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1 Introduction

Let f : F — B be a continuous map between pointed spaces. The inverse
image of the base point f~!(x) is not in general a homotopy invariant of f.
But after replacing £ up to homotopy by a space X such that the new map
p: X — B is a fibration, the space p~'(x), called the homotopy fiber of f,
becomes a unique homotopy invariant of f. In particular, if f : £ - B
was initially a fibration, the fiber of f, f~!(*), has the homotopy type of the
homotopy fiber.

We work over a field k. The normalized singular cochain functor induces
a morphism of differential graded algebras (DGA’s) C*(f) : C*(B) — C*(FE).
If f is a weak homotopy equivalence then C*(f) is a DGA morphism such
that the map induced in homology H*(f) is an isomorphism (We say that
C*(f) is a quasi-isomorphism.). So if two topological spaces X and Y are
weakly homotopy equivalent then C*(X) and C*(Y) are linked by a chain of
DGA quasi-isomorphisms, and we say that they are weakly DG A-equivalent.
Note that the weak homotopy type of the DGA C*(X) is a much stronger
homotopic invariant of X than the cohomology algebra H*(X).

Considering a DGA morphism A — M, the homology of the complex
M ©4 k is not invariant by DGA quasi-isomorphisms. But replacing M by
an A-module P “free” in the category of A-modules such that there is a
quasi-isomorphism of A-modules P = M (We say that P is an A-semifree
resolution of M.), the homology H(P @4 k) becomes an invariant called
the differential torsion product denoted TorA(M, k). This differential torsion
product generalizes the standard definition of torsion product in the non-
graded non-differential case.

Let F' denote the homotopy fiber of f : ' — B. The link between
topology and algebra is provided by the Eilenberg-Moore formula which gives
the isomorphism of graded vector spaces

H*(F) =2 Tor” B(C*(E), k).

Generally this formula is used implicitly by applying the well-known Eilenberg-
Moore spectral sequence. This formula allows the computation of the coho-
mology of F, H*(F), as a vector space. On the contrary, we don’t know
how to compute in general H*(F') as an algebra. Given a particular map
f+ FE — B of homotopy fiber F', your best chance for computing the algebra
H*(F) is to apply the formidable machinery of the Eilenberg-Moore or Serre



spectral sequences using all their algebraic structure. But it does not always
work.

In this article, we are interested in this problem: how to compute the
cohomology algebra H*(F')? Other works on the subject are [7] and [21].

When A — M is a morphism of commutative differential graded alge-
bras (CDGA’s), Tor*( M, k) has a natural structure of algebra ([18] Theorem
VIIL.2.1 in the non-graded non-differential case). When k = Q, Sullivan [22]
proved that for any simply-connected topological space X, C*(X) is natu-
rally weakly DGA-equivalent to a CDGA App(X). Replacing C*(B) and
C*(E) by Apr(B) and App(FE), TorAPL(B)(ApL(E),k) has now an algebra
structure and a theorem proved by Grivel [11], Thomas (unpublished) and
Halperin [13], called the theorem of the model of the fibre showed that this
algebra coincides with that of H*(F'). Over a field k of characteristic 0, this
theorem solves completely the problem of computing the algebra H*(F').

Over a field k of positive characteristic p, extending Sullivan’s result,
Anick ([2] dualize Proposition 8.7(a)) proved that if X is a finite r-connected
CW-complex of dimension < rp (We say that X is in the Anick range.),
C*(X) is weakly DGA-equivalent to an CDGA A(X) that we will call an
Anick model of X. A natural question was to generalize the Grivel-Thomas-
Halperin theorem in this new context and that is the main result of this
paper:
Theorem 9.2 Assume the characteristic of the field k is an odd prime p. Let
[+ E — B be an inclusion of CW-complexes with trivial r-skeleton and of
dimension < rp. Let A(E) and A(B) denote their respective Anick models.
If F' is the homotopy fiber of f then

H*(F; k)= TorA(B)(A(E), k)as graded algebras.

The case of the inclusion * — B has been proved by Halperin in [14]. In
fact, he proved that there is an isomorphism of Hopf algebras H*(QB; k) =
Tor®) (k, k).

In rational homotopy, the Grivel-Thomas-Halperin theorem, by staying at
the level of semifree resolutions without taking their homology, not only gives
the cohomology algebra of F' but also its weak rational homotopy type: it
gives a CDGA weakly CDGA-equivalent to Apr(F'), so in particular weakly
DGA-equivalent to C*(F'). Our Theorem does not give in general a CDGA
weakly DGA-equivalent to C*(F') (Remark 9.10). However, in this article we
will adopt this idea that it is better to work at the level of semi-free resolution



and we will not speak about Tor after this introduction. In particular, we
will give a formulation of our main theorem as close as possible to the usual
formulation for the Grivel-Thomas-Halperin theorem ([10], 15.5).

To prove our theorem, surprisingly, we will not use the previous Eilenberg-
Moore formula but another Eilenberg-Moore formula. Consider a G-fibration
7 : F — X: it means in particular that 7 is a fibration whose fiber G is a
topological monoid acting on F. Then there is an isomorphism of graded
vector spaces

H.(X) 2 Tor™@(C(B),k).
Let A be a DGA, M an A-module. A general way to compute TorA(M,]k)

is to consider the bar construction B(M; A; A) which is an A-semifree res-
olution of M and to take the homology of B(M;A) := B(M;A; A) @4 k.
In this second Filenberg-Moore formula, following the general idea that
to manipulate semi-free resolution is better than working with Tor, Félix,
Halperin and Thomas remarked that it is more fruitful to consider the bar
construction B(C.(FE); C.((G)) instead of its homology Torc*(G)(C*(E),k).
They constructed a natural coalgebra structure on the bar construction
B(C.(F); C.(G)) and proved that the differential graded coalgebra (DGC)
B(C.(F); C.G)) is weakly DGC-equivalent to the DGC C.(X) [9].

Let f : E — B be a continuous map between path connected pointed
spaces of homotopy fiber F'. Starting Barratt-Puppe sequence, they showed
that B(C.(F); C.(QB)), where the Moore loop space QB acts on F' by the
holonomy action, is weakly DGC-equivalent to C.(F). Pursuing Barratt-
Puppe sequence, we easily see that, when F'is path connected, B(C.(2B); C.(QF))
is weakly DGC equivalent to C.(F) (Proposition 3.10). That is the starting
observation of our paper. We now give the plan.

Section 2. We set up the notations, introduce some definitions and give
some elementary properties.

Section 3. We review the work of Felix, Halperin and Thomas in [9]. In
particular, we give a simple form of the Félix-Halperin-Thomas diagonal on
the bar construction ([9] 4.1), analogous to the definition of the diagonal on
Co(X) ([18] p. 245).

Section /. We carefully review the notion of homotopy in the category
of DGA’s and of chain complexes using cylinders: the notion of homotopy
does not depend of the cylinder considered, homotopies can be composed
with maps, added, DGA homotopies are closely linked with derivations. We
conclude by giving two lifting lemmas.



Section 5. We prove that the bar construction transforms homotopies of
pairs of DGA’s into chain complexes homotopies.

Section 6. Let f : ' — B be an inclusion of simply connected CW-
complexes of homotopy fiber F'. The natural coalgebra structure on the
bar construction B(C.(2B); C.(QF)) is determined by the Hopf algebras
morphism C.(2f) : C.(QE) — C.(QB). Theorem 6.2 allows us to replace
in the bar construction, this strict Hopf algebras morphism by the inclusion
(TX,0) — (TY,0) between the Adams-Hilton models [1] of £ and B, after
having first equipped both DGA’s (T'X,0) and (T, d) with a structure of
Hopf algebra up to homotopy (HAH) such that the HAH structure on (7Y, 0)
extends the one on (T'X, d). Therefore, Theorem 6.2 gives the isomorphisms
of algebras

HA(F) = H*(B(TY;TX)") 2 H((TY @rx k)").

Section 7. As an application of Theorem 6.2, we compute the coalgebra
H.(Fx¢) where Fy; is the homotopy fiber of a suspended map injective in
homology (Theorem 7.3).

Section 8. We define the homotopy cofiber of a CDGA morphism A — M:
it is a CDGA defined up to weak CDGA-homotopy type, whose homology co-
incides with the the algebra Tor*( M, k) ([18] Corollary VIIL.2.3). At the level
of CDGA’s, we rediscovered that the algebra TorA(M, k) can be computed
either with an A-semifree resolution of M or with an A-semifree resolution
of k and is invariant by CDGA quasi-isomorphisms.

Section 9. We prove Theorem 9.2 and show how to apply it to compute
the cohomology algebra of some fiber.

Section 10. Let F' be the homotopy fiber of an inclusion of CW-complezxes
in the Anick range. Then the cohomology algebra H*(F') is a divided powers
algebra (Theorem 10.8).

Acknowledgments: 1 wish to thank my supervisor Nicolas Dupont. He
introduced me to the problem of computing the cohomology algebra of a fiber
with algebraic models. I also wish to thank Steve Halperin. In particular, he
gave me Theorem 9.2 to prove, with the counterexample 9.10.

2 Algebraic preliminaries and notation

We work over an arbitrary field k. References for these algebraic preliminaries
are [9], [14], [15], [10], [5] and [2]. We just give our notations and recall the
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less-known definitions.

The symbol = denotes an isomorphism. The homology functor from
differential graded objects to graded objects is denoted H. The denomination
“chain” will be restricted to objects with a non-negative lower degree and
“cochain” to those with a non-negative upper degree. The degree of an
element x is denoted |z|.

The suspension of a graded vector space M is the graded vector space
sM such that (sM);11 = M,;.

Let C be an augmented complex. The kernel of the augmentation is
denoted C.

A differential graded algebra, or DGA, is a complex A equipped with
two morphisms of complexes p : A@ A — A and n : k — A called the
multiplication and the unit such that o (p®@ 1) = po (1@ p) (associativity)
and po(n®@1)=1=po(l®@n) (unitary). The commutator isomorphism
T A9@B S5 B Ais given by 7(a @ b) = (=D)l*IPlo @ a. A commutative
DGA or CDGA is a DGA such that po7 = p.

If% € k, a differential divided powers algebra or 7 -algebra is an augmented

CDGA A together with the maps
’yk§ZQn—>Zan (kEN,TLEZ)

such that:

(i) o () = )
(i) o +5) = 3 A an)

(iv) ~i(ab) = 0 if |a|, [b] odd and i > 2
T a0 if Jal, [b] € Aever

(v) ¥/ (v'(a) = iy ila) if i, j > 0.

(vi) the differential d satisfies: dvy*(a) = d(a)~+*"(a).

Let A, B be two 7-algebras. A 7-morphism f: A — B is a morphism of
augmented CDGA’s such that fy*(a) = v*f(a).
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A derivation D in a graded algebra A is a linear map of degree |D| such
that Day = Da.y + (=1)IPle. Dy, 2,y € A.

The tensor algebra T'V on a complex V' is the free DGA on V. The free
CDGA on V is denoted AV.

The free divided powers algebra 7V on V' is the free commutative graded
algebra generated by 7/(v) for v € Viyen, 7 € N* and v for v € Vi4q divided by
the relations v'(v)y(v) = W’y”j(v). Over Q, 7V = AV by v'(v) = %

Let A be a CDGA, V and]W two graded vector spaces. A 7-derivation
in A®?W is a derivation D such that Dy*(w) = D(w)y* 1 (w), k > 1,
w € W Any linear map V & W — AV @ 7W of degree k extends to a
unique 7 -derivation over AV @ 7 W.

Let A be a DGA, M a right A-module, N a left A-module. The tensor
product of M and N over A, denoted M @4 N, is the complex quotient of
M @ N by the sub-complex generated by m.a@n—m®@an,mée M, n € N,
a € A If Aisaugmented, M @4k = M/M A,

Let A — B, A — C be two morphisms in a category. If it exists, the
push out and the morphism given by the universal property will be denoted
as in the commutative diagram:

If it exists, the sum of B and (' is denoted B 11 C'.

The push out exists in the category of DGA’s. The push out is B @4 C
in the category of CDGA’s. In particular, the tensor product of DGA’s is
the sum in the category of CDGA’s.

A quasi differential graded coalgebra, or quasi DGC, is an augmented

complex €' equipped with a morphism of augmented complexes A : €' —
C' ® C called the diagonal. Let C' and C' be two quasi DGC’s. A morphism



of augmented chain complexes f : C' — C" is a morphism of quasi DGC’s if
Af = (fof)A. A differential graded coalgebra, or DGC, is a quasi DGC such
that (A@1)oA = (1@A)oA (coassociativity) and (e@1)oA=1= (10e)oA
(counitary). A DGC is cocommutative if o A = A. The dual Hom(C,k) of
a DGC C'is a DGA denoted CV.

A quast differential graded Hopf algebra, or quasi DGH, is an augmented
DGA K equipped with a morphism of augmented DGA’s A : K — K ® K.
A differential graded Hopf algebra, or DGH, is a quasi DGH such that (A @
HoA=(1®A)oAand (e®@1)ocA=1=(1®e)oA.

The notion of homotopy we use in the category of augmented chain com-
plexes and of augmented DGA’s, are recalled in section 4. The symbol =
stands for homotopic morphisms.

A coalgebra up to homotopy is a chain quasi DGC such that (A@1)o A =
(I@A)oAand (e®@1)oA = 1= (1@e)oA. Let C and C’ be two coalgebras
up to homotopy. A morphism of augmented chain complexes f : C' — C’ is
a morphism of coalgebras up to homotopy if Af = (f @ f)A.

A Hopf algebra up to homotopy, or HAH, is a quasi DGH such that (A ®
NHoA=(1@A)oAand (e@1)oAx 1= (l®e)oA. Let K, K’ be two
HAH’s. A morphism of augmented DGA’s f: K — K’ is a HAH morphism
if Af = (f@ fA.

Let K be a quasi DGH. A quasi left K-coalgebra D is both a quasi DGC
and a left A-module such that the action K @ D — D is a quasi DGC mor-
phism. A K-coalgebra D is a coassociative and counitary quasi K-coalgebra.
Since A : K — K ® K is a morphism of augmented DGA’s then k is K-
coalgebra.

Property 2.1 The tensor product of a quasi right K-coalgebra (' and a
quasi left K-coalgebra D over K, C @g D, is a quasi DGC. If €' and D are

coassociative, counitary, cocommutative then so is C' @x D.

Further, the following example can be useful for computation:

Example 2.2 Let (A,d) and (AL TV, D) be two counitary quasi DGH’s
such that the inclusion (A,d) — (AII TV, D) is a quasi DGH morphism.
Then

(AITV,D) @44 (k,0) = (T(A® V), D) as quasi DGC’s.
The diagonal on T'(A @ V') is the morphism of complexes
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where the image of a typical element a1 @ v1 ® -+ ® a, @ v, is

Z H([ajar; @ vy @ -+ @ a1y @ V1p @ Arpp10aha21 @ Va1 @ -+ @ Vppe(npyr )]
® [Cllllbll Qw1 ® - ® blq ® Wig & blq+1a/2/bz1 @ wo & & wnqg(bnq-l-l)])

if AACLZ' = Z Cl;' & a;,/7
Aanrvy; = Z (a1 @V @+ @ s @ Vip @ Aipy1) @ (b @ wip @+ -+ @ biy @ Wiy @ bigyr)

and + is the sign of the permutation

7 1 7 11
< ajay viy o a1pvipaipp1briwin o bigwighig41a5ay c AR1VRL  GnpUnplnp41Pn1Wnl  brgWngbng41 )
aja11v11 * Q1pVipQip4+145821021 ©°  Vnplpp41a] b11W11 - - bigWigbig1a5b21wa1 - - Wagbpgt1

The differential is given by the formula:

n

5(a1®v1®---®an®vn):Z(—l)”"_l‘”'al®v1®---®da¢®---®vn

=1
n—1
+ Z(—l)”" Z ay Qv @ aic @ up @ @ Cr @ Uiy @ Cirp1Qipr @ Vig
=1

‘I’(_l)nn Z a1 QU Q- Qa1 @ Upp @ Q) Cpp @ unrg(cnr—l—l)

it Duv; :Zcﬂ@uil®"'®Cir®uir®cir+1
and 0, = |ay| 4 |oi| + |az| + - F |vica] + el

A differential graded Lie algebra, or DGL, is a complex L equipped with
a morphism of complexes: [, | : L @ L. — L such that for z, y, z € L:

o [l',y] = _(_1)|x||y|[y7x]
o (—1)FFe, [y, )4 (1), [, y]] + (= D)MIy, [z, 2]] = 0
o [J?,[J?,J?]]ZO,J;ELOdd

The universal enveloping algebra of L is denoted UL.



A quasi-isomorphism is denoted =. Two objects A and B in a category
C are weakly C-equivalent, denoted A ~ B, if they are connected by a chain
of C-quasi-isomorphisms of the form:

If the C-quasi-isomorphisms are natural, we say that A and B are naturally
weakly C-equivalent.

Let A be an augmented DGA, M a right A-module, N a left A-module.
Denote d; be the differential of the complex M ® T(SZ) @ N obtained by
tensorization. We denote the tensor product of the elements m € M, sa; €
sA, ..., sa € sAand n € N by m[sai|---|sap]n. Let dy be the differential
on the graded vector space M @ T(SZ) @ N defined by:

dym[saq| -+ |sagln = (—1)|m|ma1[3a2| - |sagn
k—1
+ Y (—=D)m[saq]|---|saiaisq] - |sag]n
=1
— (=1 'm[say|- - |sap_1]agn;

Here ¢; = |m| + |sai| + - - - + |sail.

Remark 2.3 We only find the above formula in the non-graded case in the
literature ([18] X.(2.5)). We obtain the appropriate signs by Mac Lane’s
condensation of complexes of complexes ([18] X.9). If we set N = k, we
recover the same formula as in [9] §4.

The bar construction of A with coefficients in M and N, denoted B(M; A; N),
is the complex (M @ T(sA) @ N,d; + d). We use mainly B(M;A) =
B(M; A; k). The reduced bar construction of A, denoted B(A), is B(k; A).

Let L be a DGL, M a right UL-module. If 1 € k, B(M;UL) has a
subcomplex C.(M;L) = (M @ ?sL,dy + ds) [14, §1]. Its dual, denoted
C*(M; L), is called the Cartan-Chevalley-FEilenberg complex with coefficients
in M. Again C.(L) denotes C.(k; L).

Let A be a DGA. A semifree extension of an A-module M is an inclusion

of A-modules: (M, d) — (M & (A® V), D) such that:
o V = drenV (k) as graded vector space.
o D:V(k)=> Ma& (A V(<k)), k€ Nwhere V(< k) = @f;ol\/(i).
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An A-semifree module is an A-module (A ® V, D) such that 0 >— (A® V, D)
is a semifree extension of 0.

A free extension is an inclusion of augmented DGA’s: (A,d) — (AL
TV, D) such that V = GyenV (k) and D : V(k) - AUTV(< k), k € N.

A free DGA is a DGA (T'V, D) such that k — (T'V, D) is a free extension.

A relative Sullivan model is an inclusion of augmented CDGA’s: (A, d) —
(A®@ AV, D) such that V = @penyV (k) and D : V(k) - AQAV(< k), k € N.
A Sullivan model is a CDGA (AV, D) such that k — (AV, D) is a relative
Sullivan model.

A Sullivan model of @ DGA A is a Sullivan model (AV, D) equipped with a
DGA quasi-isomorphism (AV, D) = A.

A 7 -free extension is an inclusion of augmented CDGA’s: (A,d) — (A®
1V, D) such that V = @renV(k), D : V(k) > AV (< k), ke Nand D is
a 7-derivation. In particular, if A is a 7-algebra, than the 7-free extension
(A,d) — (A®?V,D) is a 7-morphism.

Note that the condition on the graded vector space V' in these four similar
definitions is always satisfied in chain. In particular, an inclusion of chain
DGA’s (A,d) — (AL TV, D) is always a free extension.

The complex of indecomposables of the augmented DGA A, denoted Q(A)
is A/A-A. The augmented DGA A is minimal if the differential on Q(A) is
zero. An inclusion of augmented DGA’s A — B is minimal if the augmented
DGA B Uy k is minimal. In particular, an inclusion of augmented CDGA’s
A — B is minimal if the augmented CDGA B ©4 k is minimal.

Property 2.4 (i) If A~ ALITV is a free extension then AILTV is (left
and right) A-semifree.

(ii) [10, 14.1] If A »— A @ AV is a relative Sullivan model then A @ AV is

A-semifree.

(iii) If A»— A® 7V is a ?-free extension then A @ 7V is A-semifree.

The normalized singular chain complex of a topological space X with coeffi-
cients in k is denoted C.(X).

Let G be a topological monoid. A right G-Serre fibration is a Serre
fibration p : £ — B such that F is a right G-space, for each b € B the
fiber p~1(b) is stable by G and for each z € F the map g + z.g is a weak
homotopy equivalence from G to p~'(p(z)).
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Convention 2.5 Let f : £ — B be a continuous map. When we will
speak about the homotopy fiber of f, except if specified, we will choose the
homotopy fiber where the holonomy acts on the left and denotes it by F.

3 The bar construction with coefficients as a
DGC

Property 3.1 ([18] X.7.2) Let A (respectively B) be an augmented DGA, M
(respectively N) a left A-module (respectively B-module) and P (respectively
@) a right A-module (respectively B-module). Then we have an Alexander-
Whitney morphism of complexes

AW :B(P2@Q;A® BiM @ N) = B(P; A; M) @ B(Q; B; N)

where the image of a typical element p @ ¢[s(a1 @ by)| - - |s(ar @ bg)]m @ n is
k

Z(—l)c"p[saﬂ e lsai]agpy - apm @ gby - bi[sbigq| - - |sbi]n.

=0

k 7—1 k
Here ¢ = <|CI| +> |b,|> |a;] + <|Q| +> |bj|) m]
=1 7=1

7 =1

k 1—1
+ Y G = Dlagl+ (k= d)lm| +lillgl + > (0= 7).
j=i+1 7=1

AW is natural and associative (AW o (AW @ id) = AW o (id @ AW)).
Remark 2.3 holds here too.

Corollary 3.2 Let K be a quasi DGH, C' a quast right K-coalgebra, D a
quasi left K-coalgebra. Then B(C; K; D) is a quasi DGC with the diagonal

B(C; I3 ) 2220l poo 0k o kD o D) 2% B(C: K; D)o B(C,K; D)

and the counit B(C; K; D) Bleciercien), B(k;k; k) = k.

If K, C and D are coassociative, counitary then so is B(C; K; D). This
coalgebra structure on B(C; K; D) is functorial.
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Proof. It is obvious with commutative diagrams using AW’s associativity,
naturality and the functoriality of the bar construction.

Property 3.3 Moreover, if C' is K-semifree then B(C; K; D) = C @y D is
a quasi-isomorphism of quasi DGC’s.

Proof. The morphism of quasi left K-coalgebras B(K; K; D) = D remains
a quasi-isomorphism of quasi DGC’s after applying C' @x — ([9] 2.3 (i) and
Property 2.1).

Remark 3.4 When K is a DGH and C is a K-coalgebra, the coalgebra
structure on B(C; K') coincides with the one defined in ([9] 4.1). The proof
is a tedious calculation. Anyway, we don’t need to give it, since we will verify
that the following theorem is valid independently of the functorial coalgebra
structure chosen on the bar construction, either the one defined by Félix-
Halperin-Thomas, or the one defined in Corollary 3.2.

Theorem 3.5 (/9] 5.1) Let p : E — B be a right G-Serre fibration with B
path connected. Then there is a natural DGC quasi-isomorphism B(C.(E); C.(G)) =
C.(B).

Remark 3.6 This natural quasi-isomorphism is the identity on C.(F) for
the *-fibration id : ¥ — F.

Proof. As shown in Theorem 8.3 of [10], if m : M 5 C.(E) is a right
C.(G)-semifree resolution of C,(F) then we have the commuting diagram of
complexes.

M = C.(E)
¢ Cu(p)
M Q¢ k = C.(B)

In particular, we can take M = B(C.(E); C.(G); C.(G)). Since m, C.(p)
and ¢ are DGC morphisms and ( is an epimorphism, m is a DGC morphism

too.
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Remark 3.7 Suppose further that GG acts from the left on a space ¥ and
that the map ¢ : F xgY — B defined by ¢(z,y) = p(z) for z € E and
y € Y is a Serre fibration such that for each z € F the map y — (z,y) is
a weak homotopy equivalence from Y to ¢~!(p(z)). Then there is a natural
DGC quasi-isomorphism B(C,(E); C.(G); C.(Y)) = C.(E x¢Y). The proof
is the same as above interpreting the general Eilenberg-Moore formula ([12]

Theorem 3.9) H.(E xgY) = Torc*(G)(C*(E), C.(Y)) at the chain level.

Proposition 3.8 ([9] 6.7) Let f : E — B be a continuous map between
path connected spaces and Fy its homotopy fiber then there is a natural DGC

quasi-isomorphism B(k; C.(QB); C.(Ff)) = C.(E).

Remark 3.9 This natural quasi-isomorphism is the identity on C.(F) for
the map £ — *.

Proof. The Moore path space fibration PB — B with PB being the Moore
paths that begin at the basepoint, is a left QQ B-fibration. So, by pull back,
we obtain a left QB-fibration py : Fy - E. We apply Theorem 3.5 to pq.

Proposition 3.10 Let f: E — B be a continuous pointed map with £, B
and Fy path connected. Then C.(Fy) is naturally weakly DGC equivalent to
B(C.(Q2B); C.(QF)).

Proof. We have the morphism of topological monoids Qf : QF — QB.
So QB is a right QF-space and C.(Qf) : C.(QF) — C.(2B) is a DGH
morphism. Consider the previous map py : Fy — E. Let FNp0 denote its
homotopy fiber where the holonomy acts on the right. There is a natural
morphism of right Q) F-spaces n : FNp0 = QB which is a homotopy equivalence
and is the identity if £ =  ([10] [.2.(¢)). By Proposition 3.8 applied to po,
we have the chain of natural DGC quasi-isomorphisms

Cu(Fy) = B(Cu(Fy,): Cu(QB)) = B(C.(QB); C.(QE)).

B (n;id)

Remark 3.11 This chain of natural quasi-isomorphisms is just the identity
on C.(QB) for the map * — B. So by naturality, we have the commutative
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diagram of DGC’s

C.(0B) B(C.(QB); C.(QE))
Ca(3) ~ | B(n;id)
Cu(Fy) ~———— B(C.(F,,); C.(QE))

where 0 : QB — F is the inclusion.

4 Homotopy of augmented chain complexes
and of augmented DGA’s and lifting lem-
mas

We recall the notion of homotopy of augmented chain complexes and of
augmented DGA’s using cylinders since our proof will rely heavily on it.

To develop homotopy theory using cylinders in a category, a good frame-
work is to have a structure of cofibration category where all objects are
fibrant.

Definition 4.1 (Compare [4] 1.1.1) A cofibration category where all objects
are fibrant is a category C with two classes of morphisms called cofibrations

(denoted by »—) and weak equivalences (denoted by =), subject to axioms
C1, C2, C3 and C4. The axioms in question are:

(C1) Composition axiom: The isomorphisms in C are weak equivalences and
also cofibrations. For two maps

Al B

if any two of f, g and g o f are weak equivalences, then so is the third.
The composite of cofibrations is a cofibration.

(C2) Push out axiom: For a cofibration ¢ : B — A and map f : B — YV
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there exists the push out in C

B

A — A Ug Y
f
and 7 is a cofibration. Moreover:

(a) if fis a weak equivalence, so is f,

(b) if 4 is a weak equivalence, so is 1.

(C3) Factorization axiom: For a map f: B — Y in C there exists a com-
mutative diagram

B Y

where ¢ is a cofibration and ¢ is a weak equivalence.

(C4) All objects are fibrant: Each cofibration which is also a weak equivalence

i:RiQinCadmitsaretractionr:R—>Q,roi:1.

The axiom C4 can be replaced in Definition 4.1 by the Property:

Property 4.2 ([4] II.1.11=I1.2.11a)) Given a commutative diagram of un-
broken arrows

B X
ho. .

7 o ~ | P

A Y

where 7 is a cofibration and p is a weak equivalence then there is a map A for
which the upper triangle commutes.
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Property 4.3 (i) ([4] 11.6.4) The category of augmented chain complexes
is a cofibration category where all objects are fibrant and where cofi-
brations are injections and weak equivalences, quasi-isomorphisms.

(ii) ([4] I1.7.10) The category of augmented DGA’s is a cofibration category
where all objects are fibrant and where cofibrations are free extensions
and weak equivalences, quasi-isomorphisms.

Remark 4.4 In a cofibration category where all objects are fibrant, Prop-
erty 4.2 is the key to obtain the basic properties of the notion of homotopy. In
the particular case of augmented chain complexes and of augmented DGA’s
(Property 4.3), we can use the following lifting lemma instead of Property
4.2.

Property 4.5 Given a commutative diagram of unbroken arrows

B X
ho. .

7 o ~ | P

A Y

where 7 is a cofibration and p is both a surjection and a weak equivalence
then the dotted arrow h exists such that both triangles commute.

We can now define the notion of homotopy in the category of augmented
chain complexes and in the category of augmented DGA’s.
In this section, the morphism Y — X is going to be either

(i) a cofibration and we define homotopy relative Y or under Y and follow
[4] 1182 in the case of a cofibration category where all objects are fibrant,

(ii) or just the unit of X, k — X and we define absolute homotopy for
augmented DGA’s following [9] §3.

Remark 4.6 In a cofibration category C with an initial object ®, homotopy
relative ® is called absolute homotopy and we call an object X cofibrant if
¢ — X is a cofibration. Following case (i), absolute homotopy is defined
only when X is cofibrant. In the category of augmented chain complexes, all
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objects are cofibrant and therefore by case (i), absolute homotopy is defined
for every complex X. In the category of augmented DGA’s, only free DGA’s
are cofibrant but case (ii) define absolute homotopy even when X is a not a

free DGA.

Definition 4.7 ([19] 1.1) An object denoted X is a left homotopy object on
Y — X if there is a factorization of the folding map

(id,id)
XUy X X

o8

Remark 4.8 Let iy (respectively i1) be the composite of the first (respec-
tively second) inclusion X — X Uy X with 7. Then by universal property,
i = (i0,71) and we use this last notation.

Definition 4.9 A cylinder on Y — X, denoted Iy X is a left homotopy
object on Y — X such that (ig,41) is a cofibration. If the category has an
initial object ®, I X will stand for a cylinder on ® — X instead of I3.X.

Let w : Y — U be a fixed morphism. Let z,y : X — U be two morphisms
such that for each of them the following diagram commutes:

Y

X

U

Definition 4.10 The morphisms z and y are homotopic for the left homo-
topy object X if there is a commutative diagram

(x,y)

XUy X U

(0,71) v h



We call h a homotopy from x to y, and denoted it h: z = y.

Property 4.11 If we fix a cylinder [y X, then for any homotopy i : x = y
starting from a left homotopy object X, there exists a homotopy k' : = y
starting from [y X. In particular, all cylinders define the same notion of
homotopy between morphismes.

Proof. By the lifting lemma (Property 4.5), we obtain a morphism m :
Iy X — X such that the following diagram commutes

U
XUy X — X
Goir)| " .: 4
IyX.4p>X
and we set A’ = h om.

Property 4.12 The homotopy relation defined with a cylinder is an equiv-
alence relation.

Definition 4.13 (i) The homotopy x o p : « = a is called the trivial
homotopy and is denoted 0.

(ii) Let h : 2 = y be a homotopy. By the lifting lemma (Property 4.5), we
obtain a morphism n : Iy X — [y X such that the following diagram
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commutes

(i0,i1)

Iy X

Here T is the interchange map of the two factors. The homotopy hon :
y = x is called a negative of the homotopy & and is denoted —Ah.

~
~

(iii) Let h: x

y and ¢ : y = z be two homotopies for the same cylinder

Iy X. The push out of two cylinders is a left homotopy object. So again
as in Property 4.11, we can apply the lifting lemma (Property 4.5) to

the diagram

U
(z,2) ()
XUy X ————— XUy X
(i0si1) . ~ | (p.p)
Iy X 4 X

The homotopy (h,g) om : & = z, is called the sum of the homotopies

and is denoted h + g¢.

Property 4.14 The notion of homotopy is stable by composition.

Proof. e Let g : U — V be a morphism and h : * = y be a homotopy. Then

goh:gox = goy isahomotopy.
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o let

A X

be any commutative diagram with B »— A a cofibration or the unit of A.
Then by the lifting lemma (Property 4.5), we obtain a morphism [ f : [gA —
Iy X such that the following diagram commutes

(J0,71)

Aug Al xuy x 2 L x

(ioi1) If s
IpA —"e 4 1
Soholf:xof=yofisthe desired homotopy.

Definition 4.15 We denote by If : IgA — Iy X any morphism from a
cylinder on B — A to a cylinder on Y — X such that the preceding diagram
commutes.

Remark 4.16 In the category of augmented DGA when X is a free DGA,
there is a canonical cylinder I X called the Baues-Lemaire cylinder and a
canonical map [ f : [A — X ([4] [.7.15). For this cylinder, a given homotopy
h 1 = y has a canonical negative —h and the sum of two homotopies is
canonically defined ([4] I1.17.3).

For the Baues-Lemaire cylinder, any homotopy h from x to y corresponds
uniquely to an (z, y)-derivation H ([9] 3.5, [4] 1.7.12). Of course, the canonical
negative of the homotopy h corresponds to the (y, x)-derivation —H. And the
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composite of the homotopy i and of the canonical map [ f, hol f corresponds
to the (z o f,y o f)-derivation H o f. Warning, the sum H + G of an (z,y)-

derivation H and an (y, z)-derivation G is not in general an (x, z)-derivation.

In section 6, we will use for DGA’s two lifting lemmas other than Property
4.5, the first of which refines Property 4.2.

Property 4.17 ([4] II.1.11=I1.2.11a)) Given a commutative diagram of un-
broken arrows

B X
ho. .

7 o ~ | P

A Y

where ¢ is a cofibration and p is a weak equivalence then

(i) there is a map h for which the upper triangle commutes and for which
p o h is homotopic to ¢ relative to B, and

(ii) this map h is unique up to homotopy relative to B.

Proof. We recall just the proof of (ii). Let A and & be two maps satisfying
(i) and let H and G be homotopies relatively to B for a cylinder Z from
poh to g and from ¢ to p o h respectively. We apply Property 4.2 to the
commutative diagram

(h.h)
AUpA —— X

R

oUrq o ~|P

ZUsZ — Y

(G.H)

Now F is a homotopy from A to k for the cylinder Z Uy Z.
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Property 4.18 ([9] 3.6) Consider the following diagram, that commutes up
to a homotopy H:

Tv X
. ho. .

7 o ~ | P
T™W Y

g

where T'V and T'W are free DGA’s, ¢ is a cofibration and p is a weak equiv-
alence. Then there exists a map h for which the upper triangle commutes
and such that p o i is homotopic to g. The homotopy G from po h to g can
be chosen such that G'o [i = H (G extends H).

5 Bar construction and homotopies

After reviewing Félix-Halperin-Thomas diagonal on the bar construction and
the notion of homotopy defined with cylinders, we prove in this section the
key lemma from which derives all our theorems. This lemma is a homotopic
version of Corollary 3.2. First, we need a “functoriality up to homotopy” of
the bar construction provided by the Property.

Property 5.1 Let

M

/
ARV SV M

be a “diagram” of chain augmented DGA’s where b : [A — A’and b’ : IM —
M’ are homotopies, and where Wo f = gop, and Vo f = goy'. Consider one of
the morphisms [ f : A — I M (Definition 4.15). If h'ol f = goh (naturality of
the homotopies) then the morphisms of augmented chain complexes B(V; ¢)
and B(V’; ') are homotopic.
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Proof. Since the bar construction is a functor preserving quasi-isomorphisms
from the category of pairs of chain augmented DGA’s to the category of
augmented chain complexes ([9] 4.3(iii)), B(/M; [ A) is a left homotopy ob-
ject on 0 — B(M;A) in the category of augmented chain complexes. So
B(h';h) : B(U; ) = B(V';¢') is a homotopy.

Lemma 5.2 (i) Let K (respectively C') be a strictly counitary chain HAH,

(i)

coassoctative up to a homotopy hessoerc (respectively hyssoec ): (A @ 1) 0
A= (1®@A)oA. Let f: K — C be a morphism of augmented DGA’s
such that ACf — (f ® f)AI( and hassocC[f — (f ® f ® f)hassocf( (f

commutes with the diagonals and the homotopies of coassociativity).

Then B(C; K) with the diagonal

B(Ac;Ax)

B(C; K) 22225, B w ¢ K @ K) 2% B(C;K) @ B(C; K)
is a strictly counitary coalgebra up to homotopy.

Constider the following cube of augmented chain DGA’s

K
w &
f I&®Ix—%—>[ @ K’
) ;
C ...... o) D RRRRERE > Cl gRg
AC’
Ac
CoC —e ' ("

where all the faces commute exactly except the top and the bottom
ones. Suppose that the top face commutes up to a homotopy hy,, :
(p @ ©)Ax = Agip and the bottom face commutes up to a homotopy
hiottom = (U @ U)Ac = AU such that hyottom [ f = (9 @ g)hiop. Then
the morphism of augmented chain complexes B(W;¢) : B(C; K) —
B(C"; K') commutes with the diagonals up to homotopy.
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Proof. the same as the proof of Corollary 3.2, with Property 5.1 replacing
the functoriality of the bar construction.

Remark 5.3 The results of this section remain true if we replace the bar
construction by any functor B preserving quasi-isomorphisms from the cate-
gory of pairs of chain augmented DGA’s to the category of augmented chain
complexes equipped with a natural, associative morphism of augmented com-
plexes
AW :B(P2@Q;A® B)— B(P; A)® B(Q; B).

In particular, Lemma 5.2 is valid for the functor B(M;A) = M @4 k if
f: K — Cis afree extension and K is a free DGA (The extra hypothesis is
needed to preserve quasi-isomorphisms.).

Remark 5.4 There is a generalization of Lemma 5.2(ii) to homotopy com-
mutative cubes. In [20], we define diagonals on B(C'; K') and B(C’; K') and
a morphism of augmented chain complexes from B(C'; K') to B(C'; K') com-
muting with the diagonals up to homotopy provided that the homotopies in
each face of the cube satisfies a compatibility condition.

6 HAH structure on free models

Let X be a graded vector space. We denote a free DGA (T'X,0) simply
by T'X except when the differential d can be specified. In particular, a free
DGA with zero differential is still denoted by (T'X,0).

Definition 6.1 ([19] D.28) An explicit HAH is a free DGA T'X equipped
with a morphism of augmented DGA’s A : TX — TX ® TX such that
(e@1l)oA=1=(1®¢)oA, ahomotopy hussoc : (A@1)0o A = (1®
A)o A and a homotopy heom @ A = 7A. Note that if (T'X, A, hussoc, Peom)
is an explicit HAH then (T'X,A) is a strictly counitary HAH, coassociative
and cocommutative up to homotopy. Let (T'X, Arx, hassocrx, Peomrx ) and
(TY, A1y, hassoery s Reomty ) be two explicit HAH’s. Let f: TX — TY be
an augmented DGA morphism. Then f is a morphism of explicit HAH s if
FX) Y, Arvf = (f @ F)Arx, hassoervIf = (f @ f @ [)hassoerx and
heomty If = (f @ f)hcomrx-

Theorem 6.2 Let f : E — B be a map between path connected pointed
topological spaces with a path connected homotopy fiber F'. We consider a

25



commutative diagram of augmented chain algebras as follows:

TX —— C.(QF)
X
m(f) Ci(Q2f)

TY —— C.(QB)

where TX, TY are free DGA’s and m(f) : TX »= TY is a free extension.
Then

1. TX (respectively TY ) can be endowed with an explicit HAH structure
such that Oy (respectively Oy ) commutes with the diagonals up to a

homotopy he, (respectively ho, ) and such that m(f) is a morphism of
explicit HAH’s and heo, extends (C.(2f) @ C(2f))ho -

2. B(Oy;0x) : B(TY;TX) = B(CL(Q2B); C.(QF)) is a morphism of

coalgebras up to homotopy.

3. The homology of the coalgebra up to homotopy TY @rxk is isomorphic
to H.(F) as coalgebras.

Remark 6.3 e The isomorphism of graded coalgebras between H.(TY @rx
k) and H.(F') fits into the commutative diagram of graded coalgebras:

IR

HATY) —— H.(QB)
H.(q) H.(9)
HATY @rx k) = H.(F)

where 0 : QB — F'is the inclusion and ¢ : TY — TY ®7rx k the quotient
map.
o The quasi DGC TY ®@7rx k can be made explicit using Example 2.2.

Remark 6.4 e The exact commutativity of the diagram in Theorem 6.2 is
not important. If the diagram commutes only up to homotopy, since m(f)
is a cofibration, by Property 4.18, we can replace Oy by another ©y which
is homotopic to it, so that now the diagram strictly commutes.
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e But it is important that m(f) is a cofibration. We will show it in
Remark 7.5. Indeed, the general idea for the proof of 1 is to control the
homotopies using the homotopy extension property of cofibrations.

Proof of Theorem 6.2

1. By Property 4.17(i), we put a diagonal on T'X, Arx, such that Ox
commutes with the diagonals up to a homotopy he,. The diagram of un-
broken arrows

TX — TX% — TYy®?

.Y

Apy 7 N

Y — C.(QB) ~ C.(QB)**

commutes, with homotopy C.(2f)®?he,. By Property 4.18, there exists a
diagonal on TY, Ary, satisfying

A7y extends the diagonal on T'X such that there exists a
(%) homotopy he, between (Oy @ Oy )Ary and Ag,ap)Oy
extending C(Qf)%?he, .

We can assume that, both the diagonal of T'X and the diagonal of T'Y are
counitary. Let’s give a sketch of proof of that: Since C.(QF) has a counitary
diagonal, by Property 4.17(ii), Arx is counitary up to a homotopy hynitrx -
That is, the diagram

TX 2 TX0TX

1) (e®1,1®¢)

TX xTX

commutes up to the homotopy fnurx. Furthermore, Ay is counitary up to
a homotopy hy.iiry extending h,,urx. We can change the diagonal of T'X
up to homotopy to get a counitary one [2, Lemma 5.4 i)]. Moreover, since
hynitry extends hy,;rx, we can change up to homotopy the diagonal of TY
to get a counitary one such that the condition (%) is still satisfied with the
new counitary diagonals.
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We give now a detailed proof that Arx is cocommutative up to a ho-
motopy heomrx and that Ary is cocommutative up to a homotopy heomry
extending heomrx: Since the diagonal on C.(QF) is cocommutative up to a
homotopy hcome,, by Property 4.17(ii), Arx is cocommutative up to a ho-
motopy heomrx. More precisely (Proof of Property 4.17(ii)), heomrx is given
by Property 4.2 in the diagram:

(rArx,Arx)

TXTTX TX%2

. . hcomTX

19U e ~
ITX Uy ITX C.(E)2

(The x heomc ©@x—he 5 )

where I'T X is the Baues-Lemaire cylinder (Remark 4.16). Now, since the ho-
motopy of cocommutativity of C.(2B) is natural ([2] (23)) and the sums and
negatives of homotopies are canonically defined (Remark 4.16), the following
cube of unbroken arrows is commutative:

TXIOTX TX%2

~
\hwm” ) \

ITX Upx ITX ~— C.(QE)®*

TYOUTY ——— T7Y®?

~
\h " \

ITY Upy ITY —— C.(QB)*?

The homotopy of cocommutativity of 'Y, heomry is given by applying Prop-
erty 4.2 to the commutative diagram

(ITX Urx ITX)Urxury (TY ILTY)

TY®?

R

~

hcomTY

ITY Uy IT C.(QB)%?
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A similar proof shows that A7y is coassociative up to a homotopy hussocrx
and that A7y is coassociative up to a homotopy hysseery extending hgssoerx -
2. Now, by Lemma 5.2, the augmented chain complexes quasi-isomorphism

B(Oy;0x): B(TY;TX) > B(C.OB;C.QF)

commutes with the diagonals up to homotopy. Since m(f) is a morphism
of explicit HAH’s, this diagonal on B(TY;TX) is counitary exactly and is
coassociative up to homotopy.

3. By Property 2.4(i) and Property 3.3, the augmented chain complexes
quasi-isomorphism

B(TY;TX) = TY @rx k

commutes exactly with the diagonals. By Remark 5.3, T'Y @rx k is a strictly
counitary coalgebra up to homotopy, coassociative up to homotopy and co-
commutative up to homotopy. By Proposition 3.10, C.(F') is weakly DGC
equivalent to B(C.QB; C.QF). So now by 2, the coalgebra H.(TY @rx k)
is isomorphic to H.(F).

7 The fiber of a suspended map

Lemma 7.1 Let X be a path connected space. Then there is a natural DGH
quasi-isomorphism TC,(X) 5 C,(QXX).

Proof. The adjunction map ad induces a morphism of coaugmented DGC’s

Culad) : Cu(X) — C.(QXX). By universal property of the tensor algebra

on the complex C.(X), denoted TC.(X), C.(ad) extends to a natural DGH
morphism. By Bott-Samelson Theorem ([16] appendix 2 Theorem 1.4), it is

a quasi-isomorphism, since the functors H and 7' commute.

Lemma 7.2 Let f : F — B be a continuous map between path connected
spaces. Then C(Fxy) is naturally weakly DGC equivalent to B(TC.(B); TC.(F)).

Proof. It is a direct consequence of Lemma 7.1, Proposition 3.10 and Corol-

lary 3.2.

Theorem 7.3 Let f: F — B be a continuous map between path connected
spaces such that H,(f) is injective. Then the graded coalgebra T Hy (B)@7m, (1)
k is isomorphic to H.(Fxy).
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Remark 6.3 holds here too.
Proof of Theorem 7.3 Since H.(f) is injective, we can apply Theorem 6.2
and Lemma 7.2 to the homotopy commutative diagram of DGA’s:

~

(TH(E),0) - T (k)
TH4(f) TC«(f) (7.4)
(T'H,(B),0) = TC.(B)

Since the horizontal arrows induce the identity in homology, the diagonals
on TH(FE) and THy(B) must be obtained by tensorization of the diagonals
of Hiy(F) and H(B).

Remark 7.5 If H.(f) is not injective, Theorem 7.3 is not true in general:
the algebra H*(F') does not depend only on H.(f). Indeed, since TH(f) is
not a free extension, we cannot apply Theorem 6.2 to the diagram 7.4.

For an example over F,, we can take a map f from S?~! to CPP~'.
Let ys be a generator of H*(Fyx;). If f is the Hopf map, there is a map
¢ : CP? — Fx; such that H*(¢) is an isomorphism. So y5 # 0. If f is the

constant map then y5 = 0.

Remark 7.6 When H.(B) is of finite type and H;(f) is an isomorphism,
the isomorphism given by Theorem 7.3 can be proved using a spectral se-
quence argument. Recall first that by the Bott-Samelson Theorem, the
adjunction maps ad induce an isomorphism of graded coalgebras between
TH(B)®7rm,mk and H,(QXB) @p,@or) k. The inclusion d : QX B — Fyy
is up to a homotopy equivalence a right QX F-fibration (Proof of Proposition
3.10). So kerH.(0) contains the left ideal generated by ImH(QXf) and by
Property 2.1, H.(0) induces a morphism of graded coalgebras

H,(0) : H.(QYXB) @p, o) k — H.(Fxy).

Since H.(QX f) is injective, the Serre spectral sequence applied to d collapses
at the Fy-term, H.(0) is surjective and ker H,.(0) is isomorphic to H.(Fyxs)®
H{(QXFE). Using again the Bott-Samelson Theorem, kerH.(9) is the left
ideal generated by the image of H (F) gadty Hy(B) Hr (o) H,(Q¥B). So
H.(0) is an isomorphism.
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8 Homotopy cofibers for CDGA’s

In this section, we develop the notions of cofibration, cofiber, homotopy
cofiber and homotopy push out in the category of augmented CDGA’s. We
give an example of homotopy cofiber crucial for the proof of Theorem 9.2
and we notice that the weak CDGA equivalence class of homotopy cofibers
of a CDGA morphism is preserved if one changes the CDGA morphism up
to quasi-isomorphisms.

Definition 8.1 Let ¢ : A — C be a morphism of augmented CDGA’s. Con-
sider the A-module structure on €' induced by ¢. If C'is an A-semifree module,
we say that ¢ is a cofibration (in the category of augmented CDGA’s) and we
denote 1 : A »— (. The cofiber of a cofibration ¢ : A ~— (' is the augmented
CDGA k@4 C.

Property 8.2 The category of augmented CDGA’s where the cofibrations
are the morphisms as defined above and where the weak equivalences are the
quasi-isomorphisms, satisfies axioms C'1, C2 and C3 of Definition 4.1 (but
not C4!).

Remark 8.3 If we restrict our definition of cofibrations to morphisms be-
ing relative Sullivan models, the category of augmented Q-CDGA’s forms a
cofibration category where all objects are fibrant ([4] 1.§8). However, over
a field of characteristic p, the category of augmented CDGA’s is still not a
cofibration category.

The topological notions of homotopy push out and homotopy cofibers can be
defined more generally in any category with a final object satisfying axiom
C1, C2 and C3 ([6], chapter 4).

Using Property 8.2, we develop now the notion of homotopy push out
and of homotopy cofiber in the category of augmented CDGA’s:

Let f: A— B, g: A — C be two morphisms of augmented CDGA’s.
Consider two factorizations f = poi, g = qgoj wherei: A»— D, 7: A —
E are cofibrations and p, ¢ quasi-isomorphisms. By Property 8.2, we can
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construct the commutative diagram of augmented CDGA’s:

14

7

A D > B

J i

E i D®ak = Boak (8.4)
~1q ~

C D@y C

All the rectangles appearing in this diagram are push outs, i and j are cofi-
brations. We have a chain of quasi-isomorphisms of augmented CDGA’s

Do,C & D@ F-=sBo4F.

In particular, the augmented CDGA’s D@ 4C, D@4 F and B& 4 E are weakly
CDGA equivalent and their weak CDGA equivalence class is independent of
the factorization chosen of f and g.

Definition 8.5 The augmented CDGA’s D @4 C, D @4 E and B @4 E
obtained by considering various factorizations of f and g as above are called
homotopy push outs of f and g. All the homotopy push outs of f and ¢
are weakly CDGA equivalent. The homotopy cofibers of f are the homotopy
push outs of f and of the augmentation on A, ¢ : A —» k.

Example 8.6 Let f : ' — B a chain Lie algebras morphism. If B is
positively graded and of finite type then C*(UB; E) = (UB)"@(?sE)Y, d1 +
dy) equipped with the tensor product algebra structure becomes a CDGA
which is a homotopy cofiber of C*(f): C*(B) — C*(FE).

Proof. By [9] 6.10, C*(UB; B) is an acyclic CDGA. Since B is of finite type,
C*(UB; B) is C*(B)-semifree. By the universal property of push out, there
is a CDGA morphism

C*(E) ©oem) C*(UB; B) — C*(UB; E)
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which is an isomorphism since B is of finite type. So we get the commutative
diagram of augmented CDGA’s

C*(B) ———"—— C*(E)

A\
A\

A\

4
k —— C*(UB;B)

C*(UB; E)

where the square is a push out and where C*(B) — C*(UB; B) is a cofi-
bration. Therefore, C*(UB; F) is a homotopy push out of C*(f) and of the
augmentation of C*(B).

Proposition 8.7 (particular case of [6] 4.13) Suppose given a commutative
diagram of augmented CDGA’s

A

12
12

f/

A B’

where the vertical arrows are quasi-isomorphisms. Consider two factoriza-
tions f = ®oq, /= ® o where 1 : A — C is a morphism of augmented
CDGA’s such that C' is an A-semifree module, o' : A" — C" is a morphism of
augmented CDGA’s such that C' is an A'-semifree module and ® : C' S B,
' . " S B are quasi-isomorphisms of augmented CDGA’s. Then the
cofibers k @4 C and k @4 C" are weakly CDGA equivalent.

Proof. By Property 8.2, we have the commutative diagram of augmented

CDGA’s

12
12
12



where 7 is a cofibration and f’ = ®oi. Sothe CDGA k@ A’ @4 C is a
homotopy cofiber of [’ as the CDGA k @4 C’. Therefore they are weakly
CDGA equivalent.

9 The fiber of the model in the Anick range

Let r > 1 be a fixed integer. p is going to be the least noninvertible prime
(or +00) in k. We suppose now p # 2.

Definition 9.1 [14] A topological space X is (r,p)-mild or in the Anick
range if it is r-connected and its homology is concentrated in degrees < rp
and of finite type.

Theorem 9.2 Let f: F — B be a continuous map between two topological
spaces both (r,p)-mild with H,,(f) injective. Consider the homotopy fiber F

and the fibration pg : ' — E. Then there are two morphisms of augmented
CDGA’s, denoted A(f): A(B) — A(E) and A(po) : A(E) — A(F) such that

1. there is a commutative diagram of cochain complexes

o*(f) " (po)

C*(B) — C7(E) C(F)

12
12
12

Do(B) — Dy(E) — Dy(F)

12
12
@
12

A(B) S A(E) AR

where all the vertical maps are quasi-isomorphisms and where all the

maps are DGA morphisms except © : Dy(F) = A(F) who induces a
morphism of graded algebras only in homology.
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2. for any factorization A(f) = ® o1 where i : A(B) »— C is a morphism
of augmented CDGA’s such that C is an A(B)-semifree module and
where ® : C S A(FE) is a quasi-isomorphism of augmented CDGA'’s,
we have a commutative diagram of augmented CDGA s

A(Sf) A(po)

A(B) A(E) A(F)
i P |~ ~
C Ds
k @) C

In particular, the cohomology algebra of the homotopy fiber of f, H*(F'),
is isomorphic to the cohomology of the homotopy cofiber of A(f), H*(K® a(p,
).

Remark 9.3 Over Q, the functor Apy due to Sullivan [22] is such that
the two CDGA morphisms Apr(f) : Apr(B) — App(F) and App(po) :
Apr(E) — App(F) verifies 1 and 2: by Corollary 10.10 of [10], for any

topological space X, there are natural quasi-isomorphisms of cochain algebras
C*(X) = D(X) & Apr(X)

and by the Grivel-Thomas-Halperin theorem “the fiber of a model is a model
of the fiber” ([10], 15.5), k @ 4(p) C' is weakly CDGA-equivalent to Apr(F').
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Proof. By naturality of Proposition 3.10 with respect to continuous maps,
we have a commutative diagram of DGC’s

C*(F) Cx(po) C*(E) Cx(f) C*(B)
G(F) G(E) G(B) (9.4)
B(C.(QB): C.(QE)) BC.(QE) — ¢ | peaB)

There is a commutative diagram of augmented DGA’s
TX — QC.(E) 5 C.(QF)

m(f) QCx(f) Cu(92f)
TY — QC.(B) = C.(QB)

where ) denotes the cobar construction ([8] Theorem I), TX is a minimal
free DGA and m(f) : TX — TY is a minimal free extension. Since the
indecomposables functor ) preserves quasi-isomorphism between free DGA’s

([5] 1.5),
X2s'H (E) and Y s 'H(E)® s cokerH, (f) @® ker H,(f).

So X and Y are graded vector spaces of finite type concentrated in degree > r
and < rp — 1. Denote by Ox the composite TX = QC,(E) = C,(QF) and
by Oy the composite TY = QC,(B) = C.(QB). By Theorem 6.2, m(f) :
T'X » TY is a morphism of explicit HAH’s and B(@y;Oyx) : B(TY;TX) =
B(CL(QE); C.(2B)) is a morphism of coalgebras up to homotopy.

By the naturality of Anick’s Theorem ([19] D.29 and D.21, see also the
proof of Theorem 8.5(g)[2]), there exists a DGL morphism L(f) : L(F) —
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L(B) and a commutative diagram of DGA’s

UL(E) —— TX
UL(f) m(f)

UL(B) ——~ TY

where ¢ and ¥ are two DGA isomorphisms equipped with two DGA homo-
topies

hiop : (0 @ ©)Avre) = Arxy  and  higprom : (V@ V) Aypnsy = Ay ¥
such that  hpettom LUL(f)) = (m(f) @ m(f))hiop

(the horizontal arrows commute with the diagonals up to natural homotopies).
By Lemma 5.2(ii), the isomorphism B(V;¢) : B{UL(B);UL(E)) = B(TY;TX)
commutes up to chain homotopy with the diagonals. We give C.(UL(B); L(F))
the tensor product coalgebra structure of UL(B) @ ?sL(F). The injection
C.UL(B); L(E)) = B(UL(B);UL(E)) is a DGC quasi-isomorphism ([9]
6.11). By functoriality of the bar construction and the Cartan-Chevalley-
Eilenberg complex with coefficients, finally we get the commutative diagram

of coalgebras up to homotopy

BOx(Qf)

B(C.(QB); C.(QE)) BC.(QE) BC.(QB)
B(0y:0x) | ~ B(Ox) |~ B(Oy) |~
B(TY;TX) B(TX) — 2D piry)
B(Up) | B(y) |~ B(Y) | = (9.5)
B(UL(B): UL(E)) BwL(E) 0 LBy
CUL(B); L(E)) (B — Mo B




where all the coalgebras up to homotopy are counitary and coassociative
exactly except B(TY;TX), all the morphisms commute exactly with the
diagonals except B(Oy;0x) and B(V¥;p), and where all the vertical maps
are quasi-isomorphisms. Define A(f) to be C*L(f) : C*L(B) — C*L(FE)
and A(po) to be the inclusion C*L(E) — C*(UL(B); L(F). By dualizing
diagram 9.4 and diagram 9.5, we obtain the diagram of 1.

By its definition, the CDGA k @45y C' is a homotopy cofiber of A(f)
(Definition 8.5). The CDGA A(F) := C*(UL(B); L(F)) is also a homotopy
cofiber of A(f) := C*(L(f)) (Example 8.6). So A(F') is weakly CDGA-
equivalent to k@ 4()C'. More precisely diagram 8.4 in the proof of Definition
8.5 gives the diagram of 2 with Dy = C*(UL(B); L(B)) @c=15) C.

To construct a factorization of A(f) is quite difficult. As in the rational
case, we would rather construct a factorization of a model of A(f):

Corollary 9.6 e Let A(f) : A(B) — A(E) be a CDGA morphism as in
Theorem 9.2. Let AY be a Sullivan model of A(B), AX a Sullivan model
of A(F). Then there is an acyclic CDGA U and a commutative diagram of
CDGA’s

AY —— A(B)
U, !

¥
AX ~— AX U — A(E)

A(f)

o Let AY »— C' 5 AX be a factorization of U : AY — AX such that C is a
AY -semifree module. Then the algebra H*(F') is isomorphic to H*(k @y C).
(This isomorphism identifies in homology C*(po) : C*(E) — C*(F) and the
quotient map C' —» k @xy C.)

Proof. The first part of this Corollary is just Proposition 7.7 and Remark
7.8 of [14]. The second part is Proposition 8.7 and Theorem 9.2.

As in the rational case, we can take a factorization of ¥ with relative
Sullivan models. But mod p, since the p!" power of an element of even
degree is always a cycle, our relative Sullivan model will have infinitely many
generators. We’d rather use a free divided powers algebra 7V where for
v € Viyen, vP = 0. But now arises the problem of constructing CDGA
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morphisms from a free divided power algebra to any CDGA where the p*
powers are not zero. We give now an effective construction of a factorization
of ¥ with divided powers algebras. Over Q, this factorization will be just a
factorization of ¥ through a minimal relative Sullivan model.

Lemma 9.7 Let W : (AY,d) — (AX,d) be a CDGA morphism between two
minimal Sullivan models such that X and Y are concentrated in degree > 2.
Then there is an explicit factorization of W:

(AY,d) - (AY @ Acokerp @ ? skerp, D) 5 (AX,d)
P

where
o ¢ is the composite Y — AY BAX > X and D is a ? -derivation,

e i is a minimal inclusion of augmented CDGA’s such that (AY @A cokerp®
?skerp, D) is (AY,d)-semifree, and

o p is a surjective CDGA quasi-isomorphism vanishing on 7 skerp.

Proof. We proceed by induction on the degree n € N*. Suppose we have
constructed the factorization:

(A(YS")) ,d — (A(YS") @ A(cokerp=™) @ 7 s(kere<"), D) = (A(X<"), d)

Pn

Let w € cokerp™tt. Define p,41(w) in obvious way. dp,41(w) is a cycle
of AXS". Since p, is a surjective quasi-isomorphism, there is a cycle z €
AYS") @ A(cokerp=™) @ 7 s(kerp<") such that p,(z) = dp,y1(w). Define
Dw = z.

Let v € kerp"t!. Since p,41 is a surjective morphism of graded algebras,
there is u € AZQ(YS” @ Cokerc,ogn) such that p,11(v+u) = 0. Since D(v 4+ u)
is a cycle of A(Y=")@ A(cokerp<") @7 s(kerp<") and p, is a surjective quasi-
isomorphism, there is v € A(Y<") @ A(cokerp<") @ 7 s(kerp=") such that
pa(v) =0 and Dy = D(v + u). Define Dsv = v + u — 7.
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Now we have the commutative diagram of CDGA’s:

Pn

A(YS”) ® A(Cokerc,ogn) ® ?S(kerc,ogn), D = A(XS”), d
A(YS”‘H) ® A(cokerc,ogn"'l) ® ?S(kerc,ogn"'l), p A(XS”‘H), d
A(Y”‘H) ® A(Cokerc,o”H) ® ?S(kerc,o”"'l),ﬁ @ A(X”H), 0

Since p, and p,y7 are quasi-isomorphisms, by comparison of the Fs-term of
the algebraic Serre spectral sequence associated to each column, p,11 is a
quasi-isomorphism.

Example 9.8 Let [ : S? — CP” be the inclusion of CW-complexes with
n > 2. Applying Corollary 9.6, ¢ is (A(x2, Yant1),d) — (A(xz, z3),d) with
dyzns1 = x5t and dzz = 22, By Lemma 9.7, v factorises through the CDGA
(A2, Yani1, 23) @ T 8Yans1, D) with Dzz = 22 and Dsya,q1 = Yong1 — 2325

So H*(F) 2 Azs @ 7 syapqq for p > 2n.

Remark 9.9 The hypotheses of the Theorem 9.2 are necessary:

e B must be (r, p)-mild. Indeed even for a path fibration QX — PX —»
X, a commutative model of X does not determine the cohomology algebra
of the loop space. XCP? and 5%V ..V 5%*! just not (2, p)-mild, have a same
commutative model but the cohomology algebras of their loop spaces are not
isomorphic.

e I/ and B both (r, p)-mild is not enough: H,,(f) must also be injective.
Take the same example as in Remark 7.5: the suspension of the Hopf map

Sf o us%-l s NCPrL.

Remark 9.10 Over Q, replacing A by Apr, the Grivel-Thomas-Halperin
theorem implies that the CDGA k @4y C is weakly DGA equivalent to
C*(F) (Remark 9.3). But over a field of characteristic p, we can’t improve
Theorem 9.2, by k @4y C ~ C*(F) as DGA’s. Indeed, let X be the 2p +3
skeleton of a K(Z,4), X is (3, p)-mild and C*(2X) is not weakly DGA equiv-
alent to a CDGA.
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Proof. A consequence of Milnor is that there exist two CW-complexes de-
noted Y and K(Z,3) with the same 2p + 2 skeleton, respectively homotopic
to QX and QK(Z,4). The two morphisms of topological monoids

QYP*)) 5 QY and Q(K(Z,3)%*2) 5 QK(Z,3)

induce in homology two algebra morphisms which are isomorphisms in de-
gree < 2p. Since H.(QK(Z,3)) = Tay as algebras, QY is l-connected,
Hy(QY') = Fya and of = 0. Suppose C*(Y') is weakly DGA equivalent to a
commutative chain algebra A. We can suppose that A is of finite type. The
Quillen construction [10, §22 e) and §23 a)] on the coalgebra AY is a DGL L4
equipped with a DGA quasi-isomorphism UL, := Q(AY) 5 C,(QY). The
homology of an universal enveloping algebra of a DGL, UL 4 is an universal
enveloping algebra of a Lie algebra, UFE ([14] 8.3). So H.(QY') admits by the
Poincaré-Birkoff-Witt Theorem a basis containing o} # 0.

10 Divided powers algebras

The key to the proof of Theorem 9.2 is to apply Anick’s Theorem ([2] 5.6).
One of the goal of Anick for developing this theorem was to prove a result
suggested by McGibbon and Wilkerson “If X is a finite simply-connected
CW-complex then for large primes, p'* powers vanish in [:[*(QX; F,).” ([17],
p. 699). Anick proved precisely that “If X is (r, p)-mild then p'* powers van-
ish in H*(QX;F,).” ([2] 9.1). After Anick, Halperin proved in [14] (Theorem
8.3 and Poincaré-Birkoff-Witt Theorem) that in fact:

Corollary 10.1 [14] If X is (r,p)-mild then the algebra H*(Q2X) is isomor-
phic to 7 sV where AV is a minimal Sullivan model of A(X).

Proof. Apply Corollary 9.6 to * — X and see that the homotopy cofiber of
(AV,d) - (k,0) given by Lemma 9.7, (k,0) @v,q) (AV @7 sV, D) has a null
differential ([14] 2.6).

Actually, we can show now that Anick’s result on p*” powers and Halperin’s
result on a divided powers algebra structure remain valid if we consider the
fiber of any fibration in the Anick range instead of just the loop fibration.
But before we need the notion of an admissible CGDA and of a 7-admissible
CGDA.
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Definition 10.2 A CDGA (respectively 7-algebra) A is admissible (respec-
tively 7 -admissible) if there is a surjective CDGA morphism (respectively
?-morphism) C' - A with C acyclic.

Property 10.3 ([15] I1.2.6) Let f : A — B a CDGA morphism (respec-
tively 7-morphism). If f is surjective and A is admissible (respectively 7-
admissible) then so is B.

Proposition 10.4 ([15] 11.2.7)

(i) If f: A— Bisa CGDA morphism with B admissible then we have
the commutative diagram of CDGA’s

A B

12

A7V’ — AR AV

where A — A ® AV is a relative Sullivan model and A »— AR TV’ is

a 7 -free extension.

(ii) In particular, if B is any admissible CDGA, there are CDGA quasi-
isomorphisms
VAV = B

where TV' is a 7 -algebra.

The essential role of 7-admissible algebras is that

Property 10.5 ([3] 1.3) If A is a ?-admissible algebra then H(A) is a ?-
algebra (not true if A was only a 7-algebral).

Lemma 10.6 Let A be a cochain commutative algebra. Assume that for
somer > 1, A satisfies A=k & {Ai}iz,,.

(i) If H'(A) =0, 1> rp, then A is admissible.
(ii) If Ais a?-algebra and H'(A) = 0,7 > rp+p—1, then A is 7 -admissible.
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Proof. (i) This lemma is just a slight improvement from Lemma 7.6 [14]

and the proof is the same: For each a € ZOdd, construct an obvious CDGA
morphism o, from the acyclic CDGA A(ka® kda) to A. For each a € A",
the cohomology class of lowest degree in A(ka @ kda) is represented by a”.
Extend this CDGA to an acyclic Sullivan model of the form A(ka G kda & V)
where V' is a graded vector space concentrated in degree > rp—1. Construct
a CDGA morphism o, : A(ka B kda® V) - A. Now @,c4+0, is a surjective
morphism from an acyclic CDGA to A.

(ii) For each a € ZOdd, the cohomology class of lowest degree in the 7-
algebra 7 (ka @ kda) is represented by v#~(da)a. After replacing A by 7., the
proof is the same as in (i).

Lemma 10.7 Let A and M be two cochain commutative algebras concen-
trated in degrees > r + 1. Consider a CDGA morphism A — M. If
H2v4e(A) = HZretp=Y (M) = 0 then Tor (M, k) is a divided powers algebra.

Proof. By Lemma 10.6 (i), A and M are admissible. By Proposition 10.4
(ii), there are CDGA quasi-isomorphisms

TXT AN S A

where X and X’ are concentrated in degrees > r 4+ 1. By Proposition 10.4
(i), we get the commutative diagram of CDGA’s

A

M

4

AX — AX @AY

12

Y

AX @Y’
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where Y and Y’ are concentrated in degrees > r. By push-out, we have the
commutative diagram of CDGA’s

AX AX @Y’

72X’ X' @Y’

where AX @ 7Y =5 2X'@7?7Y" is a CDGA quasi-isomorphism ([9] 2.3(i))
since AX @ ?7Y" is AX-semifree (Property 2.4(iii)). Since push-outs preserve
?-free extension, 7 X' »— 7 X' ® 7Y" is a 7-free extension. So 7 X' @ 7Y’ is
? X’-semifree, and by Proposition 8.7, the cohomology algebra of the cofiber
?Y" is Tor*(M, k). Now since ? X' is a ?-algebra, so is ? X’ @ ?Y”. Since
7X@ 1Y’ is concentrated in degrees > r and its cohomology is null in
degrees > rp + p — 1, by Lemma 10.6(ii), ? X’ @ ?7Y" is 7-admissible. Since
TX'®7?7Y" > 7Y is a surjective T-morphism, by Property 10.3, 7Y is a
?-admissible. So by Property 10.5, H(?Y") is a 7-algebra.

Theorem 10.8 Let p be an odd prime and let f : E — B be a fibration of
fiber F' such that E and B are both (r, p)-mild with H,.,(f) injective. Then the
cohomology algebra H*(F;F,) is a (not necessarily free!) divided powers al-
gebra. In particular, p* powers vanish in the reduced cohomology [:]*(F, F,).

Proof. By Theorem 9.2, H*(F;k) = TorA(B)(A(E). Since A(B) and A(FE)
are concentrated in degrees > r 4 1 and their cohomology is null in degrees

> rp, by Lemma 10.7, TorA(B)(A(E), k) is a divided powers algebra.
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