
Generating Spatiotemporal Datasets on the WWW

Yannis Theodoridis Mario A. Nascimento
Computer Technology Institute

Patras, Hellas
yannis.theodoridis@cti.gr

Dept. of Computing Science
University of Alberta, Canada

mn@cs.ualberta.ca

Abstract. Efficient storage, indexing and retrieval of time-
evolving spatial data are some of the tasks that a
Spatiotemporal Database Management System (STDBMS)
must support. Aiming at designers of indexing methods and
access structures, in this article we review the GSTD
algorithm for generating spatiotemporal datasets according
to several user-defined parameters, and introduce a WWW-
based environment for generating and visualizing such
datasets. The GSTD interface is available at two main sites:
http://www.cti.gr/RD3/GSTD/ and http://www.cs.
ualberta.ca/~mn/GSTD/.

1. Introduction
Emerging spatial applications deal with objects
whose position, shape and size change over time, i.e.,
the so-called spatiotemporal objects. Real world
examples include vehicle or human trajectories
archival data, fire front monitoring, flight simulators,
weather forecast, etc. According to [11], a
spatiotemporal object, identified by its o_id, is a
time-evolving spatial object, i.e., its evolution (or
‘history’) is represented by a set of instances (o_id, si,
ti), where si is the location of the object at instant ti (si
and ti the object instance spacestamp and timestamp,
respectively). Following that definition, a 2D time-
evolving point (region) is represented by a line
(respectively, solid) in 3D space (Figure 1).

x

y

t

x

y

t

(a) moving point (b) moving region

Figure 1. Example of 2D time-evolving spatial objects

For all the above applications, efficient indexing is
a requirement due to the high volume (and
complexity) of data involved. The solutions could
either be extensions of existing spatial or temporal
access methods [13, 5, 6] or novel proposals [4, 9]. In

any case, designers should evaluate their techniques
under extensive experimentation using real and
synthetic data. Zobel et al. [14] suggest that
“experiments of indexing techniques should be based
on benchmarks such as standard sets of data and
queries”. Following that guideline, we are building a
benchmarking environment for spatiotemporal access
methods (STAMs) that includes the following:
a) a module that generates synthetic data and query

sets, which would cover a variety of real life
examples, plus a repository of real datasets,

b) a visualization tool that could be able to visualize
datasets and structures, for illustrative purposes,

c) a collection of STAMs for experimentation
purposes, and

d) a database of experimental results concerning
evaluation of STAMs.
In this paper we focus on items (a) and (b). We

discuss the GSTD algorithm for generating
spatiotemporal data, originally proposed in [12], and
a WWW-based interface recently developed to
facilitate its use.

2. The GSTD Rationale
In order for the user of a benchmarking environment
to conduct an extensive series of experiments under a
variety of conditions, he/she should be able to
generate datasets by tuning an appropriate set of
parameters and distributions. A fundamental issue on
generating synthetic spatiotemporal datasets is the
definition of a rich set of parameters that control the
evolution of spatial objects. Towards this goal, we
have addressed the following three operations:
− duration of an object instance; involving change

of timestamps between consecutive instances,
− shift of an object; involving change of spatial

location (in terms of center point shift), and
− resizing of an object; involving change of an

object’s size (only applicable to non-point
objects).
In [12] we proposed the GSTD algorithm for

building sets of moving point or rectangular objects.
For each object o, GSTD generates tuples of the



format (o_id, t, pl, pu, f), where t is the instance’s
timestamp, pl (pu) is the lower-left (upper-right)
corner of the instance’s spacestamp (an MBR −
assuming a 2D scenario), and f is a flag denoting
whether this instance is (spatially) valid or not.

In the GSTD algorithm, the three operations
(duration, shift and resizing) correspond to three
formulae that calculate the new timestamp and the
new spacestamp’s center and extent, as functions of
current values and the respective parameters, namely
interval, ∆c[] and ∆ext[]. Note that ∆c[]and
∆ext[] are arrays whose dimension depend on the
dimensionality of the dataset being generated. Since
chronological databases are supported, interval
can range from 0 to +1. Also, ∆c[] and ∆ext[] can
range from –1 to +1, since the spatial workspace is
assumed to be the unit (hyper-) cube. To do that,
GSTD allows several user-defined parameters as
input, namely:
− N and D that correspond to the initial cardinality

and density (i.e., the ratio of the sum of the areas
of data rectangles over the workspace area) of the
dataset;

− starting_id that corresponds to the initial
identification number of every object in the
dataset;

− numsnapshots that corresponds to the time
resolution of the workspace;

− min_t and max_t that correspond to the domain
of the interval parameter;

− min_c[] and max_c[] that correspond to the
domain of the ∆c[] parameter;

− min_ext[] and max_ext[] that correspond to
the domain of the ∆ext[] parameter;

 and generates a series of tuples for each object,
according to the following procedure: “each object is
initially active and, for each one, new instances are
generated as long as its current instance is active and
timestamp t < 1; when all objects become inactive,
the algorithm ends”.

Initially, all objects are given starting locations,
such that their center points are distributed in the
workspace with respect to a chosen (distr_init)
distribution, and their extensions are either set to zero
(in case of point data) or calculated according to an

extent(N,D) routine with respect to the input N
and D parameters (in case of rectangular data). After
the initialization phase, each new instance of an
object is generated as a function of the current
instance and the three parameters (interval, ∆c[]
and ∆ext[]). In order for a new instance to be
generated, the values of the three parameters are
calculated by calling a RNG(distr,min,max)

routine, i.e., a random number generator for numbers
between min and max that follow a given (distr)
distribution. Currently, three popular distributions
(namely, uniform, gaussian and skewed) are
supported.

Obviously, it is possible that a coordinate may fall
outside the workspace; GSTD manipulates invalid
instances according to one among three alternative
approaches:
− the ‘radar’ approach, where coordinates remain

unchanged, although falling beyond the
workspace,

− the ‘adjustment’ approach, where coordinates are
adjusted (according to linear interpolation) to fit
the workspace, and

− the ‘toroid’ approach, where the workspace is
assumed to be toroidal, as such once an object
traverses one edge of the workspace, it enters back
in the “opposite” edge.
In the first case, the output instance is

appropriately flagged (f = 0 in the generated tuple) to
denote its invalidity, although the next instance is still
based on that one. In the other two cases, it is the
modified instance that is stored in the resulting data
file and used for the generation of the next one.
Notice that in the ‘radar’ approach, the number of
objects present (i.e., valid) at each time snapshot may
vary.

The three alternative approaches are illustrated in
Figure 2. For sake of simplicity, it is only the centers
of spacestamps that are illustrated; black (grey)
locations represent valid (invalid) instances. In the
example of Figure 2a, ‘radar’ fails to detect s3, hence
s3 is not stored, although the next location s4 is based
on that. Unlike ‘radar’, the other two approaches
always calculate a valid instance s3’ to be stored in
the data file which, in turn, is used by GSTD for the

s1

s2 s4

s3

y

x

s1

s2

s4

s3
s3'

y

x

s1

s2 s4'

s3

s4

s3' y

x

(a) ‘radar’ (b) ‘adjustment’ (c) ‘toroid’

Figure 2. GSTD manipulation of invalid instances



generation of s4. It is interesting to watch the
behavior of s4 in Figure 2c, where the calculated
location finally stored (s4’) is actually identical to that
in Figure 2a, as the effect of two consecutive
calculations for s3’ and s4’.

3. The GSTD Interface
 As we mentioned earlier, real world examples of
(point or region) spatiotemporal datasets abound.
However, different motion scenarios correspond to
different datasets, which a STAM should be
evaluated on. For example, random versus biased
heading, fast versus slow motion are some of the
parameters that may lead to completely different
applications and evaluation results.

Through carefully using different distributions for
the above parameters, the GSTD user can simulate
several interesting scenarios; for instance, using a
random distribution for ∆c[i] and interval, all
objects would move equally fast (or slow) and
uniformly on the workspace; whereas using a skewed
distribution for interval one would obtain a
relatively large number of slow objects moving
randomly; and so on. Also, by properly adjusting the
distributions for each dimension of ∆c[], one may

control the heading of objects; for instance, by setting
∆c[i]=Uniform(0,1) ∀ i, one would obtain a
scenario where the set of objects eventually converge
to the upper-right corner of the unit workspace,
irrespectively from the initial distributions; similarly,
if one would prefer the objects to move towards some
specific direction (e.g. East), he/she can simply adjust
∆c by setting lower and upper bounds for each
dimension, as discussed in detail below.

To facilitate use of the GSTD algorithm and
provide a friendly tool to STAM designers and
evaluators, we recently developed a WWW-based
interface (Figure 3). Users simply set GSTD
parameter values and choose the cardinality and
resolution of the dataset to be generated (in the left-
frame) and then the output is visualized on the screen
(right-frame). Animation facilities, such as pause and
frame by frame motion are also provided. Moreover,
the generated tuples are downloadable for further use
(e.g. for running experiments).

In order to provide some interesting scenarios, six
example datasets, originally presented in [12], are
ready for use (can be selected in the bottom-frame,
where a series of snapshots are illustrated). Figure 4
presents the example datasets, where illustrated

Figure 3. A screen dump of the web interface



snapshots correspond to t = 0, 0.25, 0.50, 0.75, and 1.
Finally, the GSTD command line parameters appear,
in case the user prefers to use the GSTD algorithm
off-line (the source code is available via the GSTD
home pages).

Scenarios 1 and 2 illustrate points with initial
gaussian spatial distribution moving towards East and
NorthEast, respectively. In the former case, where the
‘toroid’ approach was adopted, the points that
traverse the right edge enter back in the left side of
the workspace. In order to force the points to move
strictly to the East we set ∆c[y] = 0 and ∆c[x] > 0.
In the latter case, where the ‘radar’ approach is
simulated, the points move towards NorthEast. As
some of them fall beyond the upper-right corner
(some quite early due to their high speed), they never
reappear in the workspace since ∆c[] > 0. Scenario
3 illustrates an initially skewed distribution of points
and their movement towards NorthEast. Since the
‘adjustment’ approach is the choice, the points
concentrate around the upper-right corner. Scenario 4
includes rectangles initially located around the
middle point of the workspace, which are moving and
resizing randomly. The randomness of shift and
resizing is guaranteed by a uniform distribution
applied for ∆c[] and ∆ext[]. Finally, scenarios 5
and 6 exploit the speed of objects as a function of the
GSTD input parameters. By increasing (in absolute
values) the min and max values of ∆c[], users can
generate ‘faster’ objects while the same behavior
could be achieved by decreasing the max_t input that
affects interval. Similarly, the heading of objects

can be controlled, as presented in scenarios 1 through
3.

It is worthwhile to stress that the above scenarios
and respective parameters can be visualized (thus
working as a tutorial) using the example datasets in
the bottom-frame of the web interface (Figure 3).

4. Conclusion
In this article, we discussed the GSTD algorithm that
generates sets of moving points or rectangles
according to user requirements, thus providing a tool
that could simulate a variety of possible scenarios.
Moreover, we presented the WWW environment that
we developed to facilitate the use of the GSTD
algorithm.

Although extended related work is found in
traditional database benchmarks and data generators
(e.g. [1, 2]), in the field of spatial databases it is very
limited [10, 3]. In particular, when motion is
introduced to support spatiotemporal databases, to
our knowledge the single related work is the Oporto
generator [8] but for specific purposes (it actually
generates scenarios with harbors, fishing ships, spots
and shoals of fish).

An interesting issue that arises and deserves more
attention is about the location of an object at time tj,
such that ti < tj < ti+1, based on the knowledge of two
instances that correspond to consecutive timestamps,
ti and ti+1. If linear interpolation is followed, the
spacestamp is considered to be moving with respect
to a start- (at time ti) and an end- (at time ti+1)
location. Alternatively, projection means that the
spacestamp is considered to be static and equal to the

Scenario 1: points moving from center to East (‘toroid’) Scenario 2: points moving from center to NorthEast (‘radar’)

Scenario 3: points moving from SouthWest to NorthEast Scenario 4: rectangles moving (and resizing) randomly

Scenario 5: points moving randomly (low speed) Scenario 6: points moving randomly (high speed)

Figure 4. Example files generated by the GSTD algorithm



one at time ti. Both alternatives find applications in
real world; navigational and cadastral systems,
respectively, are good examples. In any case,
detecting the status of object o at a time instance
during (t1, t2) is an open issue (e.g. uncertainty may
need to be captured [7]). As we argued in [12], the
GSTD algorithm is independent of that issue;
actually, it generates a series of instances regardless
of that. Unlike the underlying data generator, it is a
STAM construction algorithm or a visualization tool
that needs to decide on the one or the other scenario
to be supported.

Acknowledgements
Yannis Theodoridis was partially supported by the
EC funded TMR project “CHOROCHRONOS: A
Research Network for Spatiotemporal Database
Systems”. Mario A. Nascimento was initially
partially supported by CNPq and by the
Pronex/FINEP SAI project, and is currently
supported by a Startup Research Grant from the
Univ. of Alberta. Many thanks to Jefferson R.O.
Silva for implementing the GSTD algorithm and
running a large set of series of experiments, and to
Aggelos Kokorogiannis and Ioannis Poulakis for
building the WWW-based interface.

References
1. D. Bitton, D. J. DeWitt, C. Turbyfill, “Benchmarking

Database Systems: A Systematic Approach”,
Proceedings of the 9th Int’l Conference on Very
Large Data Bases (VLDB), 1983.

2. J. Gray, P. Sundaresan, S. Englert, K. Backlawski, P.
J. Weinberger, “Quickly Generating Billion-Record
Synthetic Databases”, Proceedings of ACM SIGMOD
Conference on Management of Data, 1994.

3. O. Günther, V. Oria, P. Picouet, J.-M. Saglio, M.
Scholl, “Benchmarking Spatial Joins A La Carte”,
Proceedings of the 10th Int’l Conference on Scientific
and Statistical Database Management (SSDBM),
1998.

4. G. Kollios, D. Gunopulos, V.J. Tsotras, “On Indexing
Mobile Objects”, Proceedings of the 18th ACM
Symposium on Principles of Database Systems
(PODS), 1999.

5. M. A. Nascimento, J. R. O. Silva, “Towards
Historical R-trees”, Proceedings of ACM Symposium
on Applied Computing (ACM-SAC), 1998.

6. M. A. Nascimento, J. R. O. Silva, Y. Theodoridis,
“Evaluation of Access Structures for Diecretely
Moving Points”, Proceedings of Int’l Workshop on
Spatio-Temporal Data Management (STDBM), 1999.

7. D. Pfoser, C. S. Jensen, “Capturing the Uncertainty of
Moving-Object Representations”, Proceedings of the
6th Int’l Symposium on Spatial Databases (SSD),
1999.

8. J.-M. Saglio, J. Moreira, “Oporto: A Realistic
Scenario Generator for Moving Objects”,
Proceedings of the 10th Int’l Workshop on Database
and Expert Systems Applications (DEXA), 1999.

9. S. Saltenis, C.S. Jensen, “R-tree based Indexing of
Spatio-Temporal data”, TimeCenter Technical
Report, TR-45, 1999.

10. M. Stonebraker, J. Frew, J. Dozier, “The SEQUOIA
2000 Project”, Proceedings of the 3rd Int’l
Symposium on Spatial Databases (SSD), 1993.

11. Y. Theodoridis, T. Sellis, A. Papadopoulos, Y.
Manolopoulos, “Specifications for Efficient Indexing
in Spatiotemporal Databases”, Proceedings of the
10th Int’l Conference on Scientific and Statistical
Database Management (SSDBM), 1998.

12. Y. Theodoridis, J. R. O. Silva, M. A. Nascimento,
“On the Generation of Spatiotemporal Datasets”,
Proceedings of the 6th Int’l Symposium on Spatial
Databases (SSD), 1999.

13. Y. Theodoridis, M. Vazirgiannis, T. Sellis, “Spatio-
Temporal Indexing for Large Multimedia
Applications” Proceedings of the 3rd IEEE
Conference on Multimedia Computing and Systems
(ICMCS), 1996.

14. J. Zobel, A. Moffat, K. Ramamohanarao, “Guidelines
for Presentation and Comparison of Indexing
Techniques”, ACM SIGMOD Record, 25(3): 10-15,
1996


