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Abstract: A new class of algorithms for solving nonlinearly constrained mixed
variable optimization problems is presented. This class combines and extends
the Audet-Dennis Generalized Pattern Search (GPS) algorithms for bound con-
strained mixed variable optimization, and their GPS-filter algorithms for general
nonlinear constraints. In generalizing existing algorithms, new theoretical con-
vergence results are presented that reduce seamlessly to existing results for more
specific classes of problems. While no local continuity or smoothness assumptions
are required to apply the algorithm, a hierarchy of theoretical convergence results
based on the Clarke calculus is given, in which local smoothness dictate what can
be proved about certain limit points generated by the algorithm. To demonstrate
the usefulness of the algorithm, the algorithm is applied to the design of a load-
bearing thermal insulation system. We believe this is the first algorithm with
provable convergence results to directly target this class of problems.

1 Introduction

We introduce a new class of derivative-free filter algorithms for mixed variable optimization
problems with general nonlinear constraints. Mixed variable optimization problems [6] are
characterized by a mixture of continuous and categorical variables, the latter being discrete
variables that must take on values from a predefined list or set of categories, or else the
problem functions cannot be evaluated. Thus, continuous relaxations are not possible. These
variables may be, and often are, assigned numerical value, but these values are typically
meaningless. Type of material, color, and shape are common examples.

In formulating the mixed variable programming (MVP) problem, we note that changes
in the discrete variables can mean a change in the constraints, and even a change in problem
dimension. Thus, we denote nc and nd as the maximum dimensions of the continuous and
discrete variables, respectively, and we partition each point x = (xc, xd) into continuous
variables xc ∈ Rnc

and discrete variables xd ∈ Znd
. We adopt the convention of ignoring

unused variables.

The problem under consideration, can be expressed as follows:

min
x∈X

f(x)

s.t. C(x) ≤ 0,

where f : X → R∪{∞}, and C : X → (R∪{∞})p with C = (C1, C2, . . . , Cp)
T . The domain

X = Xc × Xd is partitioned into continuous and discrete variable spaces Xc ⊆ Rnc
and

Xd ⊆ Znd
, respectively, where Xc is defined by a finite set of bound and linear constraints,
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dependent on the values of xd. That is,

Xc(xd) = {xc ∈ Rnc

: `(xd) ≤ A(xd)xc ≤ u(xd)},
where A(xd) ∈ Rmc×nc

is a real matrix, `(xd), u(xd) ∈ (R ∪ {±∞})nc
, and `(xd) ≤ u(xd) for

all values of xd. Note that this formulation is indeed a generalization of the standard NLP
problem, in that, if nd = 0, then the problem reduces to a standard NLP problem, in which
`, A, and u (and hence, X = Xc) do not change.

The class of optimization algorithms discussed in this paper treats X by the “barrier”
approach. Rather than applying the algorithm to f , it is applied to fX ≡ f + ψX , where ψX

is the indicator function of X, which takes on a value of zero in X and +∞ elsewhere. This
will not affect the convergence results, since these results will depend on the smoothness of
f , not fX .

Torczon [28] introduced the class of generalized pattern search (GPS) methods for solv-
ing unconstrained NLP problems, unifying a wide variety of existing derivative-free methods,
and proving convergence of a subsequence of iterates to a stationary point, under the assump-
tions that all iterates lie in a compact set and that the objective function f is continuously
differentiable in a neighborhood of the level set L(x0) = {x ∈ Rn : f(x) ≤ f(x0)} defined by
the initial point x0 ∈ Rn. Under similar assumptions, Lewis and Torczon extended pattern
search to bound [22] and linearly constrained problems [23] by ensuring that directions used
in the algorithm include tangent cone generators of all nearby constraints, thereby ensuring
convergence of a subsequence of iterates to a Karush-Kuhn-Tucker (KKT) point. Lewis and
Torczon [21] also establish the connection between pattern search methods and the posi-
tive basis theory of Davis [14], in which they generalize [28] to allow the use of any set of
directions that positively span Rn, which can significantly reduce the number of function
evaluations.

Audet and Dennis [6] extended pattern search to bound constrained MVP problems under
the assumption of continuous differentiability of the objective function on the neighborhood
of a level set in which all iterates lie. The success of the method is demonstrated in [20]
on a problem in the design of thermal insulation systems, an expanded version of which is
discussed and numerically solved in [2]. A further extension to linearly constrained MVP
problems with a stochastic objective function is given in [27].

A more general derivative-free framework for solving linearly constrained mixed variable
problems is introduced in [26]. Instead of applying pattern search to the continuous variables,
mathematical conditions are established, by which a suitably chosen derivative-free method
could be used as a local continuous search and ensure convergence to a first-order KKT
point. A general derivative-based approach for large-scale unconstrained MVP problems
that exploits these conditions is given in [25].

An equivalent formulation of GPS for linearly constrained NLP problems was introduced
and analyzed by Audet and Dennis [7] for functions that are less well-behaved. They apply
the nonsmooth calculus of Clarke [12] to establish convergence properties for functions lacking
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the smoothness properties of those studied in previous work. In doing so, they present a
hierarchy of convergence results for bound and linearly constrained problems, in which the
strength of the results depends on local continuity and smoothness conditions of the objective
function. As a consequence, they establish some of the earlier results of [28], [22], and [23]
as corollary to theirs.

For NLP problems with general nonlinear constraints, Lewis and Torczon [24] apply
bound constrained pattern search to an augmented Lagrangian function [13] and show that,
under the same assumptions as in [13], plus a mild restriction on search directions, the
algorithm converges to a KKT first-order stationary point.

Audet and Dennis [8] adapt a filter method within the GPS framework to handle gen-
eral nonlinear constraints. Originally introduced by Fletcher and Leyffer [15] to conve-
niently globalize sequential quadratic programming (SQP) and sequential linear program-
ming (SLP), filter methods accept steps if either the objective function or an aggregate
constraint violation function is reduced. Fletcher, Leyffer, and Toint [16] show convergence
of the SLP-based approach to a limit point satisfying Fritz John [19] optimality conditions;
they show convergence of the SQP approach to a KKT point [17], provided a constraint qual-
ification is satisfied. However, in both cases, more than a simple decrease in the function
values is required for convergence with these properties.

Audet and Dennis show convergence to limit points having almost the same characteriza-
tion as in [7], but with only a simple decrease in the objective or constraint violation function
required. While they are unable to show convergence to a point satisfying KKT optimality
conditions (and, in fact, have counterexamples [8]), in that −∇f(x̂) does not necessarily
belong to the normal cone at x̂, they are able to show that −∇f(x̂) belongs to the polar of
a cone defined by directions that are used infinitely often. Thus, a richer set of directions,
although more costly, will increase the likelihood of achieving convergence to a KKT point.

The present paper introduces a filter GPS algorithm for MVP problems with general
nonlinear constraints. In doing so, we rely on the nonsmooth Clarke [12] calculus as in [7]
and [8] to establish a unifying hierarchy of results for all the pattern search methods to date.

The paper is outlined as follows. After presenting some basic ideas on mixed variables in
Section 2, we construct the mixed variable GPS (MVPS) method of Audet and Dennis [6]
in Section 3, retailored for linearly constrained MVP problems. In Section 4, we extend
this development to general constraints by the use of a filter and present the Filter-MVPS
algorithm. We establish the theoretical convergence properties for the new algorithm in
Section 5. In Section 6, the algorithm is applied to the design of a load-bearing thermal
insulation system, and some limited numerical results from [2] are provided to illustrate the
usefulness of the algorithm.
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2 Local Optimality for Mixed Variables

In order to solve problems with categorical variables, a notion of local optimality is needed.
For continuous variables, this is well-defined in terms of local neighborhoods. However, for
categorical variables, a local neighborhood must be defined by the user, and there may be
no obvious choice for doing so; special knowledge of the underlying engineering process or
physical problem may be the only guide.

To keep the definition as general as possible, we define local neighborhoods in terms of
a set-valued function N : X → 2X , where 2X denotes the power set (or set of all possible
subsets of X). By convention, we assume that for all x ∈ X, the set N (x) is finite, and
x ∈ N (x).

As an example, one common choice of neighborhood function for integer variables is the
one defined by N (x) = {y ∈ Xd : ‖y − x‖1 ≤ 1}. However, categorical variables may have
no inherent ordering, which would make this choice inapplicable.

We now extend the classical definition of local optimality to mixed variable domains, by
the following slight modification of a similar definition by Audet and Dennis [6].

Definition 2.1 A point x = (xc, xd) ∈ X is said to be a local minimizer of f with respect
to the set of neighbors N (x) ⊂ X if there exists an ε > 0 such that f(x) ≤ f(v) for all v in
the set

X ∩
⋃

y∈N (x)

(
B(yc, ε)× yd

)
. (1)

In order to develop and analyze algorithms for solving optimization problems over a
mixed variable domain, we require a definition of a limit, and a notion of continuity for N .

Definition 2.2 Let X ⊆ (Rnc × Znd
) be a mixed variable domain. A sequence {xi} ⊂ X

is said to converge to x ∈ X if, for every ε > 0, there exists a positive integer N such that
xd

i = xd and ‖xc
i − xc‖ < ε for all i > N . The point x is said to be the limit point of the

sequence {xi}.
Definition 2.3 Let ‖ · ‖ be any vector norm on Rnc

. The set-valued function N : X ⊆
(Rnc × Znd

) → 2X is said to be continuous at x ∈ X if, for every ε > 0, there exists δ > 0
such that, whenever u ∈ X satisfies ud = xd and ‖uc− xc‖ < δ, the following two conditions
hold:

1. If y ∈ N (x), then there exists v ∈ N (u) satisfying vd = yd and ‖vc − yc‖ < ε,

2. If v ∈ N (u), then there exists y ∈ N (x) satisfying yd = vd and ‖yc − vc‖ < ε.

Definition 2.3 will ensure that, in the convergence theory that appears in Section 5, for
certain subsequences of iterates, the limit point of a corresponding subsequence of discrete
neighbor points is itself the discrete neighbor of the limit point of the subsequence of iterates.
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3 Pattern Search for Linearly Constrained MVPs

In order to introduce the Filter-MVPS algorithm, it is helpful to first build up the structure
by describing the GPS algorithm for linearly constrained MVP problems. Most of the dis-
cussion in this section comes from [6], but some improvements are added here, including a
slightly more general mesh construction and the treatment of linear constraints and functions
that are not necessarily continuously differentiable.

A pattern search algorithm is characterized by a sequence of iterates {xk} in X with
nonincreasing objective function values. Each iteration is characterized by two key steps –
an optional global search step and a local poll step – in which the objective function is
evaluated at a finite number of points (called trial points) lying on a carefully constructed
mesh (to be formally defined for MVP problems later) in an attempt to find a new iterate
with a lower objective function value than the current iterate (called the incumbent).

A key practical point in the Audet-Dennis GPS algorithms is that they explicitly separate
out a search step from the poll step within the iteration. In the search step, any
strategy may be used in selecting a finite number of trial points, as long as the points lie
on the mesh. This flexibility lends itself quite easily to hybrid algorithms and enables the
user to apply specialized knowledge of the problem. The user can apply a favorite heuristic,
such as random sampling, simulated annealing, a few generations of a genetic algorithm,
etc., or perhaps optimize an inexpensive surrogate function on the mesh, as is common
in difficult engineering design problems with expensive function evaluations [5, 10, 9, 11].
While the search step contributes nothing to the convergence theory of GPS (and in fact,
an unsuitable search may impede performance), the use of surrogates enables the user to
potentially gain significant improvement early on in the iteration process at much lower cost.

If the search step fails to find an improved mesh point (i.e., a point with lower objective
function value), then the poll step is invoked, in which the function is evaluated at a set
neighboring mesh points around the incumbent, called the poll set. The poll step is more
carefully structured, so as to help ensure the algorithm’s theoretical convergence properties.
If either the search or poll step finds an improved mesh point, then it becomes the
incumbent, and the mesh is retained or coarsened. If no improved mesh point is found, then
xk is said to be a mesh local optimizer, and the current mesh is refined.

3.1 Construction of the Mesh and Poll Set

The following construction is slightly more general than in [6]. For each combination i =
1, 2, . . . , imax, of values that the discrete variables may possibly take, a set of positive spanning
directions Di is constructed by forming the product

Di = GiZi, (2)
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where Gi ∈ Rnc×nc
is a nonsingular generating matrix, and Zi ∈ Znc×|Di|. We will sometimes

use D(x) in place of Di to indicate that the set of directions is associated with the discrete
variable values of x ∈ X. The set D is then defined by D =

⋃imax

i=1 Di.

The mesh Mk is formed as the direct product of Xd with the union of a finite number of
lattices in Xc. Each of these lattices is the union of lattices centered at the continuous part
of the variables at previously visited trial points. More precisely :

Mk = Xd ×
imax⋃
i=1

M i
k (3)

with M i
k =

⋃
x∈Sk

{xc + ∆kD
iz : z ∈ Z |Di|

+ } ⊂ Xc,

and where ∆k > 0 is the mesh size parameter, and Sk is the set of trial points where the
objective function and constraints were evaluated by the start of iteration k. We should note
that the mesh is purely conceptual and is never explicitly created. Instead, directions are
only generated when necessary in the algorithm.

Using this construction, we also require that the neighborhood function N be constructed
so that all discrete neighbors of the current iterate lie on the current mesh; i.e., N (xk) ⊆ Mk

for all k = 0, 1, . . .. This will be explicitly stated as an assumption in Section 5. Also
observe the each lattice in (4) is expressed as a translation from xc

k, as opposed to yc
k, for

some yk ∈ N (xk). This is necessary to ensure convergence of the algorithm. This does not
mean that a point and its discrete neighbors have the same continuous variable values. In
fact, Kokkolaras et al. [20] construct their neighbor sets in a way that neighbors often do
not have the same continuous variable values.

Polling in the MVPS algorithm is performed with respect to the continuous variables,
the discrete neighbor points, and the set of points generated by an extended poll step.
At iteration k, let Dk(x) ⊆ Di0 ⊂ D denote the set of poll directions for some x ∈ Sk

corresponding to the i0-th set of discrete variable values. The poll set centered at x is
defined as

Pk(x) = {x} ∪ {x + ∆k(d, 0) ∈ X : d ∈ Dk(x)} ⊂ Mk ⊂ X. (4)

We remind the reader that the notation (d, 0) is consistent with the partitioning into con-
tinuous and discrete variables, respectively, where 0 means that discrete variables do not
change value. Thus, x + ∆k(d, 0) = (xc + ∆kd, xd

k).

In some cases where the poll set and set of discrete neighbors fail to produce a lower
objective function value, MVPS performs an extended poll step, in which additional
polling is performed around any promising points in the set of discrete neighbors whose
objective function value is sufficiently close to the incumbent value. That is, if y ∈ N (xk)
satisfies f(xk) ≤ f(y) < f(xk) + ξk for some user-specified tolerance value ξk ≥ ξ (called the
extended poll trigger), where ξ is a fixed positive scalar, then we begin a polling sequence
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{yj
k}Jk

j=1 with respect to the continuous neighbors of yk beginning with y0
k = yk and ending

when either f(yJk
k + ∆k(d, 0)) < f(xk) for some d ∈ Dk(y

Jk
k ), or when f(xk) ≤ f(yJk

k +
∆k(d, 0)) for all d ∈ Dk(y

Jk
k ). For this discussion, we let zk = yJk

k , the last iterate (or
endpoint) of the extended poll step. We should note that in practice, the parameter ξk is
typically set as a percentage of the objective function value (but bounded away from zero),
such as, say, ξk = max{ξ, 0.05|f(xk)|}. A relatively high choice of ξk will generate more
extended poll steps, which is likely to lead to a better local solution, but at a cost of
more function evaluations. On the other hand, a lower value of ξk will require fewer function
evaluations, but it will probably result in a poorer quality local solution.

The set of extended poll points for a discrete neighbor y ∈ N (xk), denoted E(y), con-
tains a subset of the points {Pk(y

j
k)}Jk

j=1. At iteration k, the set of points evaluated in the
extended poll step (or extended poll set) is given by

Xk(ξk) =
⋃

y∈N ξ
k

E(y), (5)

where N ξ
k = {y ∈ N (xk) : f(xk) ≤ f(y) ≤ f(xk) + ξk}.

3.2 Update Rules

If either the search, poll, or extended poll step is successful at finding an improved
mesh point, then it becomes the new incumbent xk+1, and the mesh is coarsened according
to the rule,

∆k+1 = τm+
k ∆k, (6)

where τ > 1 is rational and fixed over all iterations, and the integer m+
k satisfies 0 ≤ m+

k ≤
mmax for some fixed integer mmax ≥ 0. Coarsening of the mesh does not prevent convergence
of the algorithm, and may make it faster. Note that only a simple decrease in the objective
function value is required.

If the search and poll steps both fail to find an improved mesh point, then the incum-
bent is a mesh local optimizer and remains unchanged (or, alternatively, can be chosen as
a point having the same function value as the incumbent, if one exists), while the mesh is
refined according to the rule,

∆k+1 = τm−
k ∆k, (7)

where τ > 1 is defined above, τm−
k ∈ (0, 1), and the integer m−

k satisfies mmin ≤ m−
k ≤ −1

for some fixed integer mmin.

It follows that, for any integer k ≥ 0, there exists an integer rk such that

∆k = τ rk∆0. (8)
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3.3 Linear Constraints

In order to treat linear constraints and still ensure appropriate convergence results, the only
requirement is that the directions that define the mesh be sufficiently rich to ensure that
polling directions can be chosen that conform to the geometry of the constraint boundaries,
and that these directions be used in infinitely many iterations. For our analysis, we need the
following definition (from [7]), which abstracts this notion of conformity. We appeal to the
construction of Lewis and Torczon [23], who provide an algorithm for choosing conforming
directions using standard linear algebra tools.

Definition 3.1 A rule for selecting the positive spanning sets Dk(x) ⊆ D conforms to X
at x for some ε > 0, if at each iteration k and for each y in the boundary of X for which
‖y − x‖ < ε, the tangent cone TX(y) is generated by nonnegative linear combinations of a
subset of the columns of Dk(x).

Nonlinear constraints pose a problem for GPS algorithms in that choosing enough di-
rections to conform to the geometry of the constraints (to guarantee convergence to a KKT
point) would require an infinite number of directions in D, which the convergence theory does
not support. Thus, a different strategy must be employed to handle nonlinear constraints.
In the next section, we add a filter to do this.

4 The Filter-MVPS Algorithm

In filter algorithms, the goal is to minimize two functions, the objective f and a continuous
aggregate constraint violation function h that satisfies h(x) ≥ 0 with h(x) = 0 if and only if
x is feasible. The function h is often set to h(x) = ‖C(x)+‖, where ‖ · ‖ is a vector norm and
C(x)+ is the vector of constraint violations at x; i.e., for i = 1, 2, . . . ,m, Ci(x)+ = Ci(x) if
Ci(x) > 0; otherwise, Ci(x)+ = 0. If the squared 2-norm is used, then h inherits whatever
smoothness properties C possesses [8].

In our case, and consistent with [8], we define a second constraint violation function
hX = h + ψX , where ψX is the indicator function for X. It is 0 on X and +∞ elsewhere.
We will see in Section 5 that convergence results will depend on the smoothness of h and
not hX .

The Filter-MVPS algorithm can be viewed as either an extension of the Filter-GPS
algorithm [8] for mixed variables, or as an extension of the mixed variable GPS algorithm
of Audet and Dennis [6] for general nonlinear constraints. We present it here as the latter,
and appeal to [8] for the construction of the filter.
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4.1 Filters

The definition of dominance provided below, which comes from the multi-criteria optimiza-
tion literature, is adapted from a similar term in [15], so that it is defined with respect to
the objective function f and constraint violation function h. This adaptation is consistent
with [8]. A formal definition of a filter follows immediately thereafter.

Definition 4.1 A point x ∈ Rn is said to dominate y ∈ Rn, written x ≺ y, if f(x) ≤ f(y)
and hX(x) ≤ hX(y) with either f(x) < f(y) or hX(x) < hX(y)

Definition 4.2 A filter, denoted F , is a finite set of points in the domain of f and h such
that no pair of points x and y in the set have the relation x ≺ y.

In constructing a filter for GPS algorithms, we put two additional restrictions on F .
First, we set a bound hmax on aggregate constraint violation, so that each point y ∈ F
satisfies hX(y) < hmax. Second, we include only infeasible points in the filter and track
feasible points separately. This is done in order to avoid a problem with what Fletcher and
Leyffer [15] refer to as “blocking entries”, in which a feasible filter point with lower function
value than a nearby local minimum prevents convergence to both that minimum and a global
minimum. Tracking feasible points outside of the filter circumvents this uncommon but
plausible scenario. With these two modifications, the following terminology is now provided.

Definition 4.3 A point x is said to be filtered by a filter F if any of the following properties
hold:

1. There exists a point y ∈ F such that y ¹ x,

2. hX(x) ≥ hmax,

3. hX(x) = 0 and f(x) ≥ fF , where fF is the objective function value of the best feasible
point found thus far.

The point x is said to be unfiltered by F if it is not filtered by F .

Thus, the set of unfiltered points, denoted by F , is given by

F =
⋃
x∈F

{y : y º x} ∪ {y : hX(y) ≥ hmax} ∪ {y : hX(y) = 0, f(y) ≥ fF}. (9)

Observe that, with this notation, if a new trial point has the same function values as those
of any point in the filter, then the trial point is filtered. Thus, only the first point with such
values is accepted into the filter.
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4.2 Description of the Algorithm

For the new class of algorithms, at each iteration k, the poll center pk is chosen as either the
incumbent best feasible point pF

k or the incumbent least infeasible point pI
k. For a given poll

center pk, the poll set Pk(pk) is defined in equation (4).

Because the filter seeks a better point with respect to either of the two functions (the
objective function f and the constraint violation function hX), a change must be made
to the rule for selecting discrete neighbors, about which to perform an extended poll
step. Recall that in the MVPS algorithm, extended polling is performed around any discrete
neighbor whose objective function value is sufficiently close to that of the current iterate
(i.e., “almost” an improved mesh point). With the addition of nonlinear constraints to the
problem, we require a notion of a discrete neighbor “almost” generating a new incumbent
best feasible point or least infeasible point.

While this issue has by no means a single workable approach, the implementation here
has the desirable property of being a generalization of the MVPS algorithm. At iteration k,
let fF

k = f(pF
k ) denote the objective function value of the incumbent best feasible point. If

no feasible point exists, we set fF
k = ∞. Similarly, let hI

k = hX(pI
k) > 0 be the constraint

violation function value of the incumbent least infeasible point. If no such point exists,
we set hI

k = hmax and f I
k = −∞, where f I

k = f(pI
k) is the objective function value of the

least infeasible point. Given current poll center pk and user-specified extended poll triggers
ξf
k ≤ ξ > 0 and ξh

k ≤ ξ > 0 for f and h, respectively (where ξ is a positive constant), we
perform an extended poll step around any discrete neighbor yk ∈ N (pk) satisfying either
0 < hI

k < hX(yk) < min(hI
k + ξh

k , hmax), or hX(yk) = 0 with fF
k < f(yk) < fF

k + ξf
k . The

extended poll triggers ξf
k and ξh

k can also be set according to the categorical variable values
associated with the current poll center, but this dependency is not included in the notation,
so as not to obfuscate the ideas presented here.

Similar to the MVPS algorithm described in Section 3, the extended poll step gen-
erates a sequence of extended poll centers {yj

k}Jk
j=0, beginning with y0

k = yk and ending

with extended poll endpoint, yJk
k = zk.

Thus, at iteration k, the set of all points evaluated in the extended poll step, denoted
Xk(ξ

f
k , ξh

k ), is

Xk(ξ
f
k , ξh

k ) =
⋃

y∈N f
k ∪Nh

k

E(y) (10)

where E(y) denotes the set of extended poll points, and

N f
k = {y ∈ N (pk) : hX(y) = 0, fF

k ≤ f(y) ≤ fF
k + ξf

k}, (11)

N h
k = {y ∈ N (pk) : 0 < hI

k < hX(y) < min(hI
k + ξh

k , hmax)}. (12)

The set of trial points is defined as Tk = Sk ∪ Pk(pk) ∪ N (pk) ∪ Xk(ξ
f
k , ξh

k ), where Sk is
the finite set of mesh points evaluated during the search step.
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The addition of the filter complicates our notions of success or failure of the iteration
in finding a desirable iterate. The following definitions now define the two outcomes of the
search, poll, and extended poll steps.

Definition 4.4 Let Tk denote the set of trial points to be evaluated at iteration k, and let
Fk denote the set of filtered points described by (9). A point y ∈ Tk is said to be an unfiltered
point if y 6∈ Fk.

Definition 4.5 Let Pk(pk) denote the poll set centered at the point pk, and let Fk denote
the set of filtered points described by (9). The point pk is said to be a mesh isolated filter
point if Pk(pk) ∪N (pk) ∪ X (ξf

k , ξh
k ) ⊂ Fk.

Figure 1 is a depiction of a filter on a bi-loss graph, in which the best feasible and least
infeasible solutions are indicated, and the feasible solutions lie on the vertical axis (labelled
f). Dashed lines indicate the areas for which an extended poll step is triggered. If
a feasible discrete neighbor has an objective function value that lies on (fF

k , fF
k + εf

k) (i.e.,
higher on the axis than the current incumbent, but lower than the horizontal dashed line), an
extended poll step is performed around this discrete neighbor. Similarly, an extended
poll step is performed if an infeasible discrete neighbor has a constraint violation function
value that lies on (hF

k , hF
k +εh

k) (i.e., it lies to the right of the current least infeasible solution,
but left of the vertical dashed line).

6f

-
h

fF
k

(hI
k,fI

k )

hmax

Fk

r
r

hI
k+ξh

k

fF
k +ξf

k

Figure 1: MVP Filter and Extended Poll Triggers.

The goal of each iteration is to find an unfiltered point, but the details of when to continue
an extended poll step must be generalized from the simple decrease condition in f under
which the MVPS algorithm operates. More specifically, if the extended poll step finds
an unfiltered point, it is added to the filter, the poll center is updated (if appropriate), and
the mesh is coarsened according to the rule in (6). If the extended poll step fails to find
a new point y satisfying y ∈ N f

k ∪N h
k , then the current incumbent poll center pk is declared



June 21, 2004 13

to be a mesh isolated filter point, the current poll center is retained, and the mesh is refined
according to the rule in (7).

Finally, we treat the case in which extended poll points are filtered, yet still belong to N f
k

or N h
k . To do so, we establish the notion of a temporary local filter. At iteration k, for each

discrete neighbor yk, a local filter FL
k (yk) is constructed relative to the current extended

poll step and initialized only with the point yk and hL
max = min(hI

k + ξh
k , hmax). As with

the MVPS algorithm, the extended poll sequence {yj
k}Jk

j=1 begins with y0
k = yk and ends

with zk = yJk
k , where each yj

k is the poll center of the local filter – chosen either as the best
feasible or least infeasible point, relative to the local filter. Extended polling with respect to
yk proceeds, with the local filter being updated as appropriate, until no more unfiltered mesh
points can be found with respect to the new local filter, or until an unfiltered point is found
with respect to the main filter. When either of these conditions is satisfied, the extended
poll step ends, and the main filter is appropriately updated with the points of the local
filter, which is then discarded. The mesh size parameter ∆k, which is constant throughout
the step, is then updated, depending on whether an unfiltered point (with respect to the
main filter) has been found.

The extended poll step and and Filter-MVPS (FMVPS) Algorithm are summarized
in Figures 2 and 3.

Extended Poll Step at Iteration k

Input: Current poll center pk, filter Fk, and extended poll triggers ξf
k and ξh

k .

For each discrete neighbor yk ∈ N f
k ∪N h

k (see (11) and (12)), do the following:

• Initialize local filter FL
k with yk and hL

max = min{hI
k + ξh

k , hmax}. Set y0
k = yk.

• For j = 0, 1, 2, . . .

1. Evaluate f and hX at points in Pk(y
j
k) until a point w is found that is unfiltered

with respect to FL
k , or until done.

2. If no point w ∈ Pk(y
j
k) is unfiltered with respect to FL

k , then go to Next.

3. If a point w is unfiltered with respect to Fk, set xk+1 = w and Quit.

4. If w is filtered with respect to Fk, but unfiltered with respect to FL
k , then update

FL
k to include w, and compute new extended poll center yj+1

k .

• Next: Discard FL
k and process next yk ∈ N f

k ∪N h
k .

Figure 2: Extended Poll Step for the FMVPS Algorithm
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Filter Mixed Variable Generalized Pattern Search – FMVPS

Initialization: Let x0 be an undominated point of a set of initial solutions. Include all
these points in the filter F0, with hmax > hX(x0). Fix ξ > 0 and ∆0 > 0.

For k = 0, 1, 2, . . . , perform the following:

1. Choose a poll center pk ∈ {pF
k , pI

k}, and update the extended poll triggers ξf
k ≥ ξ and

ξh
k ≥ ξ.

2. Set the incumbent values fF
k = f(pF

k ), hI
k = hX(pI

k), f
I
k = f(pI

k).

3. Search step: Employ some finite strategy seeking an unfiltered mesh point xk+1 6∈
Fk.

4. Poll step: If the search step did not find an unfiltered point, evaluate f and h at
points in the poll set Pk(pk)∪N (pk) until an unfiltered mesh point xk+1 6∈ Fk is found,
or until done.

5. Extended Poll step: If search and poll did not find an unfiltered point, execute
the algorithm in Figure 2 to continue looking for xk+1 6∈ Fk.

6. Update: If search, poll, or extended poll finds an unfiltered point,
Update filter Fk+1 with xk+1, and set ∆k+1 ≥ ∆k according to (6);
Otherwise, set Fk+1 = Fk, and set ∆k+1 < ∆k according to (7).

Figure 3: FMVPS Algorithm

5 Convergence Analysis

The convergence properties of the new algorithm are now presented. First, the behavior
of the mesh size parameter ∆k will be shown to have the same behavior as in previous
algorithms, and a general characterization of limit points of certain subsequences is given.
Results for the constraint violation function and for the objective function follow, similar to
those found in [8]. Finally, stronger results for a more specific implementation of the new
algorithm are provided. These mimic those found in [6], but apply to the more general MVP
problem with nonlinear constraints. We should note that many of the results presented here
are significantly different than the original presentation in [1].
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We make the following assumptions, consistent with those of previous GPS algorithms:

A1: All iterates {xk} produced by the algorithm lie in a compact set.
A2: For each fixed xd, the corresponding set of directions Di = GiZi, as defined in (2),
includes tangent cone generators for every point in Xc(xd).
A3: If x is a poll center, or an extended poll center, the rule for selecting directions Dk(x)
conforms to Xc for some ε > 0 (see Definition 3.1).
A4: The discrete neighbors always lie on the mesh; i.e., N (xk) ⊂ Mk for all k.

5.1 Mesh Size Behavior and Limit Points

The behavior of the mesh size was originally characterized for unconstrained problems by
Torczon [28], independent of the smoothness of the objective function. It was extended to
MVP problems by Audet and Dennis [6], who later adapted the proof to provide a lower
bound on the distance between mesh points at each iteration [7]. The proofs here are
straightforward extensions of the latter work to MVP problems. The first lemma provides
the lower bound on the distance between any two mesh points whose continuous variable
values do not coincide, while the second lemma shows that the mesh size parameter is
bounded above. The theorem that follows shows the key result that lim infk→+∞ ∆k = 0.

Lemma 5.1 For any integer k ≥ 0, let u and v be any distinct points in the mesh Mk such
that ud = vd. Then for any norm for which all nonzero integer vectors have norm at least 1,

‖uc − vc‖ ≥ ∆k

‖G−1
i ‖ .

where the index i corresponds to the discrete variable values of u and v.

Proof. Using (4), we let uc = xc
k + ∆kD

izu and vc = xc
k + ∆kD

izv define the continuous

part of two distinct points on Mk with both zu, zv ∈ Z|D
i|

+ . Furthermore, since we assume
that u and v are distinct with ud = vd, we must have uc 6= vc, and thus zu 6= zv. Then

‖uc − vc‖ = ∆k‖Di(zu − zv)‖ = ∆k‖GiZi(zu − zv)‖ ≥ ∆k
‖Zi(zu − zv)‖

‖G−1
i ‖ ≥ ∆k

‖G−1
i ‖ ,

the last inequality because Zi(zu− zv) is a nonzero integer vector with norm greater than or
equal to one.

Lemma 5.2 There exists a positive integer ru such that ∆k ≤ ∆0τ
ru

for any integer k ≥ 0.
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Proof. Under Assumption A1, the discrete variables can only take on a finite number of
values in LX(x0). Let imax denote this number, and let I = {1, 2, . . . , imax}. Also under As-
sumption A1, for each i ∈ I, let Yi be a compact set in Rnc

containing all GPS iterates whose
discrete variable values correspond to i ∈ I. Let γ = max

i∈I
diam(Yi) and β = min

i∈I
‖G−1

i ‖,
where diam indicates the maximum distance between any two points. If ∆k > γβ, then
Lemma 5.1 (with v = xk) ensures that any trial point u ∈ Mk either satisfies uc = xc

k or
would have lied outside of

⋃
i∈I Yi. Then if ∆k > γβ, no more than imax successful iterations

will occur before ∆k falls below γβ. Thus, ∆k is bounded above by γβ(τmmax)imax , and the
result follows by setting ru large enough so that ∆0τ

ru ≥ γβ(τmmax)imax .

Theorem 5.3 The mesh size parameters satisfy lim inf
k→+∞

∆k = 0.

Proof. (Torczon [28]) Suppose by way of contradiction that there exists a negative integer
r` such that 0 < ∆0τ

r` ≤ ∆k for all integer k ≥ 0. Combining (8) with Lemma 5.2 implies
that for any integer k ≥ 0, rk takes its value from among the integers of the finite set
{r`, r` + 1, . . . , ru}. Therefore, rk and ∆k can only take a finite number of values for all
k ≥ 0.

Since xk+1 ∈ Mk, (4) ensures that xc
k+1 = xc

k + ∆kD
izk for some zk ∈ Z|D

i|
+ and 1 ≤ i ≤

imax. By repeatedly applying this equation and substituting ∆k = ∆0τ
rk , it follows that, for

any integer N ≥ 1,

xc
N = xc

0 +
N−1∑

k=1

∆kD
izk

= xc
0 + ∆0D

i

N−1∑

k=1

τ rkzk = xc
0 +

pr`

qru ∆0D
i

N−1∑

k=1

prk−r`

qru−rkzk,

where p and q are relatively prime integers satisfying τ = p
q
. Since prk−r`

qru−rkzk is an integer
for any k, it follows that the continuous part of all iterates having the same discrete variable

values lies on the translated integer lattice generated by xc
0 and the columns of pr`

qru ∆0D
i.

Moreover, the discrete part of all iterates also lies on the integer lattice Xd ⊂ Znd
.

Therefore, since all iterates belong to a compact set, there must be only a finite number
of different iterates, and thus one of them must be visited infinitely many times. Therefore,
the mesh coarsening rule in (6) is only applied finitely many times, and the mesh refining
rule in (7) is applied infinitely many times. This contradicts the hypothesis that ∆0τ

rl
is a

lower bound for the mesh size parameter.

These results show the necessity of forcing the set of directions to satisfy Di = GiZi.
Under Assumption A1, this ensures that the mesh has only a finite number of points in X,
which means that there can only be a finite number of consecutive unfiltered mesh points.
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Assumption A2 is included to simply ensure that this construction is maintained in the
presence of linear constraints. Audet and Dennis [7] provide an example in which a different
construction yields a mesh that is dense in X. In this case, Lemma 5.1 cannot be satisfied,
and convergence of ∆k to zero is not guaranteed. A sufficient condition for Assumption
A2 to hold is that Gi = I for each i = 1, 2, . . . , imax and that the coefficient matrix A is
rational [23].

We should note also that the rationality of τ is essential for convergence. Audet [4] gives
an example in which an irrational value for τ generates a sequence satisfying lim inf

k→+∞
∆k > 0.

5.2 Refining Subsequences

Since ∆k shrinks only at iterations in which no mesh isolated filter point is found, Theo-
rem 5.3 guarantees that the Filter-MVPS algorithm has infinitely many such iterations. We
are particularly interested in subsequences of iterates that correspond to these points. We
now include the following two useful definitions.

Definition 5.4 A subsequence of mesh isolated filter points {pk}k∈K (for some subset of
indices K) is said to be a refining subsequence if {∆k}k∈K converges to zero.

Definition 5.5 Let {vk}k∈K be either a refining subsequence or a corresponding subsequence
of extended poll endpoints, and let v̂ be a limit point of the subsequence. A direction d ∈ D
is said to be a limit direction of v̂ if vk + ∆k(d, 0) belongs to X and is filtered for infinitely
many k ∈ K.

The following theorem of Audet and Dennis [6] establishes the existence of limit points
of specific subsequences of interest. Its proof, which can be found in [6], is omitted.

Theorem 5.6 There exists a point p̂ ∈ {x ∈ X : f(x) ≤ f(x0)} and a refining subsequence
{pk}k∈K (with associated index set K) such that lim

k∈K
pk = p̂. Moreover, if N is continuous

at p̂, then there exists ŷ ∈ N (p̂) and ẑ = (ẑc, ŷd) ∈ X such that

lim
k∈K

yk = ŷ and lim
k∈K

zk = ẑ,

where each zk ∈ X is the endpoint of the extended poll step initiated at yk ∈ N (pk).

The notation in Theorem 5.6 describing specific subsequences and their limit points will
be retained and used throughout the remainder of this paper.
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5.3 Background for Optimality Results

In this subsection, we provide some additional background material, based on the ideas of the
Clarke calculus, along with a new definition and theorem that will be used in the convergence
theorems. Some of these ideas have been used in proofs by Audet and Dennis [7, 8] in the
context of certain limit points of the GPS algorithm, and the new definition allows use to
generalize slightly their hypotheses.

First, the following definitions from [12] are needed. They apply to any function g :
Rn → R that is Lipschitz near a point x ∈ Rn.

• The generalized directional derivative of g at x in the direction v is given by

g◦(x; v) := lim sup
y→x,t↓0

g(y + tv)− g(y)

t
,

where t is a positive scalar.

• The generalized gradient of g at x is the set

∂g(x) := {ζ ∈ Rn : g◦(x; v) ≥ vT ζ for all v ∈ Rn}.

• g is strictly differentiable at x if, for all v ∈ Rn,

lim
y→x,t↓0

g(y + tv)− g(y)

t
= ∇g(x)T v.

The following is a generalization of the previous definition.

Definition 5.7 Let X be a convex subset of Rn. Let TX(x) denote the tangent cone to X
at x ∈ X. A function g is said to be strictly differentiable with respect to X at x ∈ X if,
for all v ∈ TX(x),

lim
y→x,y∈X,t↓0

g(y + tv)− g(y)

t
= ∇g(x)T v.

Theorem 5.8 below essentially establishes first-order necessary conditions for optimality
with respect to the continuous variables in a mixed variable domain. The assumptions on g
given here are slightly weaker than the strict differentiability assumption used in [7] to estab-
lish first-order results for GPS limit points – but only in the presence of linear constraints.
Without linear constraints, Definition 5.7 clearly reduces to that of strict differentiability.

However, we first introduce new notation, so that g′(x; (d, 0)) denotes the directional
derivative at x with respect to the continuous variables in the direction d ∈ Rnc

(i.e., while
holding the discrete variables constant – hence the 0 ∈ Znd

), g◦(x; (d, 0)) denotes the Clarke
generalized directional derivative at x with respect to the continuous variables, and ∂cg(x)
represents the generalized gradient of f at x with respect to the continuous variables. This
convention is used throughout Section 5.



June 21, 2004 19

Theorem 5.8 Let x = (xc, xd) ∈ X ⊆ Rnc × Znd
. Suppose the function g is strictly differ-

entiable with respect to Xc at x. If D ∈ Rnc
positively spans the tangent cone TXc(x), and

if g◦(x; (d, 0)) ≥ 0 for all d ∈ D ∩ TXc(x), then ∇cg(x)T v ≥ 0 for all v ∈ TXc(x). Thus, x is
a KKT point of g with respect to the continuous variables. Moreover, if Xc = Rnc

or if xc

lies in the interior of Xc, then f is strictly differentiable at x with respect to the continuous
variables and 0 = ∇cg(x) ∈ ∂cg(x).

Proof. Under the hypotheses given, let D be a set of vectors that positively spans TXc(x),

and let v ∈ Xc be arbitrary. Then v =
∑|D|

i=1 αidi for some αi ≥ 0 and di ∈ D, i =
1, 2, . . . , |D|. Then

∇cg(x)T v =

|D|∑
i=1

αi∇cg(x)T di =

|D|∑
i=1

αig
◦(x; (di, 0)) ≥ 0,

since all the terms of the final sum are nonnegative.

If Xc = Rnc
, or if xc lies in the interior of Xc, then TXc(x) = Rnc

and g is strictly
differentiable at x. Since we have ∇cg(x)T v ≥ 0 for all v ∈ Rnc

, including −v, we also have
∇cg(x)T v ≤ 0 for all v ∈ Rnc

. Therefore, 0 = ∇cg(x) ∈ ∂cg(x), (the last step because ∂cf(x)
always contains ∇cg(x), if it exists).

5.4 Results for the Constraint Violation Function

Theorem 5.6 defines and establishes existence of the limit points p̂, ŷ, and ẑ. While the next
result applies to more general limit points of the algorithm, the remainder of the results in
this section apply to these specific limit points. This format will be repeated in Section 5.5 as
well. This first result, which is similar to a theorem in [7] for f , requires a very mild condition
on h. Note that this result will not hold for f without an additional assumption because
there is no guarantee that any subsequence of objective function values is nonincreasing.

Theorem 5.9 If h is lower semi-continuous with respect to the continuous variables at a
limit point p̄ of poll centers {pk}, then limk h(pk) exists and is greater than or equal to
h(p̄) ≥ 0. If h is continuous at every limit point of {pk}, then every limit point has the same
function value.

Proof. If h(p̄) = 0, the result follows trivially. Now let h(p̄) > 0. Then p̄ is a limit
point of a sequence of least infeasible points pI

k, which is monotonically nonincreasing. Since
h is lower semi-continuous at p̄, we know that for any subsequence {pk}k∈K of poll centers
that converges to p̄, lim infk∈K h(pk) ≥ h(p̄) ≥ 0. But the subsequence of constraint violation
function values at pI

k is a subsequence of a nonincreasing sequence. Thus, the entire sequence
is also bounded below by h(p̄), and so it converges.
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We now characterize the limit points of Theorem 5.6 with respect to the constraint
violation function h. The following theorem establishes the local optimality of h at p̂ with
respect to its discrete neighbors. The short proof is nearly identical to one in [6].

Theorem 5.10 Let p̂ and ŷ ∈ N (p̂) be defined as in the statement of Theorem 5.6, with N
continuous at x̂. If h is lower semi-continuous at p̂ with respect to the continuous variables
and continuous at ŷ with respect to the continuous variables, then h(p̂) ≤ h(ŷ).

Proof. From Theorem 5.6, we know that {pk}k∈K converges to p̂ and {yk}k∈K converges to
ŷ. Since k ∈ K ensures that {pk}k∈K are mesh isolated poll centers, we have h(pk) ≤ h(yk)
for all k ∈ K, and by the assumptions of continuity and lower semi-continuity, we have
h(p̂) ≤ limk∈K h(pk) ≤ limk∈K h(yk) = h(ŷ).

The next two results establish a directional optimality condition for h at p̂ and at certain
ẑ with respect to the continuous variables.

Theorem 5.11 Let p̂ be a limit point of a refining subsequence. Under Assumptions A1–A4,
if h is Lipschitz near p̂ with respect to the continuous variables, then h◦(p̂; (d, 0)) ≥ 0 for all
limit directions d ∈ D(p̂) of p̂.

Proof. Let {pk}k∈K be a refining subsequence with limit point p̂ and let d ∈ D(p̂) be a limit
direction of p̂). From the definition of the generalized directional derivative [12], we have

h◦(p̂; (d, 0)) = lim sup
y→p̂, t↓0

h(y + t(d, 0))− h(y)

t
≥ lim sup

k∈K

h(pk + ∆k(d, 0))− h(pk)

∆k

.

The function h is Lipschitz, hence finite, near p̂. Since points that are infeasible with respect
to X are not evaluated by the algorithm, the assumption of d being a limit direction of p̂
ensures that infinitely many right-hand quotients are defined. All of these quotients must
be nonnegative, or else the corresponding poll step would have found an unfiltered point,
a contradiction.

Theorem 5.12 Let p̂, ŷ ∈ N (p̂), and ẑ be defined as in the statement of Theorem 5.6, with
N continuous at p̂, and let ξ > 0 denote a lower bound on the extended poll triggers ξf

k and
ξh
k for all k. If h(ŷ) < h(p̂) + ξ and h is Lipschitz near ẑ with respect to the continuous

variables, then h◦(ẑ; (d, 0)) ≥ 0 for all limit directions d ∈ D(ẑ) of ẑ.

Proof. From the definition of the generalized directional derivative [12], we have

h◦(ẑ; (d, 0)) = lim sup
y→ẑ, t↓0

h(y + t(d, 0))− f(y)

t
≥ lim sup

k∈K

h(zk + ∆k(d, 0))− h(zk)

∆k

.

Now, h is Lipschitz, hence finite, near ẑ. Since h(ŷ) < h(p̂)+ ξ ensures that extended polling
was triggered around yk ∈ N (pk) for all sufficiently large k ∈ K, and since d is a limit
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direction of ẑ, it follows that zk + ∆k(d, 0) ∈ X infinitely often in K, and infinitely many of
the right-hand quotients are defined. All of these quotients must be nonnegative, since for
k ∈ K, zk is an extended poll endpoint.

For bound or linear constraints, in order to guarantee the existence of limit directions,
for which Theorem 5.11 applies, each Di ⊂ D, i = 1, 2, . . . , imax is constructed in accordance
with the algorithm given in [23] to generate a sufficiently rich set of directions to ensure
conformity to Xc (see Definition 3.1), consistent with Assumption A3.

The next two key theorems establish conditions on h at p̂ and certain ẑ to satisfy a
first-order optimality condition with respect to the continuous variables.

Theorem 5.13 Let p̂ be the limit of a refining subsequence with limit directions D(p̂), and
suppose h is strictly differentiable with respect to Xc at p̂. Then under Assumptions A1–A3,
∇ch(p̂)T w ≥ 0 for all w ∈ TXc(p̂). Moreover, if Xc = Rnc

, or if p̂ lies in the interior of Xc,
then 0 = ∇ch(p̂) ∈ ∂ch(p̂).

Proof. Since Assumption A3 ensures that the rule for selecting Dk(pk) conforms to Xc for
some ε > 0, and since there are finitely many linear constraints, Dk(pk) → D(p̂), and D(p̂)
positively spans TXc(p̂). Theorem 5.11 guarantees that h◦(p̂, (d, 0)) ≥ 0 for all d ∈ D(p̂),
and the result follows directly from Theorem 5.8.

Theorem 5.14 Let p̂, ŷ ∈ N (p̂), and ẑ be defined as in the statement of Theorem 5.6,
with N continuous at p̂, and let ξ > 0 denote a lower bound on the extended poll triggers
ξf
k and ξh

k for all k. Let D(ẑ) denote the limit directions of ẑ, and suppose h is strictly
differentiable with respect to Xc at ẑ. If h(ŷ) < h(p̂) + ξ, then under Assumptions A1–A4,
∇ch(ẑ)T w ≥ 0 for all w ∈ TXc(ẑ). Furthermore, if Xc = Rnc

or ẑc lies in the interior of Xc,
then 0 = ∇ch(ẑ) ∈ ∂ch(ẑ).

Proof. Since Assumption A3 ensures that the rule for selecting Dk(zk) conforms to Xc for
some ε > 0, and since there are finitely many linear constraints, Dk(zk) → D(ẑ), and D(ẑ)
positively spans TXc(ẑ). Theorem 5.12 ensures that h◦(ẑ; (d, 0)) ≥ 0 for all d ∈ D(ẑ), and
the result follows directly from Theorem 5.8.

5.5 Results for the Objective Function

We now address the properties of certain limit points with respect to the objective function
f . Unfortunately, in order to obtain results for f that are similar to those for h, an additional
hypothesis must be added to most of the theorems that follow. Additionally, convergence to
a KKT point (with respect to the continuous variables) cannot be guaranteed, but we will
show a similar result to that of [8], in which a cone is identified whose polar contains the
normal cone.
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The first result, under very mild conditions, is similar to Theorem 5.9, but requires polling
to be centered at the best feasible point at all but finitely many iterations.

Theorem 5.15 Under Assumption A1, there exists at least one limit point p̄ of the iteration
sequence {pk} of poll centers. If f is lower semi-continuous at p̄ with respect to the continuous
variables, h is continuous at p̄ with respect to the continuous variables, and pk = pF

k for all
but finitely many k, then limk f(pk) exists and is greater than or equal to f(p̄), which is
finite. If f is continuous at every limit point of {pk}, then every limit point has the same
function value.

Proof. First, pk = pF
k , hence h(pk) = 0, for all but finitely many k. Thus, f is nonincreasing,

for all sufficiently large k. Since f is lower semi-continuous at p̄, we know that for any
subsequence {pk}k∈K of poll centers converging to p̄, lim infk∈K f(pk) ≥ f(p̄). But the
subsequence of function values is a subsequence of a nonincreasing sequence (for sufficiently
large k). Thus, for sufficiently large k, the sequence is also bounded below by f(p̄), and so
it converges.

The remainder of this section contains results for the limit points described by Theo-
rem 5.6. Each theorem contains an additional necessary hypothesis that, for infinitely many
iterations of the specified subsequence, trial points must be filtered by the poll center (or
extended poll endpoint), rather than a different filter point.

The following result, which is similar to Theorem 5.10, establishes optimality conditions
with respect to the discrete set of neighbors.

Theorem 5.16 Let p̂ and ŷ ∈ N (p̂) be defined as in the statement of Theorem 5.6, with
N continuous at x̂. If f is lower semi-continuous at p̂ and ŷ with respect to the continuous
variables, and if f(pk) ≤ f(yk) for infinitely many k ∈ K, then f(p̂) ≤ f(ŷ).

Proof. From Theorem 5.6, we know that {pk}k∈K converges to p̂ and {yk}k∈K converges
to ŷ. Without loss of generality, we may assume that h(pk) < hmax for all k ∈ K. Then,
since f(pk) ≤ f(yk) for infinitely many k ∈ K, we have by the assumptions of continuity
and lower semi-continuity, that f(p̂) ≤ limk∈K f(pk) ≤ limk∈K f(yk) = f(ŷ).

The next two results establish conditions under which certain Clarke generalized direc-
tional derivatives are nonnegative. The first theorem applies to p̂, while the second applies to
some ẑ. As before, these theorems require the additional hypothesis that the incumbent poll
center or extended poll endpoint, rather than a different filter point, filter the trial points
infinitely often in the subsequence.

Theorem 5.17 Let p̂ be a limit point of a refining subsequence {pk}k∈K, and let d ∈ D
be a limit direction of p̂. Under Assumptions A1–A4, if f is Lipschitz near p̂ with respect
to the continuous variables, and f(pk) ≤ f(pk + ∆k(d, 0)) for infinitely many k ∈ K, then
f ◦(p̂; (d, 0)) ≥ 0.
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Proof. From the definition of the generalized directional derivative [12], we have that

f ◦(p̂; (d, 0)) = lim sup
y→p̂, t↓0

f(y + t(d, 0))− f(y)

t
≥ lim sup

k∈K

f(pk + ∆k(d, 0))− f(pk)

∆k

,

which is nonnegative, since an infinite number of terms in the right-hand quotient are non-
negative.

Theorem 5.18 Let p̂, ŷ ∈ N (p̂), ẑ, and zk be defined as in the statement of Theorem 5.6,
with N continuous at p̂, and let d ∈ D be a limit direction for ẑ. Suppose that f(ŷ) < f(p̂)+ξ,
where ξ > 0 is a lower bound on the extended poll triggers ξf

k and ξh
k for all k. Under

Assumptions A1–A4, if f is Lipschitz near ẑ with respect to the continuous variables, and
f(zk) ≤ f(zk + ∆k(d, 0)) for infinitely many k ∈ K, then f ◦(ẑ; (d, 0)) ≥ 0.

Proof. From the definition of the generalized directional derivative [12], we have that

f ◦(ẑ; (d, 0)) = lim sup
y→ẑ, t↓0

f(y + t(d, 0))− f(y)

t
≥ lim sup

k∈K

f(zk + ∆k(d, 0))− f(zk)

∆k

,

which is nonnegative, since an infinite number of terms in the right-hand quotient are non-
negative.

The next two results describe the optimality conditions for f at p̂ and at certain ẑ under
the assumptions of strict differentiability with respect to Xc. Once again, these theorems
require that trial points be filtered by the poll center (rather than a different filter point)
infinitely often in the subsequence.

As is the case with the Filter GPS algorithm, convergence to a KKT point cannot be
guaranteed with respect to the continuous domain, since there is no guarantee that the neg-
ative gradient lies inside the normal cone; however, we specify a cone, whose polar contains
the negative gradient.

Theorem 5.19 Let p̂ be a limit point of a refining subsequence {pk}k∈K, and let Vd be the
cone generated by all limit directions d ∈ D of p̂, for which f(pk) ≤ f(pk + ∆kd) holds
infinitely often. Suppose that f is strictly differentiable with respect to Xc at p̂. Then under
Assumptions A1–A4, −∇cf(p̂) belongs to the polar V ◦

d of Vd.

Proof. By Theorem 5.17, f ◦(p̂; (d, 0)) ≥ 0 for all d ∈ Vd, and by Theorem 5.8, we have
∇cf(p̂)T w ≥ 0 for all w ∈ Vd. The result follows from the definition of a polar cone:
−∇cf(p̂) ∈ {v ∈ Rn : vT w ≤ 0 ∀ w ∈ Vd}.
Theorem 5.20 Let p̂, ŷ ∈ N (p̂), ẑ, and zk be defined as in the statement of Theorem 5.6,
with N continuous at p̂, and suppose that f(ŷ) < f(p̂) + ξ, where ξ > 0 is a lower bound
on the extended poll triggers ξf

k and ξh
k for all k. Let Vd be the cone generated by all limit

directions d ∈ D of ẑ, for which f(zk) ≤ f(zk +∆kd) holds infinitely often. Suppose that f is
strictly differentiable at with respect to Xc at p̂. Then under Assumptions A1–A4, −∇cf(ẑ)
belongs to the polar V ◦

d of Vd.
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Proof. By Theorem 5.18, f ◦(ẑ; (d, 0)) ≥ 0 for all d ∈ Vd, and by Theorem 5.8, we have
∇cf(ẑ)T w ≥ 0 for all w ∈ Vd. The result follows from the definition of a polar cone:
−∇cf(ẑ) ∈ {v ∈ Rn : vT w ≤ 0 ∀ w ∈ Vd}.

Remark 5.21 The additional hypothesis in Theorems 5.16–5.20 that the trial points be fil-
tered by the current poll center infinitely often in the associated subsequence are automatically
satisfied by either of the following two conditions:

1. The poll center (or extended poll center) is chosen to be the incumbent best feasible point
(or best feasible point with respect to the local filter) infinitely often in the subsequence;
i.e., pk = pF

k (or alternatively zk = zF
k ) for infinitely many k ∈ K. To see this for

pk, observe that pk = pF
k infinitely often means that h(pk) = 0 for infinitely often,

and since these pk are mesh isolated poll centers, f(pk) ≤ f(pk + ∆kd) for all limit
directions d ∈ D for p̂. Note that pk = pF

k is chiefly an algorithmic choice, rather than
a problem-dependent condition.

2. The limit point is strictly feasible with respect to the nonlinear constraints C, and C is
continuous at the limit point. This holds because these two conditions ensure that for
all sufficiently large k ∈ K, pk = pF

k .

Finally, we point out one other key result that we adapt from [8].

Theorem 5.22 If h and f are strictly differentiable at poll center pk with respect to the
continuous variables, and if ∇cf(pk) 6= 0, then there cannot be infinitely many consecutive
iterations where pk is a mesh isolated poll center.

Proof. Let f and h be strictly differentiable at pk with respect to the continuous variables,
where ∇cf(pk) 6= 0. Suppose that there are infinitely many iterations where pk is a mesh
isolated filter point. Let d be a direction associated with the (constant) subsequence of poll
centers such that ∇cf(pk)

T d < 0.

Since f is strictly differentiable at pk with respect to the continuous variables, there exists
an ε > 0 such that either h(pk + ∆(d, 0)) ≤ h(pk) < hmax, or h(pk + ∆(d, 0)) > h(pk), for all
0 < ∆ < ε.

If the first condition is satisfied, then for ∆k < ε, the poll step will find an unfiltered
point, a contradiction. If the second condition is satisfied, then let h̃ be the smallest value
of

{h(x) : h(x) > h(pk), x ∈ Fk} ∪ {hmax},

and let f̃ be the corresponding objective function value; i.e., either f̃ = f(x̃) for the vector
x̃ ∈ Fk that satisfies h(x̃) = h̃, or f̃ = −∞ in the case where h̃ = hmax. It follows that
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h̃ > h(pk) and f̃ < f(pk). Therefore, for sufficiently small ∆k < ε, we have h(pk) <
h(pk + ∆kd) < h̃ and f̃ < f(pk + ∆kd) < f(pk); thus, the trial mesh point is unfiltered, a
contradiction.

A limitation of this result is that, while it prevents a non-stationary pk from being a
mesh-isolated poll center for infinitely many consecutive iterations, it does not completely
prevent the algorithm from stalling there. The algorithm could still generate an infinite
number of consecutive iterations in which pk is either a mesh-isolated filter point or a filter
point that does not generate a new poll center. If, for example, pk simply alternates between
these two possibilities, then Theorem 5.22 holds, but the algorithm still stalls at pk.

As in previous results, the additional hypothesis of pk = pF
k for infinitely many k ∈ K

would fully prevent stalling because it would force h(pk) = 0 for infinitely many k ∈ K, and
the strict differentiability of f at pk means that ∇cf(pk)d < 0 for some direction d ∈ Dk(pk).
Thus, for sufficiently large k ∈ K, ∆k is sufficiently small to force f(pk + ∆kd) < f(pk), and
the algorithm moves to a new point.

Remark 5.23 Many of results in this and the previous subsections also apply to additional
directions, which are specifically identified in [8]. We have not included this in our presen-
tation because it would require an extraordinary amount of additional material to explain it
properly. Since it is not possible to ensure convergence to a KKT point, the extra material
adds little to the overall convergence theory. Instead, we refer the interested reader to [8] for
a thorough discussion.

6 Thermal Insulation System Design

We applied our algorithm to a problem in the design of a load-bearing thermal insulation
system. The problem is fully described in [2] as an extension of the problem described in [20],
in which we add realistic nonlinear constraints on stress, weight, and thermal contraction.
In the next two subsections, we briefly describe the problem and provide some numerical
results.

6.1 MVP Problem Formulation

Figure 4 (taken from [2]) shows a thermal insulation system of fixed length L with hot and
cold surfaces having specified temperatures TH and TC , respectively. A certain number of
shields or intercepts are inserted with insulators of various types and thicknesses between
each pair of intercepts. The objective is to minimize the power f required to keep the
intercepts at their temperatures. The decision variables for this problem are the number of
intercepts n and their temperatures T ∈ Rn, along with the insulator types I ∈ In+1 and
thicknesses x ∈ Rn+1, where I denotes the set of possible material types. Note that x and
T are continuous variables, while n and I are categorical.
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The cross-sectional areas A of the insulators are also variables (as indicated by the draw-
ing in Figure 4), but in the process of adding nonlinear constraints on stress, weight, and
thermal contraction, we can make a key observation (described in [2]) to combine the stress
and weight constraints and eliminate A as a variable. Thus, we add a stress-weight constraint
g1 and a thermal contraction constraint g2, giving us the following optimization problem for-
mulation:

T n+1 = TH

T 0 = TC
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¾ T i

¾ T i−1
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Figure 4: Schematic of a Thermal Insulation System (taken from [3])

min
(n,I,x,T )∈X

f(n, I, x, T )

subject to g1(n, I, x, T ) ≤ 0
g2(n, I, x, T ) ≤ 0
n ∈ Z+

I ∈ In+1∑n
i=1 xi ≤ L

xi ≥ 0, i = 1, . . . , n
Ti−1 ≤ Ti ≤ Ti+1, i = 1, . . . , n.

(13)

A difficulty in solving this problem is that the dimension of the vectors I, x, and T
depend on the variable n. For any value of n, there are n + 1 other categorical variables and
2n continuous variables, yielding a total of 3n + 2 variables.

As in [20], we define local optimality in terms of the set of discrete neighbors N obtained
by

• changing the type of any one insulator;
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• removing any one heat intercept and adjacent insulator;

• adding an intercept and insulator at any location.

6.2 Numerical Results

When applying Filter-MVPS to the problem described in Section 6.1, we achieved a 50%
reduction in objective function value from that of the previous work of Hilal and Eyssa [18].
Our objective function value is very close to that of [20], in spite of the additional constraints,
but the insulator configuration is quite different. The filter logic takes the algorithm to a
different local minimizer.

To match the setup of [20] as much as possible, runs were performed with an initial
mesh size of ∆0 = 10 and terminated when the condition ∆k ≤ .15625 was achieved. An
accelerated mesh refinement strategy was used, in which the mesh refinement exponent m−

k

(see (7)) was decremented at every mesh local optimizer. Coarsening of the mesh was not
performed. The initial design consisted of one intercept placed exactly in the middle of the
system and set at 150 K, with a nylon insulator on the cold side and a teflon insulator on
the hot side.

No search step was used, and polling was performed about both the best feasible and
least infeasible points. Extended poll triggers for the objective and constraint violation
function were set at one and five percent, respectively, of the current objective function
value, the former being consistent with [20]. Other initial data, including limits on stress,
mass, and thermal contraction, are given in [2].

Figure 5 illustrates the performance of the FMVPS algorithm on the fully constrained
model, where the power required for the incumbent best design is plotted versus the number
of function evaluations. The lower plot is a magnification of upper one. The “L”-shaped
plot is very typical behavior of derivative-free methods, since good stopping rules for these
methods are difficult. The “stair steps” seen in the lower plot indicate varying length polling
sequences.

Figure 6 depicts the progression of the filter during the run of the full model, where the
plots in the right column are magnifications of those on the left. Each of the three rows
represents a “snapshot” taken after 150, 300 respective function evaluations were performed.
Although the algorithm terminated after more than 5500 function evaluations, changes in
the filter after 300 function evaluations could not be detected within the resolution of the
plot. This is consistent with the long and shallow progression of the best objective function
value seen in Figure 5. Clearly, better stopping rules would be useful.

In the filter plots, the asterisks represent a subset of the best feasible points found up
to that point, while the “stair step” lines represent the boundary between the filtered and
unfiltered points. In this run, the nonlinear constraints were scaled by dividing each by its
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Figure 5: Iteration History for the Thermal Insulation System Design Problem

right-hand side and then subtracting one from both sides. Thus in the left column plots, the
choice of hmax = 1 represents a 100% constraint violation.

We should note that the objective function values shown on the vertical axes in both
Figures 5 and 6 do not match those of [20] because they represent two different things. The
objective function is to minimize power, as measured in both figures, but the required power
shown in [20] is normalized with respect to system length and cross-sectional areas, so as to
allow comparisons with the results of Hilal and Eyssa [18].
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