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Abstract

This paper reports on experiments exploring the applioatd a Stochastic

Optimality-Theoretic approach in the corpus-based |legymif some aspects of
syntax. Using the Gradual Learning Algorithm, the claugakax of German has
to be learned from learning instances of clauses extraocbed & corpus. The par-
ticular focus in the experiments was placed on the usatifity bidirectional ap-

proach, where parsing-directed, interpretive optimaais applied to determine
the target candidate for a subsequent application of géoerdirected, expres-
sive optimization. The results show that a bidirectionabtistrapping approach
is only slightly less effective than a fully supervised aggurh.

1 Introduction

In Optimality Theory (OT), learning of a language amountdeétermining the ranking
relation over a given set of constraints. Under the targetiray, the observed language
data have to be predicted as optimal (most harmonic) amag#iization alternatives
for the underlying meaning, or input. The fact that one aliive and not another is
observed provides indirect negative evidence, which isogtgqal in learning algorithms
(triggering a constraint re-ranking). A robust alternatte the original OT learning al-
gorithm of Tesar and Smolensky (1998) is provided by Boer§l888), Boersma and
Hayes (2001}: the Gradual Learning Algorithm (GLA), which assumes a amnbius
scale for the constraint ranks. With a stochastic compoinghe determination of the
effective constraint ranks, grammars can reflect variatiothe training data, while
effectively displaying categorical behaviour for most pbmena. This property has
been exploited in the analysis of variation in syntax (Beesand Deo 2001, Koontz-
Garboden 2001, Dingare 2001, Bresnan et al. 2001), basdteddT-LFG framework
which uses LFG representations for the candidates, witli-#teictures correspond-
ing to the input and (mainly) the c-structure and lexicaltabation differing across
candidates (Bresnan 2000, Sells 2001b, Kuhn 2001a, fortimgp).

Experimental applications of GLA have so far adopted thalidation that not
only the surface form of learning data is known, but the fulalysis, including the
input (and thus the entire candidate set). With this infdram misinterpretations
of the evidence for re-rankings are excluded, however asibéilearning approach
cannot keep up this idealization. Furthermore, most stuldéve applied the GLA on
a carefully controlled data set, focusing on variation inrealt set of phenomena (i.e.,
keeping other choices fixed by design).

In this paper, | explore the application of GLA for learnintagsal syntax, es-
sentially from free corpus data (in the present study fromewspaper corpus of
German). The candidate generation grammar is kept hightemgd with the only
inviolable restrictions being an extended X-bar schemew(mch all positions are

1An implementation of the GLA is included in the Praat progragnPaul Boersma and David
Weenink:htt p: //fonsg3. | et. uva. nl / praat/
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optional). Crucially, | do not assume full syntactic analyof the learning data as
given. | make the weaker, and arguably much more plausitdanagtion that the
learner can use language-independent evidence to narnew tth@ space of possible
semantic representations for an observed form. In the sabpaised learning exper-
iment this narrowing-down is simulated as follows: as tragndata | use individual
clauses (main clauses or subclauses) extracted from atrkelwith a given underly-
ing predicate-argument structure and the argument andfireoghrases pre-bracketed
as fixed chunks, as shown in (1).

(1) [Sostreng][sind] [aufdenGipfeln][die Sitten unddie GesetzalerEitelkeiten]
So strict are on the summitghe customsandtherules of vanities

With the clause boundaries and dependent phrases fixedjmegmnes with a boot-
strapping approach building on adirectional learning scheme become possible.
Under the bidirectionality assumpti@nthe same constraint ranking that determines
the grammatical form in expressive optimization (based direxd underlying mean-
ing) is used in interpretive optimization: for a given sggjthe most harmonic parsing
analysis is taken to be correct. Even though the space oilpp@gsterpretations is nar-
rowed down, parsing with the liberal underlying grammargsean average of more
than 16 analyses for short sentences (with four or less ‘k$ij)nso the interpretive
optimization is not trivial.

2 OT Syntax background

This paper builds on the OT-LFG framework (Bresnan 1996,026Quhn forthcom-

ing), in which an Optimality-Theoretic grammar for syntaxformalized based on
LFG representations. The OT-LFG architecture is sketcbearf example in the di-
agram in figure 1 and is introduced informally in the folloginThe small grammar
fragment used for this illustration is essentially BresadDT-LFG reconstruction of
Grimshaw (1997) (Bresnan 2000, sec. 2).

A highly general LFG grammat;,,;,; iS assumed that constrains the set of uni-
versally possible c-structure/f-structure pairs, i.e.encodes a basic (extended) X-
bar scheme, but is very unrestrictive. In the standard esgore optimization, the
set ofcandidate structures defined as thos@';,,:,;-analyses (c-structure/f-structure
pairs) which share the semantically interpreted part offtegucture (the input’).
So, there are different potential syntactic realizatiohthe same meaning to choose
from. OT constraints (such as the ones in (2)) are structigatriptions of subparts
of a c-structure, an f-structure or of both structures (edlathrough the projection
function ¢). Subparts of the actual candidate structures may violateesof the de-
scriptions/constraints, so the constraint set definesrestraint violation profilefor
each candidate structure.

2(Smolensky 1996), for discussion in OT-LFG (outside ther@ay context) see Lee (2001), Kuhn
(2000, 2001b).
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Figure 1: A sketch of the OT-LFG architecture (expressiviaization)
(2) a. Or-SPEC (Bresnan 2000)
An operator must be the value ob& [discourse function] in the f-structure.
b. OB-HD (Bresnan 2000, (21))
Every projected category has a lexically filled [extendéd,ead.
c. Sray (Bresnan 2000, (24))

Categories dominate their extended heads.

Given the language-specific ranking of constraint imparganlifferent structures
from the set of candidates arise as optimal in the sense GHtiig the fewest of the
most important constraints (see section 3 for some moreaissan). In English (3), it
is more important to mark the scopewfh-elements overtly than to realize arguments
in their canonical position; in wh-in situ language the situation is different: (4). Only
the optimal candidate is defined to be a grammatical reaizaf the underlying part
of the f-structure (“input”).
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(3) a. R1:0p-SPEC> OB-HD > STAY: English

b. 0
| T
) d || I
Candidate set: o|0|Hh
[ip she will [yp read what]]] *!
[cp What [ she will [yp read]]] S
[0 [cp whatwill [;p she [p read]]] ok

(4) a. R2:STAY>> OP-SPEC > OB-HD: whin situ language
b.

STAY
OB-HD

Candidate set:

[] [ip “she” “will" [ vp “read” “what”]]
[cp “what” [1p “she” “Will" [ vp “read™]]]
[cp “what” “will” [1p “she” [yp “read”]]] | *I*

*| OP-SPEC

X
*

Interpretive optimization  The general architecture of standard expressive optimiza-
tion is easily adapted to a slightly different formal systgunhn forthcoming, ch. 5): if
the set of competing candidate structures is not defined loyrarmn semantic repre-
sentation, but by a common surface string, we get a systémespretive optimization
Rather than choosing from different potential syntactadieations of a meaning, the
OT evaluation now chooses from different syntactic strregu(many of which differ
in semantic interpretation too) for a given surface string.

This “reverse” formal system has been adapted for a varigipguistic modeling
tasks, in particular for a derivation of the discrepancywsstn production and com-
prehension in language acquisition (Smolensky 1996), arsymtax to model word
order freezing effects (Lee 2001, Kuhn 2001b). Interpeetiptimization may also be
assumed in the learning procedure for a standard expreS3iggammar, which will
be discussed in section 5.1.

3 Ranking vs. weighting

The previous discussion—Ilike most of the linguistic workdi—took a central OT
assumption for granted: The relative importance of the tamgs for a specific lan-
guage is determined by strict ranking This means that violating a high-ranking
constraint is worse than arbitrarily many violations of solower-ranking constraint.
The ranking scheme is more restrictive than a summation wegghted constraints
would be (which one might have chosen as a more general waynapating the joint
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effect of constraints of different importance, and whiclilosinstance underlying the
predecessor of OT, Harmony Grammar).

The OT hypothesis of strict ranking is motivated for the viezgson of making the
system more restrictive, such that clearly testable tygiokd predictions of the system
follow from the assumption of a particular set of constrainto illustrate this point,
let us briefly compare the way predictions are grounded im&ing scheme and how
this compares to a weighting scheme.

If we have a constraint violation profile as in tableau (5)ttwthe ranking of the
constraints open) and we observe candidate A in the datapae khat ®ONSTR 3
must outrank the other two constraintsO€STR. 3> { CONSTR 1, CONSTR 2 }—
else candidate A would be the winner. This kind of configwmis called aanking
argument The fact that candidate B incurs three violations eNSTR 3 and not just

one is irrelevant: the only way that B will lose against A isamhCONSTR. 3 is ranked
highest.

(5)

CONSTR. 3

Candidate set

candidate A
candidate B o

*| CONSTR 1
*| CONSTR. 2

Now, if in addition to (5), we observe the’ and A’ candidate of (6-b) and (6-c)
data for the same language, we get an inconsistency: (6eb)6an) are ranking argu-
ments for WNSTR 2> CONSTR 3, and WNSTR 1> CONSTR 3, respectively.

(6) Under the ranking hypothesis, (a) is incompatible with (bjl §c)

(@)

Candidate set: Candidate set:

[] candidate A [] candidate A
candidate B*** candidate B

(b) ()

Candidate set:

[] candidate A
candidate B|*

CONSTR. 1
CONSTR. 2

CONSTR. 3
*|| CONSTR. ]
*|| CONSTR. 2
*|l CONSTR. 3
CONSTR. 1
CONSTR. 2
*|l CONSTR. 3

*

So, a small set of clear data is already very informative 8baDT account, based on
the ranking hypothesis. If we do observe all the data in (@ 8ingle language, we
know that the constraint set assumed was inadequate; maydeditional constraint
or an entirely different set of constraints is needed.

Now, under aconstraint weightingegime no such clear conclusion about the sym-
bolic part of the theory—the constraints and the candidepresentations—can be
drawn. The (a) type of data may be compatible with (b), with (ith both, or
none. Examples (7)—(9) illustrate this with different nidga weights assumed for
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the constraints (the winner is defined to be the candidate thi# greatest weighted
sum over violation marks, e.g., (7-b)Awins over (7-b,B) since—4 < —3). In all
cases the (a) data are correctly predicted, sSinfBONSTR 1) + w(CONSTR 2) >

3 x w(CoNSTR 3). Note however that absolute constraint weights would |eadift
ferent rankings in each of the cases, as is suggested bydbearnotation (which of
course has no technical effect, since we are looking at ahtiegysystem).

(7) (a) is compatible with (b), but not with (c)

not compatible

] M N —ATMTAN —A M AN
Cle|le Pl le| e
H| = | = =l = E |l ==
2122, 228 2129
@ 51580 518/8/© 5|56
Candidate sef:O | O | O || Candidate set; O | O | O || Candidate set;] O | O | O
—4|-3|-1 4|—-3|—1 —4|-3|—1

[]-5cand. A * *1|[] -3 cand. A * []—3cand. A *
—9cand.B |*** —4 cand. B| * —1cand. B *

(8) (a)is compatible with (b) and (c)

— TN ™M —A TN T ™M —A TN ™M
¢le| e Ple| e le| e
|l =] E E|lE|E |l =] E
2121 21 2122 212|2
(@) ) o|lo| o (b) ) o|lo|o (©) ) o|lo|o
Candidate set; O | O | O ||Candidate setf © | O | O || Candidate set] O | O | O
—6|—5|—4 —6|—5|—4 —6|—5|—4
[]—11cand. A * | * [] —4cand. A * ||[] —4 cand. A’ *
—12 cand. B Fhx —6 cand. B| * —5 cand. B *
(9) (a)is compatible with neither (b) nor (c)
not compatible not compatible
O AN MTATAN MHTATAN
¢l Pl le| e
| E |l E|E E|lE|E
212121 2122 2122
(@) ) O|0|o0o (b) ] o|o|o (©) ) o|lo|o
Candidate sef:O | O | O || Candidate setf © | O | O || Candidate set;] O | O | O
—3|-2|-1 —3|—-2|-1 —3|—2|-1
[] —3 cand. A * | * 1|1 ] —3 cand. A| * [] -3 cand. A'| *
—9 cand. B*** —2cand. B * —1 cand. B *

As the example illustrated, the constraint weighting sobdi@s an undesirable prop-
erty if we are interested in finding a linguistically motiedtset of constraints for pre-
dicting a typological spectrum of languages: the effectiokipg a particular con-

straint set is underdetermined—a readjustment of the m@instveights may have the
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same effect as a modification of the constraint set, i.e syh&bolic part of the theory.

This motivates the OT assumption of a constraint rankingmeg The strong interpre-

tation of the OT constraint set assumes that the constretinéBects innate restrictions
on possible grammars (i.e., it formalizes Universal Gramma

Limitations due to the ranking hypothesis Related to its restrictiveness, the rank-
ing hypothesis has the effect that the phenomenon of optiponavariability of output
forms for a single underlying input becomes almost impdesib derive. The strict
constraint ranking differentiates between any two cantéglaith a different constraint
profile, predicting all but one candidate to be ungramméfica

There are different possible ways of overcoming the linotad: one could assume
a more fine-grained input representation, distinguishigtgvieen cases of optionality;
the selection of this input representation itself could bedelled by a contextually
controlled process, which may not be fully deterministic. dfferent modification
of the strict OT system is the assumption of a less fixed rankinthe constraints
(Anttila 1997, Boersma 1998, Boersma and Hayes 2001). Tdahastic OT system
proposed by Boersma will be discussed in more detail in thxé sextion. Yet another
option might be to assume a weighting scheme where the veeggattypically widely
separated, so the emerging behavior is almost that of arrgrécheme.

It is fairly difficult to find independent criteria for deciag between the various
choices in the architecture of such a modified OT system:yampkhe systems for a
non-trivial learning task, as is attempted in this papegns way of assessing their
adequacy (although this alone may not lead to a conclusswem.

4 Learning

The learning procedures that have been proposed for Opityritaleory are essentially
error-driven This means that during learning, a hypothetical constnanking is
applied to the learning data. Under a simplifying assunmpgehich will be challenged
in section 5.1), the learner has access to the underlyingt irgpresentation for an
observed piece of learning data; with the candidate segtofined in terms of7;,,,:.;
and the input, the learner has thus access to the full sendidates. The learner will
then need some monitoring ability, in order to be able to carapts own predictions
of the output/winner, based on the hypothetical constrainking, with the output in
the actual data. Whenever there is a mismatch, this is ev@trat the hypothetical
ranking cannot be (fully) correct.

For instance, in (10) the hypothetical rankingiSTR. 1 > CONSTR 2> ...>>
CoNSTR 5 would predict candidate A to be the winner. But the obsgougput struc-
ture is candidate B. Hence, the assumed ranking must hanarm@rect: ®NSTR 3

30f course more than one candidate can have the same conhpiaite, but with a realistic con-
straint set, this is no modelling option for most cases ofaoatlity.
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should outrank ©ONSTR. 1.

(10) Detecting an error in the learner’s system

CONSTR 1

Candidate set:

candidate A
observed: candidate B*!

CONSTR 4
CONSTR 5

*| CONSTR 2
*| CONSTR 3

*
*

In the Constraint Demotion Algorithm (Tesar and Smolens®98), this type of rank-
ing argument is exploited to make conservative modificatiohthe ranking, which
guarantee that learning will converge (on noise-free dat@dnstraints violated by
both the predicted winner (A) and the observed output (B)@nmbtraints violated by
neither of the two are ignored in a learning step. Of the r@magi constraints, the
ones violated by observed output are demoted just belowebigianking constraint
violated by putative winner. SOGNSTR 1 is demoted just below@\STR 3:

(11) Constraint demotion

CONSTR 4
CONSTR 5

Candidate set:

candidate A
observed: candidate B *

N

(12) Constraint ranking after learning step

CONSTR. 1
*| CONSTR. 2
*| CONSTR. 3

*
*

CONSTR 3
CONSTR 1
CONSTR 4
CONSTR 5

Candidate set:

candidate A
observed: candidate B

*| CONSTR 2

e

*
*
*

The Gradual Learning Algorithm (GLA) Since the Constraint Demotion Algo-
rithm was developed for the strict OT ranking architectitezannot be used to learn
from data displaying optionality/variation. Also, the atghm is not robust; i.e., a sin-
gle instance of data incompatible with the target ranking o@rupt the intermediate
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ranking in a way from which the learner cannot recover. Boerg1998), Boersma
and Hayes (2001) propose an alternative learning algorithenxGradual Learning Al-

gorithm (GLA), based on a modified ranking architecture,ahhs robust and can deal
with optionality.

In the modified architecture—stochastic OT—the constreanking is no longer
discrete, but the constraints are ranked on a continuoues. gsba rank or strength of a
constraint is represented by a numerical value. (Howeverstill have a ranking and
not a weighting, i.e., just the relative strengths of caaists are relevant; there is no
summation over the values of the violated constraints.)h&scindidates in a tableau
are evaluated, some random noise with a normal distribugiadded to the constraint
strength. This can have the effect of reversing the effeatider of the constraint and
thus leads to a variable behavior of the system.

Diagram (13) is a schematic illustration of a set of constsaianked on the contin-
uous scale, with strength decreasing from left to right. Wtee constraint strengths
(i.e., the means of the normal distribution) are sufficigfdl apart—as for ONSTR. 3
vs. CONSTR 4—a reversal will effectively never happen, so we have agaical
effect like with a discrete ranking. For constraints withimitar strength (like @N-
STR. 4 and WNSTR. 5), we will however find both orders, depending on the notse a
evaluation time.

(13) BruEiR 5

In the GLA, designed for stochastic OT, a learning step ¢ergd by an observed
error like in the Constraint Demotion Algorithm) does naddeto a readical change in
the constraint ranks. Rather, a slight adjustment of thestcaimt ranks is made, pro-

moting the constraints violated by the erroneous winnet,demoting the constraints
of the observed output:

(14) Promotion/demotion in the GLA

— [9V] o <t [Xe)

I e B

FlEl E|F]|FE

w (7)) w (7)) w

=z 2 =z =z =z

) O|lo|o|0o] o
Candidate set: olojlo|Oo| O

candidate A * | *

observed: candidateB* | * *
— — —

Data types occurring with sufficient frequency will cause epeated demo-
tion/promotion, so a quasi-categorical separation of trestraint strengths can result;
noise in the data will have only a temporary effect. In vaitigbphenonema, opposing
tendencies of constraint demotion/promotion will ultiglgtbalance out in a way that
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reflects the frequencies in the data (assuming a large ersangle is presented to the
learner).

As applications of the GLA in phonology and syntax (see tkegicins in section 1)
have shown, the algorithm is able to adjust the constrarengths for the linguis-
tic constraint sets posited in these studies in an apptepway: the behavior of the
stochastic model indeed replicates the frequency digtdbwof the data types in the
learning datd. However, so far GLA applications have focused on relatiahall,
clear-cut grammar fragments.

5 Experiments

The experiments reported in this paper address the follpgirestions: (i) Can GLA
be used for an exploratory analysis of a more complex cludterteracting phenom-
ena? (ii) What is the amount of target information requiredantrol the error-based
learning scheme?

Methodologically, the idea was to start out with a certainoddinguistically well-
understood constraints, and to add further constraintsdardo explore interactions.
The set of phenomena to be chosen for this investigation wgsosed to display vari-
ation, but at the same time clearly obey certain languageifp principles. Under
these criteria, the clausal syntax of German is a well-dui¢éeget for learning: the
system is confronted with a high degree of word order varrain the relative or-
der of argument phrases in tiMittelfeld (the area following the finite verb in matrix
clauses), but the verb position in the various clause typégad and has to be learned
as categorical facts. The exact way of representing thaitigidata from a corpus
was motivated by considerations concerning the “degreeipéwision” in learning
(question (ii)), which is discussed in the following subis@t.

5.1 Targetinformation in learning

How much information should be provided to the learner wit@ kearning data? Pre-
vious studies of learning in OT—nboth for the constraint déoroalgorithm and for the
GLA—have assumed the following idealization: the learsgpriesented with the full
candidate set (which is constructable from the exact inpli}s the exact target output
candidate (compare the diagram in (15)). This means thatrania the predictions
of the learner’s system can be very reliably detected—if @imer candidate than the
target output is more harmonic, we have an error.

“4Keller and Asudeh (2001) observe that for certain constrsets that have been assumed in the
linguistic literature, the GLA does not converge; howevés may indicate that the assumed constraints
are insufficient for an adequate description of the data.
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(15) Full target annotation (schematic)
input (meaning)

cand cand cand cand cand
]
prespecified

Of course, the only direct observation that a human learasrdtcess to is the
surface form (of utterances made by adult speakers). Thaseb®a many different
underlying inputs for a given surface form, and even for gam@e combination of input
and surface string, there may be differences in the sywtanalysis. In theoretical OT
work, a process ofobust interpretive parsings assumed, which the learner applies
to “guess” what the underlying input for an observed stringTiesar and Smolensky
1998). The current constraint ranking is simply appliedlmndet of candidates defined
by a common surface string (parsing-based or interprefterozation). Based on the
underlying input determined in this way, the standard gatn@n-based or expressive
optimization is applied as the basis for the actual learoognpare (16)).

(16) Determining the target for expressive optimizarion byliptetive optimization
meaning meaning

[ ]
L]
(determined\by/interpretive OT ovetring;)

[ ]
string string,
observed

Hence, the mentioned idealization in the presentationetdlget structure is not
hard-wired into the OT architecture. A bidirectional of mpization (robust interpre-
tive parsing, plus expressive optimization) works withthis assumption. In the long
run, one may hope that corpus-based learning experimentapgay the general bidi-
rectional strategy. However, based exclusively on linfitiisaterial, a corpus-based
learner has a considerable disadvantage: the human leznerxploit semantic in-
formation and background knowledge, and this way the clsaicenterpretive parsing
are often narrowed down considerably. In the present exyaaris, | tried to simulate
this effect by providing the full predicate-argument sture (i.e., the full underlying
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input) for the learning instances. This still leaves openciiof the syntactic analyses
for the observed string is the right target winner.

(17) Narrowed down set of choices in interpretive optimization
meaning meaning

string string,

5.2 Experimental set-up

The training data were extracted from thesER treebank, a syntactically annotated
newspaper corpus of German (cf. Brants et al. (2002), Zimssreet al. (2002)). The
treebank includes full categorial and functional annotagj but this information was
of course only partially exploited for training data (as &rjustified by non-syntactic
information available to the human learner).

The data was split up into single clauses, i.e., either matduses or embedded
clauses (presented as separate training instances). tBef@cus was on the learning
of clausal syntax, embedded argument/modifier phrases, (RIPs, etc.), were pre-
bracketed, and their grammatical functions were providgd.syntactic information
was provided about verbal constituents, i.e., verbs andiaues were left as separate,
unconnected units.

For example, sentence (18) would give rise to two trainirsgances (19)—one for
the matrix clause, including a single “chunk” for the embedadomplement clause,
and one for the internal structure of the complement clause.

(18) DerVorstandder Firma hatgefordert,daRderGeschaftsfuhrer entlassen
the board of thecompanyhasdemandedhatthe managing directolaid off
wird.

IS

(19) a. [Der Vorstand der Firma] hat gefordert, [daf3 . ..]
b. dal’ [der Geschéftsfuhrer] entlassen wird

The candidate analyses The set of candidates was generated by a highly under-
restricted LFG grammari;,....;), approximating the OT hypothesis that all universally
possible structures should be included in this set. Refigativiolable principles, an
extended X-bar scheme is encoded in the LFG grammar; thenscheevery general
however, all positions are optional, functional projensIP, CP) can be freely filled
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with verbs, auxiliaries, complementizers. The grammar waten and applied with
Xerox Linguistic Environment (XLEY. As an illustration of the broad range of anal-
yses licensed by the underlying grammar, consider the sastplctures in (21) for
sentence (20).

(20) [Sostreng]sind][aufdenGipfeln][die Sitten unddie GesetzealerEitelkeiten]
So strict are on the summitshe customsndtherules of vanities

(21) a. VP
VP
e
/\
AP Y, PP NP
Sostreng sind aufden Gipfeln die Sitten und die Gesetze itilk&ten
b. FP
Fl
VP
o
AP F PP NP
|

Sostreng sind aufden Gipfeln die Sitten und die Gesetze itkdk&ten

C.
AP v PP NP
— | : _— _ :
Sostreng sind aufden Gipfeln die Sitten und die Gesetze itkdk&ten
d. FP
FI
FP
Fl
%P
AP F PP NP
|

Sostreng sind aufden Gipfeln die Sitten und die Gesetze itk &ten

The OT constraints The constraints were also encoded using XLE (compare Frank
et al. (2001)). The core constraints adopted were inspiye@Db accounts of clausal

SFor technical reasons, a generation-based applicatidreajtammar was simulated by parsing alll
permutations of the string. In future experiments, it skidug possible to use the XLE generator.
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syntax (Grimshaw 1997, Sells 2001a); further constrairgseevadded to ensure distin-
guishability of candidates. A total of about 90 constrainés used—based on X-bar
configurations, precedence relations of grammatical fanstNP types (pronominal

vs. full), etc.

Due to computation-intensive preprocessing routinedfetearning data, required
after each change in the assumed constraint set, the lgagrperiments were only
performed on small training sets. The reported resultsrara & specific sequence of
experiments based on 195 training sentences.

5.3 Learning schemes

The corpus-based learning was performed with the GLA (usisgnple Prolog im-
plementation) in generation-based optimization. As dised in sec. 4, the GLA is an
error-based learning algorithm, i.e., at each state, thaéx applies its present, hypo-
thetical ranking. If the predicted winner matches the taméput, no adjustment is
necessary; if a different output is the target, the constsariolated only by the pre-
dicted winner have to be promoted, while those violated daylyhe target output are
demoted.

As discussed in sec. 5.1, a realistic approach should cartpettarget winner
based on a bidirectional approach. In order to test thelféegiof such an account—
within the limits of the assumptions discussed above—ttiféerent learning schemes
were compared in the experiment:

1. The “fully supervised” scheme:
The exact target structure for the training clauses was aignannotated (based
on the standard analysis of German clause structure).

2. The “string-as-target” scheme:
No manual annotation was made; all candidates with the vigind order count
as target winners (no interpretive optimization is perfedn Only predicted
winners with an incorrect surface order count as errorss-ganstraints violated
by any of the target winner&@nd not the predicted winner) are demoted.

3. The bidirectional optimization (or “bootstrapping”)heme:
The current ranking is used to determine a target winner gnpansing alterna-
tives for the observed string. All other candidates (pdgsaith correct surface
order) count as errors.

SFor the bidirectional scheme, two variants were comparede, an which the same effective
ranking—i.e., the ranking after addition of noise—was usegeneration and parsing; and another
one, in which the initial parsing-based optimization wasigked several times (leading to different ef-
fective rankings), in order to determine a larger set oféamginners. The evaluation showed that both
variants lead to a very similar behavior.
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5.4 Results

Evaluation schemes It is not straightforward how to best evaluate the perforogan
of a generation-based optimization system. Demandinghieatvord string predicted
for an unseen underlying predicate-argument structurentexact match of the actual
string in the corpus would be too strict, since there are ntases of real optionality:
even in the concrete given context, several orderings afegily natural. Instead of
evaluating how often the exact string in the corpus is ptedi¢or unseen generation
tasks, the main evaluation measure is based on a manuabéionaif the acceptable
permutations for a set of 100 evaluation sentences, whidmbabeen presented as
training data. All natural-sounding permutations in theegi context were annotated
as possible generation alternatives. No inter-subjectpewsion of the annotations
was made, so the raw percentage numbers for the variousigathemes should be
treated with some caution. The focus of the experiments wascomparisorof the
different schemes.

Besides this main evaluation measure, a variation of thiedaitional optimization
technique was applied: the ranking that the learner cameitin(tirough generation-
based learning, possibly with a parsing-based deternoinatf the target winner) is
used in a disambiguation task. For sentences with ambigcases marking on the
argument phrases, a theory of word order preferences psdubav likely the individual
readings are (compare the discussion of word order freemirgdirectional OT in
Kuhn (2001b), Lee (2001)). A corpus example of such an anthigicase marking
is shown in (22): both bracketed NPs can be either nominativaccusative. 50
such unseen examples from the corpus were used for the sevahdhtion measure,
counting how often the intended reading was matched by thiesys prediction.

(22) daf3[die Bundesregierung] [die militdrische Zusammenarbeitjviederbelebt
that the federal governmenthe military cooperation revitalized
hat
has

Results The evaluation results (for a specific series of experimegts shown in
(23). The left-most column shows the results for the intgaking (with all constraints
ranked the same).

(23) a. Percent acceptable orderings on unseen data

initial ranking | “string-as-target”| bidirectional| “supervised”
34% 66% 87% 90%

b. Disambiguation of unseen parsing ambiguities

initial ranking | “string-as-target”| bidirectional| “supervised”
54% 76% 84% 83%

Note that in (23a), the bidirectional approach leads to ais@ant improvement over
the “string-as-target” scheme. For the disambiguatiok {@8b), the bidirectional
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scheme is as good as the supervised apprbash.both measures indicate that the
bidirectional bootstrapping approach is very promising.

6 Discussion

While the question about the usefulness of bidirectionéihaigation in learning can
be answered positively, it is not entirely clear what cosmus can be drawn for the
other question: can the GLA be used straightforwardly inxgraratory analysis with
a large number of constraints? The large set of constrageiss to make the analysis
of linguistic effects somewhat opaque. However, this magileeto a lack of analytical
tools.

As | discussed in Kuhn (2002), there are certain cases inhwtiie GLA is not
able to deal with conflicting (statistical) ranking argurtgerit is possible that the data
sets contained such cases. A small experiment using a waggdsed model on the
training data from the fully supervised scheme indicated &hbetter fit on the training
data is possible (in this experiment, | used the log-lineadeh that Johnson et al.
(1999) developed for disambiguation of parses with a lacge LFG grammaé).

For deciding what is an adequate linguistically restridiestning model to deal
with a larger number of interacting phenomena, further eérpents are required. The
learning instances should be kept more controlled, withawtng to move away from
the use of real corpus data. A promising approach might beeaauslightly relaxed)
classical large-coverage grammar to produce the learnatgnal.

"The fact that it is even slightly better may be an effect ofghell size of the training data; it was
easier for the bidirectional approach to come up with (ptiédly incorrect) generalizations over the
data, whereas the supervised approach was confrontedheitfinguistically motivated target annota-
tions, for which there may not have been enough support il dlee.

8] would like to thank Mark Johnson for providing the learnicade.
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