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1 IntroductionLet f : E ! B be a continuous map between pointed spaces. The inverseimage of the base point f�1(�) is not in general a homotopy invariant of f .But after replacing E up to homotopy by a space X such that the new mapp : X � B is a �bration, the space p�1(�), called the homotopy �ber of f ,becomes a unique homotopy invariant of f . In particular, if f : E � Bwas initially a �bration, the �ber of f , f�1(�), has the homotopy type of thehomotopy �ber.We work over a �eld |. The normalized singular cochain functor inducesa morphism of di�erential graded algebras (DGA's) C�(f) : C�(B)! C�(E).If f is a weak homotopy equivalence then C�(f) is a DGA morphism suchthat the map induced in homology H�(f) is an isomorphism (We say thatC�(f) is a quasi-isomorphism.). So if two topological spaces X and Y areweakly homotopy equivalent then C�(X) and C�(Y ) are linked by a chain ofDGA quasi-isomorphisms, and we say that they are weakly DGA-equivalent.Note that the weak homotopy type of the DGA C�(X) is a much strongerhomotopic invariant of X than the cohomology algebra H�(X).Considering a DGA morphism A ! M , the homology of the complexM 
A |is not invariant by DGA quasi-isomorphisms. But replacing M byan A-module P \free" in the category of A-modules such that there is aquasi-isomorphism of A-modules P '! M (We say that P is an A-semifreeresolution of M .), the homology H(P 
A |) becomes an invariant calledthe di�erential torsion product denoted TorA(M;|). This di�erential torsionproduct generalizes the standard de�nition of torsion product in the non-graded non-di�erential case.Let F denote the homotopy �ber of f : E ! B. The link betweentopology and algebra is provided by the Eilenberg-Moore formula which givesthe isomorphism of graded vector spacesH�(F ) �= TorC�(B)(C�(E);|):Generally this formula is used implicitly by applying the well-known Eilenberg-Moore spectral sequence. This formula allows the computation of the coho-mology of F , H�(F ), as a vector space. On the contrary, we don't knowhow to compute in general H�(F ) as an algebra. Given a particular mapf : E ! B of homotopy �ber F , your best chance for computing the algebraH�(F ) is to apply the formidable machinery of the Eilenberg-Moore or Serre2



spectral sequences using all their algebraic structure. But it does not alwayswork.In this article, we are interested in this problem: how to compute thecohomology algebra H�(F )? Other works on the subject are [7] and [21].When A ! M is a morphism of commutative di�erential graded alge-bras (CDGA's), TorA(M;|) has a natural structure of algebra ([18] TheoremVIII.2.1 in the non-graded non-di�erential case). When |= Q, Sullivan [22]proved that for any simply-connected topological space X, C�(X) is natu-rally weakly DGA-equivalent to a CDGA APL(X). Replacing C�(B) andC�(E) by APL(B) and APL(E), TorAPL(B)(APL(E);|) has now an algebrastructure and a theorem proved by Grivel [11], Thomas (unpublished) andHalperin [13], called the theorem of the model of the �bre showed that thisalgebra coincides with that of H�(F ). Over a �eld |of characteristic 0, thistheorem solves completely the problem of computing the algebra H�(F ).Over a �eld |of positive characteristic p, extending Sullivan's result,Anick ([2] dualize Proposition 8.7(a)) proved that if X is a �nite r-connectedCW-complex of dimension � rp (We say that X is in the Anick range.),C�(X) is weakly DGA-equivalent to an CDGA A(X) that we will call anAnick model of X. A natural question was to generalize the Grivel-Thomas-Halperin theorem in this new context and that is the main result of thispaper:Theorem 9.2 Assume the characteristic of the �eld |is an odd prime p. Letf : E ,! B be an inclusion of CW-complexes with trivial r-skeleton and ofdimension � rp. Let A(E) and A(B) denote their respective Anick models.If F is the homotopy �ber of f thenH�(F ;|)�= TorA(B)(A(E);|)as graded algebras.The case of the inclusion � ,! B has been proved by Halperin in [14]. Infact, he proved that there is an isomorphism of Hopf algebras H�(
B;|) �=TorA(B)(|;|).In rational homotopy, the Grivel-Thomas-Halperin theorem, by staying atthe level of semifree resolutions without taking their homology, not only givesthe cohomology algebra of F but also its weak rational homotopy type: itgives a CDGA weakly CDGA-equivalent to APL(F ), so in particular weaklyDGA-equivalent to C�(F ). Our Theorem does not give in general a CDGAweakly DGA-equivalent to C�(F ) (Remark 9.10). However, in this article wewill adopt this idea that it is better to work at the level of semi-free resolution3



and we will not speak about Tor after this introduction. In particular, wewill give a formulation of our main theorem as close as possible to the usualformulation for the Grivel-Thomas-Halperin theorem ([10], 15.5).To prove our theorem, surprisingly, we will not use the previous Eilenberg-Moore formula but another Eilenberg-Moore formula. Consider a G-�bration� : E � X: it means in particular that � is a �bration whose �ber G is atopological monoid acting on E. Then there is an isomorphism of gradedvector spaces H�(X) �= TorC�(G)(C�(E);|):Let A be a DGA, M an A-module. A general way to compute TorA(M;|)is to consider the bar construction B(M ;A;A) which is an A-semifree res-olution of M and to take the homology of B(M ;A) := B(M ;A;A) 
A |.In this second Eilenberg-Moore formula, following the general idea thatto manipulate semi-free resolution is better than working with Tor, F�elix,Halperin and Thomas remarked that it is more fruitful to consider the barconstruction B(C�(E);C�(G)) instead of its homology TorC�(G)(C�(E);|):They constructed a natural coalgebra structure on the bar constructionB(C�(E);C�(G)) and proved that the di�erential graded coalgebra (DGC)B(C�(E);C�(G)) is weakly DGC-equivalent to the DGC C�(X) [9].Let f : E ! B be a continuous map between path connected pointedspaces of homotopy �ber F . Starting Barratt-Puppe sequence, they showedthat B(C�(F );C�(
B)), where the Moore loop space 
B acts on F by theholonomy action, is weakly DGC-equivalent to C�(E). Pursuing Barratt-Puppe sequence, we easily see that, when F is path connected,B(C�(
B);C�(
E))is weakly DGC equivalent to C�(F ) (Proposition 3.10). That is the startingobservation of our paper. We now give the plan.Section 2. We set up the notations, introduce some de�nitions and givesome elementary properties.Section 3. We review the work of Felix, Halperin and Thomas in [9]. Inparticular, we give a simple form of the F�elix-Halperin-Thomas diagonal onthe bar construction ([9] 4.1), analogous to the de�nition of the diagonal onC�(X) ([18] p. 245).Section 4. We carefully review the notion of homotopy in the categoryof DGA's and of chain complexes using cylinders: the notion of homotopydoes not depend of the cylinder considered, homotopies can be composedwith maps, added, DGA homotopies are closely linked with derivations. Weconclude by giving two lifting lemmas.4



Section 5. We prove that the bar construction transforms homotopies ofpairs of DGA's into chain complexes homotopies.Section 6. Let f : E ,! B be an inclusion of simply connected CW-complexes of homotopy �ber F . The natural coalgebra structure on thebar construction B(C�(
B);C�(
E)) is determined by the Hopf algebrasmorphism C�(
f) : C�(
E) ! C�(
B). Theorem 6.2 allows us to replacein the bar construction, this strict Hopf algebras morphism by the inclusion(TX; @) ,! (TY; @) between the Adams-Hilton models [1] of E and B, afterhaving �rst equipped both DGA's (TX; @) and (TY; @) with a structure ofHopf algebra up to homotopy (HAH) such that the HAH structure on (TY; @)extends the one on (TX; @). Therefore, Theorem 6.2 gives the isomorphismsof algebras H�(F ) �= H�(B(TY ;TX)_) �= H�((TY 
TX |)_):Section 7. As an application of Theorem 6.2, we compute the coalgebraH�(F�f ) where F�f is the homotopy �ber of a suspended map injective inhomology (Theorem 7.3).Section 8. We de�ne the homotopy co�ber of a CDGA morphismA!M :it is a CDGA de�ned up to weak CDGA-homotopy type, whose homology co-incides with the the algebra TorA(M;|) ([18] Corollary VIII.2.3). At the levelof CDGA's, we rediscovered that the algebra TorA(M;|) can be computedeither with an A-semifree resolution of M or with an A-semifree resolutionof |and is invariant by CDGA quasi-isomorphisms.Section 9. We prove Theorem 9.2 and show how to apply it to computethe cohomology algebra of some �ber.Section 10. Let F be the homotopy �ber of an inclusion of CW-complexesin the Anick range. Then the cohomology algebra H�(F ) is a divided powersalgebra (Theorem 10.8).Acknowledgments: I wish to thank my supervisor Nicolas Dupont. Heintroduced me to the problem of computing the cohomology algebra of a �berwith algebraic models. I also wish to thank Steve Halperin. In particular, hegave me Theorem 9.2 to prove, with the counterexample 9.10.2 Algebraic preliminaries and notationWe work over an arbitrary �eld|. References for these algebraic preliminariesare [9], [14], [15], [10], [5] and [2]. We just give our notations and recall the5



less-known de�nitions.The symbol �= denotes an isomorphism. The homology functor fromdi�erential graded objects to graded objects is denotedH. The denomination\chain" will be restricted to objects with a non-negative lower degree and\cochain" to those with a non-negative upper degree. The degree of anelement x is denoted jxj.The suspension of a graded vector space M is the graded vector spacesM such that (sM)i+1 =Mi.Let C be an augmented complex. The kernel of the augmentation isdenoted C.A di�erential graded algebra, or DGA, is a complex A equipped withtwo morphisms of complexes � : A 
 A ! A and � : |! A called themultiplication and the unit such that � � (�
 1) = � � (1
 �) (associativity)and � � (� 
 1) = 1 = � � (1 
 �) (unitary). The commutator isomorphism� : A 
 B �=! B 
 A is given by � (a 
 b) = (�1)jajjbjb 
 a. A commutativeDGA or CDGA is a DGA such that � � � = �.If 12 2|, a di�erential divided powers algebra or �-algebra is an augmentedCDGA A together with the maps
k : A2n ! A2nk (k 2 N; n 2Z)such that:(i) 
0(a) = 1; 
1(a) = a.(ii) 
i(a)
j(a) = (i+ j)!i!j! 
i+j(a).(iii) 
k(a+ b) = Xi+j=k 
i(a)
j(b).(iv) 
i(ab) = � 0 if jaj, jbj odd and i � 2ai
i(b) if jaj, jbj 2 Aeven(v) 
j(
i(a)) = (ij)!(i!)jj!
ij(a) if i, j > 0.(vi) the di�erential d satis�es: d
k(a) = d(a) 
k�1(a).Let A, B be two �-algebras. A �-morphism f : A! B is a morphism ofaugmented CDGA's such that f
k(a) = 
kf(a).6



A derivation D in a graded algebra A is a linear map of degree jDj suchthat Dxy = Dx:y + (�1)jDjjxjx:Dy, x; y 2 A.The tensor algebra TV on a complex V is the free DGA on V . The freeCDGA on V is denoted �V .The free divided powers algebra �V on V is the free commutative gradedalgebra generated by 
i(v) for v 2 Veven; i 2 N� and v for v 2 Vodd divided bythe relations 
i(v)
j(v) = (i+ j)!i!j! 
i+j(v). Over Q, �V �= �V by 
i(v) 7! vii! .Let A be a CDGA, V and W two graded vector spaces. A �-derivationin A 
 �W is a derivation D such that D
k(w) = D(w)
k�1(w), k � 1,w 2 W even. Any linear map V �W ! �V 
 �W of degree k extends to aunique �-derivation over �V 
 �W .Let A be a DGA, M a right A-module, N a left A-module. The tensorproduct of M and N over A, denoted M 
A N , is the complex quotient ofM 
N by the sub-complex generated by m:a
n�m
a:n, m 2M , n 2 N ,a 2 A. If A is augmented,M 
A|=M=M �A.Let A ! B, A ! C be two morphisms in a category. If it exists, thepush out and the morphism given by the universal property will be denotedas in the commutative diagram:A? B?AAAAAAAAAAAUf-C HHHHHHHHHjgB [A Cp p p p p p p p p pR(f;g)- DIf it exists, the sum of B and C is denoted B q C.The push out exists in the category of DGA's. The push out is B 
A Cin the category of CDGA's. In particular, the tensor product of DGA's isthe sum in the category of CDGA's.A quasi di�erential graded coalgebra, or quasi DGC, is an augmentedcomplex C equipped with a morphism of augmented complexes � : C !C 
 C called the diagonal. Let C and C 0 be two quasi DGC's. A morphism7



of augmented chain complexes f : C ! C 0 is a morphism of quasi DGC's if�f = (f
f)�. A di�erential graded coalgebra, or DGC, is a quasi DGC suchthat (�
1)�� = (1
�)�� (coassociativity) and ("
1)��= 1 = (1
")��(counitary). A DGC is cocommutative if � �� = �. The dual Hom(C;|) ofa DGC C is a DGA denoted C_.A quasi di�erential graded Hopf algebra, or quasi DGH, is an augmentedDGA K equipped with a morphism of augmented DGA's � : K ! K 
K.A di�erential graded Hopf algebra, or DGH, is a quasi DGH such that (�
1) �� = (1
�) �� and ("
 1) �� = 1 = (1
 ") ��.The notion of homotopy we use in the category of augmented chain com-plexes and of augmented DGA's, are recalled in section 4. The symbol tstands for homotopic morphisms.A coalgebra up to homotopy is a chain quasi DGC such that (�
1)��t(1
�)�� and ("
1)�� t 1 t (1
")��. Let C and C 0 be two coalgebrasup to homotopy. A morphism of augmented chain complexes f : C ! C 0 isa morphism of coalgebras up to homotopy if �f t (f 
 f)�.A Hopf algebra up to homotopy, or HAH, is a quasi DGH such that (�
1) �� t (1 
�) �� and ("
 1) �� t 1 t (1 
 ") ��. Let K, K 0 be twoHAH's. A morphism of augmented DGA's f : K ! K 0 is a HAH morphismif �f t (f 
 f)�.Let K be a quasi DGH. A quasi left K-coalgebra D is both a quasi DGCand a left K-module such that the action K 
D ! D is a quasi DGC mor-phism. A K-coalgebra D is a coassociative and counitary quasi K-coalgebra.Since � : K ! K 
 K is a morphism of augmented DGA's then |is K-coalgebra.Property 2.1 The tensor product of a quasi right K-coalgebra C and aquasi left K-coalgebra D over K, C 
K D, is a quasi DGC. If C and D arecoassociative, counitary, cocommutative then so is C 
K D.Further, the following example can be useful for computation:Example 2.2 Let (A; d) and (A q TV;D) be two counitary quasi DGH'ssuch that the inclusion (A; d) ,! (A q TV;D) is a quasi DGH morphism.Then (Aq TV;D)
(A;d) (|;0) �= (T (A
 V );D) as quasi DGC's.The diagonal on T (A
 V ) is the morphism of complexes�T (A
V ) : T (A
 V )! T (A
 V )
 T (A
 V )8



where the image of a typical element a1 
 v1 
 � � � 
 an 
 vn isX �([a01a11 
 v11 
 � � � 
 a1p 
 v1p 
 a1p+1a02a21 
 v21 
 � � � 
 vnp"(anp+1)]
 [a001b11 
 w11 
 � � � 
 b1q 
 w1q 
 b1q+1a002b21 
 w21 
 � � � 
 wnq"(bnq+1)])if �Aai =X a0i 
 a00i ;�AqTV vi =X (ai1 
 vi1 
 � � � 
 aip 
 vip 
 aip+1)
 (bi1 
 wi1 
 � � � 
 biq 
wiq 
 biq+1)and � is the sign of the permutation� a01a001 v11 � � � a1pv1pa1p+1b11w11 � � � b1qw1qb1q+1a02a002 � � � an1vn1 � � � anpvnpanp+1bn1wn1 � � � bnqwnqbnq+1a01a11v11 � � � a1pv1pa1p+1a02a21v21 � � � vnpanp+1a001 b11w11 � � � b1qw1qb1q+1a002 b21w21 � � �wnqbnq+1 � :The di�erential is given by the formula:D(a1 
 v1 
 � � � 
 an 
 vn) = nXi=1 (�1)�i�jaija1 
 v1 
 � � � 
 dai 
 � � � 
 vn+ n�1Xi=1 (�1)�iX a1 
 v1 � � � 
 aici1 
 ui1 
 � � � 
 cir 
 uir 
 cir+1ai+1 
 vi+1+(�1)�nX a1 
 v1 
 � � � 
 ancn1 
 un1 
 � � � 
 cnr 
 unr"(cnr+1)if Dvi =X ci1 
 ui1 
 � � � 
 cir 
 uir 
 cir+1and �i = ja1j+ jv1j+ ja2j+ � � �+ jvi�1j+ jaij:A di�erential graded Lie algebra, or DGL, is a complex L equipped witha morphism of complexes: [ ; ] : L
 L! L such that for x, y, z 2 L:� [x; y] = �(�1)jxjjyj[y; x]� (�1)jxjjzj[x; [y; z]] + (�1)jzjjyj[z; [x; y]] + (�1)jyjjxj[y; [z; x]] = 0� [x; [x; x]] = 0, x 2 LoddThe universal enveloping algebra of L is denoted UL.9



A quasi-isomorphism is denoted '!. Two objects A and B in a categoryC are weakly C-equivalent, denoted A � B, if they are connected by a chainof C-quasi-isomorphisms of the form:A ' A(1) '! � � � � � � ' A(n) '! B:If the C-quasi-isomorphisms are natural, we say that A and B are naturallyweakly C-equivalent.Let A be an augmented DGA, M a right A-module, N a left A-module.Denote d1 be the di�erential of the complex M 
 T (sA) 
 N obtained bytensorization. We denote the tensor product of the elements m 2 M , sa1 2sA, : : : , sak 2 sA and n 2 N by m[sa1j � � � jsak]n. Let d2 be the di�erentialon the graded vector space M 
 T (sA)
N de�ned by:d2m[sa1j � � � jsak]n = (�1)jmjma1[sa2j � � � jsak]n+ k�1Xi=1 (�1)"im[sa1j � � � jsaiai+1j � � � jsak]n�(�1)"k�1m[sa1j � � � jsak�1]akn;Here "i = jmj+ jsa1j+ � � �+ jsaij.Remark 2.3 We only �nd the above formula in the non-graded case in theliterature ([18] X.(2.5)). We obtain the appropriate signs by Mac Lane'scondensation of complexes of complexes ([18] X.9). If we set N = |, werecover the same formula as in [9] x4.The bar construction of A with coe�cients inM and N , denotedB(M ;A;N),is the complex (M 
 T (sA) 
 N; d1 + d2). We use mainly B(M ;A) =B(M ;A;|). The reduced bar construction of A, denoted B(A), is B(|;A).Let L be a DGL, M a right UL-module. If 12 2 |, B(M ;UL) has asubcomplex C�(M ;L) = (M 
 �sL; d1 + d2) [14, x1]. Its dual, denotedC�(M ;L), is called the Cartan-Chevalley-Eilenberg complex with coe�cientsin M . Again C�(L) denotes C�(|;L).Let A be a DGA. A semifree extension of an A-module M is an inclusionof A-modules: (M;d)� (M � (A
 V );D) such that:� V = �k2NV (k) as graded vector space.� D : V (k)!M � (A
 V (< k)); k 2 N where V (< k) = �k�1i=0 V (i).10



An A-semifree module is an A-module (A
 V;D) such that 0� (A
 V;D)is a semifree extension of 0.A free extension is an inclusion of augmented DGA's: (A; d) � (A qTV;D) such that V = �k2NV (k) and D : V (k)! Aq TV (< k); k 2 N.A free DGA is a DGA (TV;D) such that |� (TV;D) is a free extension.A relative Sullivan model is an inclusion of augmented CDGA's: (A; d)�(A
�V;D) such that V = �k2NV (k) and D : V (k)! A
�V (< k); k 2 N.A Sullivan model is a CDGA (�V;D) such that |� (�V;D) is a relativeSullivan model.A Sullivan model of a DGA A is a Sullivan model (�V;D) equipped with aDGA quasi-isomorphism (�V;D) '! A.A �-free extension is an inclusion of augmented CDGA's: (A; d)� (A
�V;D) such that V = �k2NV (k), D : V (k)! A
�V (< k); k 2 N and D isa �-derivation. In particular, if A is a �-algebra, than the �-free extension(A; d)� (A
 �V;D) is a �-morphism.Note that the condition on the graded vector space V in these four similarde�nitions is always satis�ed in chain. In particular, an inclusion of chainDGA's (A; d)� (Aq TV;D) is always a free extension.The complex of indecomposables of the augmented DGA A, denoted Q(A)is A=A �A. The augmented DGA A is minimal if the di�erential on Q(A) iszero. An inclusion of augmented DGA's A ,! B is minimal if the augmentedDGA B [A |is minimal. In particular, an inclusion of augmented CDGA'sA ,! B is minimal if the augmented CDGA B 
A|is minimal.Property 2.4 (i) If A� AqTV is a free extension then AqTV is (leftand right) A-semifree.(ii) [10, 14.1] If A� A
 �V is a relative Sullivan model then A
 �V isA-semifree.(iii) If A� A
 �V is a �-free extension then A
 �V is A-semifree.The normalized singular chain complex of a topological space X with coe�-cients in |is denoted C�(X).Let G be a topological monoid. A right G-Serre �bration is a Serre�bration p : E � B such that E is a right G-space, for each b 2 B the�ber p�1(b) is stable by G and for each z 2 E the map g 7! z:g is a weakhomotopy equivalence from G to p�1(p(z)).11



Convention 2.5 Let f : E ! B be a continuous map. When we willspeak about the homotopy �ber of f , except if speci�ed, we will choose thehomotopy �ber where the holonomy acts on the left and denotes it by Ff .3 The bar construction with coe�cients as aDGCProperty 3.1 ([18] X.7.2) Let A (respectivelyB) be an augmented DGA,M(respectivelyN) a leftA-module (respectivelyB-module) and P (respectivelyQ) a right A-module (respectively B-module). Then we have an Alexander-Whitney morphism of complexesAW : B(P 
Q;A
B;M 
N)! B(P ;A;M)
B(Q;B;N)where the image of a typical element p
 q[s(a1
 b1)j � � � js(ak 
 bk)]m
 n iskXi=0 (�1)�ip[sa1j � � � jsai]ai+1 � � � akm
 qb1 � � � bi[sbi+1j � � � jsbk]n:Here �i = kXj=1  jqj+ j�1Xl=1 jblj! jajj+ jqj+ kXj=1 jbjj! jmj+ kXj=i+1(j � i)jajj+ (k � i)jmj+ jijjqj+ i�1Xj=1 (i� j)jbjj:AW is natural and associative (AW � (AW 
 id) = AW � (id
AW )).Remark 2.3 holds here too.Corollary 3.2 Let K be a quasi DGH, C a quasi right K-coalgebra, D aquasi left K-coalgebra. Then B(C;K;D) is a quasi DGC with the diagonalB(C;K;D) B(�C;�K ;�D)��������! B(C 
 C;K 
K;D 
D) AW�! B(C;K;D)
B(C;K;D)and the counit B(C;K;D) B("C;"K ;"D)�������! B(|;|;|) =|:If K, C and D are coassociative, counitary then so is B(C;K;D). Thiscoalgebra structure on B(C;K;D) is functorial.12



Proof. It is obvious with commutative diagrams using AW 's associativity,naturality and the functoriality of the bar construction. QEDProperty 3.3 Moreover, if C is K-semifree then B(C;K;D) '! C 
K D isa quasi-isomorphism of quasi DGC's.Proof. The morphism of quasi left K-coalgebras B(K;K;D) '! D remainsa quasi-isomorphism of quasi DGC's after applying C 
K � ([9] 2.3 (i) andProperty 2.1). QEDRemark 3.4 When K is a DGH and C is a K-coalgebra, the coalgebrastructure on B(C;K) coincides with the one de�ned in ([9] 4.1). The proofis a tedious calculation. Anyway, we don't need to give it, since we will verifythat the following theorem is valid independently of the functorial coalgebrastructure chosen on the bar construction, either the one de�ned by F�elix-Halperin-Thomas, or the one de�ned in Corollary 3.2.Theorem 3.5 ([9] 5.1) Let p : E � B be a right G-Serre �bration with Bpath connected. Then there is a natural DGC quasi-isomorphism B(C�(E);C�(G)) '!C�(B).Remark 3.6 This natural quasi-isomorphism is the identity on C�(E) forthe �-�bration id : E ! E.Proof. As shown in Theorem 8.3 of [10], if m : M '! C�(E) is a rightC�(G)-semifree resolution of C�(E) then we have the commuting diagram ofcomplexes. M?� C�(E)?C�(p)-m'M 
C�(G)| C�(B)-'mIn particular, we can take M = B(C�(E);C�(G);C�(G)). Since m, C�(p)and � are DGC morphisms and � is an epimorphism,m is a DGC morphismtoo. QED13



Remark 3.7 Suppose further that G acts from the left on a space Y andthat the map q : E �G Y � B de�ned by q(z; y) = p(z) for z 2 E andy 2 Y is a Serre �bration such that for each z 2 E the map y 7! (z; y) isa weak homotopy equivalence from Y to q�1(p(z)). Then there is a naturalDGC quasi-isomorphism B(C�(E);C�(G);C�(Y )) '! C�(E�GY ). The proofis the same as above interpreting the general Eilenberg-Moore formula ([12]Theorem 3.9) H�(E �G Y ) �= TorC�(G)(C�(E); C�(Y )) at the chain level.Proposition 3.8 ([9] 6.7) Let f : E ! B be a continuous map betweenpath connected spaces and Ff its homotopy �ber then there is a natural DGCquasi-isomorphism B(|;C�(
B);C�(Ff)) '! C�(E).Remark 3.9 This natural quasi-isomorphism is the identity on C�(E) forthe map E ! �.Proof. The Moore path space �bration PB � B with PB being the Moorepaths that begin at the basepoint, is a left 
B-�bration. So, by pull back,we obtain a left 
B-�bration p0 : Ff � E. We apply Theorem 3.5 to p0.QEDProposition 3.10 Let f : E ! B be a continuous pointed map with E, Band Ff path connected. Then C�(Ff) is naturally weakly DGC equivalent toB(C�(
B);C�(
E)).Proof. We have the morphism of topological monoids 
f : 
E ! 
B.So 
B is a right 
E-space and C�(
f) : C�(
E) ! C�(
B) is a DGHmorphism. Consider the previous map p0 : Ff � E. Let ~Fp0 denote itshomotopy �ber where the holonomy acts on the right. There is a naturalmorphism of right 
E-spaces � : ~Fp0 '! 
B which is a homotopy equivalenceand is the identity if E = � ([10] I.2.(c)). By Proposition 3.8 applied to p0,we have the chain of natural DGC quasi-isomorphismsC�(Ff) ' � B(C�( ~Fp0);C�(
E)) '�!B(�;id) B(C�(
B);C�(
E)): QEDRemark 3.11 This chain of natural quasi-isomorphisms is just the identityon C�(
B) for the map � ! B. So by naturality, we have the commutative14



diagram of DGC's C�(
B)HHHHHHHHHj?C�(@) B(C�(
B);C�(
E))-C�(Ff ) B(C�( ~Fp0);C�(
E))6' B(�;id)� 'where @ : 
B ,! Ff is the inclusion.4 Homotopy of augmented chain complexesand of augmented DGA's and lifting lem-masWe recall the notion of homotopy of augmented chain complexes and ofaugmented DGA's using cylinders since our proof will rely heavily on it.To develop homotopy theory using cylinders in a category, a good frame-work is to have a structure of co�bration category where all objects are�brant.De�nition 4.1 (Compare [4] I.1.1) A co�bration category where all objectsare �brant is a category C with two classes of morphisms called co�brations(denoted by �) and weak equivalences (denoted by '!), subject to axiomsC1, C2, C3 and C4. The axioms in question are:(C1) Composition axiom: The isomorphisms in C are weak equivalences andalso co�brations. For two mapsA f! B g! Cif any two of f , g and g � f are weak equivalences, then so is the third.The composite of co�brations is a co�bration.(C2) Push out axiom: For a co�bration i : B � A and map f : B ! Y15



there exists the push out in CB?i Y?i-fA A [B Y-fand i is a co�bration. Moreover:(a) if f is a weak equivalence, so is f ,(b) if i is a weak equivalence, so is i.(C3) Factorization axiom: For a map f : B ! Y in C there exists a com-mutative diagram B @@@@@Ri Y-fA ������' gwhere i is a co�bration and g is a weak equivalence.(C4) All objects are �brant: Each co�bration which is also a weak equivalencei : R '� Q in C admits a retraction r : R! Q, r � i = 1.The axiom C4 can be replaced in De�nition 4.1 by the Property:Property 4.2 ([4] II.1.11=II.2.11a)) Given a commutative diagram of un-broken arrows B?i X?' p-A p p p p p p p p p p�h Y-gwhere i is a co�bration and p is a weak equivalence then there is a map h forwhich the upper triangle commutes. 16



Property 4.3 (i) ([4] II.6.4) The category of augmented chain complexesis a co�bration category where all objects are �brant and where co�-brations are injections and weak equivalences, quasi-isomorphisms.(ii) ([4] II.7.10) The category of augmented DGA's is a co�bration categorywhere all objects are �brant and where co�brations are free extensionsand weak equivalences, quasi-isomorphisms.Remark 4.4 In a co�bration category where all objects are �brant, Prop-erty 4.2 is the key to obtain the basic properties of the notion of homotopy. Inthe particular case of augmented chain complexes and of augmented DGA's(Property 4.3), we can use the following lifting lemma instead of Property4.2.Property 4.5 Given a commutative diagram of unbroken arrowsB?i X?' p-A p p p p p p p p p p�h Y-gwhere i is a co�bration and p is both a surjection and a weak equivalencethen the dotted arrow h exists such that both triangles commute.We can now de�ne the notion of homotopy in the category of augmentedchain complexes and in the category of augmented DGA's.In this section, the morphism Y ! X is going to be either(i) a co�bration and we de�ne homotopy relative Y or under Y and follow[4] IIx2 in the case of a co�bration category where all objects are �brant,(ii) or just the unit of X, |! X and we de�ne absolute homotopy foraugmented DGA's following [9] x3.Remark 4.6 In a co�bration category C with an initial object �, homotopyrelative � is called absolute homotopy and we call an object X co�brant if� � X is a co�bration. Following case (i), absolute homotopy is de�nedonly when X is co�brant. In the category of augmented chain complexes, all17



objects are co�brant and therefore by case (i), absolute homotopy is de�nedfor every complexX. In the category of augmented DGA's, only free DGA'sare co�brant but case (ii) de�ne absolute homotopy even when X is a not afree DGA.De�nition 4.7 ([19] 1.1) An object denoted ~X is a left homotopy object onY ! X if there is a factorization of the folding mapX [Y X@@@@@Ri X-(id;id)~X ������' pRemark 4.8 Let i0 (respectively i1) be the composite of the �rst (respec-tively second) inclusion X ! X [Y X with i. Then by universal property,i = (i0; i1) and we use this last notation.De�nition 4.9 A cylinder on Y ! X, denoted IYX is a left homotopyobject on Y ! X such that (i0; i1) is a co�bration. If the category has aninitial object �, IX will stand for a cylinder on �! X instead of I�X.Let u : Y ! U be a �xed morphism. Let x; y : X ! U be two morphismssuch that for each of them the following diagram commutes:Y?@@@@@RuX U-De�nition 4.10 The morphisms x and y are homotopic for the left homo-topy object ~X if there is a commutative diagramX [Y X@@@@@R(i0;i1) U-(x;y)~X ������h18



We call h a homotopy from x to y, and denoted it h : x t y.Property 4.11 If we �x a cylinder IYX, then for any homotopy h : x t ystarting from a left homotopy object ~X , there exists a homotopy h0 : x t ystarting from IYX. In particular, all cylinders de�ne the same notion ofhomotopy between morphisms.Proof. By the lifting lemma (Property 4.5), we obtain a morphism m :IYX ! ~X such that the following diagram commutesUX [Y X���������*(x;y)?(i0;i1) ~X ������h?' q-(j0;j1)IYX p p p p p p p p p p�m X-pand we set h0 = h �m. QEDProperty 4.12 The homotopy relation de�ned with a cylinder is an equiv-alence relation.De�nition 4.13 (i) The homotopy x � p : x t x is called the trivialhomotopy and is denoted 0.(ii) Let h : x t y be a homotopy. By the lifting lemma (Property 4.5), weobtain a morphism n : IYX ! IYX such that the following diagram
19



commutes UX [Y X���������*(y;x)?(i0;i1) X [Y X������(x;y)IYX6h?' p-T -(i0;i1)IYX p p p p p p p p p p p p p p p p p p p p*n X-pHere T is the interchange map of the two factors. The homotopy h�n :y t x is called a negative of the homotopy h and is denoted �h.(iii) Let h : x t y and g : y t z be two homotopies for the same cylinderIYX. The push out of two cylinders is a left homotopy object. So againas in Property 4.11, we can apply the lifting lemma (Property 4.5) tothe diagram UX [Y X���������*(x;z)?(i0;i1) IYX [X IYX6(h;g)?' (p;p)-i0[i1IYX p p p p p p p p p p p p p p p p p p p p*m X-pThe homotopy (h; g) �m : x t z, is called the sum of the homotopiesand is denoted h+ g.Property 4.14 The notion of homotopy is stable by composition.Proof. � Let g : U ! V be a morphism and h : x t y be a homotopy. Theng � h : g � x t g � y is a homotopy. 20



� Let B? Y?-f 0A X-fbe any commutative diagram with B � A a co�bration or the unit of A.Then by the lifting lemma (Property 4.5), we obtain a morphism If : IBA!IYX such that the following diagram commutes UA [B A ���������*(x�f;y�f)?(i0;i1) X [Y X������(x;y)IYX6h?' q-f[f -(j0;j1)IBA p p p p p p p p p p p p p p p p p p p p*IfA X-p -fSo h � If : x � f t y � f is the desired homotopy. QEDDe�nition 4.15 We denote by If : IBA ! IYX any morphism from acylinder on B ! A to a cylinder on Y ! X such that the preceding diagramcommutes.Remark 4.16 In the category of augmented DGA when X is a free DGA,there is a canonical cylinder IX called the Baues-Lemaire cylinder and acanonical map If : IA! IX ([4] I.7.15). For this cylinder, a given homotopyh : x t y has a canonical negative �h and the sum of two homotopies iscanonically de�ned ([4] II.17.3).For the Baues-Lemaire cylinder, any homotopy h from x to y correspondsuniquely to an (x; y)-derivationH ([9] 3.5, [4] I.7.12). Of course, the canonicalnegative of the homotopy h corresponds to the (y; x)-derivation�H. And the21



composite of the homotopy h and of the canonical map If , h�If correspondsto the (x � f; y � f)-derivation H � f . Warning, the sum H +G of an (x; y)-derivation H and an (y; z)-derivation G is not in general an (x; z)-derivation.In section 6, we will use for DGA's two lifting lemmas other than Property4.5, the �rst of which re�nes Property 4.2.Property 4.17 ([4] II.1.11=II.2.11a)) Given a commutative diagram of un-broken arrows B?i X?' p-A p p p p p p p p p p�h Y-gwhere i is a co�bration and p is a weak equivalence then(i) there is a map h for which the upper triangle commutes and for whichp � h is homotopic to g relative to B, and(ii) this map h is unique up to homotopy relative to B.Proof. We recall just the proof of (ii). Let h and h be two maps satisfying(i) and let H and G be homotopies relatively to B for a cylinder Z fromp � h to g and from g to p � h respectively. We apply Property 4.2 to thecommutative diagram A [B A?i0[i1 X?' p-(h;h)Z [A Zp p p p p p p p p p�F Y-(G;H)Now F is a homotopy from h to h for the cylinder Z [A Z. QED22



Property 4.18 ([9] 3.6) Consider the following diagram, that commutes upto a homotopy H: TV?i X?' p-TW p p p p p p p p p p�h Y-gwhere TV and TW are free DGA's, i is a co�bration and p is a weak equiv-alence. Then there exists a map h for which the upper triangle commutesand such that p � h is homotopic to g. The homotopy G from p � h to g canbe chosen such that G � Ii = H (G extends H).5 Bar construction and homotopiesAfter reviewing F�elix-Halperin-Thomas diagonal on the bar construction andthe notion of homotopy de�ned with cylinders, we prove in this section thekey lemma from which derives all our theorems. This lemma is a homotopicversion of Corollary 3.2. First, we need a \functoriality up to homotopy" ofthe bar construction provided by the Property.Property 5.1 Let A?f A0?g-h:'t'0M M 0-h0 :	t	0be a \diagram" of chain augmented DGA's where h : IA! A0 and h0 : IM !M 0 are homotopies, and where 	�f = g�', and 	0�f = g�'0. Consider one ofthe morphisms If : IA! IM (De�nition 4.15). If h0�If = g�h (naturality ofthe homotopies) then the morphisms of augmented chain complexes B(	;')and B(	0;'0) are homotopic. 23



Proof. Since the bar construction is a functor preserving quasi-isomorphismsfrom the category of pairs of chain augmented DGA's to the category ofaugmented chain complexes ([9] 4.3(iii)), B(IM ; IA) is a left homotopy ob-ject on 0 � B(M ;A) in the category of augmented chain complexes. SoB(h0;h) : B(	;') t B(	0;'0) is a homotopy. QEDLemma 5.2 (i) Let K (respectively C) be a strictly counitary chain HAH,coassociative up to a homotopy hassocK (respectively hassocC): (�
 1) �� t (1
�) ��. Let f : K ! C be a morphism of augmented DGA'ssuch that �Cf = (f 
 f)�K and hassocCIf = (f 
 f 
 f)hassocK (fcommutes with the diagonals and the homotopies of coassociativity).Then B(C;K) with the diagonalB(C;K) B(�C;�K)������! B(C 
 C;K 
K) AW�! B(C;K)
B(C;K)is a strictly counitary coalgebra up to homotopy.(ii) Consider the following cube of augmented chain DGA'sK @@@@R�K?f K 0@@@@R�K0pppppppppppppppppppp?g-'K 
K?f
f K 0 
K 0?g
g-'
'C @@@@R�C C 0 p p p p p p p pR�C0p p p p p p p p p p p p p p p p p p p-	C 
 C C 0 
 C 0-	
	where all the faces commute exactly except the top and the bottomones. Suppose that the top face commutes up to a homotopy htop :(' 
 ')�K t �K0' and the bottom face commutes up to a homotopyhbottom : (	 
 	)�C t �C0	 such that hbottomIf = (g 
 g)htop. Thenthe morphism of augmented chain complexes B(	;') : B(C;K) !B(C 0;K 0) commutes with the diagonals up to homotopy.24



Proof. the same as the proof of Corollary 3.2, with Property 5.1 replacingthe functoriality of the bar construction. QEDRemark 5.3 The results of this section remain true if we replace the barconstruction by any functor B preserving quasi-isomorphisms from the cate-gory of pairs of chain augmented DGA's to the category of augmented chaincomplexes equipped with a natural, associative morphism of augmented com-plexes AW : B(P 
Q;A
B)! B(P ;A)
B(Q;B).In particular, Lemma 5.2 is valid for the functor B(M ;A) = M 
A |iff : K ! C is a free extension and K is a free DGA (The extra hypothesis isneeded to preserve quasi-isomorphisms.).Remark 5.4 There is a generalization of Lemma 5.2(ii) to homotopy com-mutative cubes. In [20], we de�ne diagonals on B(C;K) and B(C 0;K 0) anda morphism of augmented chain complexes from B(C;K) to B(C 0;K 0) com-muting with the diagonals up to homotopy provided that the homotopies ineach face of the cube satis�es a compatibility condition.6 HAH structure on free modelsLet X be a graded vector space. We denote a free DGA (TX; @) simplyby TX except when the di�erential @ can be speci�ed. In particular, a freeDGA with zero di�erential is still denoted by (TX; 0).De�nition 6.1 ([19] D.28) An explicit HAH is a free DGA TX equippedwith a morphism of augmented DGA's � : TX ! TX 
 TX such that(" 
 1) � � = 1 = (1 
 ") � �, a homotopy hassoc : (� 
 1) � � t (1 
�) � � and a homotopy hcom : � t ��. Note that if (TX;�; hassoc; hcom)is an explicit HAH then (TX;�) is a strictly counitary HAH, coassociativeand cocommutative up to homotopy. Let (TX;�TX; hassocTX ; hcomTX) and(TY;�TY ; hassocTY ; hcomTY ) be two explicit HAH's. Let f : TX ! TY bean augmented DGA morphism. Then f is a morphism of explicit HAH's iff(X) � Y , �TY f = (f 
 f)�TX, hassocTY If = (f 
 f 
 f)hassocTX andhcomTY If = (f 
 f)hcomTX .Theorem 6.2 Let f : E ! B be a map between path connected pointedtopological spaces with a path connected homotopy �ber F . We consider a25



commutative diagram of augmented chain algebras as follows:TX?m(f) C�(
E)?C�(
f)-'�XTY C�(
B)-'�Ywhere TX, TY are free DGA's and m(f) : TX � TY is a free extension.Then1. TX (respectively TY ) can be endowed with an explicit HAH structuresuch that �X (respectively �Y ) commutes with the diagonals up to ahomotopy h�X (respectively h�Y ) and such that m(f) is a morphism ofexplicit HAH's and h�Y extends (C�(
f)
 C�(
f))h�X .2. B(�Y ; �X) : B(TY ;TX) '! B(C�(
B);C�(
E)) is a morphism ofcoalgebras up to homotopy.3. The homology of the coalgebra up to homotopy TY 
TX|is isomorphicto H�(F ) as coalgebras.Remark 6.3 � The isomorphism of graded coalgebras between H�(TY 
TX|) and H�(F ) �ts into the commutative diagram of graded coalgebras:H�(TY )?H�(q) H�(
B)?H�(@)-�=H�(�Y )H�(TY 
TX |) H�(F )-�=where @ : 
B ,! F is the inclusion and q : TY � TY 
TX |the quotientmap.� The quasi DGC TY 
TX |can be made explicit using Example 2.2.Remark 6.4 � The exact commutativity of the diagram in Theorem 6.2 isnot important. If the diagram commutes only up to homotopy, since m(f)is a co�bration, by Property 4.18, we can replace �Y by another �Y whichis homotopic to it, so that now the diagram strictly commutes.26



� But it is important that m(f) is a co�bration. We will show it inRemark 7.5. Indeed, the general idea for the proof of 1 is to control thehomotopies using the homotopy extension property of co�brations.Proof of Theorem 6.21. By Property 4.17(i), we put a diagonal on TX, �TX, such that �Xcommutes with the diagonals up to a homotopy h�X . The diagram of un-broken arrows TX? TX
2 TY 
2?'- -TY p p p p p p p p p p p p p p p p p p p p*�TYC�(
B) C�(
B)
2- -commutes, with homotopy C�(
f)
2h�X : By Property 4.18, there exists adiagonal on TY , �TY , satisfying(�) 8<:�TY extends the diagonal on TX such that there exists ahomotopy h�Y between (�Y 
�Y )�TY and �C�(
B)�Yextending C�(
f)
2h�X .We can assume that, both the diagonal of TX and the diagonal of TY arecounitary. Let's give a sketch of proof of that: Since C�(
E) has a counitarydiagonal, by Property 4.17(ii), �TX is counitary up to a homotopy hunitTX .That is, the diagram TX@@@@@R(1;1) TX 
 TX?("
1;1
")-� TX � TXcommutes up to the homotopy hunitTX. Furthermore, �TY is counitary up toa homotopy hunitTY extending hunitTX . We can change the diagonal of TXup to homotopy to get a counitary one [2, Lemma 5.4 i)]. Moreover, sincehunitTY extends hunitTX, we can change up to homotopy the diagonal of TYto get a counitary one such that the condition (�) is still satis�ed with thenew counitary diagonals. 27



We give now a detailed proof that �TX is cocommutative up to a ho-motopy hcomTX and that �TY is cocommutative up to a homotopy hcomTYextending hcomTX : Since the diagonal on C�(
E) is cocommutative up to ahomotopy hcomC� , by Property 4.17(ii), �TX is cocommutative up to a ho-motopy hcomTX . More precisely (Proof of Property 4.17(ii)), hcomTX is givenby Property 4.2 in the diagram:TX q TX?i0[i1 TX
2?'-(��TX ;�TX )ITX [TX ITXp p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p1hcomTX C�(
E)
2-(�h�X ;hcomC��X�h�X )where ITX is the Baues-Lemaire cylinder (Remark 4.16). Now, since the ho-motopy of cocommutativity of C�(
B) is natural ([2] (23)) and the sums andnegatives of homotopies are canonically de�ned (Remark 4.16), the followingcube of unbroken arrows is commutative:TX q TX@@@@R? TX
2@@@@R?-ITX [TX ITXp p p p p p p p�hcomTX
? C�(
E)
2?-TY q TY@@@@R TY 
2@@@@R-ITY [TY ITYp p p p p p p p�hcomTY C�(
B)
2-The homotopy of cocommutativity of TY , hcomTY is given by applying Prop-erty 4.2 to the commutative diagram(ITX [TX ITX) [TXqTX (TY q TY )? TY 
2?'-ITY [TY ITYp p p p p p p p p p p p p p p p p p p p p p p p p p p1hcomTY C�(
B)
2-28



A similar proof shows that �TX is coassociative up to a homotopy hassocTXand that �TY is coassociative up to a homotopy hassocTY extending hassocTX .2. Now, by Lemma 5.2, the augmented chain complexes quasi-isomorphismB(�Y ; �X) : B(TY ;TX) '! B(C�
B;C�
E)commutes with the diagonals up to homotopy. Since m(f) is a morphismof explicit HAH's, this diagonal on B(TY ;TX) is counitary exactly and iscoassociative up to homotopy.3. By Property 2.4(i) and Property 3.3, the augmented chain complexesquasi-isomorphism B(TY ;TX) '! TY 
TX |commutes exactly with the diagonals. By Remark 5.3, TY 
TX|is a strictlycounitary coalgebra up to homotopy, coassociative up to homotopy and co-commutative up to homotopy. By Proposition 3.10, C�(F ) is weakly DGCequivalent to B(C�
B;C�
E). So now by 2, the coalgebra H�(TY 
TX |)is isomorphic to H�(F ). QED7 The �ber of a suspended mapLemma 7.1 Let X be a path connected space. Then there is a natural DGHquasi-isomorphism TC�(X) '! C�(
�X).Proof. The adjunction map ad induces a morphism of coaugmented DGC'sC�(ad) : C�(X) ! C�(
�X). By universal property of the tensor algebraon the complex C�(X), denoted TC�(X), C�(ad) extends to a natural DGHmorphism. By Bott-Samelson Theorem ([16] appendix 2 Theorem 1.4), it isa quasi-isomorphism, since the functors H and T commute. QEDLemma 7.2 Let f : E ! B be a continuous map between path connectedspaces. Then C�(F�f) is naturally weakly DGC equivalent to B(TC�(B);TC�(E)).Proof. It is a direct consequence of Lemma 7.1, Proposition 3.10 and Corol-lary 3.2. QEDTheorem 7.3 Let f : E ! B be a continuous map between path connectedspaces such thatH�(f) is injective. Then the graded coalgebra TH+(B)
TH+(E)|is isomorphic to H�(F�f). 29



Remark 6.3 holds here too.Proof of Theorem 7.3 Since H�(f) is injective, we can apply Theorem 6.2and Lemma 7.2 to the homotopy commutative diagram of DGA's:(TH+(E); 0)?TH+(f) TC�(E)?TC�(f)-'(TH+(B); 0) TC�(B)-' (7.4)Since the horizontal arrows induce the identity in homology, the diagonalson TH+(E) and TH+(B) must be obtained by tensorization of the diagonalsof H+(E) and H+(B). QEDRemark 7.5 If H�(f) is not injective, Theorem 7.3 is not true in general:the algebra H�(F ) does not depend only on H�(f). Indeed, since TH+(f) isnot a free extension, we cannot apply Theorem 6.2 to the diagram 7.4.For an example over Fp , we can take a map f from S2p�1 to CPp�1.Let y2 be a generator of H2(F�f ). If f is the Hopf map, there is a map : CPp ! F�f such that H2( ) is an isomorphism. So yp2 6= 0. If f is theconstant map then yp2 = 0.Remark 7.6 When H�(B) is of �nite type and H1(f) is an isomorphism,the isomorphism given by Theorem 7.3 can be proved using a spectral se-quence argument. Recall �rst that by the Bott-Samelson Theorem, theadjunction maps ad induce an isomorphism of graded coalgebras betweenTH+(B)
TH+(E)|and H�(
�B)
H�(
�E)|. The inclusion @ : 
�B ! F�fis up to a homotopy equivalence a right 
�E-�bration (Proof of Proposition3.10). So kerH�(@) contains the left ideal generated by ImH+(
�f) and byProperty 2.1, H�(@) induces a morphism of graded coalgebrasH�(@) : H�(
�B)
H�(
�E)|! H�(F�f ):SinceH�(
�f) is injective, the Serre spectral sequence applied to @ collapsesat the E2-term, H�(@) is surjective and kerH�(@) is isomorphic to H�(F�f )
H+(
�E). Using again the Bott-Samelson Theorem, kerH�(@) is the leftideal generated by the image of H+(E) H+(f)�! H+(B) H+(ad)�! H+(
�B). SoH�(@) is an isomorphism. 30



8 Homotopy co�bers for CDGA'sIn this section, we develop the notions of co�bration, co�ber, homotopyco�ber and homotopy push out in the category of augmented CDGA's. Wegive an example of homotopy co�ber crucial for the proof of Theorem 9.2and we notice that the weak CDGA equivalence class of homotopy co�bersof a CDGA morphism is preserved if one changes the CDGA morphism upto quasi-isomorphisms.De�nition 8.1 Let i : A! C be a morphism of augmented CDGA's. Con-sider theA-module structure on C induced by i. If C is anA-semifreemodule,we say that i is a co�bration (in the category of augmented CDGA's) and wedenote i : A� C. The co�ber of a co�bration i : A� C is the augmentedCDGA |
A C.Property 8.2 The category of augmented CDGA's where the co�brationsare the morphisms as de�ned above and where the weak equivalences are thequasi-isomorphisms, satis�es axioms C1, C2 and C3 of De�nition 4.1 (butnot C4!).Remark 8.3 If we restrict our de�nition of co�brations to morphisms be-ing relative Sullivan models, the category of augmented Q-CDGA's forms aco�bration category where all objects are �brant ([4] I.x8). However, overa �eld of characteristic p, the category of augmented CDGA's is still not aco�bration category.The topological notions of homotopy push out and homotopy co�bers can bede�ned more generally in any category with a �nal object satisfying axiomC1, C2 and C3 ([6], chapter 4).Using Property 8.2, we develop now the notion of homotopy push outand of homotopy co�ber in the category of augmented CDGA's:Let f : A ! B, g : A ! C be two morphisms of augmented CDGA's.Consider two factorizations f = p � i, g = q � j where i : A� D, j : A�E are co�brations and p, q quasi-isomorphisms. By Property 8.2, we can31



construct the commutative diagram of augmented CDGA's:A?j D?j B?-i -'pE?' q D 
A E?' B 
A E-i -'C D 
A C- (8.4)All the rectangles appearing in this diagram are push outs, i and j are co�-brations. We have a chain of quasi-isomorphisms of augmented CDGA'sD 
A C ' � D 
A E '�! B 
A E:In particular, the augmented CDGA'sD
AC,D
AE and B
AE are weaklyCDGA equivalent and their weak CDGA equivalence class is independent ofthe factorization chosen of f and g.De�nition 8.5 The augmented CDGA's D 
A C, D 
A E and B 
A Eobtained by considering various factorizations of f and g as above are calledhomotopy push outs of f and g. All the homotopy push outs of f and gare weakly CDGA equivalent. The homotopy co�bers of f are the homotopypush outs of f and of the augmentation on A, " : A�|.Example 8.6 Let f : E ! B a chain Lie algebras morphism. If B ispositively graded and of �nite type then C�(UB;E) = ((UB)_
(�sE)_; d1+d2) equipped with the tensor product algebra structure becomes a CDGAwhich is a homotopy co�ber of C�(f) : C�(B)! C�(E).Proof. By [9] 6.10, C�(UB;B) is an acyclic CDGA. Since B is of �nite type,C�(UB;B) is C�(B)-semifree. By the universal property of push out, thereis a CDGA morphismC�(E)
C�(B) C�(UB;B) �=�! C�(UB;E)32



which is an isomorphism since B is of �nite type. So we get the commutativediagram of augmented CDGA'sC�(B)�����	 ? C�(E)?-C�(f)| C�(UB;B) C�(UB;E)�' -where the square is a push out and where C�(B) ! C�(UB;B) is a co�-bration. Therefore, C�(UB;E) is a homotopy push out of C�(f) and of theaugmentation of C�(B). QEDProposition 8.7 (particular case of [6] 4.13) Suppose given a commutativediagram of augmented CDGA'sA?' B?'-fA0 B0-f 0where the vertical arrows are quasi-isomorphisms. Consider two factoriza-tions f = � � i, f 0 = �0 � i0 where i : A � C is a morphism of augmentedCDGA's such that C is an A-semifree module, i0 : A0� C 0 is a morphism ofaugmented CDGA's such that C 0 is an A0-semifree module and � : C '! B,�0 : C 0 '! B 0 are quasi-isomorphisms of augmented CDGA's. Then theco�bers |
A C and |
A0 C 0 are weakly CDGA equivalent.Proof. By Property 8.2, we have the commutative diagram of augmentedCDGA's A?' C?' B?'-i -�'A0 A0 
A C B0-i p p p p p p-�'33



where i is a co�bration and f 0 = � � i. So the CDGA |
A0 A0 
A C is ahomotopy co�ber of f 0 as the CDGA |
A0 C 0. Therefore they are weaklyCDGA equivalent. QED9 The �ber of the model in the Anick rangeLet r � 1 be a �xed integer. p is going to be the least noninvertible prime(or +1) in |. We suppose now p 6= 2.De�nition 9.1 [14] A topological space X is (r; p)-mild or in the Anickrange if it is r-connected and its homology is concentrated in degrees � rpand of �nite type.Theorem 9.2 Let f : E ! B be a continuous map between two topologicalspaces both (r; p)-mild with Hrp(f) injective. Consider the homotopy �ber Fand the �bration p0 : F � E. Then there are two morphisms of augmentedCDGA's, denoted A(f) : A(B)! A(E) and A(p0) : A(E)! A(F ) such that1. there is a commutative diagram of cochain complexesC�(B)?' C�(E)?' C�(F )?'-C�(f) -C�(p0)D1(B) D1(E) D1(F )- -D2(B)?'6' D2(E)?'6' D2(F )?� '6'- -A(B) A(E) A(F )-A(f) -A(p0)where all the vertical maps are quasi-isomorphisms and where all themaps are DGA morphisms except � : D2(F ) '! A(F ) who induces amorphism of graded algebras only in homology.34



2. for any factorization A(f) = � � i where i : A(B)� C is a morphismof augmented CDGA's such that C is an A(B)-semifree module andwhere � : C '! A(E) is a quasi-isomorphism of augmented CDGA's,we have a commutative diagram of augmented CDGA'sA(B)@@@@@Ri A(E) A(F )-A(f) -A(p0)C6� '@@@@@R D36'?'-|
A(B) CIn particular, the cohomology algebra of the homotopy �ber of f , H�(F ),is isomorphic to the cohomology of the homotopy co�ber of A(f), H�(|
A(B)C).Remark 9.3 Over Q, the functor APL due to Sullivan [22] is such thatthe two CDGA morphisms APL(f) : APL(B) ! APL(E) and APL(p0) :APL(E) ! APL(F ) veri�es 1 and 2: by Corollary 10.10 of [10], for anytopological spaceX, there are natural quasi-isomorphisms of cochain algebrasC�(X) '! D(X) ' APL(X)and by the Grivel-Thomas-Halperin theorem \the �ber of a model is a modelof the �ber" ([10], 15.5), |
A(B) C is weakly CDGA-equivalent to APL(F ).
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Proof. By naturality of Proposition 3.10 with respect to continuous maps,we have a commutative diagram of DGC'sC�(F ) C�(E) C�(B)-C�(p0) -C�(f)G(F )6'?' G(E)6'?' G(B)6'?'- -B(C�(
B);C�(
E)) BC�(
E) BC�(
B)- -BC�(
f) (9.4)There is a commutative diagram of augmented DGA'sTX?m(f) 
C�(E)?
C�(f) C�(
E)?C�(
f)-' -'TY 
C�(B) C�(
B)-' -'where 
 denotes the cobar construction ([8] Theorem I), TX is a minimalfree DGA and m(f) : TX � TY is a minimal free extension. Since theindecomposables functor Q preserves quasi-isomorphism between free DGA's([5] 1.5),X �= s�1H+(E) and Y �= s�1H+(E)� s�1cokerH+(f)� kerH+(f):SoX and Y are graded vector spaces of �nite type concentrated in degree � rand � rp � 1. Denote by �X the composite TX '! 
C�(E) '! C�(
E) andby �Y the composite TY '! 
C�(B) '! C�(
B). By Theorem 6.2, m(f) :TX � TY is a morphism of explicit HAH's and B(�Y ; �X) : B(TY ;TX) '!B(C�(
E);C�(
B)) is a morphism of coalgebras up to homotopy.By the naturality of Anick's Theorem ([19] D.29 and D.21, see also theproof of Theorem 8.5(g)[2]), there exists a DGL morphism L(f) : L(E) !36



L(B) and a commutative diagram of DGA'sUL(E)?UL(f) TX?m(f)-�='UL(B) TY-�=	where ' and 	 are two DGA isomorphisms equipped with two DGA homo-topieshtop : ('
 ')�UL(E) t �TX' and hbottom : (	
	)�UL(B) t �TY	such that hbottomI(UL(f)) = (m(f)
m(f))htop(the horizontal arrows commute with the diagonals up to natural homotopies).By Lemma 5.2(ii), the isomorphismB(	;') : B(UL(B);UL(E)) �=! B(TY ;TX)commutes up to chain homotopy with the diagonals. We giveC�(UL(B);L(E))the tensor product coalgebra structure of UL(B) 
 �sL(E). The injectionC�(UL(B);L(E)) '! B(UL(B);UL(E)) is a DGC quasi-isomorphism ([9]6.11). By functoriality of the bar construction and the Cartan-Chevalley-Eilenberg complex with coe�cients, �nally we get the commutative diagramof coalgebras up to homotopyB(C�(
B);C�(
E)) BC�(
E) BC�(
B)- -BC�(
f)B(TY ;TX)6B(�Y ;�X) ' B(TX)6B(�X) ' B(TY )6B(�Y ) '- -B(m(f))B(UL(B);UL(E))6B(	;') �= B(UL(E))6B(') �= B(UL(B))6B(	) �=- -B(UL(f))C�(UL(B);L(E))6' C�L(E)6' C�L(B)6'- -C�L(f) (9.5)
37



where all the coalgebras up to homotopy are counitary and coassociativeexactly except B(TY ;TX), all the morphisms commute exactly with thediagonals except B(�Y ; �X) and B(	;'), and where all the vertical mapsare quasi-isomorphisms. De�ne A(f) to be C�L(f) : C�L(B) ! C�L(E)and A(p0) to be the inclusion C�L(E) ,! C�(UL(B);L(E). By dualizingdiagram 9.4 and diagram 9.5, we obtain the diagram of 1.By its de�nition, the CDGA |
A(B) C is a homotopy co�ber of A(f)(De�nition 8.5). The CDGA A(F ) := C�(UL(B);L(E)) is also a homotopyco�ber of A(f) := C�(L(f)) (Example 8.6). So A(F ) is weakly CDGA-equivalent to|
A(B)C. More precisely diagram 8.4 in the proof of De�nition8.5 gives the diagram of 2 with D3 = C�(UL(B);L(B))
C�L(B) C. QEDTo construct a factorization of A(f) is quite di�cult. As in the rationalcase, we would rather construct a factorization of a model of A(f):Corollary 9.6 � Let A(f) : A(B) ! A(E) be a CDGA morphism as inTheorem 9.2. Let �Y be a Sullivan model of A(B), �X a Sullivan modelof A(E). Then there is an acyclic CDGA U and a commutative diagram ofCDGA's �Y�����		 ? A(B)?A(f)-'�X �X 
 U A(E)�' -'� Let �Y � C '! �X be a factorization of 	 : �Y ! �X such that C is a�Y -semifree module. Then the algebra H�(F ) is isomorphic to H�(|
�Y C).(This isomorphism identi�es in homology C�(p0) : C�(E) ! C�(F ) and thequotient map C �|
�Y C.)Proof. The �rst part of this Corollary is just Proposition 7.7 and Remark7.8 of [14]. The second part is Proposition 8.7 and Theorem 9.2. QEDAs in the rational case, we can take a factorization of 	 with relativeSullivan models. But mod p, since the pth power of an element of evendegree is always a cycle, our relative Sullivan model will have in�nitely manygenerators. We'd rather use a free divided powers algebra �V where forv 2 Veven, vp = 0. But now arises the problem of constructing CDGA38



morphisms from a free divided power algebra to any CDGA where the pthpowers are not zero. We give now an e�ective construction of a factorizationof 	 with divided powers algebras. Over Q, this factorization will be just afactorization of 	 through a minimal relative Sullivan model.Lemma 9.7 Let 	 : (�Y; d) ! (�X; d) be a CDGA morphism between twominimal Sullivan models such that X and Y are concentrated in degree � 2.Then there is an explicit factorization of 	:(�Y; d) i� (�Y 
 �coker'
 �sker';D) '�p (�X; d)where� ' is the composite Y ,! �Y 	! �X � X and D is a �-derivation,� i is a minimal inclusion of augmented CDGA's such that (�Y
�coker'
�sker';D) is (�Y; d)-semifree, and� p is a surjective CDGA quasi-isomorphism vanishing on �sker'.Proof. We proceed by induction on the degree n 2 N�. Suppose we haveconstructed the factorization:��(Y �n)� ; d� ��(Y �n)
 �(coker'�n)
 �s(ker'�n);D� '�pn ��(X�n); d�Let w 2 coker'n+1. De�ne pn+1(w) in obvious way. dpn+1(w) is a cycleof �X�n. Since pn is a surjective quasi-isomorphism, there is a cycle z 2�(Y �n) 
 �(coker'�n) 
 �s(ker'�n) such that pn(z) = dpn+1(w). De�neDw = z.Let v 2 ker'n+1. Since pn+1 is a surjective morphism of graded algebras,there is u 2 ��2(Y �n� coker'�n) such that pn+1(v+u) = 0. Since D(v+u)is a cycle of �(Y �n)
�(coker'�n)
�s(ker'�n) and pn is a surjective quasi-isomorphism, there is 
 2 �(Y �n) 
 �(coker'�n) 
 �s(ker'�n) such thatpn(
) = 0 and D
 = D(v + u). De�ne Dsv = v + u� 
.39



Now we have the commutative diagram of CDGA's:�(Y �n)
 �(coker'�n)
 �s(ker'�n);D? �(X�n); d?-pn'�(Y �n+1)
 �(coker'�n+1)
 �s(ker'�n+1);D? �(X�n+1); d?-pn+1�(Y n+1)
 �(coker'n+1)
 �s(ker'n+1);D �(Xn+1); 0-pn+1'Since pn and pn+1 are quasi-isomorphisms, by comparison of the E2-term ofthe algebraic Serre spectral sequence associated to each column, pn+1 is aquasi-isomorphism. QEDExample 9.8 Let f : S2 ,! CPn be the inclusion of CW-complexes withn � 2. Applying Corollary 9.6,  is (�(x2; y2n+1); d) ! (�(x2; z3); d) withdy2n+1 = xn+12 and dz3 = x22. By Lemma 9.7,  factorises through the CDGA(�(x2; y2n+1; z3)
�sy2n+1;D) with Dz3 = x22 and Dsy2n+1 = y2n+1� z3xn�12 .So H�(F ) �= �z3 
 �sy2n+1 for p � 2n.Remark 9.9 The hypotheses of the Theorem 9.2 are necessary:� B must be (r; p)-mild. Indeed even for a path �bration 
X ,! PX �X, a commutative model of X does not determine the cohomology algebraof the loop space. �CPp and S3 _ ::_S2p+1 just not (2; p)-mild, have a samecommutative model but the cohomology algebras of their loop spaces are notisomorphic.� E and B both (r; p)-mild is not enough: Hrp(f) must also be injective.Take the same example as in Remark 7.5: the suspension of the Hopf map�f : �S2p�1 ! �CPp�1.Remark 9.10 Over Q, replacing A by APL, the Grivel-Thomas-Halperintheorem implies that the CDGA |
A(B) C is weakly DGA equivalent toC�(F ) (Remark 9.3). But over a �eld of characteristic p, we can't improveTheorem 9.2, by |
A(B) C � C�(F ) as DGA's. Indeed, let X be the 2p + 3skeleton of a K(Z; 4),X is (3; p)-mild and C�(
X) is not weakly DGA equiv-alent to a CDGA. 40



Proof. A consequence of Milnor is that there exist two CW-complexes de-noted Y and K(Z;3) with the same 2p + 2 skeleton, respectively homotopicto 
X and 
K(Z;4). The two morphisms of topological monoids
(Y (2p+2))! 
Y and 
(K(Z;3)(2p+2))! 
K(Z;3)induce in homology two algebra morphisms which are isomorphisms in de-gree � 2p. Since H�(
K(Z; 3)) �= ��2 as algebras, 
Y is 1-connected,H2(
Y ) = Fp�2 and �p2 = 0. Suppose C�(Y ) is weakly DGA equivalent to acommutative chain algebra A. We can suppose that A is of �nite type. TheQuillen construction [10, x22 e) and x23 a)] on the coalgebra A_ is a DGL LAequipped with a DGA quasi-isomorphism ULA := 
(A_) '! C�(
Y ). Thehomology of an universal enveloping algebra of a DGL, ULA is an universalenveloping algebra of a Lie algebra, UE ([14] 8.3). So H�(
Y ) admits by thePoincar�e-Birko�-Witt Theorem a basis containing �p2 6= 0. QED10 Divided powers algebrasThe key to the proof of Theorem 9.2 is to apply Anick's Theorem ([2] 5.6).One of the goal of Anick for developing this theorem was to prove a resultsuggested by McGibbon and Wilkerson \If X is a �nite simply-connectedCW-complex then for large primes, pth powers vanish in ~H�(
X;Fp)." ([17],p. 699). Anick proved precisely that \If X is (r; p)-mild then pth powers van-ish in ~H�(
X;Fp)." ([2] 9.1). After Anick, Halperin proved in [14] (Theorem8.3 and Poincar�e-Birko�-Witt Theorem) that in fact:Corollary 10.1 [14] If X is (r; p)-mild then the algebra H�(
X) is isomor-phic to �sV where �V is a minimal Sullivan model of A(X).Proof. Apply Corollary 9.6 to � ! X and see that the homotopy co�ber of(�V; d)� (|; 0) given by Lemma 9.7, (|;0)
(�V;d) (�V 
�sV;D) has a nulldi�erential ([14] 2.6). QEDActually, we can show now that Anick's result on pth powers and Halperin'sresult on a divided powers algebra structure remain valid if we consider the�ber of any �bration in the Anick range instead of just the loop �bration.But before we need the notion of an admissible CGDA and of a �-admissibleCGDA. 41



De�nition 10.2 A CDGA (respectively �-algebra) A is admissible (respec-tively �-admissible) if there is a surjective CDGA morphism (respectively�-morphism) C � A with C acyclic.Property 10.3 ([15] II.2.6) Let f : A ! B a CDGA morphism (respec-tively �-morphism). If f is surjective and A is admissible (respectively �-admissible) then so is B.Proposition 10.4 ([15] II.2.7)(i) If f : A ! B is a CGDA morphism with B admissible then we havethe commutative diagram of CDGA'sA HHHHHHHHHj? B-A
 �V 0 A
 �V6'� 'where A� A
 �V is a relative Sullivan model and A� A
 �V 0 isa �-free extension.(ii) In particular, if B is any admissible CDGA, there are CDGA quasi-isomorphisms �V 0 ' � �V '�! Bwhere �V 0 is a �-algebra.The essential role of �-admissible algebras is thatProperty 10.5 ([3] 1.3) If A is a �-admissible algebra then H(A) is a �-algebra (not true if A was only a �-algebra!).Lemma 10.6 Let A be a cochain commutative algebra. Assume that forsome r � 1, A satis�es A =|� fAigi�r.(i) If H i(A) = 0; i � rp, then A is admissible.(ii) If A is a �-algebra and H i(A) = 0; i � rp+p�1, then A is �-admissible.42



Proof. (i) This lemma is just a slight improvement from Lemma 7.6 [14]and the proof is the same: For each a 2 Aodd, construct an obvious CDGAmorphism �a from the acyclic CDGA �(|a�|da) to A. For each a 2 Aeven,the cohomology class of lowest degree in �(|a�|da) is represented by ap.Extend this CDGA to an acyclic Sullivan model of the form �(|a�|da�V )where V is a graded vector space concentrated in degree � rp�1. Constructa CDGA morphism �a : �(|a�|da�V )! A. Now 
a2A+�a is a surjectivemorphism from an acyclic CDGA to A.(ii) For each a 2 Aodd, the cohomology class of lowest degree in the �-algebra �(|a�|da) is represented by 
p�1(da)a. After replacing � by �, theproof is the same as in (i). QEDLemma 10.7 Let A and M be two cochain commutative algebras concen-trated in degrees � r + 1. Consider a CDGA morphism A ! M . IfH�rp+p(A) = H�rp+p�1(M) = 0 then TorA(M;|) is a divided powers algebra.Proof. By Lemma 10.6 (i), A and M are admissible. By Proposition 10.4(ii), there are CDGA quasi-isomorphisms�X 0 ' � �X '�! Awhere X and X 0 are concentrated in degrees � r + 1. By Proposition 10.4(i), we get the commutative diagram of CDGA'sA M-�X6' @@@@@R�X 
 �Y6'?'- �X 
 �Y 043



where Y and Y 0 are concentrated in degrees � r. By push-out, we have thecommutative diagram of CDGA's�X?' �X 
 �Y 0?'-�X 0 �X 0 
 �Y 0-where �X 
 �Y 0 '�! �X 0 
 �Y 0 is a CDGA quasi-isomorphism ([9] 2.3(i))since �X 
�Y 0 is �X-semifree (Property 2.4(iii)). Since push-outs preserve�-free extension, �X 0 � �X 0 
 �Y 0 is a �-free extension. So �X 0 
 �Y 0 is�X 0-semifree, and by Proposition 8.7, the cohomology algebra of the co�ber�Y 0 is TorA(M;|). Now since �X 0 is a �-algebra, so is �X 0 
 �Y 0. Since�X 0 
 �Y 0 is concentrated in degrees � r and its cohomology is null indegrees � rp + p � 1, by Lemma 10.6(ii), �X 0 
 �Y 0 is �-admissible. Since�X 0 
 �Y 0 � �Y 0 is a surjective �-morphism, by Property 10.3, �Y 0 is a�-admissible. So by Property 10.5, H(�Y 0) is a �-algebra. QEDTheorem 10.8 Let p be an odd prime and let f : E � B be a �bration of�ber F such that E and B are both (r; p)-mild with Hrp(f) injective. Then thecohomology algebra H�(F ;Fp) is a (not necessarily free!) divided powers al-gebra. In particular, pth powers vanish in the reduced cohomology ~H�(F ;Fp).Proof. By Theorem 9.2, H�(F ;|) �= TorA(B)(A(E). Since A(B) and A(E)are concentrated in degrees � r + 1 and their cohomology is null in degrees� rp, by Lemma 10.7, TorA(B)(A(E);|) is a divided powers algebra. QEDReferences[1] J. F. Adams and P. J. Hilton, \On the chain algebra of a loop space",Comment. Math. Helv., 30(1955), 305-330.[2] D. J. Anick, \Hopf algebras up to homotopy", J. Amer. Math. Soc., 2(1989),417-453.[3] L.Avramov and S.Halperin, \Through the looking glass: a dictionnary be-tween rational homotopy theory and local algebra", Algebra, Algebraic Topol-ogy and Their Interactions, SLNM 1183, Springer, Berlin(1986), 3-27.44
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