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Abstract—This paper investigates the recognition of group of individual participants. Intuitively, the true information of
actions in meetings. A framework is employed in which group meetings is created from interactions between participants: the
actions result from the interactions of the individual participants. whole is greater than the simple sum of the parts.

;SSro%;gﬁgs,a&}Lo:rz ?r:g Ombc;%er{liﬂoﬁ:'nagedgfrgﬁgéngAyMabzsefdof _ The automatic analysis of people interaction constitutes a
audio-visual features monitoring the actions of individuals. Tch research area. In domains other than meetings, there
Experiments demonstrate the importance of taking interactions is growing interest in the automatic understanding of group
into account in modelling the group actions. It is also shown pehaviour, where the interactions are defined by individuals
that the visual modality contains useful information, even for - 5ving and exchanging both similar and complementary roles
predomlﬂatntly al:_dlo-basled_ events, motivating a multimodal (e.g. a handshake, a dancing couple, or a children’s game)
Approach fo Meeting analysis- [71, 8], [9], [10], [11]. Most of the previous work has
relied on visual information and statistical models, and studied
three specific scenarios: surveillance in outdoor scenes [10],
Statistical models, Multimedia applications and numerical signal [11], workplaces [8], [9], and indoor group entertainment [7].
processing, Computer conferencing, Asynchronous interaction. |, most cases, the interactions are composed of problem-
dependent “primitive” tasks of various degrees of complexity
I. INTRODUCTION performed by each individual, and selected from small sets of
. . . . . . .actions that are intuitively relevant. The main hypothesis in
Automatic analy5|_s of meetings Is an emerging domain f lach of these cases is that the behaviour of people during an
the research of a diverse range of speech, vision and MUtteraction is constrained by the behaviour of the others, so

modaI. technolog|es.. Sample apphcatlons include Struc.:t.u”',modelling such constraints amounts to modelling the interac-
browsing and querying of meeting databases, and famhtaﬂagns

of remote meetings. While little work has been done to date on automatic

Speech is ;he predr?rginarcljt modality for cohmmunica_tif’? %Halysis of multimodal group interactions in meetings, group
meetings, and speech-based processing techniques, INCIUgRG,yiqyr in meetings has been actively studied for over fifty
speec_h recognmon,_speaker |(_Jlent|f|c_at|on, topic dete_ct| Naars by social psychologists [12], [13], [14]. To develop
and (_jlalogue modelling, are being actively resgarched in hnologies capable of analysing meetings automatically,
meeting context [1], [2], [3], [4]. Visual processing, such &g, insight can be gained from familiarisation with this body

tracking people and their focus of attention, has also begp work. As a specific example, research has analysed the

examined in [5], 6] Bey_ond this work, a place for analysi echanisms and significance of turn-taking patterns in group
of text, gestures, and facial expressions, as well as many ot cussions [15], [16], [17]

audio, visual and multimodal processing tasks can be identifie n this paper, we employ a statistical framework for au-

W'th'n_th(? meeting scenario. tomatic meeting analysis based on modelling interactions
While important advances have been made, to date M@gheen participants (first presented in [18]). The actions of
approache; to_ automatic meeting ana}IyS|s have be_en l'm'Fﬁ ividual participants are first measured using a variety of
tp the apP"C"?‘t!O” of k”‘?VY” technologies to extract 'r,]formaaiudio-visual features. These multimodal feature sequences are
tion from individual participants (e.g. speech, gaze, identity, ., oqelled in order to recognise actions belonging to the
etc). Such a perspective overlooks the potential for defini oup as a whole (termeteeting actions In particular, a set

new tgsks based on the group hature Of, meetings. ,Wh fmeeting actions is defined based on turn-taking events. In
producing apguratg speech transcripts, |d§nt|fy|ng participan; eriments, we extract a range of audio-visual features from
and recognising visual gestures are all Important t","Sk_S' Of%ch participant (including speech activity, pitch, speaking
of the u_Itlm_ate goals of automatic meeting _analy5|s is th te, and head and hand blobs) and model the participant
summarisation of the meeting into a series of high-level agengda. .- ions using hidden Markov models (HMMs) [19]. The

ftems. .SUCh a summarisation at the meeting Ievel.should re_ﬂsﬁhent experiments aim to investigate the multi-modal and
the action of the group as a whole, rather than simply aCt'OH?oup natures of the actions by using models that combine

The authors are with the IDIAP Research Institute, Rue du Simplon 4, ébe _Streams of |nf0.rmat|qn (from aydlo, V'S_uaL or |nd|V|dua_Is)
592, CH-1920 Martigny, Switzerland. in different ways, including early integration HMMs, multi-
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System Basis Lexicon
stream HMMs [20], [21], coupled HMMs [22], and asyn- PA [12] Process| shows solidarity
chronous HMMs [23]. shows tension release
As a background to the approach, Section Il reviews related agrees ;

. . . gives suggestion
work from the field (_)f social psychology. Sectlon_ [l the_n gives opinion
presents a computational framework for automatic meeting gives orientation
analysis based on the modelling of multimodal group actions. asts ]tor orientation

. . . . askKs 1or opinion
Expenmentg are prese_nted_ln Secyon IV, and conclusions and asks for suggestion
future directions are given in Section V. disagrees

shows tension
shows antagonism
[I. MEETING ANALYSIS: A SOCIAL PSYCHOLOGY McGrath [13] | Task planning tasks
PERSPECTIVE creativity tasks
intellective tasks
While automatic meeting analysis is a recent research decision-making tasks
d i I body of literature on gr interactions exist cognitive conflict tasks
domain, a large body of literature on group interactions exists mixed-motive tasks
in the field of social psychology. This literature gives valuable contests/battles
insight into the nature and value of information present in performances

meetings. In the following, we summarise aspects of the social TABLE |
pSyChO|Ogy approaCh that are most relevant to the pr'OposeELTERNATIVE CODING SYSTEMS FOR GROUP DISCUSSIONS IN SOCIAL
computational perspective.

Social psychologyconcerns “the study of the manner in
which the personality, attitudes, motivations, and behaviour
of the individual influence and are influenced by social

groups” [24]. Social psychology studies the above phenomfr,aq task types - generate, choose, negotiate and execute -
ena in a systematic manner and employs a variety of 4§ translate into eight specific group tasks. An extension to
sessment methodologies, ranging from self-report measujgs McGrath Task Circumplex was proposed in [27] to also

and observational measures to physiological measures, amppg,de information sharing and gathering tasks. The lexica
others [25]. Of these, we identify tietructured observational yefined by the IPA and McGrath Task Circumplex coding
approach (described below) as being of particular relevar‘g)eStems are given in Table I.

to a computationa_l framework. Furthe_r restricting our SCOpP€, Thase coding systems are used to measure how individuals
we focus on studies o$mall group discussiontl3], [17], jyteract in a group, as well as how the group acts as a whole.
as they relate well to the type of meetings we are Curremg’uch group behaviours have direct relevance to potential ap-
Investigating. plications, such as a meeting browser. To illustrate, Bales [12]

In-observational approaches, group behaviour is Megj e 4 specific example of how the IPA categories could relate
sured by an observer/analyst. The analyst can observe tS"potentiaI meeting “agenda topics’, and concludes that:

ther overtly or covertly, and may be external or internal ] ] o
“In brief, the functional problems of communication,

to the group. Automatic analysis of meetings fits into this ) - X :
observational paradigm, where the machine functions as the €valuation, control, decision, tension reduction, and
reintegration, have been separated out, enlarged into

observer/analyst. : : o
More specifically, structured observational measures im-  nformal ‘agenda topics’ and made to form the
skeleton of major events of the meeting.” [12, p11].

prove the objectivity of the analysis by defining a particular
categorisation (theoding systeinof group behaviour [25].  Relating this to a computational framework, it is clear
The categories in a given coding system can generally &t automatic analysis of meetings can be considered a
considered asnutually exclusivelnon-overlapping) andex- case of structured observational measurement. In this context,
haustive(covering the entire meeting duration). In this waythe meeting analysis task is defined as the recognition of
the meeting can be annotated as a continuous seguence@ afontinuous, non-overlapping, sequence of lexical entries,
these lexical labels. Structured approaches are commonly usedlogous to the approach taken in speech or continuous
when hypotheses about group behaviour can be probed d®sture recognition [19], [28]. Each coding system provides an
guantifying specific aspects of the group [25]. alternative lexicon of meeting events: the same meeting could

One distinction between different coding systems is that be viewed from different perspectives by labelling according
processversustask One process-based coding system is tHe a number of different coding systems in parallel.
Interaction Process Analysis (IPA) proposed by Bales [12], One particular focus of group discussion research has been
which is designed to measure how the group progresghe ‘morphology’ of the group interaction, which investi-
through phases of communication, evaluation, control, degates patterns of individuals’ participation over time. Such
sion, tension reduction and reintegration. The SYMLOG syanalysis can give insight into issues such as interpersonal
tem (System of Multiple Level Observation of Groups) [26], isrust, cognitive load in interactions, and patterns of dominance
another process-based system based on attitudes of individaald influence [14]. Recent work has shown that turn-taking
within the group. The McGrath Task Circumplex [13] is ampatterns in meetings can be predicted [16] or simulated [15]
example of a task-based system. Its categories cover faising simple probabilistic models.

PSYCHOLOGY.
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While it is evident that speaking turns are characterised more constrained definition of meeting actions than that
predominantly by audio information, significant informatiorfound in social psychology as recognition of the actions must
is also present in non-verbal cues. Work has examined, fog feasible given state-of-the-art technology.
instance, how participants coordinate speaking turns usingAs discussed in Section Il, turn-taking provides a rich basis
a variety of multimodal cues, such as gaze, speech baéir analysing how people interact in group discussions. At
channels, changes in posture, etc. [15], [16], [29]. Reseaiith simplest level, segmenting a meeting into speaker turns is
has shown that in general, visual information can help disamseful for structuring speech transcripts for browsing and re-
biguate audio information [30], and that when the modalitidsieval. Analysis of speaker turns can also provide insight into
are discrepant, participants appear to be more influencedthg participants, such as their inherent latency in responding
visual than by audio cues [14], [31]. and degree of ‘talkativeness’, their role within a group, or their

Summarising the above discussion, the social psychologigatierest in particular topics [14], [15], [4].
literature on group research provides valuable backgroundMoving beyond simple speaker turns, turn-taking may be
information for automatic meeting analysis. In the currerdnalysed at a higher-level by defining actions that may span
context, we have seen: several individual speaker turns, such as distinguishing be-

« that definition of a lexicon (coding system) of grougween a series of monologues and a group discussion. Turns

events allows the interactions in meetings to be analyse@t based purely on speech, such as presentations, white-board

in a systematic manner; usage or group note-taking, could also be defined if visual cues
« that turn-taking behaviour provides a rich task for analysuch as gaze and gestures were taken into account.
sis; and In this article, we propose an illustrative set of meeting

« that, while audio is the dominant modality in meetingsictions based on high-level multimodal turns, including:
significant information is conveyed in the visual modality, Monologue:

motivating a multimodal approach. one participant speaks continuously without interrup-
tion,
[1l. AUTOMATIC MEETING ANALYSIS: A Presentation:
COMPUTATIONAL FRAMEWORK one participant at front of room makes a presentation
From the preceding discussion, we see that meetings can using the projector screen,
be analysed as a sequence of group actions that result fronfVhite-board:
individuals interacting through a series of multimodal cues. one participant at front of room talks and makes
Motivated by this view, this section describes a computational ~ hotes on the white-board,
framework for automatic meeting analysis that involves three Discussion: _ _ _
components: a set of multimodal group actions, a set of all participants engage in a discussion, and
individual actions, and a model of the interactions. (Group) Note-taking:
all participants write notes.
A. Multimodal Group Actions Specifically, in a meeting assumed to have four participants,

The first task in implementing such a framework, is to defin&c define a set of eight meeting actions to recognise as:

a set of relevant group actions. As the actions belong to the V' = {‘monologuel, ‘monologue2’ ‘monologue3;
meeting as a whole, rather than to any particular individual, ‘monologue4; ‘presentation; ‘white-board’ )
we refer to them asneeting actions
We model a meeting as a continuous sequence of exclusive
events taken from the set &f meeting actions These are all natural actions in which participants play
and exchange similar, opposite, or complementary roles. For
V={vy,va,...,Vn}. (1) examol .
ple, during a monologue, one person speaks to the group,
We note that while the model of unambiguous, exclusive amchile the other participants listen and direct their gaze towards
exhaustive events provides a tractable computational frantlee speaker or to their notes. During a discussion, multiple
work, these assumptions do not always reflect reality. Fparticipants take relatively short turns at speaking, and more
instance, for events to be non-overlapping, it is implied thatovement could be expected. In this set of actions, we
well-defined temporal boundaries exist. In reality, most everdgefine note-taking as a group event, in which the majority of
are characterised by soft (natural) transitions, and specifyipgrticipants take notes concurrently. Intuitively, it is expected
their boundaries beyond a certain level of precision has litileat such an action would indicate periods where important
meaning. In addition, real events are not always perfectiyformation has been conveyed.
unambiguous to observers (see e.g. [15], [27]). NeverthelessThe value of segmenting a meeting according to this set
such modelling inaccuracies are not necessarily limitations, ddg-meeting actions is evident: it would, for example, facilitate
pending on the particular application and assessment methbrbwsing of a meeting archive by allowing the user to search
ology. for segments of most interest across the archive (such as
While insight into the type of group actions present ipresentations, or monologues by a particular person), and to
meetings could be gained from the coding systems describedjirickly navigate between parts of the meeting for playback
Table |, it is apparent that a computational framework requirésee [32] for a simple demonstration of this for the corpus used

‘discussion; ‘note-taking’}.
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in this paper). Experiments to recognise this set of meetisgcond according to modality.. We define the feature vector
actions are presented in Section V. im N,

In a similar manner, other lexica of meeting actions could of € R, )
be defined to provide alternative views of a meeting. While agmere N;.m is the number of features for individual and
tions should be non-overlapping within a given set of meetingodality . We handle the case of participant-independent
actions, rich multi-layer views of meetings could be built byeatures (such as presentation area speech activity in this
applying parallel sets of meeting actions to the same meetingticle), by replicating these for all values af To consider
For example further lexica could be based on tasks (braignly features corresponding to a single individual, we define
storming, information sharing, decision making, etc), and thee notation
interest level of the group (high, neutral, low). Recent research ot Ma (01?17 o ,O;}M) , (5)
in recognising emotion from speech [33], [34], recognising
interest level from posture [35], recognising hot-spots (regioMéere)M is the number of modalities (here two, corresponding
of h|gh involvement or emphasis) in meetings [36], [37], [38]':10 audio and visual), and the frame index. Slmllarly, to
and detecting agreement and disagreement in meetings [39]psider the feature vector for a single modality (across all

. o . tarlivi . I,m .
suggests that the automatic recognition of such high-levgfividuals), we can define; """, where! is the nuinjser of
concepts may become feasible. participants, or to consider the set of all featuoés” R
Accordingly, we can define sequences of observations in
the same way. For instanc®'’", is the /" sequence of

B. Individual Actions observations represented by features of modatityfor all

While many interesting and useful sets of meeting actiongdividuals.
could be defined, whether or not a system can recognise them
in practice depends on whether we can define and measure(t:helnteraction Model
constituent individual behaviour. For example, a presentation
could intuitively be characterised by individual cues such as!n order to model meeting actions, we propose to model the
speech activity, location, and gaze. Similarly, brainstormiHQteraCtionS between individuals. Considering these interac-
could involve short, approximately even-distributed speakBns as sequences of events, we can rely on the most success-
turns, individual note-taking, white-board use, and a chardél approaches currently used to model temporal sequences
teristic set of speech keywords. of events, which are all based on a statistical framework. In
While the pertinence of these particular individual action®is context, the general idea is to estimate, for each type
to the different meeting actions is somewhat speculative,dt eventv; € V, the parameters; of a distribution over
is clear from the above examples that many useful individugPrresponding sequences of observatip(®|6;), where the
actions can be measured or recognised using state-of-theSgfuence of observatior®@ would correspond to the event
audio, visual and multimodal processing techniques. v;. The most well-known solution to efficiently model such

These individual actions may be either fully recognisedlistributions is to use Hidden Markov Models (HMMs).
or just measured. For example, individual actions including HMMs have been used with success for numerous sequence
sitting, standing, raising hands, nodding and shaking heafgSognition tasks, including speech recognition [19], video
were recognised in [40]. While such recognised individuf€gmentation [42], sports event recognition [43], and broadcast
actions have value as annotations for browsing and indexifgWs segmentation [44]. HMMs introduce a state variaple
direct measurements of the individual actions could be us@fd factor the joint distribution of a sequence of observations
as observable features when recognition of the group—le\?é]d _the state using two simple.r.distril‘:)uti_ons., namely emission
meeting actions is the goal. The experiments in this articfistributionsp(o,|¢;) and transition distributiong(g:|g;-1)-
investigate the latter approach. We denote an observatigHch factorisation yields efficient training algorithms such

sequence) of T feature vectors as as the Expectation-Maximisation algorithm (EM) [45] which
can be used to select the set of parametéref the model
O = (01,09,...,07), (3) corresponding to event; to maximise the likelihood of.

whereo, is the vector of multimodal features at timeSpecif- observation sequences as follows:

ically, the experiments in this article investigate a set of audio- L
visual features, including: location-based speech activity; the 0; = arg HéaXHp(Ole)- (6)
pitch, energy and speaking rate of each participant; the location Toi=t
and orientation of each participant’s head and hands; and th&he success of HMMs applied to sequences of events is
location of moving objects in the presentation and white-boabdsed on a careful design of sub-models (distributions) corre-
regions. These features are described in detail in Section Bponding to lexical units (phonemes, words, letters, events). In
We note that while the focus of the current article is to ugée current framework, the lexical units are defined by the set
these features directly to recognise group actions, we haMemeeting actions’;, and a specific HMM will be created for
also investigated recognition of individual actions based @ach actionv;. Given a training set of observation sequences
this feature set in [41]. representing meetings for which we know the corresponding
In general, such a set of features can be broken down imételling (but not necessarily the precise alignment), we create
multiple feature streams, first according to participgnand a new HMM for each sequence as the concatenation of
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sub-model HMMs corresponding to the sequence of meetingse of multiple modality streams, the emission probability of

actions. This new HMM can then be trained using EM and withe combined observations @ff streams in a given state of

have the effect of adapting each sub-model HMM accordinghe model corresponding to evewf at timet is estimated as:
When a new sequence of observation features of a meeting M

becomes available, the objective is to obtain the optimal plor M g,y = H PO ™ gy, 00 ), (10)

sequence of sub-model HMMs (representing meeting actions) el

that could have generated the given observation sequence.slw|

C . - . I

approximation of this can be done efficiently using the welg-

knowr_1 Viterbi algorithm [46]. . . given state of the model corresponding to eventt time
While HMMs can be used to model various kinds O?is estimated as:

sequences of observations, several problems are in fact better ' ;

described by multiple streams of observations, all correspond- LI, M i,1:M

. ! ’ = ’ ,0; 5). 11

ing to the same sequence of events [10], [20], [21], [22], [47]. (o; la0) = [T (o™ lar,6:.) (11)

This setup more closely corresponds to the case where eac

stream would represent the individual actions of a particip

in a meeting, with the overall objective of analysing th : -
d ) ysing gf the single stream HMMs A more powerful recombination

interactions between individuals in terms of meeting action ¢ bl ¢ ¢ h bet the stat
Several solutions to the multiple stream setup have been pEIPr-a €gy enables some form of asynchrony between the stales

posed in the literature. The first and simplest one iméngeall each stream: one could consider an HMM in which states

observations related to all streams into targe stream (frame would include all possible combinations of the single stream

by frame), and to model it using a single HMM as explaine'é‘MM states. Unfortunately, the total number of states of this
above. Tr;is solution is often callegarly integration Note model would be exponential in the number of streams, hence
Mckly intractable. An intermediate solution, which we call

that in some cases, when the streams represent informa ite HM id I binati f states in th
collected at different frame rates (such as audio and vid&gmpostte M considers a combinations of states In the
me action only [48]. Hence, in this model, each actign

streams for instance), up-sampling or down-sampling of tHh ? . L
), up Ping ping M now contains all possible combinations of states of the

ig;msn Ifsr;:]r,isg rr;;:fassary in order to align the streams tcorresponding actionmq of each stref'im HMMn. The total
Thus, using the notation introduced in Section I1I-B, thgumber of states remains exponential but is more tractable,
early integration solution is based on the creation of one mod&hen the number of states of each stream remains Iqw (in
9% for each event. such that our case around 3) as well as the number of streams (in our
J J case, 2 or 4). The underlying hypothesis of this intermediate
L solution is that all streams are now action-synchronous instead
0 = arg %apr(O}:”1:M|0j). (7)  of state-synchronous.

T o=1 Multi-stream models are typically employed with sepa-

A more complex option is thenulti-streamapproach [20]: fate streams for audio and visual features in multi-modal
in this case, each stream is modelled separately using its o@fkS [21], or for different frequency sub-bands in speech

HMM. For instance, if we consider the modalities as separdi@c0gnition [20]. In modelling group interactions however, the
streams, we would create one modg] . for each event; streams might instead represent the individual participants.
and modalitym such that ’ This has the interesting advantage that the models could be

trained for variable numbers of participants in meetings, and
. L LIm can even be used to decode meetings with a previously unseen
O, = arg %}ffnp(ol 0. ;)- ®)  number of participants. Moreover, the resulting decoding algo-
=1 rithm complexity is only linear in the number of participants.
Similarly, if we consider the individuals as separate streams,Several other approaches to combine multiple streams of
we would create one model;; for each eventv; and information have been proposed in the literature, but in general

ilarly, in the case of multiple individual streams, the emis-
ion probability of the combined observationslo§treams in

i=1
gne can see this solution as searching the best path into an
M where each statéwould be a combination of all statés

individual ¢ such that they suffer from an underlying training or decoding algorithm
L complexity which is exponential in the number of streams.
0 = arg maXHp(oivliMw. ). (9) ForinstanceCoupled Hidden Markov Mode{€HMMs) [22],
Y 0. - l v .
) [49] can model two concurrent streams (such as one audio

Then when a new meeting needs to be analysed, a spei?]fgl(ij one.\.ndeo strea_m) vv.|th.twc_) concurrent HMMS.‘ where

HMM is created, recombining all the single stream Hmnne transition probability distribution of the state variable of

likelihoods at various specific temporal points. Depending ch stream depends also on 'the vglue of the state variable
W nthe other stream at the previous time step: more formally,

these recombination points, various solutions appear. W 2 . :
the models are recombined after each state, the underiylfif? andr be respectively the state variables of both streams,
’ n CHMMs model transitions as follows(q; = i|gi—1 =

system is equivalent to making the hypothesis that all strean _ i q e o — 1) unf |

are state-synchronous and independent of each other given/tié—1 = ) andp(re = ifre-1 = j, g-1 = k). Unfortunately,
state. This solution can _be |mplemented efﬁmently and haaNote that this solution forces the topology of each single stream to be the
shown robustness to various stream-dependent noises. Instiee.
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the exact training algorithm of such a model becomes quickly * - e
intractable when extended to more than 2 streams (which s ] =
would be the case for meetings). An approximate algorithm
which relaxes the requirement to visit every transition (termed
the N-heads algorithm) was proposed in [49], and can be F=
tractable for a small number of streams.

A more recent approach based ésynchronous Hidden
Markov Models(AHMMs) [23] models the joint probability 1of IH H 1
of several streams by combining them in order to account for ‘ ‘ I 1R
a possible asynchrony between them: it could be useful to dioeussion e o resenton - netealdng
temporarily stretch (or compress) a given stream with respect
to the other ones. For instance, in a group action recognitiﬁe'@t' sléts
task, an individual might start playing his/her role before the
rest of the group. Being able to stretch the individual streams at
specific points could yield performance improvement. Whil
this approach has given promising results when there were
only two streams, the currently proposed training algorithm Data was collected in an instrumented meeting room
quickly becomes intractable when extended to more than twich has dimensions 8.2r8.6mx2.4m, and contains a
streams. In the case of two modality streams (such as au#i@mx1.2m meeting table. The room has been equipped with
and video), an AHMM representing the evenj models fully synchronised multi-channel audio and video recording
the joint distribution of the two streams by maximising théacilities. For audio acquisition, 24 high quality miniature lapel

20

Histogram showing occurrences of meeting actions in the train and

Data Collection

likelihood of L observation sequences as follows: microphones are simultaneously recorded at 48kHz with 24-
bit resolution. The microphones are identical and are used

L LIl ligo both as close-talking lapel microphones attached to meeting

0; = argr%aXHp(Oz' ©,0;.776;). (12) participants, and in table-top microphone arrays. For video

To=1 acquisition, three closed-circuit television cameras output

PAL quality video signals, which are recorded onto separate
MiniDV cassettes using three “video walkman” digital video
ntf%oe recorders. Each camera is fitted with an adjustable wide-
ngle lens with &88° — 80° field of view. Full details of the

hardware setup are presented in [51].
1:1,1 A “scripted meeting” approach was taken to collect the

the audio-only distributiom(o; **"|g:), and a distribution that : o . . o
models the fact that we should use the joint or the audi(r)vgquwed audio-visual data for the meeting action recognition

only distribution at a given time(emitq,). Such factorisation experiments, to ensure adequate examples of all actions were

yields efficient training and decoding algorithms when th|(51cluded and also to facilitate annotation for training and

L C testing.
number of streams is limited to two. . .
Apart from the models investigated in the current articleg An ergodic Markov model was used to generate meeting
) ; cripts. Each meeting action corresponded to a state in the
other models of interest include Layered HMMs and Dynam b 9 b

. arkov model with the self-loop transition probabilities gov-
Bayesian Networks (DBNS)Z Layered.HMMs [47]. are comg rning the relative duration of each action. The transition prob-
posed of layers, each of which takes its observation from t

. | d tes the ob tion for th ] Bilities were tuned by hand to ensure that the generated action
Previous layer and generates the observation for the nex a3§@erquences and durations were realistic. To illustrate this, the

Experlments. using L'ayered HMMS to recognise group actiob3ative occurrences of different actions are shown in Figure 1
from recognised individual actions (rather than directly fror'fbr the train and test sets (described below). On average, each

features, as in the current work) are presented in [41]. Dyna%eting contained 5 actions. After generation of each meeting

Bayesian Networks (DBNs), a generalisation of HMMs, haV§cript, the action durations were normalised using a random

also recently been applied with success to the same mee % (in minutes) drawn from av'(5,0.25) distribution, in
recognition task described in this article, although only “Sir@rder to constrain the total time ’

the audio modality [50].

By introducing a state variable, (as for classical HMMSs)
and a synchronisation variable;, providing the alignment
between the streams, one can factor the joint distribution i
four simpler distributions, namely the transition distributio

p(a|ge—1), the joint emission distributiop(o; !, 0} 2|¢),

to be approximately five
minutes.

Two disjoint sets of eight meeting participants each were
drawn from the local research staff population. For each set,
thirty 4-person meeting scripts were generated as described

This section describes experiments to recognise multimoddove. The four participants for each meeting were chosen at
meeting actions based on turn-taking events, as discus5@dom from the set of eight people. Every scripted meeting
in Section IlI-A. The following sub-sections describe thé&ction in which a key role was played by a single participant
collection of a multi-modal database of these meeting actiofglonologues, presentations, and white-boards) was then allo-

and then detail the experimental configuration and preséted at random to one of the four participants. Each meeting
results. script was assigned a topic at random out of a small set of

IV. EXPERIMENTS
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gcﬁma i bounded value that indicates the activity of a particular lo-
Equiprment cation.
Using the streams of SRP-PHAT features, we were able to
determine when each location was active. We thus obtained
: ' a speech/silence segmentation for each location, using a tech-
Pa"‘d‘mQ Micrptone Q nique described in [54]. The segmentation was stored in order
1 (iy} o] fco compute the other features, but not present as a feature
itself.
O' , O From each of the four lapel signals, we computed three
/ additional acoustic features. The three acoustic features were
etng Tabe energy, pitch and speaking rate, and were computed only on
Micptons speech segments, setting a default value of zero on silence
segments. Pitch was computed using the SIFT algorithm [55],
speaking rate was obtained from a combination of estima-
tors [56], and energy was calculated on each short-term (32
ms) Hamming-windowed segment. While these features were
extracted from lapel signals in the current work, they could
equally be extracted from the output of a microphone array
beamformer for each participant (see [57], [58] for related

topics (e.g. my favourite movie). A dedicated timekeeper (off€5€arch investigating developing beamforming and tracking
camera) monitored the scripted action durations during me8{gerithms for multiple people in a meeting room).
ing recording, and made silent gestures to prompt transitiond nally, all 18 audio features were downsampled to match

between actions in the script. The behaviour of participarffd® S Hz rate chosen for video. Consecutive frames were
during actions was otherwise natural and unconstrained. Merged, keeping the maximum value for each of the 6 SRP-
The meeting room configuration for the recordings is iFHAT features, and the median value for each of the 12

| Projector Screen ‘ | Whiteboard

Fig. 2. Meeting recording configuration.

lustrated in Figure 2. Two cameras each acquired a front-BROUStC features.
view of two participants including the table region used foYisual features : _
note-taking. A third wide-view camera looked over the top of Visual features were extracted using standard methods
the participants towards the white-board and projector scre&igM image regions enclosing the seated participants (head
The seating positions of participants were allocated randomfi)d shoulders, the workspace at the table), and the white-
with the constraint that participants who presented or used tfaard/presentation screen area. ,
white-board sat in one of the two seats closest to the frontFOr the cameras looking at people at the table, Gaussian
of the room (the latter was not exploited during analysis)ixture Models (GMMs) of skin color in RGB space were
All participants wore lapel microphones, and an eight-elemeig€d 10 extract head and hand/forearm blobs [59]. A 20-
circular equi-spaced microphone array of 20cm diameter wa@mponent GMM was estimated from the faces and arms
centrally located on the meeting table. pf t'he people in the tlramlr?g _sgt, which |.nclu.ded caucasian,
A total of 60 meeting recordings were collected (two particf-nd'ar_]', and latin-american mdmduals. Sk!n p|xgls were then
pant sets, each having 30 meetings), resulting in approximatE‘?SS'f'_ed based on thre_sholdlng on the skin Ilkellhooq. A_mor-
5 hours of multi-channel, audio-visual meeting data. Eadijiological postprocessing step was performed inside image
recording consists of three video channels, and twelve aud9i0ns enclosing typical head locations and the workspace to

channels. The data is available for public distribution at [32§Xtract blobs.
For each person, the detected head blob was represented

by the vertical position of its centroid (normalized by the
average centroid computed over the meeting duration). Ad-
Observation vectors are formed from a range of audio-visuditionally, hand blobs were characterized by three features:
features that measure the actions of individuals. These con#figt horizontal normalized centroid, the eccentricity, and the
of : angle with respect to the horizontal [28]. Hand blob extraction
Audio features : and identification is especially difficult due to the free gestic-
Audio features were extracted from two different sourcesulation patterns present in meetings. For instance, during a
the microphone array and the four lapels (one per participard)scussion the current speaker might introduce considerable
From the microphone array signals, “speech activity” waself-occlusion while moving his hands (which might also
estimated at 6 different locations : each of the four seats @sclude his face), while other participants might cross their
well as the two locations corresponding‘presentation’and arms or clasp their hands while listening. In this view, we
‘white-board’. These locations were fixed 3-D vectors measpted to represent the hand blob information by using the
sured on-site, describing approximately where people wouléscribed features for the right blob only (most participants in
be standing or seated. “Speech activity” was computed as tiah training and test set are right-handed). Finally, a rough
Steered Response Power coming from each location uspgyson motion feature was computed as the average of the
the SRP-PHAT measure [52], [53], which is a continuou#dividual motions of head and arms blobs, where motion

B. Feature Extraction
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Fig. 3. Blob extraction in the multicamera meeting room. The top row of images shows a frame from each of the 3 cameras, and the bottom row shows
detected skin blobs (left and right) and moving blobs (centre).

Modality Participants

Feature Audio (m = 1) | Visual (m =2) || Individual (i =1:4) | Other

seat speech activity v v

white-board speech activity v v

presentation speech activity v v

speech pitch v v

speech energy v v

speaking rate v v

head blob vertical centroid v v

hand blob horizontal centroid v v

hand blob eccentricity v v

hand blob angle v v

combined motion v v

white-board/presentation blop v v

TABLE |I
BREAK-DOWN OF FEATURES ACCORDING TO STREAMS
was computed as the centroid difference between consecutive all 18 audio features, trained according to Equation 8
frames. Note that while no tracking was performed at all, the with m = 1.
tradeoff between the potential benefits for feature extraction,Visual-only:
and the additional computational cost of a multi-part, multi- all 21 visual features, trained according to Equation 8
person tracker, remains to be seen. with m = 2.
For the wide-view camera, moving blobs were detected byIndividual participants (4):

background substraction and represented by their (quantised) 12 (audio-visual) features. This consists of 9 person-
horizontal position. A fixed background image was used, specific features, plus the 3 other (participant-
so errors in feature extraction due to sudden variations in independent) features (replicated in each participant
the camera response occur, although not frequently. Adaptive stream). Four separate streams trained according to
background subtraction should improve robustness [60]. Equation 9 withi =1 : 4.

A typical result of blob extraction is shown in Figure 3 for The specific features in these streams are summarised in
the 3 different camera views. The final set of visual featur@able Il. We note that, the four streams for individual partici-
consists of 21 features (5 for each seated participant, plus gramts in fact correspond to the four different seating locations,

from the whiteboard/screen camera). and thus are independent of actual participant identities.
This gives a total of 39 audio-visual features that were For the models, six HMM systems (mentioned in Sec-
extracted at a frame-rate of 5 Hz. tion 11I-C) were used to combine these streams in different
ways :

Early Integration:

) o single HMM trained on all 39 features, according to
For the experiments, six different feature subsets were Equation 7.

defined : Participant Multi-stream:
Audio-only: multi-stream HMM combining the 4 streams for

C. Experimental Configuration
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individual participants, with streams trained accordhan determining their precise temporal boundaries. This is the
ing to Equation 9. Two decoding schemes werease here, due to the natural (ill-defined) transitions between
investigated: state-level synchrony (Equation 11) artle meeting actions [63]. The FER is the percentage of incor-
action-level synchrony (implemented using composectly labelled frames, and we include it here for two main
ite model within actions). reasons: it is necessary to verify that the temporal alignment
Participant Coupled: of the recognised events is reasonable, and for reasons of
coupled HMM combining the 4 streams for individ-statistical significance (see discussion of significance below).
ual participants. The CHMM model was initialisedWe note that the frame error rate enforces strict temporal
using independently trained streams, and then reeundaries, and is thus a harsh measure when such boundaries
trained using an extension of the N-heads algorithare inherently ill-defined, as is the present work.
in [49] to an arbitrary number of streams. In decoding Some results varied according to the random initialisation
the action sequence, the streams were constraineddrgcedure in the EM-based training, which was exaggerated
action-level synchrony. by the low number of training examples. Where this variation
Audio-Visual Multi-stream: occurred, results presented are the mean and standard deviation
multi-stream HMM combining the audio-only andover 10 runs.
video-only streams, according to Equations 8 and 10.As well as the results presented here, we note that the
Two decoding schemes were investigated: state-levarpus can be browsed according to the resulting automatic
synchrony (Equation 10) and action-level synchronyanscriptions at [32].
(implemented using composite model within action 1) Significance of ResultsDue to the small number of
models). actions present in the training and testing sets (around 140
Audio-Visual Coupled: in each), it is worth discussing the significance of these
coupled HMM combining audio-only and video-onlyresults. While standard deviations (where quoted) give an idea
streams, initialised and trained in a similar manner tof how the various models are robust to initial conditions,
the Participant CHMM above. In decoding the actiostatistical significance tests are often used to assess whether a
sequence, the streams were constrained by actionedel would be better than other ones on similar yet different
level synchrony. test data. We have used a standard proportior? tgst],
Audio-Visual Asychronous: assuming a binomial distribution for the targets and using a
asychronous HMM combining the audio-only andhormal approximation, which is often done in similar cases.
video-only streams, according to Equation 12. T terms of action error rates, wihb% confidence, we cannot
constrain complexity, the maximum allowed asyndifferentiate the 8 best models, namely audio-only, early
chrony between the streams was 2.2 seconds (comtegration, all audio-visual combinations, participant multi-
pared to state duration of 0.2s and average actigtream with action-level synchrony, and participant coupled
duration of 60s). (note, these are also the 8 best in terms of FER). However,

For all models, hyper-parameters (including number &t terms of frame error rates, given the high number of
emitting states per model (in range 1-3), number of GMNgst frames (more than 43000), all results are statistically
components per state (in range 1-10), and the insertion pengignificantly different from each other at®% level, hence
for decoding) were selected using 5-fold cross-validation d@r instance the best model (Audio-Visual Asynchronous) is
the train set. For the AHMM, there were three distributiongtatistically significantly better than the second best (Early
per state [23]: the audio distribution (GMM), the joint audiolntegration). While we consider the action error rate to be a
visual distribution (GMM), and the visual emission probabilitynore appropriate measure for these experiments, we therefore
distribution (binomial distribution). In this case, the audi®ase the following discussion on the more reliable frame error
stream was instead sampled at 10 Hz to better allow sofi#e results.
form of asynchrony with the video stream. 2) Single StreamsTo help analyse these results, confusion

All experiments were implemented using the Torcmatrices (from a randomly chosen single run) for the audio-

machine-learning library [61] (publicly available at [62]).  only and visual-only streams are shown in Tables IV-V. It
is clear that audio is the predominant modality for the set

of meeting actions investigated here, being basically based
on speaking turns, and this is reflected in the audio-only

Results are presented in Table Il in terms of thetion results. While less relevant information is present in the
error rate (AER) and theframe error rate(FER). The AER visual features, they are still able to give some discrimination
is equivalent to the word error rate used in automatic spedsftween events. As would be expected, the visual features
recognition (ASR). It is defined as the sum of insertion (extrallow presentation and white-board to be recognised well.
actions recognised when no change occurred), deletion (Mwre interesting is the fact that they also give reasonable
tions omitted) and substitution (actions that occurred detectéidcrimination for discussion, which may be attributed to
but labelled incorrectly) errors, divided by the total number

of actions in the ground-truth, times one hundred. The ushezNote that action error rates are not really p‘roportiqns/percentages since
they can be greater than 100. Nevertheless, this test is often used to assess

of the _a_Ct|0n error rate as a metric IS appropna?e Wh%rd error rates in ASR. On the other hand, this test is reasonable for frame
determining the correct sequence of events is more importanbr rates, which are indeed well defined proportions.

D. Results and Discussion
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| Model Action Error Rate | Frame Error Rate |
Audio-Only 15.8 (2.6) 11.2 (1.9)
Visual-Only 52.0 (2.8) 48.0 (2.7)
Individual Participants 39.6 (2.5) 32.2 (2.8)
Early Integration 8.9 (1.4) 10.0 (1.0)
Audio-Visual Multi-stream (state) 13.7 154
Audio-Visual Multi-stream (action 13.0 16.3
Audio-Visual Coupled (action) 12.2 15.2
Audio-Visual Asynchronous 9.4 (0.3) 9.2 (0.1)
Participant Multi-stream (state) 19.1 (2.6) 18.4 (2.4)
Participant Multi-stream (action) 15.8 (1.4) 17.0 (1.2)
Participant Coupled (action) 13.6 (1.6) 16.9 (1.2)

TABLE IIl

ACTION ERROR AND FRAME ERRORRATES (IN PERCENT, LOWER IS BETTER) ON THE TEST SET WITH VARIOUSHMM ARCHITECTURES MODELLING
MEETING ACTIONS. WHERE THE INITIALISATION PROCEDURE INTRODUCED VARIATION IN RESULTS THE VALUES GIVEN ARE THE MEAN AND
STANDARD DEVIATION (PARENTHESISED OVER 10 RUNS. CONSTRAINTS ON SYNCHRONY(STATE-LEVEL OR ACTION-LEVEL) ARE INDICATED FOR
APPROPRIATE MULTIPLE STREAM MODELS

increased motion of participants. Here we see that neithgith state-synchrony to those with action-synchrony, we see
modality in isolation is capable of distinguishing the notethat there is no significant asynchrony between the audio and
taking periods, perhaps as it is jointly characterised by botisual streams. This is also confirmed by the closeness of the
audio silence and visual gestures. results for the audio-visual AHMM and the early integration
Table VI shows that the single participant streams are abMM.
to give some discrimination between events, however as thes) Participant Multi-stream and Coupledihile the state-
actions essentially occur at the group level, the individuaynchronous multi-stream combination of the four participant
streams contain insufficient information to distinguish themtreams performs better than each stream in isolation, this
reliably. In particular, the individual streams are not ablis significantly lower than for the early integration approach.
to distinguish monologues well. This behaviour could b€&he action-synchronous multi-stream results demonstrate that
improved if accurate gaze features were used, as this shoalgignificant improvement can be achieved by allowing asyn-
be a reliable indicator of silent participants’ focus of attentioohrony between participants. While there is a small improve-
(during others’ monologues) [15]. ment using the coupled HMM over the multi-stream HMM, the
3) Early Integration: Examining the different combination performance is still lower than the early integration approach,
approaches, we note that early integration gives significantiighlighting the need to model feature-level correlation be-
better frame error rates than all approaches apart from theen participants.
audio-visual AHMM. The improvement over the audio-only
results comes mostly from the improved recognition of note- Summary

taking, as shown in the confusion matrix in Table VII. This . i )
result highlights the benefit of the multi-modal approach: while SUmmarising the above discussion, we make a few obser-

neither modality in isolation was able to reliably recognis2tions based on these resulits:
note-taking, their combination achieves almost perfect resultsl) There is benefit in a multi-modal approach to modelling
for this action. The other improvement we see over the audio- ~ group actions in meetings.
only results is a reduction in monologue and discussion inser2) It is important to model the correlation between the
tion and deletion errors. The extra monologues in the audio- behaviour of different participants.
only results were mostly inserted in the middle of discussions,3) There is no significant asynchrony between audio and
and so it is seen that the motion present in the video stream Visual modalities for these actions (at least within the
helps in discriminating discussion from monologues. resolution of the investigated frame rate).

4) Audio-Visual Multi-stream, Coupled and AHMNMAII 4) There is evidence of asynchrony between participants
models using separate audio and visual streams (multi-stream acting within the group actions.
HMM, CHMM, AHMM) give good results in terms of the ac- The above findings appeal to the intuition that individuals act
tion error rate. However, we see from the frame error rate thata group through both audio and visual cues which can have
only the AHMM system is significantly better than the audioa causal effect on the behaviour of other group members. As
only stream in isolation. This demonstrates the importaneefinal remark, these results lead us to hypothesise that the
of modelling the feature-level correlation between modalitie&HMM with participant streams would provide a powerful
which is disregarded in the case of the multi-stream HMM anthodel for group actions, highlighting the need to seek a
to a lesser extent, the coupled HMM (which only models statgactable training algorithm for the case of multiple @2)
level correlation between streams). By comparing the systesteeams, and more significant asynchrony2g).
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disc | monol | mono2 | mono3 | mono4 | note | pres | white | DEL

disc 44 7
monol 10 1 1
mono2 1 10 1
mono3 16
mono4 10 1

note 5

pres 12 1
white 1 18

INS 1 2 1

TABLE IV

CONFUSION MATRIX OF RECOGNISED MEETING ACTIONS FOR AUDIEDNLY, INCLUDING DISCUSSIONS(DISC), MONOLOGUES(MONO1-4), NOTE-TAKING
(NOTE), PRESENTATIONS(PRES, AND WHITE-BOARDS (WHITE), AS WELL AS INSERTION ERRORYINS) AND DELETION ERRORS(DEL). ZERO VALUES
ARE REPRESENTED AS EMPTY CELLSCOLUMNS AND ROWS SHOW DESIRED AND OBTAINED LABELS RESPECTIVELY

disc | monol | mono2 | mono3 | mono4 | note | pres | white | DEL

disc 30 3 3 1 12
monol 6 1 2 5
mono2 2 1 1 1 8
mono3 1 2 1 1 8
mono4 2 2 1 3 5
note 1 3

pres 12 1
white 1 18

INS 3

TABLE V
CONFUSION MATRIX OF RECOGNISED MEETING ACTIONS FOR VIDEEDNLY.
disc | monol | mono2 | mono3 | mono4 | note | pres | white | DEL

disc 38 1 1 4
monol 8 1 5 2 3
mono2 2 4 5 7 4
mono3 1 5
mono4 2 3 6

note 1 1 3

pres 12 1
white 1 18

INS 1 1 2

TABLE VI

CONFUSION MATRIX OF RECOGNISED MEETING ACTIONS FOR AN INDIVIDUAL PARTICIPANT

disc | monol | mono2 | mono3 | mono4 | note | pres | white | DEL
disc 49 3
monol 11
mono2 10
mono3 15
mono4 7
note 5
pres 12
white 1 18
INS 1

R R AN

TABLE VI
CONFUSION MATRIX OF RECOGNISED MEETING ACTIONS FOR THE EARLY INTEGRATION SYSTEM

F. Application to Real Meeting Data namely early integration, the state-synchronous multi-stream
model for the audio-visual streams, and the coupled HMM for

The meeting corpus for the above experiments was necessiag-4 participant streams. The model parameters are the same

ily constrained to facilitate training and testing. To verify th@nes used for the previous experiments, without any tuning.

robustness of the technique on natural data, a one-hour, four-

participant real meeting was recorded for analysis. Featuredo objectively assess the ability of the system to recognise

were extracted, and meeting actions were recognised usthg meeting actions, an effort was made to produce a ground-

three of the best models for the differing numbers of streamgjth transcription of the meeting. In observing this data,
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however, it was apparent that in reality it is not obvious how t®IAP for their assistance during the data collection, and the
draw an absolute distinction between actions like monologuegaluation of the results in real meetings.

and discussions. We opted for the following approach for This work was supported by the Swiss National Science
evaluation. Each sequence of recognised actions was verifieindation through the National Centre of Competence in
by two independent observers not familiar with the systerResearch (NCCR) on “Interactive Multimodal Information
The subjects played back the meeting recordings in real-tinanagement (IM2)". The work was also funded by the
and judged the correctness of each recognised action in Ex@ropean projects “M4: MultiModal Meeting Manager” and
corresponding time interval, proposing a new action label fEAVA: Learning for Adaptable Visual Assistants”, through
appropriate. Six subjects participated in the experiment. Intlee Swiss Federal Office for Education and Science (OFES).
second step, a decision was taken by a third person (one of
the authors) for those actions that were in disagreement among
each pair of observers.

The classification results are shown in Table VIII. Forlll F. Kubala, "Rough’'nready: a meeting recorder and brows&CM
Computing Surveysio. 31, 1999.

all models, _mOSt O_f the difﬁculties, both for_ p(_aople ) a_nd[Z] N. Morgan, D. Baron, J. Edwards, D. Ellis, D. Gelbart, A. Janin, T. Pfau,
the automatic algorithms, arise from the ambiguity existing E. Shriberg, and A. Stolcke, “The meeting project at ICSI,Piroc. of
between actions originally defined as non-overlapping (e.g. he Human Language Technology Conferer(&an Diego, CA), March
between monologues and discussions, or due to the tempofﬂl A. Wéibel, M. Bett, F. Metze, K. Ries, T. Schaaf, T. Schultz, H. Soltau,

co-occurrence of actions, like note-taking by one of the H. Yu, and K. Zechner, “Advances in automatic meeting record creation

participants in the middle of a discussion). and access,” ifProc. IEEE ICASSP(Salt Lake City, UT), May 2001.

N e o 4] S. Renals and D. Ellis, *Audio informati f ti
While highlighting the difficulty and subjectivity of the M in P%rflsE%nE ,CASgp 2805(;83?rma ton aceess flom meeting rooms

task, this analysis also suggests that the system provideSsa A. Waibel, T. Schultz, M. Bett, R. Malkin, I. Rogina, R. Stiefelhagen,

segmentation that is reasonable to a human observer, and and J. Yang, “SMaRT:the Smart Meeting Room Task at ISL,Pfoc.
hich thus has value for applications such as browsing a IEEE ICASSP 200%2003.
whni pp 9 ang] r. Cutler, Y. Rui, A. Gupta, J. Cadiz, I. Tashev, L. He, A. Colburn,

indexing. However, it is apparent that future research needs t0 z. zhang, Z. Liu, and S. Silverberg, “Distributed meetings: A meeting
address the ill-defined nature of some actions in real data. ~ captre and broadcasting system Firec. ACM Multimedia Conference

[7] A. Bobick, S. Intille, J. Davis, F. Baird, C. Pinhanez, L. Campbell,
V. CONCLUSIONS ANDFUTURE DIRECTIONS Y. lvanov, A. Schutte, and A. Wilson, “The KidsRoom: A Perceptually-
. . Based Interactive and Immersive Story EnvironmemRESENCE:
In this paper we have presented an approach to automatic Teleoperators and Virtual Environmentsol. 8, August 1999.

meeting ana|ysis that considers a meeting as a Sequence[ﬂ}fN. Johnson, A. Galata, and D. Hogg, “The acquisition and use of inter-

group-level events, termed meeting actions. These meeting 3@:82 gﬁﬂa.!;‘it“err,in giilc?énliﬁé?jcljnls Egs;gt Conierence on Compuer

actions result from the interactions between individual parg] T. Jebara and A. Pentland, “Action reaction learning: Automatic visual
ticipants, and are inherently multimodal in nature. analysis and synthesis of interactive behaviour,Pioc. International

; ; ; ; : Conference on Vision Systendanuary 1999.
An illustrative set of meeting actions, based on hlgh'levﬁ!o N. Oliver, B. Rosario, and A. Pentland, “A bayesian computer vision

turn-taking behaviour, was defined. These actions were recog- system for modeling human interactiondEEE Transactions on Pattern
nised in experiments using a range of audio-visual features Analysis and Machine Intelligenceol. 22, August 2000.

. : : ] S. Hongeng and R. Nevatia, “Multi-agent event recognition,Phoc.
extracted from each participant, and modelled using differefit IEEE Int. Conference on Computer Visidivancouver), July 2001

HMM-based approaches. The best results were achievedfy Rr. F. Bales,nteraction Process Analysis: A method for the study of
the audio-visual Asynchronous HMM system, which gave small groups Addison-Wesley, 1951.

an action error rate of 8.9%, confirming the importance 5‘1-954 McGrath,Groups: Interaction and PerformancePrentice-Hall,

modelling the interactions between individuals, as well as tigy) J. McGrath and D. Kravitz, “Group researchhnual Review of Psy-
advantage of a multimodal approach. chology vol. 33, pp. 195-230, 1982.

While the experiments in this article have shown the SUEL_S] E. Padilha and J. C. Carletta, “A simulation of small group discussion,”
P in EDILOG, 2002.

cessful recognition of a set of turn-based meeting actionss] k. c. H. Parker, “Speaking turns in small group interaction: A context-
there is much scope for future work to recognise other sets sensitive event sequence modelgurnal of Personality and Social

i ; ; _AFi Psychologyvol. 54, no. 6, pp. 965-971, 1988.
of hlgh level meeting actions, such as group level-of mtereﬂ?] N. Fay, S. Garrod, and J. Carletta, “Group discussion as interactive dia-

To achieve this goal, ongoing Wor_k_ is inV_GSt_ig_ating ric_her logue or serial monologue: The influence of group sif&sychological
feature sets (such as gaze, recognition of individual actions) Sciencevol. 11, no. 6, pp. 487-492, 2000.

and different means of modelling the multimodal interactiorf&?! - McCowan, S. Bengio, D. Gatica-Perez, G. Lathoud, F. Monay,
D. Moore, P. Wellner, and H. Bourlard, “Modeling human interactions in

of participants. This will involve the collection of a larger,  meetings. inProceedings of the International Conference on Acoustics,
more natural, meeting corpus, as well as the development of Speech and Signal Processing (ICASSP'@g)ril 2003.
more flexible assessment methodologies. [19] L. R. Rabiner and B.-H. Juangundamentals of Speech Recognition
Prentice-Hall, 1993.
[20] A. Morris, A. Hagen, H. Glotin, and H. Bourlard, “Multi-stream adaptive
V]. ACKNOWLEDGEMENTS evidence combination for noise robust ASRBpeech Communicatipon
2001.
The authors would like to acknowledge the invaluablgi] S. Dupont and J. Luettin, “Audio-visual speech modeling for continuous
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| Model

| Number of recognised actions| Classification rate |

Early Integration
Audio-Visual Multi-stream (state
Participant Coupled (action)

36 88.8
42 76.2
46 84.8

TABLE VIl

ACTION CLASSIFICATION RATES(IN PERCENT, HIGHER IS BETTE@ FOR THE THREE BESTHMM MODELS, ON A ONE-HOUR REAL MEETING.
CONSTRAINTS ON SYNCHRONY(STATE-LEVEL OR ACTION-LEVEL) ARE INDICATED FOR APPROPRIATE MULTIPLE STREAM MODELS
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