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Abstract— This paper investigates the recognition of group
actions in meetings. A framework is employed in which group
actions result from the interactions of the individual participants.
The group actions are modelled using different HMM-based
approaches, where the observations are provided by a set of
audio-visual features monitoring the actions of individuals.
Experiments demonstrate the importance of taking interactions
into account in modelling the group actions. It is also shown
that the visual modality contains useful information, even for
predominantly audio-based events, motivating a multimodal
approach to meeting analysis.
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I. I NTRODUCTION

Automatic analysis of meetings is an emerging domain for
the research of a diverse range of speech, vision and multi-
modal technologies. Sample applications include structuring,
browsing and querying of meeting databases, and facilitation
of remote meetings.

Speech is the predominant modality for communication in
meetings, and speech-based processing techniques, including
speech recognition, speaker identification, topic detection,
and dialogue modelling, are being actively researched in the
meeting context [1], [2], [3], [4]. Visual processing, such as
tracking people and their focus of attention, has also been
examined in [5], [6]. Beyond this work, a place for analysis
of text, gestures, and facial expressions, as well as many other
audio, visual and multimodal processing tasks can be identified
within the meeting scenario.

While important advances have been made, to date most
approaches to automatic meeting analysis have been limited
to the application of known technologies to extract informa-
tion from individual participants (e.g. speech, gaze, identity,
etc). Such a perspective overlooks the potential for defining
new tasks based on the group nature of meetings. While
producing accurate speech transcripts, identifying participants,
and recognising visual gestures are all important tasks, one
of the ultimate goals of automatic meeting analysis is the
summarisation of the meeting into a series of high-level agenda
items. Such a summarisation at the meeting level should reflect
the action of the group as a whole, rather than simply actions
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of individual participants. Intuitively, the true information of
meetings is created from interactions between participants: the
whole is greater than the simple sum of the parts.

The automatic analysis of people interaction constitutes a
rich research area. In domains other than meetings, there
is growing interest in the automatic understanding of group
behaviour, where the interactions are defined by individuals
playing and exchanging both similar and complementary roles
(e.g. a handshake, a dancing couple, or a children’s game)
[7], [8], [9], [10], [11]. Most of the previous work has
relied on visual information and statistical models, and studied
three specific scenarios: surveillance in outdoor scenes [10],
[11], workplaces [8], [9], and indoor group entertainment [7].
In most cases, the interactions are composed of problem-
dependent “primitive” tasks of various degrees of complexity
performed by each individual, and selected from small sets of
actions that are intuitively relevant. The main hypothesis in
each of these cases is that the behaviour of people during an
interaction is constrained by the behaviour of the others, so
modelling such constraints amounts to modelling the interac-
tions.

While little work has been done to date on automatic
analysis of multimodal group interactions in meetings, group
behaviour in meetings has been actively studied for over fifty
years by social psychologists [12], [13], [14]. To develop
technologies capable of analysing meetings automatically,
much insight can be gained from familiarisation with this body
of work. As a specific example, research has analysed the
mechanisms and significance of turn-taking patterns in group
discussions [15], [16], [17].

In this paper, we employ a statistical framework for au-
tomatic meeting analysis based on modelling interactions
between participants (first presented in [18]). The actions of
individual participants are first measured using a variety of
audio-visual features. These multimodal feature sequences are
then modelled in order to recognise actions belonging to the
group as a whole (termedmeeting actions). In particular, a set
of meeting actions is defined based on turn-taking events. In
experiments, we extract a range of audio-visual features from
each participant (including speech activity, pitch, speaking
rate, and head and hand blobs) and model the participant
interactions using hidden Markov models (HMMs) [19]. The
current experiments aim to investigate the multi-modal and
group natures of the actions by using models that combine
the streams of information (from audio, visual, or individuals)
in different ways, including early integration HMMs, multi-
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stream HMMs [20], [21], coupled HMMs [22], and asyn-
chronous HMMs [23].

As a background to the approach, Section II reviews related
work from the field of social psychology. Section III then
presents a computational framework for automatic meeting
analysis based on the modelling of multimodal group actions.
Experiments are presented in Section IV, and conclusions and
future directions are given in Section V.

II. M EETING ANALYSIS: A SOCIAL PSYCHOLOGY

PERSPECTIVE

While automatic meeting analysis is a recent research
domain, a large body of literature on group interactions exists
in the field of social psychology. This literature gives valuable
insight into the nature and value of information present in
meetings. In the following, we summarise aspects of the social
psychology approach that are most relevant to the proposed
computational perspective.

Social psychologyconcerns “the study of the manner in
which the personality, attitudes, motivations, and behaviour
of the individual influence and are influenced by social
groups” [24]. Social psychology studies the above phenom-
ena in a systematic manner and employs a variety of as-
sessment methodologies, ranging from self-report measures
and observational measures to physiological measures, among
others [25]. Of these, we identify thestructured observational
approach (described below) as being of particular relevance
to a computational framework. Further restricting our scope,
we focus on studies ofsmall group discussions[13], [17],
as they relate well to the type of meetings we are currently
investigating.

In observational approaches, group behaviour is mea-
sured by an observer/analyst. The analyst can observe ei-
ther overtly or covertly, and may be external or internal
to the group. Automatic analysis of meetings fits into this
observational paradigm, where the machine functions as the
observer/analyst.

More specifically,structured observational measures im-
prove the objectivity of the analysis by defining a particular
categorisation (thecoding system) of group behaviour [25].
The categories in a given coding system can generally be
considered asmutually exclusive(non-overlapping) andex-
haustive(covering the entire meeting duration). In this way,
the meeting can be annotated as a continuous sequence of
these lexical labels. Structured approaches are commonly used
when hypotheses about group behaviour can be probed by
quantifying specific aspects of the group [25].

One distinction between different coding systems is that of
processversustask. One process-based coding system is the
Interaction Process Analysis (IPA) proposed by Bales [12],
which is designed to measure how the group progresses
through phases of communication, evaluation, control, deci-
sion, tension reduction and reintegration. The SYMLOG sys-
tem (System of Multiple Level Observation of Groups) [26], is
another process-based system based on attitudes of individuals
within the group. The McGrath Task Circumplex [13] is an
example of a task-based system. Its categories cover four

System Basis Lexicon
IPA [12] Process shows solidarity

shows tension release
agrees
gives suggestion
gives opinion
gives orientation
asks for orientation
asks for opinion
asks for suggestion
disagrees
shows tension
shows antagonism

McGrath [13] Task planning tasks
creativity tasks
intellective tasks
decision-making tasks
cognitive conflict tasks
mixed-motive tasks
contests/battles
performances

TABLE I

ALTERNATIVE CODING SYSTEMS FOR GROUP DISCUSSIONS IN SOCIAL

PSYCHOLOGY.

broad task types - generate, choose, negotiate and execute -
that translate into eight specific group tasks. An extension to
the McGrath Task Circumplex was proposed in [27] to also
include information sharing and gathering tasks. The lexica
defined by the IPA and McGrath Task Circumplex coding
systems are given in Table I.

These coding systems are used to measure how individuals
interact in a group, as well as how the group acts as a whole.
Such group behaviours have direct relevance to potential ap-
plications, such as a meeting browser. To illustrate, Bales [12]
gives a specific example of how the IPA categories could relate
to potential meeting “agenda topics”, and concludes that:

“In brief, the functional problems of communication,
evaluation, control, decision, tension reduction, and
reintegration, have been separated out, enlarged into
informal ‘agenda topics’ and made to form the
skeleton of major events of the meeting.” [12, p11].

Relating this to a computational framework, it is clear
that automatic analysis of meetings can be considered a
case of structured observational measurement. In this context,
the meeting analysis task is defined as the recognition of
a continuous, non-overlapping, sequence of lexical entries,
analogous to the approach taken in speech or continuous
gesture recognition [19], [28]. Each coding system provides an
alternative lexicon of meeting events: the same meeting could
be viewed from different perspectives by labelling according
to a number of different coding systems in parallel.

One particular focus of group discussion research has been
the ‘morphology’ of the group interaction, which investi-
gates patterns of individuals’ participation over time. Such
analysis can give insight into issues such as interpersonal
trust, cognitive load in interactions, and patterns of dominance
and influence [14]. Recent work has shown that turn-taking
patterns in meetings can be predicted [16] or simulated [15]
using simple probabilistic models.
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While it is evident that speaking turns are characterised
predominantly by audio information, significant information
is also present in non-verbal cues. Work has examined, for
instance, how participants coordinate speaking turns using
a variety of multimodal cues, such as gaze, speech back-
channels, changes in posture, etc. [15], [16], [29]. Research
has shown that in general, visual information can help disam-
biguate audio information [30], and that when the modalities
are discrepant, participants appear to be more influenced by
visual than by audio cues [14], [31].

Summarising the above discussion, the social psychological
literature on group research provides valuable background
information for automatic meeting analysis. In the current
context, we have seen:
• that definition of a lexicon (coding system) of group

events allows the interactions in meetings to be analysed
in a systematic manner;

• that turn-taking behaviour provides a rich task for analy-
sis; and

• that, while audio is the dominant modality in meetings,
significant information is conveyed in the visual modality,
motivating a multimodal approach.

III. A UTOMATIC MEETING ANALYSIS: A
COMPUTATIONAL FRAMEWORK

From the preceding discussion, we see that meetings can
be analysed as a sequence of group actions that result from
individuals interacting through a series of multimodal cues.
Motivated by this view, this section describes a computational
framework for automatic meeting analysis that involves three
components: a set of multimodal group actions, a set of
individual actions, and a model of the interactions.

A. Multimodal Group Actions

The first task in implementing such a framework, is to define
a set of relevant group actions. As the actions belong to the
meeting as a whole, rather than to any particular individual,
we refer to them asmeeting actions.

We model a meeting as a continuous sequence of exclusive
events taken from the set ofN meeting actions

V = {v1,v2, . . . ,vN} . (1)

We note that while the model of unambiguous, exclusive and
exhaustive events provides a tractable computational frame-
work, these assumptions do not always reflect reality. For
instance, for events to be non-overlapping, it is implied that
well-defined temporal boundaries exist. In reality, most events
are characterised by soft (natural) transitions, and specifying
their boundaries beyond a certain level of precision has little
meaning. In addition, real events are not always perfectly
unambiguous to observers (see e.g. [15], [27]). Nevertheless,
such modelling inaccuracies are not necessarily limitations, de-
pending on the particular application and assessment method-
ology.

While insight into the type of group actions present in
meetings could be gained from the coding systems described in
Table I, it is apparent that a computational framework requires

a more constrained definition of meeting actions than that
found in social psychology as recognition of the actions must
be feasible given state-of-the-art technology.

As discussed in Section II, turn-taking provides a rich basis
for analysing how people interact in group discussions. At
its simplest level, segmenting a meeting into speaker turns is
useful for structuring speech transcripts for browsing and re-
trieval. Analysis of speaker turns can also provide insight into
the participants, such as their inherent latency in responding
and degree of ‘talkativeness’, their role within a group, or their
interest in particular topics [14], [15], [4].

Moving beyond simple speaker turns, turn-taking may be
analysed at a higher-level by defining actions that may span
several individual speaker turns, such as distinguishing be-
tween a series of monologues and a group discussion. Turns
not based purely on speech, such as presentations, white-board
usage or group note-taking, could also be defined if visual cues
such as gaze and gestures were taken into account.

In this article, we propose an illustrative set of meeting
actions based on high-level multimodal turns, including:

Monologue:
one participant speaks continuously without interrup-
tion,

Presentation:
one participant at front of room makes a presentation
using the projector screen,

White-board:
one participant at front of room talks and makes
notes on the white-board,

Discussion:
all participants engage in a discussion, and

(Group) Note-taking:
all participants write notes.

Specifically, in a meeting assumed to have four participants,
we define a set of eight meeting actions to recognise as:

V = {‘monologue1’, ‘monologue2’, ‘monologue3’,

‘monologue4’, ‘presentation’, ‘white-board’,

‘discussion’, ‘note-taking’}.
(2)

These are all natural actions in which participants play
and exchange similar, opposite, or complementary roles. For
example, during a monologue, one person speaks to the group,
while the other participants listen and direct their gaze towards
the speaker or to their notes. During a discussion, multiple
participants take relatively short turns at speaking, and more
movement could be expected. In this set of actions, we
define note-taking as a group event, in which the majority of
participants take notes concurrently. Intuitively, it is expected
that such an action would indicate periods where important
information has been conveyed.

The value of segmenting a meeting according to this set
of meeting actions is evident: it would, for example, facilitate
browsing of a meeting archive by allowing the user to search
for segments of most interest across the archive (such as
presentations, or monologues by a particular person), and to
quickly navigate between parts of the meeting for playback
(see [32] for a simple demonstration of this for the corpus used
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in this paper). Experiments to recognise this set of meeting
actions are presented in Section IV.

In a similar manner, other lexica of meeting actions could
be defined to provide alternative views of a meeting. While ac-
tions should be non-overlapping within a given set of meeting
actions, rich multi-layer views of meetings could be built by
applying parallel sets of meeting actions to the same meeting.
For example further lexica could be based on tasks (brain-
storming, information sharing, decision making, etc), and the
interest level of the group (high, neutral, low). Recent research
in recognising emotion from speech [33], [34], recognising
interest level from posture [35], recognising hot-spots (regions
of high involvement or emphasis) in meetings [36], [37], [38],
and detecting agreement and disagreement in meetings [39],
suggests that the automatic recognition of such high-level
concepts may become feasible.

B. Individual Actions

While many interesting and useful sets of meeting actions
could be defined, whether or not a system can recognise them
in practice depends on whether we can define and measure the
constituent individual behaviour. For example, a presentation
could intuitively be characterised by individual cues such as
speech activity, location, and gaze. Similarly, brainstorming
could involve short, approximately even-distributed speaker
turns, individual note-taking, white-board use, and a charac-
teristic set of speech keywords.

While the pertinence of these particular individual actions
to the different meeting actions is somewhat speculative, it
is clear from the above examples that many useful individual
actions can be measured or recognised using state-of-the-art
audio, visual and multimodal processing techniques.

These individual actions may be either fully recognised,
or just measured. For example, individual actions including
sitting, standing, raising hands, nodding and shaking heads,
were recognised in [40]. While such recognised individual
actions have value as annotations for browsing and indexing,
direct measurements of the individual actions could be used
as observable features when recognition of the group-level
meeting actions is the goal. The experiments in this article
investigate the latter approach. We denote an observation
sequenceO of T feature vectors as

O = (o1,o2, . . . ,oT ) , (3)

whereot is the vector of multimodal features at timet. Specif-
ically, the experiments in this article investigate a set of audio-
visual features, including: location-based speech activity; the
pitch, energy and speaking rate of each participant; the location
and orientation of each participant’s head and hands; and the
location of moving objects in the presentation and white-board
regions. These features are described in detail in Section IV.
We note that while the focus of the current article is to use
these features directly to recognise group actions, we have
also investigated recognition of individual actions based on
this feature set in [41].

In general, such a set of features can be broken down into
multiple feature streams, first according to participanti, and

second according to modalitym. We define the feature vector

oi,m
t ∈ RNi,m , (4)

where Ni,m is the number of features for individuali and
modality m. We handle the case of participant-independent
features (such as presentation area speech activity in this
article), by replicating these for all values ofi. To consider
only features corresponding to a single individual, we define
the notation

oi,1:M
t ,

(
oi,1

t , . . . , oi,M
t

)
, (5)

whereM is the number of modalities (here two, corresponding
to audio and visual), andt the frame index. Similarly, to
consider the feature vector for a single modality (across all
individuals), we can defineo1:I,m

t , whereI is the number of
participants, or to consider the set of all featureso1:I,1:M

t .
Accordingly, we can define sequences of observations in

the same way. For instance,O1:I,m
l , is the lth sequence of

observations represented by features of modalitym, for all
individuals.

C. Interaction Model

In order to model meeting actions, we propose to model the
interactions between individuals. Considering these interac-
tions as sequences of events, we can rely on the most success-
ful approaches currently used to model temporal sequences
of events, which are all based on a statistical framework. In
this context, the general idea is to estimate, for each type
of event vj ∈ V , the parametersθj of a distribution over
corresponding sequences of observationsp(O|θj), where the
sequence of observationsO would correspond to the event
vj . The most well-known solution to efficiently model such
distributions is to use Hidden Markov Models (HMMs).

HMMs have been used with success for numerous sequence
recognition tasks, including speech recognition [19], video
segmentation [42], sports event recognition [43], and broadcast
news segmentation [44]. HMMs introduce a state variableqt

and factor the joint distribution of a sequence of observations
and the state using two simpler distributions, namely emission
distributionsp(ot|qt) and transition distributionsp(qt|qt−1).
Such factorisation yields efficient training algorithms such
as the Expectation-Maximisation algorithm (EM) [45] which
can be used to select the set of parametersθ∗j of the model
corresponding to eventvj to maximise the likelihood ofL
observation sequences as follows:

θ∗j = arg max
θj

L∏

l=1

p(Ol|θj). (6)

The success of HMMs applied to sequences of events is
based on a careful design of sub-models (distributions) corre-
sponding to lexical units (phonemes, words, letters, events). In
the current framework, the lexical units are defined by the set
of meeting actionsvj , and a specific HMM will be created for
each actionvj . Given a training set of observation sequences
representing meetings for which we know the corresponding
labelling (but not necessarily the precise alignment), we create
a new HMM for each sequence as the concatenation of
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sub-model HMMs corresponding to the sequence of meeting
actions. This new HMM can then be trained using EM and will
have the effect of adapting each sub-model HMM accordingly.

When a new sequence of observation features of a meeting
becomes available, the objective is to obtain the optimal
sequence of sub-model HMMs (representing meeting actions)
that could have generated the given observation sequence. An
approximation of this can be done efficiently using the well-
known Viterbi algorithm [46].

While HMMs can be used to model various kinds of
sequences of observations, several problems are in fact better
described by multiple streams of observations, all correspond-
ing to the same sequence of events [10], [20], [21], [22], [47].
This setup more closely corresponds to the case where each
stream would represent the individual actions of a participant
in a meeting, with the overall objective of analysing the
interactions between individuals in terms of meeting actions.

Several solutions to the multiple stream setup have been pro-
posed in the literature. The first and simplest one is tomergeall
observations related to all streams into onelargestream (frame
by frame), and to model it using a single HMM as explained
above. This solution is often calledearly integration. Note
that in some cases, when the streams represent information
collected at different frame rates (such as audio and video
streams for instance), up-sampling or down-sampling of the
streams is first necessary in order to align the streams to a
common frame rate.

Thus, using the notation introduced in Section III-B, the
early integration solution is based on the creation of one model
θ∗j for each eventvj such that

θ∗j = arg max
θj

L∏

l=1

p(O1:I,1:M
l |θj). (7)

A more complex option is themulti-streamapproach [20]:
in this case, each stream is modelled separately using its own
HMM. For instance, if we consider the modalities as separate
streams, we would create one modelθ∗m,j for each eventvj

and modalitym such that

θ∗m,j = arg max
θm,j

L∏

l=1

p(O1:I,m
l |θm,j). (8)

Similarly, if we consider the individuals as separate streams,
we would create one modelθ∗i,j for each eventvj and
individual i such that

θ∗i,j = arg max
θi,j

L∏

l=1

p(Oi,1:M
l |θi,j). (9)

Then when a new meeting needs to be analysed, a special
HMM is created, recombining all the single stream HMM
likelihoods at various specific temporal points. Depending on
these recombination points, various solutions appear. When
the models are recombined after each state, the underlying
system is equivalent to making the hypothesis that all streams
are state-synchronous and independent of each other given the
state. This solution can be implemented efficiently and has
shown robustness to various stream-dependent noises. In the

case of multiple modality streams, the emission probability of
the combined observations ofM streams in a given state of
the model corresponding to eventvj at timet is estimated as:

p(o1:I,1:M
t |qt) =

M∏
m=1

p(o1:I,m
t |qt, θm,j), (10)

Similarly, in the case of multiple individual streams, the emis-
sion probability of the combined observations ofI streams in
a given state of the model corresponding to eventvj at time
t is estimated as:

p(o1:I,1:M
t |qt) =

I∏

i=1

p(oi,1:M
t |qt, θi,j). (11)

One can see this solution as searching the best path into an
HMM where each statei would be a combination of all statesi
of the single stream HMMs1. A more powerful recombination
strategy enables some form of asynchrony between the states
of each stream: one could consider an HMM in which states
would include all possible combinations of the single stream
HMM states. Unfortunately, the total number of states of this
model would be exponential in the number of streams, hence
quickly intractable. An intermediate solution, which we call
composite HMM, considers all combinations of states in the
same action only [48]. Hence, in this model, each actionvj

HMM now contains all possible combinations of states of the
corresponding actionvm,j of each stream HMMm. The total
number of states remains exponential but is more tractable,
when the number of states of each stream remains low (in
our case around 3) as well as the number of streams (in our
case, 2 or 4). The underlying hypothesis of this intermediate
solution is that all streams are now action-synchronous instead
of state-synchronous.

Multi-stream models are typically employed with sepa-
rate streams for audio and visual features in multi-modal
tasks [21], or for different frequency sub-bands in speech
recognition [20]. In modelling group interactions however, the
streams might instead represent the individual participants.
This has the interesting advantage that the models could be
trained for variable numbers of participants in meetings, and
can even be used to decode meetings with a previously unseen
number of participants. Moreover, the resulting decoding algo-
rithm complexity is only linear in the number of participants.

Several other approaches to combine multiple streams of
information have been proposed in the literature, but in general
they suffer from an underlying training or decoding algorithm
complexity which is exponential in the number of streams.
For instance,Coupled Hidden Markov Models(CHMMs) [22],
[49] can model two concurrent streams (such as one audio
and one video stream) with two concurrent HMMs where
the transition probability distribution of the state variable of
each stream depends also on the value of the state variable
of the other stream at the previous time step: more formally,
let q andr be respectively the state variables of both streams,
then CHMMs model transitions as follows:p(qt = i|qt−1 =
j, rt−1 = k) andp(rt = i|rt−1 = j, qt−1 = k). Unfortunately,

1Note that this solution forces the topology of each single stream to be the
same.
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the exact training algorithm of such a model becomes quickly
intractable when extended to more than 2 streams (which
would be the case for meetings). An approximate algorithm
which relaxes the requirement to visit every transition (termed
the N-heads algorithm) was proposed in [49], and can be
tractable for a small number of streams.

A more recent approach based onAsynchronous Hidden
Markov Models(AHMMs) [23] models the joint probability
of several streams by combining them in order to account for
a possible asynchrony between them: it could be useful to
temporarily stretch (or compress) a given stream with respect
to the other ones. For instance, in a group action recognition
task, an individual might start playing his/her role before the
rest of the group. Being able to stretch the individual streams at
specific points could yield performance improvement. While
this approach has given promising results when there were
only two streams, the currently proposed training algorithm
quickly becomes intractable when extended to more than two
streams. In the case of two modality streams (such as audio
and video), an AHMM representing the eventvj models
the joint distribution of the two streams by maximising the
likelihood of L observation sequences as follows:

θ∗j = arg max
θj

L∏

l=1

p(O1:I,1
l ,O1:I,2

l |θj). (12)

By introducing a state variableqt (as for classical HMMs)
and a synchronisation variable,τt, providing the alignment
between the streams, one can factor the joint distribution into
four simpler distributions, namely the transition distribution
p(qt|qt−1), the joint emission distributionp(o1:I,1

t ,o1:I,2
t |qt),

the audio-only distributionp(o1:I,1
t |qt), and a distribution that

models the fact that we should use the joint or the audio-
only distribution at a given timep(emit|qt). Such factorisation
yields efficient training and decoding algorithms when the
number of streams is limited to two.

Apart from the models investigated in the current article,
other models of interest include Layered HMMs and Dynamic
Bayesian Networks (DBNs). Layered HMMs [47] are com-
posed of layers, each of which takes its observation from the
previous layer and generates the observation for the next layer.
Experiments using Layered HMMs to recognise group actions
from recognised individual actions (rather than directly from
features, as in the current work) are presented in [41]. Dynamic
Bayesian Networks (DBNs), a generalisation of HMMs, have
also recently been applied with success to the same meeting
recognition task described in this article, although only using
the audio modality [50].

IV. EXPERIMENTS

This section describes experiments to recognise multimodal
meeting actions based on turn-taking events, as discussed
in Section III-A. The following sub-sections describe the
collection of a multi-modal database of these meeting actions,
and then detail the experimental configuration and present
results.
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Fig. 1. Histogram showing occurrences of meeting actions in the train and
test sets.

A. Data Collection

Data was collected in an instrumented meeting room
which has dimensions 8.2m×3.6m×2.4m, and contains a
4.8m×1.2m meeting table. The room has been equipped with
fully synchronised multi-channel audio and video recording
facilities. For audio acquisition, 24 high quality miniature lapel
microphones are simultaneously recorded at 48kHz with 24-
bit resolution. The microphones are identical and are used
both as close-talking lapel microphones attached to meeting
participants, and in table-top microphone arrays. For video
acquisition, three closed-circuit television cameras output
PAL quality video signals, which are recorded onto separate
MiniDV cassettes using three “video walkman” digital video
tape recorders. Each camera is fitted with an adjustable wide-
angle lens with a38◦ − 80◦ field of view. Full details of the
hardware setup are presented in [51].

A “scripted meeting” approach was taken to collect the
required audio-visual data for the meeting action recognition
experiments, to ensure adequate examples of all actions were
included and also to facilitate annotation for training and
testing.

An ergodic Markov model was used to generate meeting
scripts. Each meeting action corresponded to a state in the
Markov model with the self-loop transition probabilities gov-
erning the relative duration of each action. The transition prob-
abilities were tuned by hand to ensure that the generated action
sequences and durations were realistic. To illustrate this, the
relative occurrences of different actions are shown in Figure 1
for the train and test sets (described below). On average, each
meeting contained 5 actions. After generation of each meeting
script, the action durations were normalised using a random
time (in minutes) drawn from aN (5, 0.25) distribution, in
order to constrain the total time to be approximately five
minutes.

Two disjoint sets of eight meeting participants each were
drawn from the local research staff population. For each set,
thirty 4-person meeting scripts were generated as described
above. The four participants for each meeting were chosen at
random from the set of eight people. Every scripted meeting
action in which a key role was played by a single participant
(monologues, presentations, and white-boards) was then allo-
cated at random to one of the four participants. Each meeting
script was assigned a topic at random out of a small set of
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Fig. 2. Meeting recording configuration.

topics (e.g. my favourite movie). A dedicated timekeeper (off-
camera) monitored the scripted action durations during meet-
ing recording, and made silent gestures to prompt transitions
between actions in the script. The behaviour of participants
during actions was otherwise natural and unconstrained.

The meeting room configuration for the recordings is il-
lustrated in Figure 2. Two cameras each acquired a front-on
view of two participants including the table region used for
note-taking. A third wide-view camera looked over the top of
the participants towards the white-board and projector screen.
The seating positions of participants were allocated randomly,
with the constraint that participants who presented or used the
white-board sat in one of the two seats closest to the front
of the room (the latter was not exploited during analysis).
All participants wore lapel microphones, and an eight-element
circular equi-spaced microphone array of 20cm diameter was
centrally located on the meeting table.

A total of 60 meeting recordings were collected (two partici-
pant sets, each having 30 meetings), resulting in approximately
5 hours of multi-channel, audio-visual meeting data. Each
recording consists of three video channels, and twelve audio
channels. The data is available for public distribution at [32].

B. Feature Extraction

Observation vectors are formed from a range of audio-visual
features that measure the actions of individuals. These consist
of :
Audio features :

Audio features were extracted from two different sources :
the microphone array and the four lapels (one per participant).

From the microphone array signals, “speech activity” was
estimated at 6 different locations : each of the four seats as
well as the two locations corresponding to‘presentation’and
‘white-board’. These locations were fixed 3-D vectors mea-
sured on-site, describing approximately where people would
be standing or seated. “Speech activity” was computed as the
Steered Response Power coming from each location using
the SRP-PHAT measure [52], [53], which is a continuous,

bounded value that indicates the activity of a particular lo-
cation.

Using the streams of SRP-PHAT features, we were able to
determine when each location was active. We thus obtained
a speech/silence segmentation for each location, using a tech-
nique described in [54]. The segmentation was stored in order
to compute the other features, but not present as a feature
itself.

From each of the four lapel signals, we computed three
additional acoustic features. The three acoustic features were
energy, pitch and speaking rate, and were computed only on
speech segments, setting a default value of zero on silence
segments. Pitch was computed using the SIFT algorithm [55],
speaking rate was obtained from a combination of estima-
tors [56], and energy was calculated on each short-term (32
ms) Hamming-windowed segment. While these features were
extracted from lapel signals in the current work, they could
equally be extracted from the output of a microphone array
beamformer for each participant (see [57], [58] for related
research investigating developing beamforming and tracking
algorithms for multiple people in a meeting room).

Finally, all 18 audio features were downsampled to match
the 5 Hz rate chosen for video. Consecutive frames were
merged, keeping the maximum value for each of the 6 SRP-
PHAT features, and the median value for each of the 12
acoustic features.
Visual features :

Visual features were extracted using standard methods
from image regions enclosing the seated participants (head
and shoulders, the workspace at the table), and the white-
board/presentation screen area.

For the cameras looking at people at the table, Gaussian
Mixture Models (GMMs) of skin color in RGB space were
used to extract head and hand/forearm blobs [59]. A 20-
component GMM was estimated from the faces and arms
of the people in the training set, which included caucasian,
indian, and latin-american individuals. Skin pixels were then
classified based on thresholding on the skin likelihood. A mor-
phological postprocessing step was performed inside image
regions enclosing typical head locations and the workspace to
extract blobs.

For each person, the detected head blob was represented
by the vertical position of its centroid (normalized by the
average centroid computed over the meeting duration). Ad-
ditionally, hand blobs were characterized by three features:
the horizontal normalized centroid, the eccentricity, and the
angle with respect to the horizontal [28]. Hand blob extraction
and identification is especially difficult due to the free gestic-
ulation patterns present in meetings. For instance, during a
discussion the current speaker might introduce considerable
self-occlusion while moving his hands (which might also
occlude his face), while other participants might cross their
arms or clasp their hands while listening. In this view, we
opted to represent the hand blob information by using the
described features for the right blob only (most participants in
both training and test set are right-handed). Finally, a rough
person motion feature was computed as the average of the
individual motions of head and arms blobs, where motion



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE (TO BE PUBLISHED) 8

Fig. 3. Blob extraction in the multicamera meeting room. The top row of images shows a frame from each of the 3 cameras, and the bottom row shows the
detected skin blobs (left and right) and moving blobs (centre).

Modality Participants
Feature Audio (m = 1) Visual (m = 2) Individual ( i = 1 : 4) Other
seat speech activity X X
white-board speech activity X X
presentation speech activity X X
speech pitch X X
speech energy X X
speaking rate X X
head blob vertical centroid X X
hand blob horizontal centroid X X
hand blob eccentricity X X
hand blob angle X X
combined motion X X
white-board/presentation blob X X

TABLE II

BREAK-DOWN OF FEATURES ACCORDING TO STREAMS.

was computed as the centroid difference between consecutive
frames. Note that while no tracking was performed at all, the
tradeoff between the potential benefits for feature extraction,
and the additional computational cost of a multi-part, multi-
person tracker, remains to be seen.

For the wide-view camera, moving blobs were detected by
background substraction and represented by their (quantised)
horizontal position. A fixed background image was used,
so errors in feature extraction due to sudden variations in
the camera response occur, although not frequently. Adaptive
background subtraction should improve robustness [60].

A typical result of blob extraction is shown in Figure 3 for
the 3 different camera views. The final set of visual features
consists of 21 features (5 for each seated participant, plus one
from the whiteboard/screen camera).

This gives a total of 39 audio-visual features that were
extracted at a frame-rate of 5 Hz.

C. Experimental Configuration

For the experiments, six different feature subsets were
defined :

Audio-only:

all 18 audio features, trained according to Equation 8
with m = 1.

Visual-only:
all 21 visual features, trained according to Equation 8
with m = 2.

Individual participants (4):
12 (audio-visual) features. This consists of 9 person-
specific features, plus the 3 other (participant-
independent) features (replicated in each participant
stream). Four separate streams trained according to
Equation 9 withi = 1 : 4.

The specific features in these streams are summarised in
Table II. We note that, the four streams for individual partici-
pants in fact correspond to the four different seating locations,
and thus are independent of actual participant identities.

For the models, six HMM systems (mentioned in Sec-
tion III-C) were used to combine these streams in different
ways :

Early Integration:
single HMM trained on all 39 features, according to
Equation 7.

Participant Multi-stream:
multi-stream HMM combining the 4 streams for
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individual participants, with streams trained accord-
ing to Equation 9. Two decoding schemes were
investigated: state-level synchrony (Equation 11) and
action-level synchrony (implemented using compos-
ite model within actions).

Participant Coupled:
coupled HMM combining the 4 streams for individ-
ual participants. The CHMM model was initialised
using independently trained streams, and then re-
trained using an extension of the N-heads algorithm
in [49] to an arbitrary number of streams. In decoding
the action sequence, the streams were constrained by
action-level synchrony.

Audio-Visual Multi-stream:
multi-stream HMM combining the audio-only and
video-only streams, according to Equations 8 and 10.
Two decoding schemes were investigated: state-level
synchrony (Equation 10) and action-level synchrony
(implemented using composite model within action
models).

Audio-Visual Coupled:
coupled HMM combining audio-only and video-only
streams, initialised and trained in a similar manner to
the Participant CHMM above. In decoding the action
sequence, the streams were constrained by action-
level synchrony.

Audio-Visual Asychronous:
asychronous HMM combining the audio-only and
video-only streams, according to Equation 12. To
constrain complexity, the maximum allowed asyn-
chrony between the streams was 2.2 seconds (com-
pared to state duration of 0.2s and average action
duration of 60s).

For all models, hyper-parameters (including number of
emitting states per model (in range 1-3), number of GMM
components per state (in range 1-10), and the insertion penalty
for decoding) were selected using 5-fold cross-validation on
the train set. For the AHMM, there were three distributions
per state [23]: the audio distribution (GMM), the joint audio-
visual distribution (GMM), and the visual emission probability
distribution (binomial distribution). In this case, the audio
stream was instead sampled at 10 Hz to better allow some
form of asynchrony with the video stream.

All experiments were implemented using the Torch
machine-learning library [61] (publicly available at [62]).

D. Results and Discussion

Results are presented in Table III in terms of theaction
error rate (AER) and theframe error rate(FER). The AER
is equivalent to the word error rate used in automatic speech
recognition (ASR). It is defined as the sum of insertion (extra
actions recognised when no change occurred), deletion (ac-
tions omitted) and substitution (actions that occurred detected
but labelled incorrectly) errors, divided by the total number
of actions in the ground-truth, times one hundred. The use
of the action error rate as a metric is appropriate when
determining the correct sequence of events is more important

than determining their precise temporal boundaries. This is the
case here, due to the natural (ill-defined) transitions between
the meeting actions [63]. The FER is the percentage of incor-
rectly labelled frames, and we include it here for two main
reasons: it is necessary to verify that the temporal alignment
of the recognised events is reasonable, and for reasons of
statistical significance (see discussion of significance below).
We note that the frame error rate enforces strict temporal
boundaries, and is thus a harsh measure when such boundaries
are inherently ill-defined, as is the present work.

Some results varied according to the random initialisation
procedure in the EM-based training, which was exaggerated
by the low number of training examples. Where this variation
occurred, results presented are the mean and standard deviation
over 10 runs.

As well as the results presented here, we note that the
corpus can be browsed according to the resulting automatic
transcriptions at [32].

1) Significance of Results:Due to the small number of
actions present in the training and testing sets (around 140
in each), it is worth discussing the significance of these
results. While standard deviations (where quoted) give an idea
of how the various models are robust to initial conditions,
statistical significance tests are often used to assess whether a
model would be better than other ones on similar yet different
test data. We have used a standard proportion test2 [64],
assuming a binomial distribution for the targets and using a
normal approximation, which is often done in similar cases.
In terms of action error rates, with95% confidence, we cannot
differentiate the 8 best models, namely audio-only, early
integration, all audio-visual combinations, participant multi-
stream with action-level synchrony, and participant coupled
(note, these are also the 8 best in terms of FER). However,
in terms of frame error rates, given the high number of
test frames (more than 43000), all results are statistically
significantly different from each other at a95% level, hence
for instance the best model (Audio-Visual Asynchronous) is
statistically significantly better than the second best (Early
Integration). While we consider the action error rate to be a
more appropriate measure for these experiments, we therefore
base the following discussion on the more reliable frame error
rate results.

2) Single Streams:To help analyse these results, confusion
matrices (from a randomly chosen single run) for the audio-
only and visual-only streams are shown in Tables IV-V. It
is clear that audio is the predominant modality for the set
of meeting actions investigated here, being basically based
on speaking turns, and this is reflected in the audio-only
results. While less relevant information is present in the
visual features, they are still able to give some discrimination
between events. As would be expected, the visual features
allow presentation and white-board to be recognised well.
More interesting is the fact that they also give reasonable
discrimination for discussion, which may be attributed to

2Note that action error rates are not really proportions/percentages since
they can be greater than 100. Nevertheless, this test is often used to assess
word error rates in ASR. On the other hand, this test is reasonable for frame
error rates, which are indeed well defined proportions.
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Model Action Error Rate Frame Error Rate
Audio-Only 15.8 (2.6) 11.2 (1.9)
Visual-Only 52.0 (2.8) 48.0 (2.7)
Individual Participants 39.6 (2.5) 32.2 (2.8)
Early Integration 8.9 (1.4) 10.0 (1.0)
Audio-Visual Multi-stream (state) 13.7 15.4
Audio-Visual Multi-stream (action) 13.0 16.3
Audio-Visual Coupled (action) 12.2 15.2
Audio-Visual Asynchronous 9.4 (0.3) 9.2 (0.1)
Participant Multi-stream (state) 19.1 (2.6) 18.4 (2.4)
Participant Multi-stream (action) 15.8 (1.4) 17.0 (1.1)
Participant Coupled (action) 13.6 (1.6) 16.9 (1.2)

TABLE III

ACTION ERROR AND FRAME ERRORRATES (IN PERCENT, LOWER IS BETTER) ON THE TEST SET WITH VARIOUSHMM ARCHITECTURES MODELLING

MEETING ACTIONS. WHERE THE INITIALISATION PROCEDURE INTRODUCED VARIATION IN RESULTS, THE VALUES GIVEN ARE THE MEAN AND

STANDARD DEVIATION (PARENTHESISED) OVER 10 RUNS. CONSTRAINTS ON SYNCHRONY(STATE-LEVEL OR ACTION-LEVEL) ARE INDICATED FOR

APPROPRIATE MULTIPLE STREAM MODELS.

increased motion of participants. Here we see that neither
modality in isolation is capable of distinguishing the note-
taking periods, perhaps as it is jointly characterised by both
audio silence and visual gestures.

Table VI shows that the single participant streams are able
to give some discrimination between events, however as the
actions essentially occur at the group level, the individual
streams contain insufficient information to distinguish them
reliably. In particular, the individual streams are not able
to distinguish monologues well. This behaviour could be
improved if accurate gaze features were used, as this should
be a reliable indicator of silent participants’ focus of attention
(during others’ monologues) [15].

3) Early Integration: Examining the different combination
approaches, we note that early integration gives significantly
better frame error rates than all approaches apart from the
audio-visual AHMM. The improvement over the audio-only
results comes mostly from the improved recognition of note-
taking, as shown in the confusion matrix in Table VII. This
result highlights the benefit of the multi-modal approach: while
neither modality in isolation was able to reliably recognise
note-taking, their combination achieves almost perfect results
for this action. The other improvement we see over the audio-
only results is a reduction in monologue and discussion inser-
tion and deletion errors. The extra monologues in the audio-
only results were mostly inserted in the middle of discussions,
and so it is seen that the motion present in the video stream
helps in discriminating discussion from monologues.

4) Audio-Visual Multi-stream, Coupled and AHMM:All
models using separate audio and visual streams (multi-stream
HMM, CHMM, AHMM) give good results in terms of the ac-
tion error rate. However, we see from the frame error rate that
only the AHMM system is significantly better than the audio-
only stream in isolation. This demonstrates the importance
of modelling the feature-level correlation between modalities,
which is disregarded in the case of the multi-stream HMM and,
to a lesser extent, the coupled HMM (which only models state-
level correlation between streams). By comparing the systems

with state-synchrony to those with action-synchrony, we see
that there is no significant asynchrony between the audio and
visual streams. This is also confirmed by the closeness of the
results for the audio-visual AHMM and the early integration
HMM.

5) Participant Multi-stream and Coupled:While the state-
synchronous multi-stream combination of the four participant
streams performs better than each stream in isolation, this
is significantly lower than for the early integration approach.
The action-synchronous multi-stream results demonstrate that
a significant improvement can be achieved by allowing asyn-
chrony between participants. While there is a small improve-
ment using the coupled HMM over the multi-stream HMM, the
performance is still lower than the early integration approach,
highlighting the need to model feature-level correlation be-
tween participants.

E. Summary

Summarising the above discussion, we make a few obser-
vations based on these results:

1) There is benefit in a multi-modal approach to modelling
group actions in meetings.

2) It is important to model the correlation between the
behaviour of different participants.

3) There is no significant asynchrony between audio and
visual modalities for these actions (at least within the
resolution of the investigated frame rate).

4) There is evidence of asynchrony between participants
acting within the group actions.

The above findings appeal to the intuition that individuals act
in a group through both audio and visual cues which can have
a causal effect on the behaviour of other group members. As
a final remark, these results lead us to hypothesise that the
AHMM with participant streams would provide a powerful
model for group actions, highlighting the need to seek a
tractable training algorithm for the case of multiple (> 2)
streams, and more significant asynchrony (> 2s).
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disc mono1 mono2 mono3 mono4 note pres white DEL
disc 44 7

mono1 10 1 1
mono2 1 10 1
mono3 16
mono4 10 1
note 5
pres 12 1

white 1 18
INS 1 2 1

TABLE IV

CONFUSION MATRIX OF RECOGNISED MEETING ACTIONS FOR AUDIO-ONLY, INCLUDING DISCUSSIONS(DISC), MONOLOGUES(MONO1-4), NOTE-TAKING

(NOTE), PRESENTATIONS(PRES), AND WHITE-BOARDS (WHITE), AS WELL AS INSERTION ERRORS(INS) AND DELETION ERRORS(DEL). ZERO VALUES

ARE REPRESENTED AS EMPTY CELLS. COLUMNS AND ROWS SHOW DESIRED AND OBTAINED LABELS, RESPECTIVELY.

disc mono1 mono2 mono3 mono4 note pres white DEL
disc 30 3 3 1 12

mono1 6 1 2 5
mono2 2 1 1 1 8
mono3 1 2 1 1 8
mono4 2 2 1 3 5
note 1 3
pres 12 1

white 1 18
INS 3

TABLE V

CONFUSION MATRIX OF RECOGNISED MEETING ACTIONS FOR VIDEO-ONLY.

disc mono1 mono2 mono3 mono4 note pres white DEL
disc 38 1 1 4

mono1 8 1 5 2 3
mono2 2 4 5 7 4
mono3 1 5
mono4 2 3 6
note 1 1 3
pres 12 1

white 1 18
INS 1 1 2

TABLE VI

CONFUSION MATRIX OF RECOGNISED MEETING ACTIONS FOR AN INDIVIDUAL PARTICIPANT.

disc mono1 mono2 mono3 mono4 note pres white DEL
disc 49 3

mono1 11
mono2 10
mono3 15 2
mono4 7 4
note 5 1
pres 12 1

white 1 18
INS 1

TABLE VII

CONFUSION MATRIX OF RECOGNISED MEETING ACTIONS FOR THE EARLY INTEGRATION SYSTEM.

F. Application to Real Meeting Data

The meeting corpus for the above experiments was necessar-
ily constrained to facilitate training and testing. To verify the
robustness of the technique on natural data, a one-hour, four-
participant real meeting was recorded for analysis. Features
were extracted, and meeting actions were recognised using
three of the best models for the differing numbers of streams,

namely early integration, the state-synchronous multi-stream
model for the audio-visual streams, and the coupled HMM for
the 4 participant streams. The model parameters are the same
ones used for the previous experiments, without any tuning.

To objectively assess the ability of the system to recognise
the meeting actions, an effort was made to produce a ground-
truth transcription of the meeting. In observing this data,
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however, it was apparent that in reality it is not obvious how to
draw an absolute distinction between actions like monologues
and discussions. We opted for the following approach for
evaluation. Each sequence of recognised actions was verified
by two independent observers not familiar with the system.
The subjects played back the meeting recordings in real-time,
and judged the correctness of each recognised action in the
corresponding time interval, proposing a new action label if
appropriate. Six subjects participated in the experiment. In a
second step, a decision was taken by a third person (one of
the authors) for those actions that were in disagreement among
each pair of observers.

The classification results are shown in Table VIII. For
all models, most of the difficulties, both for people and
the automatic algorithms, arise from the ambiguity existing
between actions originally defined as non-overlapping (e.g.
between monologues and discussions, or due to the temporal
co-occurrence of actions, like note-taking by one of the
participants in the middle of a discussion).

While highlighting the difficulty and subjectivity of the
task, this analysis also suggests that the system provides a
segmentation that is reasonable to a human observer, and
which thus has value for applications such as browsing and
indexing. However, it is apparent that future research needs to
address the ill-defined nature of some actions in real data.

V. CONCLUSIONS ANDFUTURE DIRECTIONS

In this paper we have presented an approach to automatic
meeting analysis that considers a meeting as a sequence of
group-level events, termed meeting actions. These meeting
actions result from the interactions between individual par-
ticipants, and are inherently multimodal in nature.

An illustrative set of meeting actions, based on high-level
turn-taking behaviour, was defined. These actions were recog-
nised in experiments using a range of audio-visual features
extracted from each participant, and modelled using different
HMM-based approaches. The best results were achieved by
the audio-visual Asynchronous HMM system, which gave
an action error rate of 8.9%, confirming the importance of
modelling the interactions between individuals, as well as the
advantage of a multimodal approach.

While the experiments in this article have shown the suc-
cessful recognition of a set of turn-based meeting actions,
there is much scope for future work to recognise other sets
of high-level meeting actions, such as group level-of-interest.
To achieve this goal, ongoing work is investigating richer
feature sets (such as gaze, recognition of individual actions)
and different means of modelling the multimodal interactions
of participants. This will involve the collection of a larger,
more natural, meeting corpus, as well as the development of
more flexible assessment methodologies.
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