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Recognition without Correspondence using MultidimensionalReceptive Field HistogramsBERNT SCHIELEMIT Media Laboratory, Room 384C, 20 Ames Street, Cambridge, MA 02139, USAbernt@media.mit.eduJAMES L. CROWLEYGRAVIR, INRIA Rhône{Alpes, 655, Avenue de l'Europe, 38300 Monbonnot, FranceJames.Crowley@imag.fr;Abstract. The appearance of an object is composed of local structure. This local structure can bedescribed and characterized by a vector of local features measured by local operators such as Gaussianderivatives or Gabor �lters. This article presents a technique where appearances of objects are representedby the joint statistics of such local neighborhood operators. As such, this represents a new class ofappearance based techniques for computer vision. Based on joint statistics, the paper develops techniquesfor the identi�cation of multiple objects at arbitrary positions and orientations in a cluttered scene.Experiments show that these techniques can identify over 100 objects in the presence of major occlusions.Most remarkably, the techniques have low complexity and therefore run in real-time.1. IntroductionThe paper proposes a framework for the statisticalrepresentation of the appearance of arbitrary 3Dobjects. This representation consists of a prob-ability density function or joint statistics of localappearance as measured by a vector of robust localshape descriptors. The object representations areacquired automatically (learned) from sample im-ages. Multidimensional histograms are introducedas a practical and reliable means for the approxi-mation of the probability density function for localappearance. An important result of this paper isthat the representation based on joint statisticsof local neighborhood operators provides a reli-able means for the representation and recognitionof large sets of objects (over 100 objects) at ar-

bitrary 3D positions and orientations in clutteredscenes.Three di�erent recognition algorithms are pro-posed within this framework and evaluated experi-mentally. The �rst algorithm compares the proba-bility distribution of local neighborhood operatorsof a test image to the distributions of learned ob-jects. Recognition is achieved by applying statis-tical divergence measurements which can be seenas a generalization of the color indexing scheme ofSwain and Ballard [Swain and Ballard, 1991]. Thesecond recognition algorithm calculates probabil-ities for the presence of objects based on a smallnumber of vectors of local neighborhood opera-tors. The experiments demonstrate that in thetypical case, a small number of vectors is su�cientto obtain the correct object hypothesis from adatabase of 100 objects. In particular, experimen-



32 Bernt Schiele and James L. Crowleytal results show the robustness of the approach topartial occlusion. The most remarkable propertyof the the algorithm is that it relies on neither thecalculation of correspondence nor �gure groundsegmentation of the object in the scene.The second algorithm is extended to recognizemultiple objects in cluttered scenes by using lo-cal appearance hashing. The capacity of the al-gorithm to recognize objects in cluttered sceneswithout relying on the calculation of correspon-dence is demonstrated experimentally. Due to itslow complexity this algorithms runs on a stan-dard Silicon Graphics O2-machine at 10Hz usingthe OpenGL-extension for real-time convolutionof images.It has been shown that the segmentation prob-lem has exponential complexity1 in the size of theimage considering no knowledge about the sceneand in particular assuming no knowledge aboutwhich objects might be in the scene [Tsotsos,1989]. However, the task-oriented visual searchas e.g. in the case of segmenting objects know-ing which objects are in the scene, has only linearcomplexity. The probabilistic algorithm of section6 and its extension in section 8 calculate objecthypotheses with linear complexity (in the numberof used image measurements and number of ob-jects). This low complexity is mostly due to thefact that no correspondence and no segmentationare calculated. In that sense, this paper proposesalgorithms with linear complexity in order to ob-tain object hypotheses which can be used subse-quently by a segmentation algorithm with linearcomplexity.The next section brie
y discusses closely relatedobject recognition work. Since we use Gaussianderivatives throughout this paper we introducethem in section 3. Section 4 derives a generalstatistical object representation framework basedon the statistics of local neighborhood operators.Section 5 introduces histogram matching as the�rst algorithm for the recognition of objects. Eventhough histogram matching enables the discrimi-nation between 100 objects, the nature of the ap-proach is global. Section 6 therefore proposes alocal recognition algorithm which calculates prob-abilities of objects based on a small number of vec-tors of neighborhood operators. The comparisonof experimental results shows that this algorithm

is highly robust to partial occlusion. This enablesus to de�ne in section 8 an algorithm based on lo-cal appearance hashing which is particularly suitedfor the recognition of multiple objects in clutteredscenes.2. Related object recognition workThis section brie
y discusses closely related ob-ject recognition work (see [Object representation,1996] [Pope, 1995] [Grimson and Huttenlocher,editors, 1992] [Grimson and Huttenlocher, editors,1991] for more comprehensive reviews).2.1. Histogram based approachesSwain and Ballard [Swain and Ballard, 1991]have proposed to represent an object by its colorhistogram (approximating its color distribution).Objects are identi�ed by matching a color his-togram from an image region with a color his-togram from a sample of the object. Their tech-nique has been shown to be remarkably robust tochanges in the object's orientation, changes of thescale of the object, partial occlusion or changes ofthe viewing position. Even changes in the shapeof an object do not necessarily degrade the perfor-mance of their method. The robustness to scaleand rotation are mainly provided by the use ofcolor. The robustness to changes in viewing angleand to partial occlusion are due to the use to his-togram matching. However, the major drawbackof their method is its sensitivity to lighting con-ditions such as the color and the intensity of thelight source. Also, many object classes cannot bedescribed by color alone.In order to reduce the sensitivity to illumina-tion intensity changes several authors have in-troduced color invariances. [Healey and Slater,1994] for example calculate moment invariants ofthe entire color histogram (assuming a constantintensity change over the entire image). [Funtand Finlayson, 1995] use derivatives of the log-arithms of the color channels in order to provideillumination invariant features (assuming a locallyconstant illumination). More recently [Finlaysonet al., 1998] introduced a color image normaliza-tion which is invariant to light intensity and lightcolor changes. Another interesting extension [En-



Recognition without Correspondence using Multidimensional Receptive Field Histograms 33nesser and Medioni, 1995] uses local color his-tograms of the test image in order to deal withmore cluttered scenes.Since not all objects can be described and rec-ognized by color alone, color histograms have beencombined with geometric information (e.g. [Slaterand Healey, 1995] [Matas et al., 1995]). In par-ticular, the SEEMORE-system [Mel, 1997] uses102 di�erent feature channels which are each sub-sampled and summed over a pre-segmented imageregion. The 102 channels compromise color, in-tensity, corner, contour shape and Gabor-derivedtexture features. Strikingly good experimental re-sults are given on a database of 100 pre-segmentedobjects of various types. Most interestingly, a cer-tain ability to generalize outside the database hasbeen observed.The color histogram approach is an attractivemethod for object recognition, because of its sim-plicity, speed and robustness. Many image re-trieval system use color histograms among othercues (e.g. [Flickner et al., 1995] [Belongie et al.,1998]) which is motivated by the fact that manyimages contain characteristic colors. Since manyobjects cannot be described by color alone thispaper generalizes the color histogram approach tomultidimensional receptive �eld histograms. Suchreceptive �elds may capture local structure, shapeor any other local characteristic appropriate to de-scribe the local appearance of an object.2.2. Object recognition based on local character-istics[Lamdan and Wolfson, 1988] introduces geomet-ric hashing as a general framework for recognizingoverlapping and partially occluded objects. Ob-ject models consist of sets of interest points. Therepresentation of the sets is made invariant to ana�ne transformation by using three points as ana�ne basis2. In order to reduce the calculationtime and the complexity of recognition all possi-ble triplets of interest points are used as basis andthe coordinates of the remaining interest pointsare stored in a hashtable. During recognition setsof interest points are extracted from the scene andused for indexing into the hashtable and votingfor object models. Recognition therefore becomesa point matching task. [Grimson et al., 1994] pro-

vide a theoretical analysis of the sensitivity of geo-metric hashing. The main result is that the prob-ability of false positives (during voting) increasesconsiderably in the presence of moderate noise inthe data points. An improved probabilistic votingscheme addresses this issue [Rigoutsos and Hum-mel, 1993].The robustness and the repeatability of theinterest point detector in the presence of a�netransformations is crucial [Schmid et al., 1998].By using only point features the algorithm mayresult in a large number of false positives. There-fore, [Lamdan et al., 1988] [Wolfson, 1990] use notonly interest points but also other features. How-ever, the feature choice is limited since they re-quire invariance to a�ne transformations.[Ballard and Wixson, 1993] and [Rao and Bal-lard, 1995] propose to represent objects (or objectpatches) by a high{dimensional \iconic" featurevector. Such high-dimensional object representa-tions have the favorable property that they canbe subjected to considerable noise before they areconfused with the vectorial representation of otherobjects. More speci�cally, the feature vector in-cludes 45 responses of nine oriented Gaussian �l-ters at �ve di�erent scales (9 � 5 = 45). Usingthe steerability of Gaussian derivatives [Freemanand Adelson, 1991], the feature vector is maderotational invariant. During training and objectrecognition a �gure ground segmentation is per-formed and the vectors are stored in a generalizedversion of Karneva's sparse distributed memory.One drawback of the proposed feature vectoris its relatively large support (about 128 � 128pixels3) which makes the approach sensitive to oc-clusion. Reducing the support of the feature vec-tor would compromise on the uniqueness of the�lter response. [Ballard and Rao, 1994] introducea separate algorithm which can account for par-tial occlusions. The basic idea is to reconstruct animage patch approximately by a pseudo inversetransformation from a single feature vector. Bymasking the occluded parts the reconstructed im-age can be compared with the observation in theimage.[Rao and Ballard, 1997] propose a predictiveKalman �lter hierarchy which combines input-driven bottom-up signals with the expectation-driven top-down signals. This architecture can beseen as a hierarchy of local representations which



34 Bernt Schiele and James L. Crowleyare learned simultaneously. It is used to imple-ment a dynamic recognition algorithm using pat-tern completion during occlusions. The hierarchyis used to explain neural responses of a monkeyfreely viewing a natural scene.A reliable object recognition algorithm has beenproposed in [Schmid and Mohr, 1997]. Eachinterest point in an image is described by anine{dimensional rotational invariant vector of lo-cal characteristics based on Gaussian derivatives,originally proposed in [Koenderink and Doorn,1987]. Finally, the vector responses of all inter-est points of an image are stored in a hash tableindexed by the nine{dimensional vector. In thissense the approach is a synthesis of the two previ-ous ones: local representation by a hash table andrich description of local structure by a vector oflocal characteristics.The principal application of the approach is thecorrespondence problem between a test image andthe stored images in the hash table. In addi-tion, the approach is suitable for object (or image)recognition which can seen as a correspondenceproblem. By applying the interest point detectorto a test image and by calculating the vector re-sponses for the interest points the algorithm votesfor di�erent images (or objects). The voting tech-nique is made more selective by combining the vec-tor responses with geometrical invariants betweendi�erent interest points . Another possibility forimprovement is the use of a probabilistic votingscheme [Mohr et al., 1997].Impressive experimental results have been pre-sented on a database of several hundred objects.Nevertheless, arguably the weakest point of theapproach is the application of an interest pointdetector [Schmid et al., 1998]. The success of theapproach relies on the repeatability of the interestpoint detector over di�erent images and viewingconditions which is di�cult to achieve, particu-larly in unconstrained environments2.3. Eigenvector approachesRecently many researchers [Sirovich and Kirby,1987] [Turk and Pentland, 1991] [Murase andNayar, 1995] [Moghaddam and Pentland, 1995][Ohba and Ikeuchi, 1996] have used the Karhunen{Loeve transformation [Fukunaga, 1990] for the

calculation of eigenpictures in the context of ob-ject recognition. The main advantage of this ap-proach is the representation of each image by asmall number of coe�cients, which can be storedand searched e�ciently. Even though very suc-cessful, the approach has two major drawbacks:the �rst drawback is due to the fact that anychange of individual pixel values, caused for exam-ple by translation, by scale change, by image planerotation or by illumination changes, will changethe eigenvector representation of an image.Two principal possibilities exist in order to dealwith this di�culty: either each image is normal-ized prior to projection onto the eigenspace orthe eigenspace is calculated under considerationof all possible changes. Even though a power-ful normalization function can be implemented inthe special case of face recognition it is di�cultto assume such a function in the general case of3D{object recognition. In the general case of 3D{object recognition a pre-segmentation step is as-sumed prior to the projection onto the eigenspace[Murase and Nayar, 1995]. The second majordrawback of the approach is that the modeling ofeach image is global, which makes the approachsensitive to partial occlusion.3. Vector of local neighborhood operatorsMeasurements of local object appearance can beobtained by a multi{dimensional vector of localneighborhood operators. The neighborhood op-erators which we employ below are not restrictedto a particular family of objects nor does the ap-proach rely on the use of a particular set of fea-tures. Nevertheless, it is necessary to formulateminimal requirements. The �rst requirement isthe locality of the features. As we have shortlymentioned in section 2, global features are sensi-tive to partial occlusion as well as local image dis-turbances such as specular re
ections. The sec-ond requirement concerns the sensitivity of thefeatures. We can list three categories concerningthe sensitivity of features:invariance: invariant features are consideredconstant with respect to certain transforma-tions (such as a�ne and projective transfor-mations),



Recognition without Correspondence using Multidimensional Receptive Field Histograms 35equivariance: the values of equivariant featuresare a function of a certain transformation,robustness: the values of robust features changeslowly in the presence of certain transforma-tions. Such features are often called quasi-invariant.The invariance of features is the most powerfulproperty yet the most di�cult to obtain in real-ity. Whenever possible we should use invariantfeatures. Unfortunately invariant features typi-cally impose unacceptable restrictions on the setof object classes which can be recognized. Fur-thermore, most invariant local features are basedon the calculation of higher order derivatives andthus create practical problems related to instabil-ity, as well as locality problems. Either of theseconstraints would limit the generality of our ap-proach. Consequently, we �nd it necessary to re-lax the requirement of invariance.Equivariant features vary as a function of a cer-tain transformation. An example is the equivari-ant property of Gaussian derivatives with respectto image plane rotations and scale changes. Un-fortunately, equivariance is restricted to certainclasses of image structure, and can not be ob-tained in a general manner.In general, robustness or quasi{invariance canbe attained more easily. Robust features willchange slowly and in a predictable manner with re-spect to changes of the object's appearance. Manylocal features exist which are robust to appearancechanges such as viewing position, illumination andscale. In our experiments, we only employ featureswhich can be calculated locally and which are ro-bust with respect to image noise, blur, image planerotation and scale.Section 3.1 introduces Gaussian derivatives,their steerability with respect to image planerotation and the equivariance property to scalechange. Gaussian derivatives are widely usedin computer vision. Their popularity is due totheir generality (eigenpictures of large numbers ofimage patches resemble derivatives of Gaussians[Rao and Ballard, 1995]), their capacity to modelthe response of neural cells [Young, 1986] and theexistence of a recursive implementation [Deriche,1987]. Furthermore, Gaussian derivatives (as well

as Gabor �lters) are robust to scale changes ofapproximately �20% [Schmid and Mohr, 1997].Gabor �lters [Gabor, 1946] [Westelius, 1992][Daugman, 1993] satisfy the same constraints asGaussian �lters (robustness, steerability to im-age plane rotation, equivariance to scale changes).During earlier experiments (not reported below)Gabor �lters obtained almost identical results asGaussian derivatives. Even though color has notbeen used in our experiments, invariant color de-scriptors [Nagao, 1995] [Funt and Finlayson, 1995]provide a natural extension of the proposed sta-tistical object representation technique describedbelow. One can also consider the use of texturefeatures [Haralick, 1979] [Mao and Jain, 1992] orlow{level geometric features and perceptual sig-ni�cant groups thereof [Pope and Lowe, 1996].3.1. Gaussian derivativesGaussian derivatives are widely used in the litera-ture and well understood [Freeman and Adelson,1991] [Rao and Ballard, 1995]. By using Gaus-sian derivatives we can explicitly select the scale.Additionally, we can \steer" the derivative to ar-bitrary orientations: it is possible to calculate thenth order Gaussian derivative of the orientation� based on a linear combination of a �nite num-ber of nth order derivatives. This section de-scribes Gaussian derivatives in general, developsthe equivariance property to scale and �nally sum-marizes the \steerability" to image plane rotation.Given the Gaussian distribution G�(x; y):G�(x; y) = e� x2+y22�2 (1)The nth order Gaussian derivative in direction~v = (cos� sin�)T is de�ned by:G�n;�(x; y) = @n@~vnG�(x; y) (2)In this article we use Gaussian derivatives upto the second order. Therefore, we will introducea particular notation for the derivatives used. Wede�ne the x{axis parallel to the vector ~v = (1 0)T ,which corresponds to � = 0�. The y{axis isde�ned by � = 90� and is therefore parallel to~v = (0 1)T . The derivatives in x{ and y{directionare given by:



36 Bernt Schiele and James L. CrowleyG�x(x; y) = G�1;0�(x; y) = � x�2G�(x; y) (3)G�y (x; y) = G�1;90�(x; y) = � y�2G�(x; y) (4)Based on these �rst order derivatives we can de-�ne the magnitudeMag(x; y) of the �rst Gaussianderivative:Mag(x; y) = q(G�x(x; y))2 + (G�y (x; y))2 (5)Based on two second order derivatives G�xx(x; y)and G�yy(x; y) the well known Laplace operatorLap(x; y) can be de�ned:G�xx(x; y) = (x2�4 � 1�2 )G�(x; y) (6)G�yy(x; y) = ( y2�4 � 1�2 )G�(x; y) (7)Lap(x; y) = G�xx(x; y) +G�yy(x; y) (8)3.2. Equivariance of Gaussian derivatives toscaleAs mentioned above local neighborhood operatorsshould be calculated at an particular scale. Givena two{dimensional function p(x; y) and its scaledversion f(x; y) = p(sx; sy) analysis tells us:f(x; y) = p(sx; sy) (9)@@xf(x; y) = s @@xp(sx; sy) (10)...@n@xn f(x; y) = sn @n@xn p(sx; sy) (11)Following the above equations, the nth orderderivative of the function f can be calculated onthe basis of the nth order derivative of p(sx; sy).This calculation assumes exact knowledge of thefunction p. In computer vision the exact knowl-edge of p cannot in general be assumed. By usingGaussian derivatives the nth order derivative ofp(sx; sy) can be calculated based on p(x; y). Inthe following we show this property for the �rstorder derivative. We de�ne the �rst order deriva-tive of f as:@@xf(x; y) = G�x(x; y) ? f(x; y) (12)

where G�x(x; y) is the Gaussian derivative (seeequation 3) and ? is the convolution operator.Therefore we obtain (together with equation 10):@@xf(x; y) = s @@xp(sx; sy) (13)= sG�x(x; y) ? p(sx; sy) (14)= sG�sx (x; y) ? p(x; y) (15)The equation shows that we can calculate the�rst order derivative of f on the basis of the �rstorder derivative of p(x; y), which we call the adap-tation of the Gaussian derivative to scale. In asimilar way we obtain an equation for the adapta-tion of the nth order derivative to scale:@n@xn f(x; y) = snG�sxn(x; y) ? p(x; y) (16)Following this equation, we can calculate thenth order derivative of a function f(x; y) directlybased on function p(x; y) (when f is a scaled ver-sion of p: f(x; y) = p(sx; sy)). In order to employthis property the scale factor s must be known,which cannot in general be assumed. Usually wecalculate the derivative for di�erent values of s.Additionally, the support for the calculation of thenth order derivative of p has to be adapted. Thisis expressed by the adaptation of the standard de-viation �s of the Gaussian �lter.We call the adaptation of the Gaussian deriva-tives to scale changes by the factor s the equivari-ance property of the Gaussian derivatives to scale.As expected, the equivariance to scale is not onlytrue for neighborhood operators based on Gaus-sian derivatives. The same property holds, forexample, for Gabor �lters due to their Gaussianenvelope.3.3. Steerability of Gaussian derivatives to im-age plane rotationIn order to calculate the �lter response (for ex-ample for a Gaussian �lter) at an arbitrary ori-entation � the corresponding version of the �ltercan be calculated. If the orientation is not knownbeforehand or if a particular �lter response has tobe calculated for many di�erent orientations, it is



Recognition without Correspondence using Multidimensional Receptive Field Histograms 37desirable to de�ne a �nite set of basis �lters andan interpolation rule, which allows the calculationof the �lter response based only on the response ofthe basis set. [Freeman and Adelson, 1991] showthat the minimal number of interpolation func-tions for the nth order Gaussian derivative is n+1.This correspond e.g. to the well known interpola-tion rule for the �rst order Gaussian derivative:G�1;� = cos�G�x + sin�G�y (17)4. Statistical object representationThe appearance of an object is composed of localstructure. This local structure can be describedand characterized by a vector of local neighbor-hood operators. We propose to represent 3Dobjects by the joint statistics of local structure,which can be calculated reliably from sample im-ages of the objects. The probability function of anobject and therefore the object's model is learnedautomatically.Let's assume we have chosen a �xed measure-ment setM = [kmk composed of vectorsmk of lo-cal neighborhood operators. The probability den-sity function over the measurement set M for acertain object on varies with the changes of theappearance of the object which should be mod-eled within the probability density function. Fivecategories of possible changes can be listed (see�gure 1):Similarity transformation: three translationaldegrees of freedom (tx, ty and tz) and onerotational degree of freedom (rz) can be iden-ti�ed (see �gure 1).3D transformation of the object: two rota-tional degrees of freedom (rx and ry) exist inaddition to the similarity transformation (see�gure 1).Scene changes: this includes partial occlusionand background change.Light conditions: this includes changes in theintensity, color and direction of the lightsource.Imaging conditions: di�erent types of signaldisturbance as signal noise, quantization er-ror and blur.

By writing the probability density function ofthe object on, parameterized by variables of thesechanges, we obtain:p(M jon; R; T; S; L; I) (18)whereM is the set of local image measurementsmk, on is the label of an object (or object class), Rdescribes the three rotational degrees of freedom,T the three translational degrees of freedom, Sthe scene changes, L the light changes and I theimaging conditions.In general it is di�cult to obtain a reliable esti-mate of such a high{dimensional probability den-sity function. The di�culty is due to the factthat the number of training examples is exponen-tial in the number of dimensions of the densityfunction [Intrator and Gold, 1993]. The most ef-fective way to reduce the number of free parame-ters is to choose local image measurements whichare invariant to di�erent parameters. Such in-variant properties are used by many researchers[Burkhardt and Zisserman, 1992] [Mundy and Zis-serman, 1992] [Mundy et al., 1993] and appliedsuccessfully in various ways. Unfortunately theobtained invariants are very restrictive to certaintypes of objects. Robust or quasi-invariant lo-cal image measurements are often an alternative
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38 Bernt Schiele and James L. Crowleysince they are less restrictive than invariants andsince we can typically identify a reasonable rangeof changes where their values are near constant.One category of changes, the imaging condi-tions, is characterized by changes which cannot becontrolled in general. In this case the approach re-lies on the fact that local descriptors can be calcu-lated robustly with respect to such changes. Theanalysis of the robustness therefore demands spe-cial consideration. [Schiele, 1997] examines therobustness of local image measurements and dif-ferent normalization techniques in the presence ofdi�erent sources of noise. For the second cate-gory, the light conditions, exist many normaliza-tion techniques but none of them is satisfactoryfor the general case. Currently, we are using anenergy normalization technique of the �lter out-put which has shown to provide good results inthe presence of di�erent light condition changes.Scene changes due to partial occlusion and back-ground change are di�cult to model. One possibil-ity is to include partial occlusion and backgroundchange in the estimation process of the probabil-ity density function. [Hornegger and Niemann,1995] propose to model partial occlusion as a par-ticular object: the background. By introducing aprobability for the background { which is directlyrelated to the observed portion of the object {the probability of the presence of an object canbe calculated. The recognition process thereforeestimates not only the object's label and its posebut also the portion of occlusion. Recognition be-comes an iterative optimization process, which iselegant but relatively time consuming. In contrastto this approach we propose in section 6 a proba-bilistic object recognition approach which is ableto recognize objects by the observation of a smallportion of the object. This algorithm makes therecognition process not only fast but also robustto partial occlusion. As a result we do not have toconsider partial occlusion in the modeling of theprobability density function of an object. In ourcontext, background changes are considered as aspecial case of partial occlusion.The correspondence problem between the ob-ject model and a test image is in general di�-cult and time consuming. In order to avoid thisproblem we do not represent the two translationalparameters tx and ty in the probability density

function. Several advantages motivate this choice:First of all and as just mentioned the translationalcorrespondence problem does not exist. Secondlythe estimation of the probability density functionsbecomes feasible. The estimation becomes feasi-ble because of the dimensionality reduction of thedensity function and also because of the amountof training samples which is provided by images ofan object. A typical 512� 512 image of an objectprovides about 5002 = 250; 000 training samplesfor the estimation of the probability density func-tion of the object.The third translational parameter tz can betreated directly by the transformation of the im-age pattern. Throughout the article we employthe equivariance property of local descriptors toscale in order to account for tz. The image planerotation parameter rz can be accounted for by us-ing local descriptors, which are invariant to rz .Such invariants have been used for example by[Schmid and Mohr, 1997]. The main disadvantageof these local descriptors is that rotational infor-mation is lost. Another disadvantage is the un-derlying assumption that all rotations are equallyprobable, which cannot in general be assumed. Inthe context of this work we use both image planerotation invariant and variant local descriptors. Inthe case of variant descriptors, image plane rota-tion is managed by the rotational steerability oflocal descriptors.The two rotational degrees of freedom rx andry represent a viewpoint change of the observer.Several authors [Burns et al., 1990] [Clemens andJacobs, 1991] show that the non{existence of view-point invariant descriptors for the general case.Nevertheless, useful descriptors exist in specialcases [Mundy and Zisserman, 1992] [Mundy et al.,1993]. As mentioned earlier we do not want to re-strict our approach to such specialized invariants.We model therefore the two parameters rx and ryin the probability density function.What remains from the original probability den-sity function (equation 18) are three componentsof the rotation and one component of the transla-tion: p(M jon; rx; ry ; rz; tz) (19)By considering an L{dimensional vector mk oflocal image measurements the statistical repre-



Recognition without Correspondence using Multidimensional Receptive Field Histograms 39sentation of an object on is given by an L + 4{dimensional probability density function. In thecase of image plane rotation invariant descrip-tors the representation is given by an L + 3{dimensional probability density function.4.1. Representation by multidimensional his-togramsDi�erent possibilities exist in order to estimateand represent the probability density function(equation 19) of an object. Typically, paramet-ric and non-parametric estimation schemes canbe distinguished. Parametric estimators assume acertain type of distribution as for example a poi-son distribution or a Gaussian distribution. Thelearning therefore becomes an estimation of theparameter of the assumed distribution. Horneg-ger and Niemann [Hornegger and Niemann, 1995]use parameterized mixtures of multivariate Gaus-sian distributions including a feature transform.Their statistical model consider the statistical be-havior of features, feature matching, as well as theprojection from the model into the image space.The assumption of a mixture of Gaussian distribu-tions has been shown to be appropriate for pointfeatures but cannot be assumed for more generallocal image measurements.The other principal possibility is a non{parametric estimator for the probability densityfunction. In the context of high{dimensional den-sity functions essentially two methods can be ap-plied: histogramming and kernel function esti-mates [Popat and Picard, 1994]. The main advan-tage of histogramming is that the training samplesare well represented. This property is desirable inour context since we aim to show that the pro-posed statistical object representation provides areliable and discriminant means for the recogni-tion of a large number of objects. This impliesthat the representation should preserve all infor-mation and in particular the discriminant infor-mation and therefore motivates the choice of his-tograms. On the other hand kernel functions typ-ically allow the generalization from training sam-ples. However, in our case the use of kernel func-tions only made a marginal di�erence with respectto generalization. This is mainly due to the fact

that the number of training samples is su�cientlylarge in order to obtain a reliable estimate of theprobability density function using histograms.Consequently, we represent the probability den-sity function of a certain object by several multi-dimensional histograms over the measurement setM . As an example �gure 2 shows two-dimensionalhistograms of two di�erent objects each corre-sponding to a particular viewpoint, image rotationand scale. The histogram of a particular view-point (rx ry), at a particular image plane rotationrz and at a certain scale tz is given by:H(M jon; rx; ry ; rz; tz) (20)In order to obtain these histograms we have totake several images of the object. The numberof training images can be reduced considerablyby using the steerability to image plane rotationand the equivariance property of local image mea-surements to scale changes. The steerability andequivariance property of Gaussian derivatives isdescribed in section 3. That implies that we cantake a single image per viewpoint (rx ry) and cal-culate several histograms which correspond to dif-ferent image plane rotations rz and scales tz of theobject.The histograms of di�erent viewpoints have tobe estimated from several images of the object cor-responding to several viewpoints (represented byrx and ry). [Schiele, 1997] examines the numberof histograms which are needed for the represen-tation of a 3D object. We concluded from ex-periments that a small number of histograms aresu�cient in order to obtain high recognition rates.It is worth mentioning that using multidimen-sional histograms is not the most e�cient repre-sentation of a density function. The representa-tion by a parameterized distribution for exam-ple would be more e�cient since only a certainand typically small number of parameters needsto be stored. The dilemma is due to the tradeo�between representational e�ciency and ability todiscriminate. A basic goal of the article is to showthat the representation of objects by the probabil-ity density function of their local image measure-ments contains enough discriminant informationfor the recognition of a variety of objects. There-fore we do not want to compromise on the abilityto discriminate and have chosen multidimensional
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Fig. 2. Two-dimensional histograms of two objects corresponding to a particular viewpoint, image plane rotation andscale. The image measurement is given by the Magnitude of the �rst derivative and the Laplace operator. The resolutionof each histogram axis is 32.histograms for the estimation and representationof the probability function. Furthermore, multidi-mensional histograms provide us with a reliable es-timate of the probability density function withoutbeing computational expensive. They also allowus to de�ne simple and fast algorithms for recogni-tion as histogram matching (section 5) and prob-abilistic object recognition algorithms (sections 6and 8).5. Histogram matching for recognitionUsing a probability density function as an ob-ject representation allows the use of divergencefunctions from information theory and statistics[Basseville, 1996] directly for object recognition.Among these are e.g. the KL-divergence and the�2-divergence. We have experimentally comparedsuch divergences to several histogram matchingfunctions used in the computer vision literature[Schiele, 1997].Let's assume the histogram of a test image issigni�ed by Q = [iqi. Let V = [ivi be a his-togram from the object database. i is the L-dimensional index vector of a histogram, where

L is the number of dimensions of a measurementvectormk and therefore the number of dimensionsof the histogram. vi (respectively qi) correspondsto the value of a particular cell of histogram V(respectively Q).The intersection-measurement [Swain and Bal-lard, 1991] has been introduced for the compari-son of color histograms. The intersection of twohistograms V and Q is de�ned by:\(Q; V ) =Xi min(qi; vi) (21)The intuitive motivation for this measurementis the calculation of the common part (the inter-section) of two histograms V and Q. The mainadvantage of this measurement is that backgroundpixels are neglected explicitly, which may occurin the test histogram Q but do not occur in thedatabase histogram V .In their original work Swain and Ballard re-ported the need for a sparse color distribution inthe histogram in order to distinguish di�erent ob-jects. Our experiments have veri�ed this result. Asparse distribution can be achieved by using highdimensional histograms. In this case the tradeo�between the ability to discriminate objects and
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Fig. 3. 25 of the 103 database objects use in the experiments.stability with respect to perturbations becomesan important issue [Califano and Mohan, 1993].A second inconvenience of the intersection is thatall histogram cells are treated equally and shouldtherefore be equally probable. This is approxi-mately true for color histograms but cannot beassumed for the more general case of multidimen-sional receptive �eld histograms.
The �2-divergence is among the most prominentdivergences used in statistics [Basseville, 1996] toassess the \dissimilarity" between two probabil-ity density functions. Two di�erent ways of cal-culation of the �2{divergence may be considered

[Press et al., 1992]. The �rst { �2v(Q; V ) { assumesexact knowledge of the model histogram V :�2v(Q; V ) =Xi (qi � vi)2vi (22)The second calculation { �2qv(Q; V ) { comparestwo observed histograms (neither is theoreticallyderived). This second �2{divergence is more ap-propriate in our context, since we do not as-sume exact knowledge of the model histogram V .�2qv(Q; V ) is de�ned by:�2qv(Q; V ) =Xi (qi � vi)2qi + vi (23)As we concluded from experiments [Schiele,1997], these two �2{divergence provide better



42 Bernt Schiele and James L. Crowleyrecognition results for most cases than the inter-section measurement with respect to image distor-tions due to appearance changes, additive Gaus-sian noise and blur. Even though quadratic dis-tances [Hafner et al., 1995] were typically outper-formed by intersection and �2, the Mahalanobisdistance { as a special case of quadratic distances{ sometimes obtains comparable results [Schiele,1997].Object recognition by means of histogrammatching has been shown to be robust to ap-pearance changes such as viewpoint changes, scalechanges and image noise [Schiele, 1997]. This ro-bustness is due to the fact that the proposed rep-resentation uses the entire appearance of the ob-ject rather than a small number of interest points.The appearance of objects is represented robustlyby means of statistics of local neighborhood op-erators. As we will see in experiments (section7) histogram matching also achieves a certain ro-bustness to partial occlusion. However, histogrammatching relies on some sort of pre-segmentationof the object. The next section proposes a prob-abilistic object recognition algorithm which cal-culates object hypotheses based on small imageregions. This algorithm can be used successfullywithout using any pre-segmentation step.6. Probabilistic recognition without cor-respondenceThis section develops a probabilistic recognitiontechnique which is based on single, arbitrarily cho-sen measurement vectors in the image. From suchsingle measurement vectors the probability of thepresence of each database object is calculated.The most noteworthy property of the algorithmis that the technique does not rely on the calcula-tion of the correspondence between the test-imageand the object database. In the following section,recognition results are given as a function of thevisible object portion in order to show the robust-ness of the proposed probabilistic object recogni-tion algorithm with respect to partial occlusion.In the context of probabilistic object recognitionwe are interested in the calculation of the proba-bility of an object on given a local image regionR: p(onjR). In our context, the most local re-

gion consists of a single local measurement vectormk. This probability p(onjmk) can be calculatedby the Bayes rule:p(onjmk) = p(mkjon)p(on)p(mk) = p(mkjon)p(on)Pi p(mkjoi)p(oi)(24)with� p(on) the a priori probability of object on,� p(mk) the a priori probability of measurementvector mk (= �lter output combination),� p(mkjon) the probability density function ofobject on. This density function can be esti-mated by the multidimensional receptive �eldhistogram of an object on normalized by itssize.Typically, one single measurement vector willnot be su�cient for the recognition of objects.Using two local measurement vectors mk and mjfrom the same object on we can calculate the prob-ability of object on by:p(onjmk ^mj) = p(mk ^mj jon)p(on)Pi p(mk ^mj joi)p(oi)(25)Under the assumption of independence of mkand mj we obtain:p(onjmk ^mj) = p(mkjon)p(mj jon)p(on)Pi p(mkjoi)p(mj joi)p(oi)(26)Having K independent local measurement vec-tors m1;m2; : : : ;mK we can calculate the proba-bility of each object on by:p(onj k̂ mk) = p(Vkmkjon)p(on)Pi p(Vkmkjoi)p(oi) (27)= Qk p(mkjon)p(on)PiQk p(mkjoi)p(oi) (28)In our context the local measurement vectorsmk correspond to multidimensional receptive �eldvectors (for example two-dimensional vectors ofthe �rst Gaussian derivatives in the x{ and y{directions). Therefore, K local measurement vec-tors mk correspond to K receptive �eld vectorstypically chosen from the same region of the im-age. It is worth mentioning that equation 28 as-sumes that all K measurement vectors come from



Recognition without Correspondence using Multidimensional Receptive Field Histograms 43the same object. This corresponds to an inherentconsistency test which, as we will discuss later,is very powerful. However, regions with multipleobjects may act as distractors to the algorithm.Experiments will show that already a small num-ber of measurement vectors and therefore a smallvisible portion of an object provide reliable ob-ject hypotheses. More speci�cally, a visible objectportion of 10% - 20% is generally enough in orderto obtain good object hypotheses. That impliesthat the number of image regions containing a sin-gle object nearly always outnumbers the image re-gions containing multiple objects. The algorithmof section 8 makes use of this fact for the recogni-tion of multiple objects in cluttered scenes whereno pre-segmentation of the objects is assumed orused.The a priori probabilities p(on) of occurrencefor each object on cannot be determined fromthe multidimensional receptive �eld histograms.These a priori probabilities depend upon the con-text and the given environment. Typically, theyare constant for a certain context and/or environ-ment. In the experiment of section 7 we assumethat all objects are equally probable and do havea priori probabilities p(on) = 1N , with N the num-ber of objects. Under this assumption equation 28simpli�es to:p(onj k̂ mk) = Qk p(mkjon)PiQk p(mkjoi) (29)As mentioned above, the probability densityfunction p(mkjon) for an object on is directly givenby its normalized multidimensional receptive �eldhistogram. Therefore equation 29 shows a calcu-lation of the probability for each object on entirelybased on the multidimensional receptive �eld his-tograms of N objects.It is important to note that the locations ofthe measurement vectors can be chosen arbitrar-ily. This is due to the fact that the position (tx andty) of the measurement vectors are not representedin the object model (see section 4). Consequentlythe technique is fast (only a certain number of lo-cal receptive �eld vectors have to be calculated)and robust to partial occlusion (the approach isstrictly local). Furthermore, the technique workswithout calculation of the correspondence betweenthe object database and the test image.

7. Experimental resultsThe section describes an experiment using adatabase of 2130 images of 103 di�erent objects.Figure 3 shows some of the database objects.We have taken 690 di�erent images of 83 objectswhere each of the images correspond to a di�erentscale and di�erent rotation of the object in front ofthe camera. See �gure 5 for examples of di�erentscales. The remaining 1440 images come from theColumbia image database which contains 72 view-points of 20 di�erent objects [Murase and Nayar,1995].In this experiment we use six{dimensional his-tograms of the �lter combination Dx-Dy (�rstGaussian derivative in x and y directions) at threedi�erent scales with �1 = �, �2 = 2� and �3 = 4�.The resolution per histogram axis is 24 (see for de-tails of the estimation section 7.1).The training set for the 83 objects contains oneimage for each object. For each of these imageswe calculate a set of histograms correspondingto di�erent scales and image plane rotations ofthe object. By making use of the steerability ofthe Gaussian derivatives we calculate histogramswhich correspond to di�erent image plane rota-tions from a single image per object. Similarlywe use the equivariance property of the Gaussianderivatives to scale changes to obtain histogramswhich correspond to di�erent scales of an object.We calculate histograms of 6 di�erent scales cov-ering the approximate scale factor of 2:2 for thetest images. For each of these scales we also cal-culate histograms for 18 di�erent image rotationscovering 360o degrees image plane rotation4. Theoverall number of histograms for the 83 objects istherefore 83 � 18 � 6 = 8964 histograms. Thesehistograms are stored in the histogram database.The Columbia image database has been createdby [Murase and Nayar, 1995] and used by sev-eral researchers including [Rao and Ballard, 1995][Schmid and Mohr, 1997]. As mentioned above,the database contains 72 viewpoints for each ofthe 20 objects. The viewpoints are 5o apart. Typ-ically, every other viewpoint is taken as trainingimage and the remaining images are taken as testset. The training set as well as the test set contain720 images. For each training image we calcu-late one histogram corresponding to the particu-



44 Bernt Schiele and James L. Crowleylar rotation and scale of the object. This adds 720histograms to the histogram database. The totalnumber of histograms in the database is therefore8964 + 720 = 9684.The test set contains the remaining images ofthe 83 objects which is 690 � 83 = 607 and 720images of the Columbia image database. The to-tal number of test images is therefore 1327. Theentire test set is independent of the training im-ages.In order to recognize the objects in the test im-ages we calculate one six{dimensional histogramwith � = 2:0 per test image. The support of thesehistograms is varied (from about 20% to 100% vis-ibility of the objects) in order to test the robust-ness of the approach to partial occlusion. Sincethe objects are centered in the image we have cal-culated the histograms of a centered support re-gion. This corresponds to the ideal case that theobject position is approximately known. Figure 4shows the recognition results obtained by two dif-ferent histogram comparison measurements: �2qvand \ (see section 5). The recognition result isshown as a function of the visible portion of theobjects.Figure 4 shows a 100% recognition provided byboth comparison measurements using the entireobject as support for the histogram calculation.By using only 62% of the object the intersectionmeasurement still provides 100% recognition. Inthis case �2qv obtains 99.3% recognition. In thecase of 33% visibility of the object, \ provides arecognition of 94% and �2qv obtains 84% recogni-tion. The experiment emphasizes in particular theexpected robustness of the intersection measure-ment \ with respect to partial occlusion.This initial experiment shows the applicabilityof histogram matching for object identi�cation inthe presence of scale changes, image plane rota-tion, viewpoint changes and partial occlusion. Inparticular, these results emphasize that multidi-mensional histograms represent the appearancesof objects reliably enough in order to discriminate100 objects.In order to apply the probabilistic object recog-nition algorithm (equation 29), K independentmeasurement vectors mk have to be chosen froma test image. As mentioned above, two assump-tions underlying equation 29 have to be consid-
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Fig. 5. Six di�erent scale-images for 2 objects which are part of the test-set.Table 1. Experimental results with 103 objectsradius [�1] 1 5 10 15 20 25 30 35 40object portion [%] 2.2 6.8 13.5 22.5 33.6 47.0 62.5 80.1 100.0number of image measurements 1 25 100 225 400 625 900 1225 1600recognition [%] 13.3 76.2 90.8 96.2 99.3 99.9 100 100 100errors for the 83 objects 577 274 122 51 10 1 0 0 0errors for Columbia database 573 42 0 0 0 0 0 0 0fact that each single vector contains discriminantinformation. This is stressed also by a recognitionof approximately 13% with only a single measure-ment vector.Since we use the same six{dimensional featurevectors as for the recognition by histogram match-ing as for the probabilistic recognition algorithm,we can directly compare the results of both algo-rithms in �gure 4. As we can see the robustness topartial occlusion is signi�cantly increased by ap-plying the probabilistic object recognition scheme.We can conclude that the proposed probabilis-tic object recognition approach is capable of dis-criminating 103 objects in the presence of signi�-cant scale changes, image plane rotation and view-point changes. Furthermore, the approach is ro-bust with respect to partial occlusion since a smallportion of the object is su�cient in order to obtaina good object hypothesis. As mentioned earlier,the recognition results have been obtained with-

out any correspondence calculation between thetest images and the database.7.1. Implementation detailsFor the experiments described in this section theresolution of each histogram axis has been 24.Therefore the theoretical number of cells for a six-dimensional histogram is in the order of 108 cells.Due to the dependencies between the di�erent di-mensions of the histogram axes and due to thefact that not all theoretical possible pixel-valuesare observed in real images, the number of non-zero histogram cells (for all 9684 histograms) is inthe order of 106. This is number is still too largeto be estimated from a typical 512 � 512 imagewhich contains about 2� 105 pixels. However, byusing an appropriate bias for the histograms (inour case a uniform prior) we can e�ectively de-crease the number of cells to be estimated below



46 Bernt Schiele and James L. Crowleythe order of 105. This prior is important to en-sure a reliable estimate of the multidimensionalhistograms. In reality, however, the exact amountof the prior only has a secondary e�ect [Schiele,1997] on the performance of the algorithm.The test-set contains also images of di�erentscales (see �gure 5 for two examples). In orderto calculate histograms of �lter responses at ar-bitrary scales we apply two principles: �rstly weuse the equivariance property of Gaussian deriva-tives to scale and secondly we adapt the radius ofthe support region of a histogram as a function ofscale. The equivariance property is described insection 3.2. In order to calculate the histogram ofvectors of Gaussian derivatives of a set of imagepositions, we need to adapt the image positionsof the vectors. This can be done for exampleby the adaptation of the distances between im-age positions, which would include interpolationbetween pixels. Due to the computational costof interpolation, we prefer to leave the pixel dis-tances constant and to adapt the support regionfor the calculation of the histogram. The radiusof the support region needs to be multiplied bythe scale. This adaptation of the support regionis computationally inexpensive but compromisesthe precision in particular for small scales. There-fore histograms corresponding to di�erent scalesof an image are calculated on di�erent supportregions and contain di�erent numbers of entries.In order to make such histograms comparable theoverall sum of the histogram entries needs to benormalized.For histograms steered to di�erent rotations,the support region should be circular. In con-trast to a circular support region, a square re-gion { using the same radius as half side-length ofthe square { contains about 20% more measure-ment vectors which is advantageous for the smallradii used here (see above). Fortunately, impreci-sion due to square support regions are introducedonly for the borders of the objects. In this exper-iment we use square, small and centered supportregions. The size of the support regions is limitedby the image sizes. Since we calculate histogramsat di�erent scales of objects the maximal possibleradius of the support region is 40�1. This radiuscorresponds to a radius of 59 pixels (for �1 = 1:48)and 120 pixels (for �1 = 3:0). Therefore the sup-

port region of the histograms di�ers up to a factorof 4 � 1202592 . The centering of the support regioncan be seen as a �gure{ground segmentation forlearning an object model.8. Multiple object recognition in clutteredscenesIn the previous section we applied the proba-bilistic algorithm for the recognition of single ob-jects in the presence of partial occlusion. As men-tioned earlier hashtable based recognition systemsare very suited for the recognition of multiple ob-jects in cluttered scenes. Motivated by the re-sults of the preceding section we can de�ne analgorithm for the recognition of multiple objectswhich employs local image regions or local appear-ances of objects for probabilistic voting for ob-jects. Since this resembles to use local appearanceas index of a hashtable we will call this algorithmlocal appearance hashing.The upper part of �gure 6 shows the stan-dard hash-table approach: for each feature vec-tor mi the approach votes for a certain subsetof objects denoted by vote(onjmi): this vote isone if object on could correspond to the fea-ture vector mi and zero otherwise. The votesfor an object are summed over the entire image:votes(onjImage) =Pi vote(onjmi).This hashtable algorithm typically produces ahigh number of false positives. In order to over-come this problem we can use pairs or triplets offeature vectors and their geometric arrangementto increase the discriminant power of the approach[Schmid and Mohr, 1997]. Another possibility isto increase the dimensionality of the feature vector[Rao and Ballard, 1997] resulting in an enlargedsupport region for the feature vector. These ap-proaches pursue interesting directions by codingadditional geometrical or consistency constraints.Eventually, we will integrate these ideas into ourframework. However, the main disadvantage ofthese approaches is that the additional constraintshave to be coded into the hashtable prior to recog-nition. Therefore, motivated by the results of theprevious section, we will make use of the discrim-inant power of the statistically distribution of thefeature vectors.
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Fig. 6. Comparison of (above) hashtable based recognition and (below) the probabilistic recognition of section 6The probabilistic algorithm de�ned in section 6is structurally similar to a hashtable based algo-rithm (see lower part of �gure 6). In the prob-abilistic algorithm, we calculate for each featurevector mi the probabilities p(onjmi). The evi-dence for an object in the image p(onjImage) =p(onjVimi) is accumulated using equation 28 or29 respectively. In any case, since all feature vec-torsmi are assumed to come from the same objectthis is equivalent to an inherent consistency testusing the distribution of the feature vectors. Asthe results of the previous section show this is apowerful consistency constraint. However, this al-gorithm is not suited to recognize multiple objectsin cluttered scenes.The results of the previous section indicate thata relatively small region is su�cient in order toobtain a good object hypothesis. By making useof this property of the algorithm and combiningit with a hashtable we obtain a hybrid algorithmwhich combines the advantages of both. Figure 7shows this hybrid algorithm. Instead of accumu-lating the evidence of each object over the entireimage we apply the probabilistic algorithm onlyfor a local image regionRk and calculate the corre-sponding probabilities p(onjRk) = p(onjVki mki)(where the mki correspond to the feature vec-tors inside region Rk). Calculating these prob-abilities for a set of image regions Rk we canaccumulate the evidence for each object on byvotes(onjImage) = Pk p(onjRk). This last step

corresponds to using image regions Rk as \featurevectors" in a hashtable. Since these local imageregions correspond to local appearances of the ob-jects we call this approach local appearance hash-ing.We like to point out an interesting property ofthe proposed local appearance hashing approach.Since the regions Rk can be chosen arbitrarily anddynamically during runtime, the algorithm is ex-tremely 
exible. In particular, the size and form ofthe local image regions Rk can be changed dynam-ically without recalculating the representation ofthe objects. Since these image regions correspondto the \feature vectors" we can actually changethese feature vectors dynamically, depending e.g.what we know about the scene. For any chosenimage region Rk the algorithm implicitly uses theconsistency constraint imposed by the distributionover the feature vectors for each object.8.1. Recognition experimentIn order to illustrate the proposed local appear-ance hashing approach we describe an experimenton a database of 50 objects. For each of the 50objects we compute six{dimensional histogramsMag-Lap-24 (Magnitude of �rst derivative andLaplacian operator, resolution of 24 cells per his-togram axes) at three di�erent scales, namely�1 = 2:0; �2 = 4:0 and �3 = 8:05. For illustrationpurposes, the image regions Rk have been �xed to
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p(onjmki)p(onjmkj )... 9>>=>>; p(onjRk)p(onjmli)p(onjmlj )... 9>>=>>; p(onjRl)
9>>>>>>>>>>>>=>>>>>>>>>>>>; vote(onjImage) =Pk p(onjRk)

Fig. 7. Local appearance hashing: combining the probabilistic recognition algorithm of section 6 with a hashtable in orderto recognize multiple objects in cluttered scenes
Test image 1 First Match Second Match Third Match
Test image 2 First Match Second Match Third Match
Test image 3 First Match Second Match Third Match
Test image 4 First Match Second Match Third Match Fourth MatchFig. 8. Four of the 50 test images containing multiple objectsa squared region of 642 pixels. We have chosen6 � 6 = 36 such regions overlapping the neigh- boring regions by 50%. For each of the 36 regionswe apply the probabilistic object recognition algo-



Recognition without Correspondence using Multidimensional Receptive Field Histograms 49rithm and add the computed probabilities into anaccumulator array of the objects. Objects, whichcover several image regions Rk therefore accumu-late probabilities of several image regions. Themore image regions are covered by an object thehigher the score becomes. Ultimately, the objectswith the highest \scores" in the accumulator arelisted in decreasing order (see �gure 8).We have taken a set of 50 test images each con-taining 3 of the 50 objects in order to test theperformance of the algorithm. The left column of�gure 8 shows 4 of these test images. For eachof these test images the objects with the highest\scores" are displayed. The �rst three matchesfor each of the �rst three test images contain allthree objects which are contained in the image.For the fourth test image the �rst two and thefourth match are correct. However, even thoughthe third match is not contained in the test im-age it corresponds to a similar object as the �rstmatch. This illustrates the property of the al-gorithm that it tents to match visually similarobjects. Table 2 summarizes the results for the50 test images. As we can see many of the ob-jects (126 of 150) are contained within the �rstthree matches. By including four matches 145of the possible 150 objects are recognized. Sincethe results have been obtained only for a smallset of test images it is unreasonable to generalizethem. However, the results clearly indicate thepossibility to recognize multiple objects in clut-tered scenes using the proposed local appearancehashing approach.The �rst row of �gure 9 shows another set ofinteresting test images. Each of these test imagescontains one of the 50 objects of the database.The rest of the images is covered by objects whichTable 2. Recognition results for 50 test images containing3 objects# of matches 1 2 3 4 5 6 . . . 141 object correct 47 50 50 50 50 50 . . . 502 objects correct 40 49 50 50 50 . . . 503 objects correct 27 45 48 49 . . . 50overall 126 145 148 149 . . . 150

are not part of the database and therefore are notrepresented. These types of images are consid-ered di�cult in particular for probabilistic objectrecognition algorithms since they typically rely onthe assumption that they have a complete modelof the world. Even though this assumption isshared by our probabilistic algorithm the local ap-pearance hashing approach recognizes the correctobject three times as best match (test images A, Band D) and once as third best match (test imageC). This ability to recognize objects in the pres-ence of not represented objects is mainly due tothe consistency constraint which is implicitly im-posed by the use of the distribution of the featurevectors.9. ConclusionsFor nearly forty years, the �eld of computer visionhas struggled with the techniques for recognizingcomplex objects by searching correspondences be-tween object models, and local structure in im-ages. Recognition using correspondence betweenmodels and images has proved both computation-ally expensive and sensitive to image noise. Inalmost every case, model based recognition tech-niques required a small pre{selected list of candi-date objects in order to be tractable. The generalassumption has been that the candidates wouldbe provided by context.Recognition using joint statistics of local prop-erties provides an alternative to standard recogni-tion algorithm. This approach provides a frame-work in which it is possible to design techniquesto determine the objects in a scene independentof viewing position. These techniques have com-putational complexities which are linear with thenumber of pixels and the number of objects, andthus can be implemented to operate in real time.Indeed, we have implemented an example of sucha system which operates at 10Hz on a standardworkstation with a data base of 103 objects.This framework can be used with a large va-riety of local properties. However, linear �ltersbased on the Gaussian function are particularlywell suited as they permit the de�nition of lo-cal property measurements which are robust tochanges in scale and orientation. In particular,our experiments have shown excellent results with
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A B C D

�rst match for A �rst match for B third match for C �rst match for DFig. 9. Four test images with objects of the database and objects which are not represented in the database.local properties measured using Gaussian deriva-tives at di�erent scales and Gabor �lters at di�er-ent scales. The steerability property of such oper-ators is especially useful in providing an e�cientmeans to obtain image plane rotation invariantrecognition.Histograms of local property vectors provide arobust and simple means to answer the question:What is the probability that the pixels in a regionof an image contain a projection from an object?A probabilistic approach has proven particularlyreliable formulation for this process. Probabilisticrecognition from joint statistics of local propertiesis robust to occlusions and cluttered scenes.These results demonstrate that the appearanceof an object is the composition of the appearanceof its parts. Thus object appearance is best cap-tured as a composition of local appearances, asmeasured by a vector of local operators such asGabor �lters or Gaussian derivatives. The jointstatistics of local appearance measures provide apowerful basis for object indexing and recognition.This approach is complementary to a structuraldescription of local appearance.
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Notes1. More speci�cally the bottom-up visual search task asde�ned in [Tsotsos, 1989] is NP-complete in the size ofthe image2. In the case of a projective transformation a four pointbasis is used. For similarity transformations only twopoints are needed[Lamdan and Wolfson, 1988].3. The responses of the 45-dimensional feature vector arecalculated with a 8�8 kernel at �ve di�erent levels of animage pyramid. Since each level of the image pyramid isreduced by a factor of 2, the overall support of a singlevector is in the order of 128 � 128 pixels. The vectortherefore cannot be called local, since it already coversa 116 of a typical 512� 512 image.4. More speci�cally for each of the 83 images of 83objects we calculate histograms which correspond to18 di�erent rotations namely for the angles of � =0�; 20�; 40�; : : : ; 340�. For each of these rotations wecalculate histograms which correspond to 6 di�erentscales namely � = 1:48; 1:7; 2:0; 2:26; 2:62 and 3:0. Thisrange of the �'s is motivated by the maximum scalefactor of 2:2 which we used.5. The remarks made in section 7.1 about the estimationof the multidimensional histograms also applied here
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