegun, editors. Handbook of mathematical func-tions. Dover.[2] D. Achlioptas, L.M. Kirousis, E. Kranakis, D. Krizanc, M.S.O. Molloy, andY.C. Stamatiou. Random constraint satisfaction: A more accurate pic-ture. In G. Smolka, editor, Proceedings of Third International Conference onPrinciples and Practice of Constraint Programming (CP97), pages 107{120.Springer, 1997.[3] Michael N. Barber. Finite-size scaling. In Phase Transitions and CriticalPhenomena, Volume 8, pages 145{266. Academic Press, 1983.[4] J.E. Borrett and E.P.K. Tsang. On the selection of constraint satisfactionformulations. Technical report CSM-254, Department of Computer Science,University of Essex, October 1995.[5] D. Brelaz. New methods to color the vertices of a graph. Communicationsof ACM, 22:251{256, 1979.[6] G. Carpaneto and P. Toth. New branching and bounding criteria for theasymmetric travelling salesman problem. Management Sci., 26:736{743,1980.[7] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard prob-lems are. In Proceedings of the 12th IJCAI, pages 331{337. InternationalJoint Conference on Arti�cial Intelligence, 1991.29



[8] V. Chvatal and B. Reed. Mick gets some (the odds are on his side). InProceedings of the 33rd Annual Symposium on Foundations of ComputerScience, pages 620{627. IEEE, 1992.[9] P.R. Cohen. Empirical methods for Arti�cial Intelligence. MIT Press, 1995.[10] J.M. Crawford and L.D. Auton. Experimental Results on the Cross-OverPoint in Satis�ability Problmes. In Proceedings of AAAI 1993 Spring Sym-posium on AI and NP-Hard Problems, 1993.[11] J.M. Crawford and L.D. Auton. Experimental results on the crossover pointin random 3-SAT. Arti�cial Intelligence, 81:31{57, 1996.[12] R. Dechter and I. Meiri. Experimental evaluation of preprocessing algorithmsfor constraint satisfaction problems. Arti�cial Intelligence, 68:211{242, 1994.[13] P.E. Dunne and M. Zito. An improved upper bound on the non-3-colourability threshold. Information Processing Letters, 65:17{23, 1998.[14] J. Frank, I.P. Gent, and T. Walsh. Asymptotic and �nite size paramet-ers for phase transitions: Hamiltonian circuit as a case study. InformationProcessing Letters, 66(5):241{245, 1998.[15] A. Frieze and S. Suen. Analysis of two simple heuristics on a random instanceof k-SAT. Journal of Algorithms, 20:312{355, 1996.[16] D. Frost, I. Rish, and L. Vila. Summarizing CSP hardness with continuousprobability distributions. In Proceedings of the 14th National Conference onAI, pages 327{333. American Association for Arti�cial Intelligence, 1997.[17] J. Gaschnig. Performance measurement and analysis of certain search al-gorithms. Technical report CMU-CS-79-124, Carnegie-Mellon University,1979. PhD thesis.[18] I.P. Gent, E. MacIntyre, P. Prosser, B.M.Smith, and T. Walsh. An empiricalstudy of dynamic variable ordering heuristics for the constraint satisfactionproblem. In Proceedings of CP-96, pages 179{193. Springer Verlag, 1996.[19] I.P. Gent, E. MacIntyre, P. Prosser, P. Shaw, and T. Walsh. The con-strainedness of arc consistency. In 3rd International Conference on Prin-ciples and Practices of Constraint Programming (CP-97), pages 327{340.Springer, 1997.[20] I.P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. Scaling e�ects in the CSPphase transition. In Principles and Practice of Constraint Programming,pages 70{87. Springer, 1995. 30



[21] I.P. Gent and T. Walsh. The SAT phase transition. In A G Cohn, editor,Proceedings of 11th ECAI, pages 105{109. John Wiley & Sons, 1994.[22] I.P. Gent and T. Walsh. Phase transitions and annealed theories: Numberpartitioning as a case study. In Proceedings of ECAI-96, pages 170{174,1996.[23] I.P. Gent and T. Walsh. The TSP phase transition. Arti�cial Intelligence,88:349{358, 1996.[24] I.P. Gent and T. Walsh. Analysis of heuristics for number partitioning.Computational Intelligence, 14(3):430{451, 1998.[25] A. Goerdt. A theshold for unsatis�ability. In I. Havel and V. Koubek,editors, Mathematical Foundations of Computer Science, Lecture Notes inComputer Science, pages 264{274. Springer Verlag, 1992.[26] R.M. Haralick and G.L. Elliott. Increasing tree search e�ciency for con-straint satisfaction problems. Arti�cial Intelligence, 14:263{313, 1980.[27] T. Hogg. Which search problems are random? In Proceedings of 15th Na-tional Conference on Arti�cial Intelligence, pages 438{443. AAAI Press/TheMIT Press, 1998.[28] T. Hogg and C.P. Williams. The hardest constraint problems: A doublephase transition. Arti�cial Intelligence, 69:359{377, 1994.[29] J. N. Hooker. Testing heuristics: We have it all wrong. Journal of Heuristics,1:33{42, 1995.[30] J. N. Hooker and C. Fedjki. Branch-and-cut solution of inference problemsin propositional logic. Annals of Mathematics and Arti�cial Intelligence,1:123{139, 1990.[31] Holger Hoos and Thomas St�utzle. Characterizing the Run-time Behavior ofStochastic Local Search. Technical Report AIDA{98{01, FG Intellektik, TUDarmstadt, January 1998.[32] A. Kamath, R. Motwani, K. Palem, and P. Spirakis. Tail bounds for occu-pancy and the satis�ability threshold conjecture. Randomized Structure andAlgorithms, 7:59{80, 1995.[33] S. Kirkpatrick and B. Selman. Criticial behaviour in the satis�ability ofrandom boolean expressions. Science, 264:1297{1301, 1994.[34] L.M. Kirousis, E. Kranakis, and D. Krizanc. Approximating the unsatis-�ability threshold of random formulas. In Proceedings of the 4th AnnualEuropean Symposium on Algorithms (ESA'96), pages 27{38, 1996.31



[35] R. Korf. From approximate to optimal solutions: A case study of numberpartitioning. In Proceedings of the 14th IJCAI. International Joint Confer-ence on Arti�cial Intelligence, 1995.[36] A.D. Korshunov. The main properties of random graphs with a large numberof vertices and edges. Russian Math. Surveys, pages 121{198, 1985.[37] A.D. Kor�sunov. Solution of a problem of Erd�os and R�enyi on Hamiltoniancycles in nonoriented graphs. Soviet Math. Dokl., 17(3):760{764, 1976.[38] E. MacIntyre, P. Prosser, B.M. Smith, and T. Walsh. Random constraintsatisfaction: Theory meets practice. In 4th International Conference onPrinciples and Practices of Constraint Programming (CP-98), pages 325{339. Springer, 1998.[39] S. Martello. An enumerative algorithm for �nding Hamiltonian circuits ina directed graph. ACM Transactions on Mathematical Software, 9:131{138,1983.[40] S. Mertens. Phase transition in the number partitioning problem.http://xxx.lanl.gov/abs/cond-mat/9807077, 1998.[41] S. Minton. Integrating heuristics for constraint satisfaction problems: a casestudy. In Proceedings of the 11th National Conference on AI, pages 120{126.American Association for Arti�cial Intelligence, 1993.[42] S. Minton. Is there any need for domain-dependent control information? areply. In Proceedings of the 13th National Conference on AI, pages 855{862.American Association for Arti�cial Intelligence, 1996.[43] D. Mitchell, B. Selman, and H. Levesque. Hard and Easy Distributions ofSAT Problems. In Proceedings of the 10th National Conference on AI, pages459{465. American Association for Arti�cial Intelligence, 1992.[44] R. Musick and S. Russell. How long will it take? In Proceedings of the10th National Conference on AI, pages 466{471. American Association forArti�cial Intelligence, 1992.[45] B. Nudel. Consistent-labeling problems and their algorithms: Expected-complexities and theory-based heuristics. Arti�cial Intelligence, 21:135{178,1983.[46] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Com-putational Intelligence, 9:268{299, 1993.[47] P. Prosser. An empirical study of phase transitions in binary constraintsatisfaction problems. Arti�cial Intelligence, 81:127{154, 1996.32



[48] I. Rish and D. Frost. Statistical analysis of backtracking on inconsistentCSPs. In G. Smolka, editor, Proceedings of Third International Conferenceon Principles and Practice of Constraint Programming (CP97), pages 150{162. Springer, 1997.[49] B. Selman and S. Kirkpatrick. Critical behavior in the computational costof satis�ability testing. Arti�cial Intelligence, 81:273{295, 1996.[50] B.M. Smith. Re: variable choice. CSP-List Digest, 75, October 1995.Mailing list, archived at ftp://ftp.cs.city.ac.uk/pub/constraints/archive/csp-list/95.10.75.gz.[51] B.M. Smith and M.E. Dyer. Locating the phase transition in binary con-straint satisfaction problems. Arti�cial Intelligence, 81:155{181, 1996.[52] B.M. Smith and S.A. Grant. Trying harder to fail �rst. In Proceedings of the13th ECAI, pages 249{253. European Conference on Arti�cial Intelligence,1998.[53] P. Svenson and M.G. Nordahl. Relaxation in graph coloring and satis�abilityproblems, 1998. Paper in the xxx.lanl.gov e-Print archive. Available fromhttp://xxx.lanl.gov/ps/cond-mat/9810144.[54] E.P.K. Tsang, J.E. Borrett, and A.C.M. Kwan. An attempt to map theperformance of a range of algorithm and heuristic combinations. In HybridProblems, Hybrid Solutions, pages 203{216. IOS Press, 1995. Proceedings ofAISB-95.[55] B. Vandegriend and J. Culberson. The Gn,m phase transition is not hard forthe Hamiltonian Cycle problem. Journal of Arti�cial Intelligence Research,9:219{245, 1998.[56] T. Walsh. The constrainedness knife-edge. In Proceedings of the 15th Na-tional Conference on AI. American Association for Arti�cial Intelligence,1998.[57] C.P. Williams and T. Hogg. Exploiting the deep structure of constraintproblems. Arti�cial Intelligence, 70:73{117, 1994.[58] W. Zhang and R.E. Korf. An average-case analysis of branch-and-boundwith applications: Summary of results. In Proceedings of 10th NationalConference on Arti�cial Intelligence, pages 769{775. AAAI Press/The MITPress, 1992.
33


