The Constrainedness of Search

[an P. Gent Patrick Prosser
Toby Walsh
Department of Computer Science
University of Strathclyde
Glasgow G1 1XH, Scotland
Email: {ipg,pat,tw}Qcs.strath.ac.uk

February 16, 1999

Abstract

We propose a definition of ‘constrainedness’ that unifies two of the most
common but informal uses of the term. These are that branching heurist-
ics in search algorithms often try to make the most “constrained” choice,
and that hard search problems tend to be “critically constrained”. Our
definition of constrainedness generalizes a number of parameters used to
study phase transition behaviour in a wide variety of problem domains.
As well as predicting the location of phase transitions in solubility, con-
strainedness provides insight into why problems at phase transitions tend
to be hard to solve. Such problems are on a constrainedness “knife-edge”,
and we must search deep into the problem before they look more or less
soluble. Heuristics that try to get off this knife-edge as quickly as possible
by, for example, minimizing the constrainedness are often very effective.
We show that heuristics from a wide variety of problem domains can be
seen as minimizing the constrainedness (or proxies for it). Our definition
is therefore useful both for studying phase transition behaviour and for
developing new heuristics.



1 Introduction

Will a problem be soluble or insoluble? Will it be hard or easy? How can we
develop heuristics for new problem domains? All these questions have been the
subject of intensive study in recent years in a large number of problem domains
including, for example, propositional satisfiability, graph colouring, constraint
satisfaction problems, and hamiltonian circuits [7, 43, 51, 57]. Here, we intro-
duce some general methods which help to answer these questions in a wide range
of problems. These methods are based on a definition of the constrainedness of
an ensemble of combinatorial problems. This definition unifies and generalizes
a wide variety of parameters used to study phase transition behaviour in the
past. We show that it predicts the location of a phase transition in solubility in
a new problem domain, the asymmetric travelling salesperson problem. Meas-
uring the constrainedness of problems during search also provides insight into
why problems at phase transitions tend to be hard to solve. Such problems are
on a constrainedness “knife-edge”. KEach successive branching decision gives a
subproblem with a similar constrainedness as the original problem, neither more
obviously soluble or insoluble. Only deep in search does the constrainedness
eventually change and the problem look more or less soluble. Heuristics that try
to get off this knife-edge as quickly as possible by, for example, minimizing the
constrainedness are often therefore very effective.

The paper is structured as follows. We begin in Section 2 with a introduction
to phase transition behaviour in search problems. In Section 3, we define the
constrainedness of search problems. We then show how our definition generalizes
parameter used in the past to locate phase transition behaviour in a wide variety
of domains (Section 4), and in a new problem class, the asymmetric travelling
salesperson problem (Section 5). To model phase transition behaviour at finite
sizes, we borrow the technique of finite-size scaling from statistical mechanics to
rescale our constrainedness parameter (Sections 6 and 7). We then show that
problems at the phase transition are on a constrainedness “knife-edge” (Section
8) and that we can predict the shape of this knife-edge using a simple lower
bound (Section 9). We investigate heuristics that try to get off this knife-edge as
quickly as possible by minimizing and maximizing the constrainedness (Sections
10 and 11). We also show that many existing heuristics can be seen as minimizing
constrainedness or proxies for it (Section 12). Finally, we describe related work
(Section 13) and draw conclusions (Section 14).

2 Phase transitions

Many different search problems display phase transition behaviour [7, 23, 43].
Consider, for instance, colouring a graph with a fixed number of colours so that
neighbouring nodes have different colours (see Figure 1). If the nodes in the graph



are loosely connected, then problems tend to be soluble and it is usually easy to
guess one of the many solutions. If nodes are highly connected, then problems
tend to be insoluble and it is usually easy to identify why we have too few colours.
At intermediate levels of connectivity, problems can be hard to solve since they
are neither obviously soluble nor insoluble. For ensembles of randomly generated
graphs, there is a rapid transition between soluble and insoluble problems as we
vary their connectivity, with the hardest graph colouring problems tending to
occur around the transition [7].

connectivity=2 connectivity=2.5 connectivity=3

(A) B) ©

Figure 1. Colouring graphs with four nodes using three colours: red, blue and
green. Nodes connected by an edge must have different colours. The connectivity
of a node is the number of edges connected to the node. The connectivity of a
graph is the average connectivity of its nodes. (A) An under-constrained and
soluble problem that requires only two of the three colours to solve. (B) A
problem which is just soluble. It has an unique solution up to symmetry. (C)
An over-constrained and insoluble problem consisting of a clique of four nodes.
This requires more than the permitted three colours.

We can use connectivity to develop a simple but effective heuristic for graph
colouring that colours the most constrained nodes first. The motivation is to work
on the hardest part of the problem first. Consider colouring the nodes in Figure
1B without such a heuristic, using instead their numerical order. We might colour
node 1 red, then node 2 blue, and node 3 green. We would then be unable to
colour node 4 without giving it the same colour as one of its neighbours. Instead,
suppose we seek to colour the most constrained nodes first. Both informally
and, as we show later, under our formal definition, the constrainedness of a
graph is directly related to its connectivity. This then suggests the heuristic of
colouring the nodes in decreasing order of their connectivity. As nodes 2 and 4
have the highest connectivity, they are coloured first. If we colour node 2 red
and node 4 blue, then nodes 1 and 3 can be coloured green. Ordering the nodes
by their connectivity focuses on the hardest part of the problem, leaving the less
constrained and easier parts till last.



3 Constrainedness

Given a new search problem, how do we identify parameters like connectivity
which measure the constrainedness and which can be used to develop heuristics
for finding a solution? This is a problem that has challenged other researchers.
For example, Minton asks:

“.. It is instructive to consider what sort of theory would be required
to be able to prove that, in any given circumstance, a variable is most
likely to be most constraining ..” [author’s emphasis| p.861 [42]

Minton argues that this is too hard a problem to solve analytically, and proposes
instead an empirical approach. For example, the MULTI-TAC system constructs
a set of candidate branching rules and benchmarks them to determine their ef-
fectiveness as heuristics on a representative set of problems [41]. Our approach
to this problem is more analytical and is motivated by studies of transitions in
solubility. By comparing the parameters introduced in a variety of domains like
graph colouring and satisfiability, we are able to propose a general definition of
the “constrainedness” of an ensemble of problems.

We assume that each problem in an ensemble has a state space S with |S|
elements and a number, Sol of these states are solutions. Any point in the
state space can be represented by a N-bit binary vector where N = log,(]S]).
This logarithm provides us with a convenient measure of problem size. The
constrainedness of an ensemble of problems depends on both the problem size
and the expected number of solutions. Problems that are expected to have a
large number of solutions for their size are under-constrained. Problems that are
expected to have no or just a few solutions for their size are over-constrained.
Let (Sol) be the expected number of states that are solutions averaged over each
problem in the ensemble. We define the constrainedness, x, of an ensemble by,

log, ((Sol))

K =def 1 T (1)
As it is often relatively straightforward to compute or, at least, estimate (Sol),
we can often determine the constrainedness x without great difficulty. It is very
important to note that this definition is for the constrainedness of an ensemble of
problems, not of an individual problem. In following sections, we will show that
this definition generalizes, unifies, and extends a large body of previous work on
phase transition behaviour in randomly generated problems. In most of these
studies, problems are generated by some well defined procedure. This defines
an ensemble of problems and hence the constrainedness . Recently, Hogg has
proposed a method based on computing the approximate entropy for estimating
from which ensemble a problem instance is likely to be drawn [27]. Such a method
can be used to estimate k when presented with just a single problem instance.



An alternative method to calculate k is in terms of p, the probability that a
randomly selected state is a solution. Now p = (Sol)/2". Hence (Sol) = p.2V.
Thus an alternative, and often more convenient definition is,

I
o= _1osa(p)

N

Given that p € [0,1] and N > 0, the constrainedness, « lies in the range [0, 00).
A value of k = 0 corresponds to a completely unconstrained ensemble in which
every state is expected to be a solution, (Sol) = |S| = 2. A value of k = oo
corresponds to a completely constrained ensemble in which no states are expected
to be solutions, (Sol) = 0. In constraint satisfaction, a phase transition between
soluble and insoluble problems has been predicted when (Sol) ~ 1 [57, 51]. Gen-
eralizing this prediction using (1), we predict that a phase transition occurs when
k =~ 1. If kK < 1, problems are under-constrained and are typically soluble. If
k > 1, problems are over-constrained and are typically insoluble. The equality
k =~ 1 only gives a first approximation of the location of the phase transition: we
will see that x is typically between about 0.5 and 1 at the phase transition. More
refined estimates can be achieved either by taking account of the variance in the
number of solutions at the phase boundary [57, 51], or by finding an equivalent
problem with fewer solutions at its phase transition [32, 13].

There is a subtle difference between the prediction of a phase transition at k =~
1 and at (Sol) ~ 1. While (Sol) at the phase transition can grow exponentially
with NV, the value of k tends to vary more slowly. For example, with random 3-
SAT problems, the expected number of solutions at the phase boundary grows as
approximately 298N [33]. By comparison, s at the phase boundary tends to vary
much more slowly. As we show later, the variation in « at the phase boundary can
be modelled by the technique of finite size scaling using a low-order polynomial in
N. In addition, as we show in the next section, x subsumes “order parameters”
used by a number of different authors to identify phase transition behaviour in
a variety of problem classes. For the first time, we can see that these assorted
parameters all measure the same thing.

4 Comparison with existing parameters

This definition of constrainedness generalizes parameters introduced to study
phase transition behaviour in propositional satisfiability, constraint satisfaction,
graph colouring, number partitioning and hamiltonian circuit problems. We pre-
dict that it will prove useful in many other domains.

4.1 Satisfiability

In propositional satisfiability (or SAT), we are given a formula with n variables
and [ clauses and wish to find an assignment of truth values to the variables such



that each clause is satisfied. A clause of length i rules out just one of the 2°
possible tuples of values of the variables in the clause. The assignment ruled out
sets each literal in the clause to false. A clause of length i therefore permits a

fraction (1 — ) of the 2" possible truth assignments. If there are [; clauses of
length ¢ then, assuming that the clauses are independently generated,
(Sol)y = 2 .H(1 — i)“
)
Hence,
> g1 - ) 2)
K = — —. 10 -
' 82 9i
If all clauses are of a single length k& (as in the random k-SAT problem class) then,
l 1
= ——.logy(1 - —

Note that this is directly proportional to I/n, the ratio of clauses to variables. The
ratio [/n has been used as an “order parameter” for studying phase transitions
in many different problem classes as a phase transition in solubility often occurs
around a critical value of [/n [43, 21].

For random 2-SAT, the phase transition has been proven to occur at [/n = 1 [8,
25], which corresponds to k & 0.42. For random 3-SAT, the phase transition has
been shown to occur experimentally around [/n = 4.3 [43, 10], which corresponds
to k = 0.82. Theoretical bounds put the phase transition for random 3-SAT in
the interval 3.003 < [/n < 4.598 [15, 34]. This corresponds to the interval
0.58 < k < 0.89. For random 4-SAT, the phase transition has been shown to
occur experimentally around [/n = 9.8 [21], which corresponds to x ~ 0.91. For
large k, the phase transition for random k-SAT occurs at a value of [/n close to
—1/1log,(1 — 5¢) [33]. This corresponds to k & 1 as predicted.

Phase transition behaviour has also been observed in satisfiability problem
classes with clauses of mixed lengths. In the constant probability model, a literal
is included in a clause with probability p, independently of the inclusion of other
literals. As empty and unit clauses typically makes problems much easier, Hooker
and Fedjki have proposed that such clauses should be discarded and longer clauses
generated in their place [30]. Gent and Walsh show that if the expected clause
length is kept roughly constant by varying p as 1/n then the solubility phase
transition occurs around a constant value of [/n [21]. They approximate the
binomial distribution of clause lengths by a Poisson distribution with parameter
2np adjusting for the omission of empty and unit clauses. As in [21], we let
2np = 3 to give problems with an average clause length of 3 before removal of
empty and unit clauses. This gives,

o e 32— @(0) — 10(0)
S g Y1) g YT

6



where ®(k) = e 33%/k!. The phase transition for this problem class occurs around
[/n = 2.80, which corresponds to k ~ 0.53.

In [21], Gent and Walsh propose the mixed SAT model in which [ clauses in
n variables are generated with respect to a probability distribution ¢(i) on their
length i. For example, in the 2-3-SAT model, ¢(2) = ¢(3) = 3 and binary and
ternary clauses are generated with equal probability. The frequency of occurrence
of an integer in the name of a mixed SAT model reflects the frequency of occur-
rence of clauses of this length in the problem. Hence in the 2-4-4-SAT problem
class, ¢(2) = % and ¢(4) = %, and clauses of length 2 appear with probability %
and of length 4 with probability % Gent and Walsh conjecture that the location
of the phase transition for mixed SAT problems is approximated by the parallel

sum,

where ¢ is the ratio of //n at the mixed SAT phase transition and ¢ is the
ratio of [/n at the random k-SAT phase transition [21]. For example, the phase
transition in random 2-3-SAT occurs around [/n = 1.76 compared to a parallel
sum prediction of 1.62. As another example, the phase transition in random
2-4-4-SAT occurs around [/n = 2.74 compared to a prediction of 2.49. As a
final example, the phase transition in random 3-4-SAT occurs around [/n = 5.88
compared to a prediction of 5.91.
For the mixed SAT problem class, a simple calculation gives,

As usual, we predict the phase transition in solubility around x = 1. This
prediction improves as the length of clauses in the mixed SAT problems increases.
For example, the phase transition in random 2-3-SAT occurs around s = 0.53,
in random 2-4-4-SAT around k = (.55, and in random 3-4-SAT around k = 0.84.
Note that —1/log, (1 — 3¢) is the approximate location of the random k-SAT phase
transition. Hence,

~
~

Ly

This adds support to Gent and Walsh’s parallel sum conjecture for the location

of the mixed-SAT phase transition.

4.2 Graph colouring

In graph colouring, we are given a graph with n nodes and e edges, and wish to
colour it with m colours so that neighbouring nodes have different colours. Each



edge rules out m of the m? possible pairs of colours for the nodes at either end
of the edge. That is, each edge permits a fraction (1 — ) of the m" possible
colourings. Assuming that the edges are independently generated,

1
(Sol) = m".(1——)°
m
Hence,
e m
=1 "

This is a constant, namely log,, (") /2, times the average degree of a node in the
graph. The average degree has been used as an order parameter for describing the
phase transition in colouring problems [7]. A phase transition has been observed
in random 3-colouring problems at an average degree of 4.6 [28], corresponding
to k = 0.84. In random 4-colouring problems, the phase transition occurs around
an average degree of 8.7 [53], corresponding to £ = 0.90. In random 5-colouring
problems, the phase transition occurs around an average degree of 13.1 [53],
corresponding to k = 0.91.

4.3 Constraint satisfaction

A constraint satisfaction problem (CSP) consists of a set of variables V' and a
set of constraints C, and we wish to find values for the variables so that the con-
straints are not violated. Each variable v € V', has a domain of values M, of size
m,. Each constraint ¢ € C of arity a restricts a tuple of variables (v, ..., v,),
and rules out some proportion p. of possible values from the cartesian product
M,, x...x M,, . We call p. the “tightness” of a constraint. To avoid trivial prob-
lems we insist that all arities are at least one, but make no further restrictions.
Problems may have variables with many different domain sizes, and constraints
of many different arities and tightnesses.

The state space has size [[,cy m,. Each constraint rules out a proportion p,
of these states, so we have

(Sol) = (I] mu) < (IT(1 — pc))

veV ceC
Substituting this into (1) gives
— logy(1 — pe
K ZcEC OgQ( P ) (3)
Z?;EV IOgZ (mv)

In binary CSP’s (in which constraints only have a binary arity), a standard
means of generating test problems is to have n variables each with the same do-
main size of m. Given a constraint density of p;, exactly pin(n—1)/2 constraints



are chosen, each with a tightness of py [47, 51]. Such problems are described by
the tuple, (n, m,py, ps). Using these values, (3) gives

n—1 1 ( 1
0 —_—
2 D1 gm 1*])2

K =

)

This has been used as a parameter for binary constraint satisfaction problems [20].
For (20,10, p1, po) problems, the phase transition occurs between 0.75 < k < 1.
For (n,3,p1,2/9) problems (which resemble 3-colouring problems in having three
values), the phase transition occurs around x & 0.62. For (10,m, 1, ps) problems,
the phase transition occurs around x = 1.02. For (n,n,1,py) problems (which
have a complete constraint graph like n-queens problems), the phase transition
occurs around k = 0.99.

4.4 Number partitioning

In 2-way number partitioning, we have n numbers drawn uniformly and at random
from the range (0, /] and wish to find a partition into two bags with the same sum.
To study this problem, Gent and Walsh have developed an “annealed” theory
[22, 24] in which they average probabilities independently over the different binary
digit positions. They call this an annealed theory by analogy with the annealed
theory of materials which averages independently over sources of disorder. Both
give good approximations in the limit.

We expect 1/2 the possible partitions of the n numbers to add up to a par-
ticular parity in any binary digit position. Assuming independence between the
log, (1) digit positions, a fraction (1/2)"92() of the 2" partitions will add up to
the same sum. The expected number of exact partitions is therefore

1
(Sol) = 2”.(5)‘%(”

This gives

| [
- 0g2()_
n

A phase transition in the probability of a perfect 2-way partition has been ob-
served around x = 0.96 [22, 24]. Using some complex analysis based on statistical
thermodynamics, Mertens predicts the location of this phase transition around a
fixed value of a parameter given by x + O(1/nl) [40].

In m-way number partitioning, we have n numbers drawn uniformly and at
random from the range (0,!] and wish to find a partition into m bags with the
same sum. As there are m™ possible partitions of n numbers into m bags, N =
nlog, m We assume that the numbers have a sum which is an exact multiple of
m. A similar but slightly more complex argument can be given when the sum is



not an exact multiple. At each digit position, the first m — 1 bags must each have
a given sum modulo 2. This is expected to happen with probability p = (1/2)™!
as there is a 50% chance that any pair have the same sum modulo 2. The last
bag is guaranteed to have the right digit sum if the first m — 1 do so we can ignore
it. Assuming independence between the log, (/) binary digit positions, a fraction
p'°&2() of the m™ partitions will add up to the same sum. The expected number
of perfect partitions is,

Hence,

, — 1)1 [
o (m1log, ()
n

In [22], Gent and Walsh identify a sharp phase transition in the probability of a
perfect 3-way partition again around x = 0.96.

4.5 Hamiltonian circuits

Given an undirected graph, we wish to decide whether there is an ordered se-
quence of nodes such that each pair of nodes in the sequence is connected by
an edge, as well as the first and last nodes. Here, we consider graphs with n
nodes, and e edges distributed randomly through the graph. Frank, Gent and
Walsh have calculated  for this ensemble [14]. The probability that the first
edge of any circuit is in the graph is 2e/n(n — 1). That leaves e — 1 edges and
(n(n—1)/2) —1 places to put them. So the next edge is in the graph with chance
(e —1)/[(n(n—1)/2) — 1]. Then the next with chance (e —2)/[(n(n —1)/2) — 2].
Since there are n edges under investigation we get an overall probability of

_nfl (6*7:)
= U am—nm—

Since we may designate a starting point arbitrarily, and because we may take
circuits in either direction, the number of distinct potential circuits is (n — 1)!/2.
Hence, (Sol) is p(n — 1)!/2 and N is log,((n — 1)!/2). Thus,

n—1 (e—i)
~ Xizo 198 G

logy((n —1)!/2)

For graphs with up to 30 nodes, the phase transition occurs around x ~ 0.7.
Korsunov [36, 37] proves that if we fix e/(nlogn), then as n — oo, there is almost
certainly a circuit if e/(nlogn) > £, and almost certainly not if e/(nlogn) < 3.
This suggests that e/(nlogn) is a more suitable parameter than x. However,

K =

(4)

10



Frank et al. show that the difference between the two is slight for the size of
problems considered in [14]. This suggests that constrainedness can be a useful
parameter even in problem classes where it is asymptotically incorrect. It is
interesting to speculate that the discrepancy between the two parameters may
be related to the fact that hard problems do not seem to occur at the phase
transition [55].

4.6 Comparing domains

We thus see that our definition of k generalizes a number of parameters intro-
duced in a variety of problem classes. This suggests that “constrainedness” is
a fundamental property of problem ensembles. In addition to unifying existing
parameters, we can now compare problems between classes. For example, the
phase transition in 3-SAT problems occurs at [/n = 4.3 [43, 10] which corres-
ponds to k & 0.82, roughly comparable to that in 3-colouring at x ~ 0.84, while
the phase transition in number partitioning occurs at x =~ 0.96. This suggests
that number partitioning problems at the phase transition may in some sense
be more constrained. Computational results appear to support this claim. For
example, with problems at the phase transition CKK, one of the best algorithms
known for number partitioning [35], runs on average as approximately 298V [24]
whilst Crawford’s TABLEAU algorithm, one of the best algorithms known for sat-
isfiability, runs on average as approximately 2°%" [11]. The definition of x also
allows us to treat a wider range of problems within a class. For example, we
now deal with problems having mixed arity constraints, mixed domain sizes and
mixed constraint tightnesses. This permits the computation of x during search
as domain sizes change and constraints are removed. We will see the value of this
in a later section.

5 The travelling salesperson problem

We have shown that this definition of constrainedness generalizes parameters pre-
viously introduced in a variety of problem classes, including satisfiability, graph
colouring, constraint satisfaction, and number partitioning. We now give a case
study which uses this definition of constrainedness in a new problem class. We
consider the asymmetric travelling salesperson problem (ATSP) with inter-city
distances drawn from a normal distribution with mean p and standard deviation
o. We focus on the decision problem of determining if there is a tour of length d
or less which visits all n cities. Most computational studies of the travelling sales-
person problem have been on the optimisation rather than the decision problem
[7, 58]. Although a phase transition has been observed for the decision problem of
the two-dimensional Euclidean travelling salesperson problem [23], the parameter
used was based on an asymptotic result and we do not understand its relation to

11



constrainedness.

The state space S contains all (n — 1)! possible distinct tours (one city is
designated the starting point arbitrarily). Each of these tours has some length
. As the sum of n normal distributions, [ has a normal distribution with mean
np and standard deviation o/n. If we normalize [ to [ = (I — nu)/o\/n then [ is
distributed normally with mean 0 and standard deviation 1. The probability that
a randomly chosen tour has a length [ less than or equal to some given length d

1S
5 2
d e x?/2

—0o /2T

A standard handbook of integrals [1] gives the equality

2 —x2/2 —22/2 1 1
€ €
/ ——dr = — | —+0(—)
0o /2T V2r \ 7| 2|
The optimal tour length will tend to have d << 0 so the error term will be small.
Accordingly we use the approximation

dz

prob(l < d) =

e—d?/2
d|\/27

Multiplying this by (n—1)!, the number of distinct tours, gives (Sol), the expected
number of tours less than or equal to d. Substituting this into (1) gives,

P logy(e)/2 + log, (dVF7)
logy(n — 1)!

Although further approximations could be made, for example using Stirling’s
approximation, this definition can easily be calculated numerically by computer.

We expect a phase transition in the decision problem when x = 1. We tested
this experimentally using a branch and bound algorithm with the Hungarian
heuristic for branching [6]. For n=6 to 48, we randomly generated 1000 problems
with inter-city distances independently and normally distributed with z=10% and
o0=105. Figure 2 shows the probability that there was a tour less than distance
d, plotted against k. There is a clear phase transition from soluble to insoluble
problems that becomes sharper with more cities. Except for problems with 6
cities, there is a critical value of k = 0.75 which gives the probability of a tour
existing of 0.45 4+ 0.04 at all sizes.

prob(l < d) ~

6 Finite size scaling

We can use the constrainedness, k, to predict the shape as well as the location of
phase transitions. Phase transitions in physical systems have been successfully

12



T T T T T T
n=48 —<—
n=42 —+-
n=36 8-

0.8 n=30 -
n=24 -&-
n=18 -x--
n=12 -o-

0.6 =6

0.4 |

0.2 |

0 | | |

0 02 04 06

Figure 2. Probability of tour of required length existing in ATsP, plotted against
k for 6 to 48 cities.

described using finite size scaling methods [3]. Around a critical temperature T,
problems of all sizes tend to be indistinguishable except for a change of scale
given by a power law in a characteristic length. Here we propose that the con-
strainedness, k, plays the role of temperature whilst the problem size, N, plays
the role of the characteristic length. This analogy suggests that around some
critical constrainedness k., problems of all sizes will tend to be indistinguishable
except for a simple change of scale given by a power law in N. For example, we
conjecture that a macroscopic property like the probability of a solution existing
averaged over an ensemble of problems will obey the equation,

K — Ke

prob(Sol > 0) = f( .N'Y) (5)

Ke

K—K¢

where f is some fundamental function, “="¢ is analogous to the reduced temper-
c
T-T,
T,

ature ., and N'” provides the change of scale. Such scaling has been shown
to model the probability of a solution in finite size phase transitions in satisfiab-
ility [33], constraint satisfaction [20], and number partitioning [22]. In physical
systems, the size dependency usually depends on a correlation length. Points sep-
arated by more than the correlation length behave independently. Despite the
fact that lengths appear in travelling salesperson problems, the size dependency
obeys a simple power law with the problem size, N. Similar power law beha-

13



viour in N has been seen in satisfiability [33, 21], constraint satisfaction [20], and
number partitioning problems [22, 24].

To test this scaling conjecture for the ATsp, in Figure 3 we replot our data
against the parameter == . N'¥ using k. = 0.75 and v = 2, both values derived
from examination of the data. If (5) holds, the curves will line up when plotted
against this rescaled parameter. As predicted, except at n = 6, finite size scaling
models the probability of a tour existing. A discrepancy at small problem sizes
has also been seen in other classes such as satisfiability [33] and suggests that
finite size scaling provides a very useful but incomplete description of scaling
behaviour.

1mp T T T
n=48 —-<—
n=42 -+-
n=36 -9--

08 N=30 > -
n=24 -&--
n=18 -%--
n=12 -o--
n=6 -+--

0.6

0.4

0.2 A

0 | | i o

-4 -2 0 2 4

Figure 3. Probability of tour of required length existing in ATSP, against
Ate, N7 for 6 to 48 cities.

This case study clearly illustrates that our definition of constrainedness is
useful in new problem classes. A phase transition occurs, as predicted, at k ~ 1.
And as expected, by means of finite size scaling we are able to model scaling
behaviour of the phase transition.

7 Search cost

Modelling using finite size scaling can be applied to measures of algorithmic
behaviour such as search cost [49, 20]. For the ATsP, we use the 90th percentile

14



of the number of leaf nodes searched, as lower percentiles such as median cost
were always trivial since almost no backtracking occurred. As in many other
problem classes, e.g. satisfiability [43], search cost displays a distinctive easy-
hard-easy pattern through the phase transition. We fitted the data to a simple
model of exponential growth. We put aside the extremes of our data, i.e. n=6
and 48, and constructed a model for values of the rescaled parameter from —3 to
3 in steps of 0.25 using n=12 to 42. We then compared the modelled data with
the observed, as well as the search costs the model predicts at 6 and 48 cities.
Figure 7 shows the accuracy of the modelling and predictions. For example,
the model successfully predicts that at n = 6 we will explore just a single leaf
node throughout the phase transition. It is remarkable that a simple model of
exponential growth does so well when search costs never reaches very large values,
and granularity therefore plays an important role. [23] reports a phase transition
in the Euclidean travelling salesperson problem, but the parameter used there,
(]A/\/ﬁ was derived from asymptotic considerations and not from . It would be
interesting to see if modelling of search cost for Euclidean problems works well
against this parameter. More generally, it would be valuable to combine this
kind of analysis of behaviour as problem size scales, with analyses which study
the distribution of search costs at a single problem size, such as those carried out
by Frost, Rish and Villa, and Hoos and Stiitzle [16, 48, 31].

8 Constrainedness within search

A general rule of thumb in solving search problems is to tackle the hardest part
first. Many heuristics therefore try to branch on the most constrained variable.
To test their effectiveness at this, we measured the constrainedness of a prob-
lem during search. We ran experiments in several different domains, using both
random and non-random problems. In each case, we observe a constrainedness
“knife-edge” in which critically constrained problems tend to remain critically
constrained. Here we report the results for propositional satisfiability. However,
results were similar in the other domains which included graph colouring and
number partitioning [56].

We use the Davis-Putnam procedure with unit propagation but no pure literal
deletion. We branch with Mowm’s heuristic, picking the literal that occurs most
often in the minimal size clauses, breaking ties with a static numerical order.
Depth is measured by the number of assignments. Similar results are obtained
when depth is measured by the number of branch points, and with other branch-
ing heuristics including random branching. In each experiment, we simply follow
the heuristic down the first branch, averaging over 1000 problems. To reduce
variance, we use the same ensemble of problems in all experiments. We adopt
the convention that initial parameters are in capitals and that values measured
during search are in lower case. For instance, if we generate random 3-SAT prob-

15



1000 ¢ T T T T T T T T T
- o
- e
s RN {48 o
i // . ++ \\ i 42 —+
ot R 36 O
100 ¢ / o \ 4 30 X
- R-E T £\ 24 &
C //i '/' @\ \\<> 18 X
[ e X SRR 12 o
L ] X - [N SR
_ K" AR 6 +
10 E
1 seeenmbomukor ® 4+ RO KR
25 -2 15 -1 05 0 05 1 15 2 25

Figure 4. Modelled/predicted (lines) and observed (points) 90th percentile of
leaf nodes searched to solve ATSP instances (both on y-axis) against the rescaled
parameter e N/¥ (x-axis) with r, = 0.75, v = 2.

lems from the middle of the phase transition with an initial ratio of clauses to
variables, L/N of 4.3 then during search, the average clause length, k, and ratio
of clauses to variables, [/n, may be different from their starting values of 3 and
4.3 respectively.

In Figure 5, we plot the ratio of clauses to variables during search for random
3-SAT problems from the middle of the phase transition with an initial clause
to variable ratio, L/N = 4.3. Since not all heuristic branches extend to large
depths, there is some noise at the end of each graph. As search deepens, the
ratio of clauses to variables drops approximately linearly. The gradient of this
decay is inversely proportional to N. Plotting [/n against the fractional depth,
i/N therefore gives graphs of similar slope despite N varying from 100 to 500.
Other experiments show that the rate of decay increases as we increase the initial
ratio of clauses to variables, L/N.

These results might seem to suggest that problems become less constrained as
search progresses. However, the average clause length also decreases, and shorter
clauses will tighten the constrainedness of problems. In Figure 6, we plot the
average clause length during search for the same random 3-SAT problems from
the middle of the phase transition. Again, we see an approximate linear decay,
with the gradient inversely proportional to N. Other experiments show that

16



I/n

0 01 02 03 04 05 06 07 08 09 1
depth/N

Figure 5. Ratio of clauses to variables, [/n on the heuristic branch (y-axis)
against the fractional depth (x-axis) for random 3-SAT problems with an initial
ratio of clauses to variables, L/N = 4.3.

the average clause length decreases as we decrease the initial ratio of clauses to
variables, L/N. Which of these two factors wins? Does the decrease in clause
size tighten the constrainedness faster than the decrease in the ratio of clauses
to variables loosens it? To answer these questions, we estimated k during search
by assuming that the current subproblem is taken from a random ensemble in
which problems have the same number of clauses, the same number of variables,
and the same distribution of clause lengths. We can then use (2) to estimate k.

In Figure 7, we plot the estimated constrainedness down the heuristic branch
for random 3-SAT problems. For L/N < 4.3, problems are under-constrained and
soluble. As search progresses, k decreases since problems become more under-
constrained and obviously soluble. For L/N > 4.3, problems are over-constrained
and insoluble. As search progresses, k increases since problems become more
over-constrained and obviously insoluble. At L/N = 4.3 problems are on the
knife-edge between solubility and insolubility. As search progresses, k is roughly
constant. Each successive branching decision gives a subproblem which has the
same constrainedness as the original problem, neither more obviously satisfiable,
nor more obviously unsatisfiable. Only deep in search does k eventually break
one way or the other.

We have also observed similar knife-edge behaviour with a random heuristic,
and with an anti-heuristic (that is, one which always branching against the heur-

17



average clause length, k

0 01 02 03 04 05 06 07 08 09 1
depth/N

Figure 6. Average clause length, & on the heuristic branch (y-axis) against
the fractional depth (x-axis) for random 3-SAT problems with an initial ratio of
clauses to variables, L/N = 4.3.

istic) except that values of k are slightly greater. In addition, we observed similar
knife-edge behaviour in other problems domains including graph colouring and
number partitioning [56]. Figure 7 suggests an interesting analogy with statistical
mechanics. At the phase boundary in physical systems, problems tend to be “self-
similar”. That is, they look similar at every length scale. At the phase boundary
in computational systems, problems also display a form of self-similarity. Branch-
ing decisions give subproblems that look neither more or less constrained. This
helps to explain why such problems are difficult to solve. Branching decisions
tell us very little about the problem, giving subproblems that are neither more
obviously soluble nor more obviously insoluble. We will often have to search to
a large depth either for a solution or for a refutation. By comparison, branch-
ing on an over-constrained problem gives a subproblem that is often even more
constrained and hopefully easier to show insoluble, whilst branching on an under-
constrained problem gives a subproblem that is often even less constrained and
hopefully easier to solve.

9 Lower bound on constrainedness

When we branch into a subproblem, the number of solutions remaining cannot
increase. The expected number of solutions, (Sol) cannot therefore increase.

18



The constrainedness knife-edge

kappa

PSR BOOB08006000 O
RXX ‘t'.'.'ttt«,'g 0
R0

S 3 g
i Ry i«
R W S > VAR
L R PRl
Ry oy
| o0 ::msm:::||:|::n=|:=u=:,,“m L RR000e0p0

0O 01 02 03 04 05 06 07 08 09 1
depth/N

0

Figure 7. The estimated constrainedness, k£ down the heuristic branch (y-axis)
against the fractional depth (x-axis) for random 3-SAT problems with 100 vari-
ables and varying initial ratio of clauses to variable.

This provides a lower bound on x that is a good qualitative estimate for how the

constrainedness actually varies during search. Let x; be the value of k at depth
1. Then,

log, ((Sol
Ky = 1-— gQ(]<V )
Hence,
log, ((Sol)) = N(1— ko)
Thus,
ke > 1— 10g2(<59l>)
N —14
B N —i
o Nlﬂo —1
- N —j

19



We can improve this bound slightly by noting that x is bounded below by zero.
Hence,

In Figure 8, we plot this bound on « for random 3-SAT problems with 100 variables
and varying initial ratio of clauses to variable, L/N. We see that in almost every
case the behaviour of x during search observed in Figure 7 is very similar to that
predicted by the bound. The exception is at L/N = 5, corresponding to £ ~ 0.96.
As k < 1, the bound predicts that x converges to 0 as a solution is found. In
reality, however, x diverges to oo as most problems are insoluble.

3 T T T 7
L/N=
L/N=
25 J D L/N=
/ ' L/N=
L/IN=4
2 e
L/N=
© Jtan L/N=
5 15F 1 UN=
X I -
. -
05 F T -
0 S ! S o \l‘\ '-.
0 0.2 0.4 0.6 0.8 1
depth/N

Figure 8. Lower bound on the constrainedness, k (y-axis) against the fractional
depth (x-axis) for random 3-SAT problems with 100 variables and varying initial
ratio of clauses to variable.

This lower bound suggests a very simple scaling result. If we let f; be the
fractional depth in the search tree (that is, i/N) then,

Ko —

k; > max(0,

That is, the bound on k; is simply a function of kg, the initial value and f;, the
fractional depth. It does not depend on the size of the problem. We therefore

20



measured how x; scaled with problem size. We found that x; remained essentially
unchanged if we fixed k¢ and f; as problems increased from 100 to 500 variables.

This is despite the fact that the size of the state spaces increases by over a factor
of 10120,

10 Minimizing constrainedness

The existence of the constrainedness knife-edge may help us design more effect-
ive search procedures. For instance, it may be useful to design heuristics that
get us off the knife-edge as quickly as possible. Many heuristics attempt this
by branching on the most constrained variable, resulting in the least constrained
subproblem. Hence, we propose the heuristic of minimizing x. To test this idea,
we performed experiments on randomly generated binary CSP’s from the class
(n,m,p1,pe) described earlier. We encoded minimizing x as a dynamic vari-
able ordering heuristic within the algorithm FC-CBJ (i.e. forward checking with
conflict-directed backjumping)[46]. After instantiating a variable, domain filter-
ing is performed. This may result in a reduction in the size of the domains of
future (i.e. uninstantiated) variables and consequently alter the tightness of fu-
ture constraints (i.e. constraints acting between pairs of future variables). The
future sub-problem may then be non-uniform in domain sizes and constraint
tightnesses. To measure « for this reduced problem, we assume it as a represent-
ative of the ensemble of problems with the same number of variables, the same
domain sizes, and the same number of constraints each of the same tightness as
the reduced problem. This is a heuristic assumption which seems to be justified
by our results. When considering a variable v; as the new current variable we
remove it and all constraints involving it from the future sub-problem. We then
calculate k for the future sub-problem using equation (3) and take this as the
cost of selecting variable v;. This is done for all future variables and the variable
with minimum cost is selected as the current variable.

We compared the minimize-x heuristic with an encoding of the fail first (FF)
principle [26] i.e. selecting the variable with smallest domain. Figure 9 shows the
results of experiments performed on (20,10, p;, p2) problems (i.e. 20 variables,
uniform domain size of 10). Constraint density p; was varied from 0.2 up to
1.0, for each value of p;, constraint tightness p, was varied to traverse the phase
transition in solubility. At each value of p; and py, we generated 1,000 problems.*

The contours shown are for the mean search effort, measured by the number
of consistency checks. The minimize-x heuristic outperforms the FF heuristic,
especially around the phase transition. Although not shown, the same holds
for median performance. When search effort is measured as the number of trial
instantiations of variables, minimize-x again shows superior mean and median

'"While technically these instances were subject to the flaw identified by [2], instances gen-
erated with these parameters are never flawed in practice [38].

21



let+06 T T T T

FF heuristic —
minimize kappa heuristic ——-

100000

10000

1000 =

100
0 0.5 1 15 2 2.5

Figure 9. Fail First (FF) and minimize-x heuristics on (20, 10, py, p2) problems
using FC-CBJ. Mean consistency checks on y-axis, and the constrainedness of
problems, k on x-axis. Contours for p; = 1.0 (top), p; = 0.5 (middle), p; = 0.2
(bottom).

performance. [18] reports more extensive experiments on the minimize-x heuristic
with similar results. At the peak in search costs, paired-sample t-tests gave values
of t =123 at p; = 0.2, t = 24.4 at p; = 0.5, and t = 46.3 at p; = 1.0, all in
favour of minimize-k. To check the validity of these values we performed an
approximate randomization of the test [9] with a sample of 1000 in each case,
which never gave a value above ¢ = 3.5. This provides strong statistical evidence
that the minimize-« heuristic is better than the FF heuristic in these problem
classes. [54] give results on the same problem classes seen in Figure 9, on a range
of algorithm /heuristic combinations. For high values of p; they report that FC-
CBJ with the FF heuristic was the best combination studied for problems near
the phase transition. The fact that the minimize-x heuristic can do better is
strong evidence that it is a good heuristic.

The complexity of (3) leads to significant overheads in computation. As a
consequence, the minimize-x heuristic does not reduce run-times on this problem
class. However, it is not difficult to find problems in which it gives dramatic
run-time savings. Fail-first ignores the tightness of constraints. This is not a
great handicap in Figure 9 since problems start out with a uniform constraint
tightness. If we start with problems in which the constraint tightnesses varies sig-
nificantly, then the minimize-x heuristic can offer up to four orders of magnitude
improvement in performance, and offer run-time savings. To construct problems
with varying constraint tightness, we generated problems in which exactly 20% of

22



the constraints have tightness p, = 0.8 (i.e. tight constraints) and the remainder

tightness po = 0.2 (i.e. loose constraints). We set n = 30 and m = 10, and
observed a phase transition as we varied the constraint graph density, p; from %

to 1 in steps of 81—7. Results are plotted in Figure 10. The 50% solubility point is

1e+08 T T T T T T T

FF heuristic — -
minimize kappa heuristic -~ -

1let07 ¢

1e+06 |

100000 [

10000

1000 ¢

100 i ""I 1 1 1 1 1 1
0O 02 04 06 08 1 12 14

Figure 10. Fail First (FF) and minimize-x heuristics on binary constraint sat-
isfaction problems using FC-CBJ. Mean consistency checks on y-axis, and the
constrainedness of problems, k on x-axis. Problems have n = 30, m = 10, vary-
ing py, and py, = 0.2 for 80% of the constraints, and p, = 0.8 for the remainder.

at kK =~ 0.64 when p; = % The mean and worst case performance show the exist-
ence of exceptionally hard problems for FF. The worst case for FF was 2.7 x 10'°
consistency checks at k &~ 0.39, in a region where 100% of problems were soluble.
This was 8 orders of magnitude worse than the median of 659 checks at this point,
and took 87 hours on a DEC Alpha 200%/1%6.

11 Maximizing constrainedness
For soluble problems, the existence of the constrainedness knife-edge suggests
that we try to get off the knife-edge as quickly as possible by branching into the

subproblem that is as under-constrained as possible. That is, we branch into
the subproblem that minimizes . For insoluble problems, it might be better to

23



branch into the sub-problem that is as over-constrained as possible. That is, we
branch into the subproblem that maximizes k. To test this idea, we ran exper-
iments on some propositional satisfiability and constraint satisfaction problems
using a maximize-x heuristic.

For the satisfiability experiments, we implemented minimize-x and maximize-
k branching heuristics for the Davis-Putnam procedure. In Table 1, we show how
these heuristics compare to MoM’s heuristic on hard random 3-SAT problems
from the middle of the phase transition. The results support the thesis that, for
soluble problems, it pays to minimize x and for insoluble problems, it pays to
maximize k. However, we should be careful to draw too many conclusions from
these results. In the Davis-Putnam procedure, we are exploring a simple binary
tree. In other domains, we may be searching trees in which the branching rate
varies. For example, when solving constraint satisfaction problems with a forward
checking algorithm like FC-CBJ, the branching rate depends on the domain size
of the variable being instantiated and this varies during search. Heuristics that
maximize k will tend to branch on variables with large domains, resulting in
bushy search trees which could be expensive to explore.

MoOM | min —k | max —k
satisfiable problems 164 104 1487
unsatisfiable problems | 3331 7419 2575

Table 1: Median nodes searched by the Davis-Putnam procedure for random
3-SAT problems at n = 50 and [/n = 4.3 using different heuristics.

For the constraint satisfaction experiments, we were unable to test the (20, 10, py, p2)
problems used in the previous section since they were too hard to solve in gen-
eral using the maximize-x heuristic. For example, FC-CBJ failed to solve a
(20,10, 0.5,0.37) problem (in the middle of the phase transition) in over 2 million
consistency checks using a maximize-x heuristic. By comparison, FC-CBJ with
the FF heuristic took 61,200 consistency checks to solve this problem, and just
39,177 checks with the minimize-x heuristic. We therefore ran our experiments
on problems with fewer variables. As in [17] and [20], we used (10, 10, 1, p3) prob-
lems varying py from 0.2 to 0.5 with a sample size of 50. In the middle of the
phase transition, the maximize-x heuristic is an order of magnitude worse than
the FF or minimize-x heuristic. As in Section 10, the minimize-x heuristic is
competitive with the FF heuristic, on both soluble and insoluble problems.

On very under-constrained and soluble problems, close inspection of the data
shows that the maximize-x heuristic outperforms the FF and minimize-x heur-
istics. On such problems, the maximize-x heuristic selects a variable with a
large domain, and forward checking then performs consistency checking against
variables with small domains. By comparison, the FF and minimize-x heuristics,

24



20000 T T i T T T

maximise kappa heuristic <©—
18000 [~ FF heuristic +- 7
minimise kappa heuristic -[=I- -

16000

14000

12000

10000

8000

6000

4000

2000

Figure 11. Fail First (FF), minimize-x and maximize-x heuristics on
(10,10, 1, p2) problems using FC-CBJ. Mean consistency checks on y-axis, and
constrainedness of problems, x on x-axis.

select a variable with a small domain, and forward checking then performs consist-
ency checking against variables with large domains. For very under-constrained
problems that can be solved with little or no search, reducing the amount of
work performed by forward checking may therefore result in computational sav-
ings. By comparison, on more constrained problems, the maximize-x heuristic
performs poorly. As predicted, the heuristic branches on variables with large
domains, giving bushy search trees which are expensive to explore. We conjec-
ture that maximize-x will perform even worse with a chronological backtracking
procedure like forward checking. Our results suggest that, whilst minimizing
constrainedness can be an effective way to get off the knife-edge for soluble and,
in some cases, for insoluble problems, there are domains in which maximizing
constrainedness is ineffective even on insoluble problems.

12 Proxies for constrainedness

As mentioned in Section 10, it may be expensive to compute x. We may therefore
use a proxy which is cheaper to compute. For example, in number partitioning,
Gent and Walsh have shown that the Karmarkar-Karp heuristic minimizes an
estimate for x that is based on the assumption that the numbers left to partition
remain uniformly distributed [22]. The Karmarkar-Karp heuristic is cheap to
compute as it merely requires us to maintain the numbers left to partition in

25



sorted order.

In constraint satisfaction problems, if we assume that all constraints in a
problem have the same tightness, and that each variable is in the same number
of constraints, we can ignore the numerator of (3) as it will be the same whichever
variable we instantiate. The variable chosen should then be the one that maxim-
izes the denominator of (3), and is equivalent to instantiating the variable with
smallest domain. This is the fail-first (FF) heuristic [26] which is again cheap to
compute.

An alternative assumption is that all variables have the same domain size.
This is valid when all variables start out with identical domain sizes and we use
a backward checking algorithm, i.e. an algorithm that does not perform domain
filtering of the future variables. The denominator will now be the same whichever
variable we instantiate. If we further assume that all constraint tightnesses are
the same, the numerator becomes the cardinality of the set of constraints acting
between future variables and between future and past variables. We minimize
the numerator of (3) by choosing a variable that has most constraints with past
variables. This corresponds to the maximum cardinality heuristic described in
[12].

We may take advantage of both numerator and denominator of (3). One way
to do this is to choose the variable with smallest domain size (maximizing the
denominator) and break ties by choosing the tied variable in most constraints
(minimizing the numerator, assuming uniform constraint tightness). This is the
Brelaz heuristic [5].

Not all proposed heuristics are as successful as those mentioned above. Indeed
in some cases intuition seems to have led designers in exactly the wrong direction.
For example, in their backtracking algorithm for the Hamiltonian Cycle problem,
Cheeseman, Kanefsky and Taylor selected the node to go to with the highest
connectivity at each choice point [7]. However, to minimise the numerator of (4),
we should maximize the number of edges that remain in the graph after each
choice point. This suggests picking the node with the lowest connectivity, not
the highest, and this is the approach taken by Martello’s algorithm [39].

Four state of the art heuristics can thus be seen as proxies for minimizing x.
Domain knowledge may still be needed to convert the idea of minimizing « into a
heuristic with low overheads. However, by considering how to minimize s, we can
remove much of the intuition involved in developing heuristics for a new domain.
While intuition is valuable, it can often be misleading or even wrong. Further-
more, intuition about new domains can be hard to achieve. We therefore see this
reduction in the role of intuition in heuristic design as a significant contribution.

26



13 Related work

We are not aware of any other work which both introduces a general measure
of constrainedness and uses it to design heuristics. However, a number of other
workers have studied one or other aspect, either measures of constrainedness or
the design of heuristics based on theoretical principles.

Williams and Hogg present a closely related model for locating phase trans-
ition behaviour and predicting search cost in graph colouring and constraint sat-
isfaction problems [57]. Their “deep structure” model focuses on the number of
minimized nogoods. The approach presented here is more general as it can be
applied to a wider range of problem domains. Indeed, our analysis has made very
few assumptions about the computational complexity of the search problems be-
ing solved. We have merely assumed that we are looking for a solution within
some finite state space. Our framework is therefore applicable to the wide range
of NP-complete problems. However, we can also apply these ideas to problems in
other complexity classes. For example, we have modelled phase transition beha-
viour and suggested new heuristics for polynomial problems like establishing arc
consistency in constraint satisfaction problems [19]. Whatever the complexity
class, our definition of constrainedness may be able to identify phase transition
behaviour and suggest heuristics that help us solve search problems.

Musick and Russell model search using an abstracted Markov process that
considers just the distance from a solution [44]. They identify regions where
problems are easy and outside which it is very hard to find a solution. It would
be fruitful to explore the connections between constrainedness, and the transition
probabilities of such Markov processes.

Smith proposes a heuristic for binary constraint satisfaction problems that
simply maximizes the expected number of solutions, (Sol) [50]. Given a choice of
two subproblems with equal (Sol), the heuristic of minimizing x will branch into
the smaller problem in the expectation that this is less constrained. Experiments
so far have failed to show which heuristic, if either, is better [18].

Hooker and Vinay investigate the Jeroslow-Wang heuristic for satisfiability
[29]. They propose the “satisfaction hypothesis”, that it is best to branch into
subproblems that are more likely to be satisfiable, but reject this in favour of the
“simplification hypothesis”, that it is best to branch into simpler subproblems
with fewer and shorter clauses after unit propagation. Minimizing x is related
but not identical to both these hypotheses: in general it will seek out simple
problems that are likely to be soluble.

Nudel has proposed some theoretically motivated heuristics for binary CSP’s
[45]. Two classes of heuristic are presented, global and local. Global heuristics
fix the instantiation order at the start of search, whereas local heuristics take
account of information made available during search, such as actual domain sizes
and constraint tightness. Nudel’s local heuristics are thus dynamic variable or-
dering heuristics. It is interesting to contrast our approach with Nudel’s as both

27



give theory-based variable ordering heuristics. Nudel presents measure that es-
timate the size of the remaining search tree, and then constructs heuristics which
seek to minimize these estimates. We have not related our measures directly to
the search tree. Instead we have sought to move into areas of the search tree
likely to be unconstrained and therefore have solutions. When one makes certain
simplifications, both approaches can result in the same heuristic such as the FF
heuristic. However, the detailed relationship between the approaches has not yet
been fully analysed.

Heuristics are, by their nature, inexact. It can therefore be difficult to decide
how rigorously to apply a given theory about heuristic construction. Smith and
Grant investigated this problem for the ‘fail first’ principle in binary CSP’s [52],
a principle often used to justify the minimum domain size (FF) heuristic. They
found that a heuristic which did more work to maximize the probability of an
early failure did significantly more search than a simpler heuristic that did less
work, even in measures such as nodes searched which are independent of the
cost of calculating the heuristics. Heuristics based upon theoretical principles,
including that of minimizing constrainedness, have still to address problems such
as this.

The constrainedness of a problem depends on the ensemble from which it is
drawn. We may not know the ensemble from which a problem is drawn, so naive
measurements of x may mislead us. Hogg uses the “approximate entropy” to
distinguish between problems drawn from a clustered ensemble and those from
a random ensemble [27]. Approximate entropy may therefore be useful in es-
timating constrainedness. However, as the approximate entropy depends on the
representation used, the role of problem representation is also critical. Further
work in this area, perhaps along the lines of [4], is vital if this research is to be
of practical value in understanding and solving real problems.

14 Conclusions

Branching heuristics often try to make the most “constrained” choice, whilst hard
problems tend to be “critically constrained”. We have developed a general defin-
ition of the constrainedness of search problems that unifies these two notions of
constrainedness. We have shown that our definition of constrainedness general-
izes a number of parameters used to study phase transition behaviour in a wide
variety of different problem domains. It allows the rapid identification of phase
transitions in new problem domains, and the comparison of phase transitions in
previously incomparable classes. Our definition also provides insight into why
problems at such phase transitions tend to be hard to solve. These problems are
on a constrainedness “knife-edge”, and we must search deep into the problem
before they look more or less soluble. Heuristics that try to get off this knife-
edge as quickly as possible by, for example, minimizing the constrainedness are

28



often therefore very effective. Many existing heuristics can be seen as minimiz-
ing constrainedness or proxies for it. Our definition of constrainedness therefore
offers a unified understanding of many widely disparate heuristics, and provides
a principled method for constructing heuristics for new domains.

Acknowledgements

The authors are members of the APES research group, http://www.cs.strath.ac.uk/ apes.
We thank our colleagues in the group at the Universities of Strathclyde and Leeds,
most especially Ewan MacIntyre. We also thank the members of the Mathem-
atical Reasoning Group at Edinburgh University. The authors are supported by
EPSRC awards GR/L /24014 and GR/K/65706. We thank Bob Craig and Mark
Stickel for code, and Vince Darley for correcting an error in the derivation of

(Sol) for the ATsp.

References

1] M. Abramowitz and I.A. Stegun, editors. Handbook of mathematical func-
tions. Dover.

(2] D. Achlioptas, L.M. Kirousis, E. Kranakis, D. Krizanc, M.S.O. Molloy, and
Y.C. Stamatiou. Random constraint satisfaction: A more accurate pic-
ture. In G. Smolka, editor, Proceedings of Third International Conference on
Principles and Practice of Constraint Programming (CP97), pages 107 120.
Springer, 1997.

[3] Michael N. Barber. Finite-size scaling. In Phase Transitions and Critical
Phenomena, Volume 8, pages 145 266. Academic Press, 1983.

[4] J.E. Borrett and E.P.K. Tsang. On the selection of constraint satisfaction
formulations. Technical report CSM-254, Department of Computer Science,
University of Essex, October 1995.

[5] D. Brelaz. New methods to color the vertices of a graph. Communications
of ACM, 22:251 256, 1979.

6] G. Carpaneto and P. Toth. New branching and bounding criteria for the
asymmetric travelling salesman problem. Management Sci., 26:736 743,
1980.

[7] P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard prob-
lems are. In Proceedings of the 12th IJCAI pages 331 337. International
Joint Conference on Artificial Intelligence, 1991.

29



8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

V. Chvatal and B. Reed. Mick gets some (the odds are on his side). In
Proceedings of the 33rd Annual Symposium on Foundations of Computer
Science, pages 620-627. IEEE, 1992.

P.R. Cohen. Empirical methods for Artificial Intelligence. MIT Press, 1995.

J.M. Crawford and L.D. Auton. Experimental Results on the Cross-Over
Point in Satisfiability Problmes. In Proceedings of AAAI 1993 Spring Sym-
posium on Al and NP-Hard Problems, 1993.

J.M. Crawford and L.D. Auton. Experimental results on the crossover point
in random 3-SAT. Artificial Intelligence, 81:31 57, 1996.

R. Dechter and I. Meiri. Experimental evaluation of preprocessing algorithms
for constraint satisfaction problems. Artificial Intelligence, 68:211 242, 1994.

P.E. Dunne and M. Zito. An improved upper bound on the non-3-
colourability threshold. Information Processing Letters, 65:17 23, 1998.

J. Frank, I.LP. Gent, and T. Walsh. Asymptotic and finite size paramet-
ers for phase transitions: Hamiltonian circuit as a case study. Information
Processing Letters, 66(5):241 245, 1998.

A. Frieze and S. Suen. Analysis of two simple heuristics on a random instance
of k-SAT. Journal of Algorithms, 20:312-355, 1996.

D. Frost, I. Rish, and L. Vila. Summarizing CSP hardness with continuous
probability distributions. In Proceedings of the 14th National Conference on
Al pages 327 333. American Association for Artificial Intelligence, 1997.

J. Gaschnig. Performance measurement and analysis of certain search al-
gorithms. Technical report CMU-CS-79-124, Carnegie-Mellon University,
1979. PhD thesis.

I.P. Gent, E. MacIntyre, P. Prosser, B.M.Smith, and T. Walsh. An empirical
study of dynamic variable ordering heuristics for the constraint satisfaction
problem. In Proceedings of CP-96, pages 179 193. Springer Verlag, 1996.

ILP. Gent, E. MacIntyre, P. Prosser, P. Shaw, and T. Walsh. The con-
strainedness of arc consistency. In 3rd International Conference on Prin-
ciples and Practices of Constraint Programming (CP-97), pages 327 340.
Springer, 1997.

[.P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. Scaling effects in the CSP
phase transition. In Principles and Practice of Constraint Programming,
pages 70-87. Springer, 1995.

30



[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

31]

32]

33]

[34]

I.LP. Gent and T. Walsh. The SAT phase transition. In A G Cohn, editor,
Proceedings of 11th ECAI pages 105 109. John Wiley & Sons, 1994.

I.P. Gent and T. Walsh. Phase transitions and annealed theories: Number
partitioning as a case study. In Proceedings of ECAI-96, pages 170-174,
1996.

I.LP. Gent and T. Walsh. The TSP phase transition. Artificial Intelligence,
88:349 358, 1996.

[LP. Gent and T. Walsh. Analysis of heuristics for number partitioning.
Computational Intelligence, 14(3):430-451, 1998.

A. Goerdt. A theshold for unsatisfiability. In I. Havel and V. Koubek,
editors, Mathematical Foundations of Computer Science, Lecture Notes in
Computer Science, pages 264 274. Springer Verlag, 1992.

R.M. Haralick and G.L. Elliott. Increasing tree search efficiency for con-
straint satisfaction problems. Artificial Intelligence, 14:263-313, 1980.

T. Hogg. Which search problems are random? In Proceedings of 15th Na-
tional Conference on Artificial Intelligence, pages 438 443. AAAT Press/The
MIT Press, 1998.

T. Hogg and C.P. Williams. The hardest constraint problems: A double
phase transition. Artificial Intelligence, 69:359-377, 1994.

J. N. Hooker. Testing heuristics: We have it all wrong. Journal of Heuristics,
1:33 42, 1995.

J. N. Hooker and C. Fedjki. Branch-and-cut solution of inference problems
in propositional logic. Annals of Mathematics and Artificial Intelligence,
1:123-139, 1990.

Holger Hoos and Thomas Stiitzle. Characterizing the Run-time Behavior of
Stochastic Local Search. Technical Report AIDA 98 01, FG Intellektik, TU

Darmstadt, January 1998.

A. Kamath, R. Motwani, K. Palem, and P. Spirakis. Tail bounds for occu-
pancy and the satisfiability threshold conjecture. Randomized Structure and
Algorithms, 7:59 80, 1995.

S. Kirkpatrick and B. Selman. Criticial behaviour in the satisfiability of
random boolean expressions. Science, 264:1297-1301, 1994.

L.M. Kirousis, E. Kranakis, and D. Krizanc. Approximating the unsatis-
fiability threshold of random formulas. In Proceedings of the 4th Annual
European Symposium on Algorithms (ESA’96), pages 27 38, 1996.

31



[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

R. Korf. From approximate to optimal solutions: A case study of number
partitioning. In Proceedings of the 14th IJCAIL International Joint Confer-
ence on Artificial Intelligence, 1995.

A.D. Korshunov. The main properties of random graphs with a large number
of vertices and edges. Russian Math. Surveys, pages 121 198, 1985.

A.D. Korsunov. Solution of a problem of Erdés and Rényi on Hamiltonian
cycles in nonoriented graphs. Soviet Math. Dokl., 17(3):760-764, 1976.

E. MacIntyre, P. Prosser, B.M. Smith, and T. Walsh. Random constraint
satisfaction: Theory meets practice. In Jth International Conference on

Principles and Practices of Constraint Programming (CP-98), pages 325
339. Springer, 1998.

S. Martello. An enumerative algorithm for finding Hamiltonian circuits in
a directed graph. ACM Transactions on Mathematical Software, 9:131-138,
1983.

S. Mertens. Phase transition in the number partitioning problem.
http://xxx.lanl.gov/abs/cond-mat /9807077, 1998.

S. Minton. Integrating heuristics for constraint satisfaction problems: a case
study. In Proceedings of the 11th National Conference on Al pages 120 126.
American Association for Artificial Intelligence, 1993.

S. Minton. Is there any need for domain-dependent control information? a
reply. In Proceedings of the 13th National Conference on Al pages 855-862.
American Association for Artificial Intelligence, 1996.

D. Mitchell, B. Selman, and H. Levesque. Hard and Easy Distributions of
SAT Problems. In Proceedings of the 10th National Conference on Al pages
459-465. American Association for Artificial Intelligence, 1992.

R. Musick and S. Russell. How long will it take? 1In Proceedings of the
10th National Conference on Al pages 466 471. American Association for
Artificial Intelligence, 1992.

B. Nudel. Consistent-labeling problems and their algorithms: Expected-
complexities and theory-based heuristics. Artificial Intelligence, 21:135-178,
1983.

P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Com-
putational Intelligence, 9:268-299, 1993.

P. Prosser. An empirical study of phase transitions in binary constraint
satisfaction problems. Artificial Intelligence, 81:127 154, 1996.

32



48]

[49]

[50]

[51]

[52]

[53]

[54]

I. Rish and D. Frost. Statistical analysis of backtracking on inconsistent
CSPs. In G. Smolka, editor, Proceedings of Third International Conference
on Principles and Practice of Constraint Programming (CP97), pages 150—
162. Springer, 1997.

B. Selman and S. Kirkpatrick. Critical behavior in the computational cost
of satisfiability testing. Artificial Intelligence, 81:273-295, 1996.

B.M. Smith. Re: variable choice. CSP-List Digest, 75, October 1995.
Mailing list, archived at ftp://ftp.cs.city.ac.uk/pub/constraints/archive/csp-
list /95.10.75.gz.

B.M. Smith and M.E. Dyer. Locating the phase transition in binary con-
straint satisfaction problems. Artificial Intelligence, 81:155—-181, 1996.

B.M. Smith and S.A. Grant. Trying harder to fail first. In Proceedings of the
15th ECAI pages 249 253. European Conference on Artificial Intelligence,
1998.

P. Svenson and M.G. Nordahl. Relaxation in graph coloring and satisfiability
problems, 1998. Paper in the xxx.lanl.gov e-Print archive. Available from
http://xxx.lanl.gov/ps/cond-mat /9810144.

E.P.K. Tsang, J.E. Borrett, and A.C.M. Kwan. An attempt to map the
performance of a range of algorithm and heuristic combinations. In Hybrid
Problems, Hybrid Solutions, pages 203-216. 10S Press, 1995. Proceedings of
ATSB-95.

B. Vandegriend and J. Culberson. The Gn,m phase transition is not hard for
the Hamiltonian Cycle problem. Journal of Artificial Intelligence Research,
9:219 245, 1998.

T. Walsh. The constrainedness knife-edge. In Proceedings of the 15th Na-
tional Conference on AL American Association for Artificial Intelligence,
1998.

C.P. Williams and T. Hogg. Exploiting the deep structure of constraint
problems. Artificial Intelligence, 70:73 117, 1994.

W. Zhang and R.E. Korf. An average-case analysis of branch-and-bound
with applications: Summary of results. In Proceedings of 10th National
Conference on Artificial Intelligence, pages 769 775. AAAT Press/The MIT
Press, 1992.

33



