
[25] Erik Meijer. More advice on proving a compiler correct:Improve a correct compiler. Submitted for Publication,September 1994.[26] Erik Meijer. Type classes for better free theorems. Inpreparation, 1994.[27] Erik Meijer, Maarten Fokkinga, and Ross Paterson.Functional programming with bananas, lenses, en-velopes and barbed wire. In John Hughes, editor, Pro-ceedings FPCA 91, number 523 in LNCS. Springer-Verlag, 1991.[28] Ross Paterson. Control structures from types. Submit-ted for publication, 1994.[29] Andrew M. Pitts. Relational properties of recursivelyde�ned domains. In Proc. LICS 93. IEEE ComputerSociety Press, 1993.[30] John C. Reynolds. On the relation between directand continuation semantics. In Jacques Loeckx, ed-itor, Proc. 2nd Colloquium on Automata, Languagesand Programming, number 14 in LNCS, pages 141{156.Springer-Verlag, 1974.[31] John C. Reynolds. Types, abstraction and paramet-ric polymorphism. Information Processing, 83:513{523,1983.[32] David A. Schmidt. Denotational Semantics: A Method-ology for Language Development. Allyn and Bacon,Inc., 1986.[33] Tim Sheard and Leonidas Fegaras. A fold for all sea-sons. In Proc. FPCA 93. Springer, 1993.[34] Mike B. Smyth and Gordon D. Plotkin. The categorytheoretic solution of recursive domain equations. SIAMJournal of Computing, pages 761{783, 1982.[35] Doaitse Swierstra and Oege de Moor. Virtual datastructures. Technical Report RUU-CS-92-16, UtrechtUniversity, The Netherlands, 1992.[36] Philip Wadler. Theorems for free! In Proc. FPCA 89.Springer, 1989.[37] Philip Wadler. Deforestation: Transforming programsto eliminate trees. Theoretical Computer Science,73:231{248, 1990.

isomorphism) as the least �xed point Rec (Square (MyRecf)) of the covariant functor Square (MyRec f).Another way of showing that covariant functors su�ceis to �rst eliminate the use of mutual recursion in the def-initions of cata and ana (using standard techniques), andthen construct datatypes on which the resulting functionsare catamorphisms and anamorphisms.5 DiscussionIn this paper we have explained how the recursion func-tionals cata and ana can be generalised from polynomialdatatypes to those involving exponentials. An importantarea for future research is in experimenting with the useof the generalised operators and laws in writing and trans-forming programs. Another interesting topic for study isnon-regular datatypes [28], i.e. datatypes in which the re-cursive calls in the body are not all of the form of the headof a de�nition. Examples are the datatype Twist a b oflists of alternating elements of type a and type b, and thedatatype Nest a of lists of nested lists:data Twist a b = Nil | Cons a (Twist b a)data Nest a = Block a (Nest [a])To our knowledge, it is not in general known how to expressnon-regular datatypes as �xed points of functors (or difunc-tors). Note however that it is possible, with some e�ort, toexpress non-regular datatypes as �xed points of type con-structors, by using a Rec of kind ((* -> *) -> (* -> *))-> (* -> *) instead of kind (* -> *) -> *.Our �nal remarks concern the Gofer type system. In anumber of places we had to hack around the limitations oftype synonyms. First of all, since standard type synonymscannot be partially applied we were forced in some cases tomake use of restricted type synonyms, which can be par-tially applied. Secondly, since type synonyms cannot be re-cursive, we were forced to use a data declaration in de�ningRec, leading to the introduction of the �ctitious constructorIn. Both these problems don't seem to be inherent to typesynonyms, but are rather artifacts of the treatment of typesynonyms as macros in earlier functional languages; see [19]for further discussion on this point.AcknowledgementsUtrecht University and Chalmers University provided fund-ing for mutual visits by the two authors, during which timepart of this paper was written. It was Ross Paterson whooriginally suggested to Meijer that Freyd's paper might haveapplications in functional programming. Thanks to LucDuponcheel, Johan Jeuring, Mark Jones, and the FPCAreferees for useful comments and suggestions.References[1] Samson Abramsky. The lazy lambda calculus. In DavidTurner, editor, Research Topics in Functional Program-ming, pages 65{116. Addison-Wesley, 1990.[2] Lennart Augustsson. The Haskell B. compiler.Chalmers University of Technology, 1994.[3] Roland Backhouse, Ed Voermans, and Jaap van derWoude. A relational theory of datatypes. In prepara-tion, 1994.

[4] Henk Barendregt. The Lambda Calculus { it's Syntaxand Semantics. North-Holland, 1984. Revised edition.[5] Hans Beki�c. Programming Languages and their De�ni-tion, volume 177 of LNCS. Springer-Verlag, 1984.[6] Richard Bird. Constructive functional programming. InProc. Marktoberdorf International Summer School onConstructive Methods in Computer Science. Springer-Verlag, 1989.[7] Richard Bird and Oege de Moor. The algebra of pro-gramming. In preparation, 1994.[8] Richard Bird and Philip Wadler. An Introduction toFunctional Programming. Prentice Hall, 1988.[9] Gert Florijn. Modelling o�ce processes with functionalparsers. University of Utrecht, The Netherlands, 1994.[10] Maarten Fokkinga. Law and Order in Algorithmics.PhD thesis, University of Twente, March 1992.[11] Peter Freyd. Algebraically complete categories. InA. Carboni et al, editor, Proc. 1990 Como CategoryTheory Conference, volume 1488 of Lecture Notes inMath, pages 95{104. Springer-Verlag, Berlin, 1990.[12] Peter Freyd. Recursive types reduced to inductivetypes. In Proc. LICS 90. IEEE Computer Society Press,1990.[13] Jeremy Gibbons. Algebras for Tree Algorithms. PhDthesis, Oxford University, September 1991.[14] T. Hagino. Category Theoretic Approach to Data Types.PhD thesis, University of Edinburgh, 1987.[15] Graham Hutton. Higher-order functions for parsing.Journal of Functional Programming, 2(3):323{343, July1992.[16] Mark Jones. Gofer 2.28 release notes. February 1993.[17] Mark Jones. A system of constructor classes: overload-ing and implicit higher-order polymorphism. In Proc.FPCA 93. Springer, 1993.[18] Mark Jones. Personal communication, May 1994.[19] Mark Jones and Erik Meijer. Gofer goes bananas. Inpreparation, 1994.[20] Grant Malcolm. Algebraic data types and programtransformation. Science of Computer Programming,14(2-3):255{280, September 1990.[21] E.G. Manes and M.A. Arbib. Algebraic Approaches toProgram Semantics. Texts and Monographs in Com-puter Science. Springer-Verlag, 1986.[22] Lambert Meertens. Algorithmics: Towards program-ming as a mathematical activity. In Proc. CWI Sympo-sium, Centre for Mathematics and Computer Science,Amsterdam, November 1983.[23] Lambert Meertens. Paramorphisms. Formal Aspects ofComputing, 4(5):413{425, 1992.[24] Erik Meijer. Calculating Compilers. PhD thesis, Ni-jmegen University, February 1992.

type Cont = (Closure -> Closure) -> Closureinstance Retract Cont (Cont -> Cont) whereup f =\a -> \cont ->f (\(In (Clos f)) -> f a cont)down f =\cont -> cont (In (Clos f))instance Reflexive Continstance LambdaModel Contwhere Closure is the �xed point of difunctor C:data C c c' =Clos (((c -> c') -> c)-> ((c' -> c) -> c'))instance Difunctor (->) => Difunctor C where(f `dimap` g) (Clos h) =Clos ((((f `dimap` g) `dimap` f)`dimap` ((g `dimap` f) `dimap` g)) h)type Closure = Rec CSuppose now that we want to show that the continuation-based interpreter is correct with respect to the standard in-terpreter [30]. An interpreter based upon a reexive type bis correct with respect to an interpreter based upon a reex-ive type a if there exists a retract from b to a such that thefollowing diagram commutes for all expressions e:Env a aEnv b beval e //map up OO eval e // upOOThat is, evaluating an expression using an environment bind-ing variables to b-values and then converting the result toan a-value is equivalent to �rst converting the bindings toa-values and then interpreting the expression.It turns out now that the free theorem for the polymor-phic �-interpreter eval :: Reflexive a => Expr -> Enva -> a gives tractable conditions that establish the correct-ness of one interpreter with respect to another:h (f `apply` a)= (h f) `apply` (h a)^ h.g= f.h) h (abstr g) = abstr f) h.(eval e) = (eval e).map h(See [26] for a general discussion of free theorems in the con-text of class restrictions.) This result is a generalisation tothe untyped �-calculus of Reynolds' (functional) abstractiontheorem for the typed �-calculus [31].Appealing to the abstraction theorem with a = Scott,b = Cont and h = up, we are required to �nd a retract fromCont to Scott satisfying the preconditions of the theorem.Using the fact that Scott is of the form Rec S', togetherwith the fact that cata and ana preserve retracts (previoussection), we are motivated to look for a retract from Cont toS' Cont Cont. It is easy to prove that the following de�ni-tions for up and down give such a retract, thus establishinga retract from Cont to Scott:

instance Retract Cont (S' Cont Cont) whereup f = Func (up f)down (Func f) = down finstance Retract Cont ScottIt remains to show that up :: Cont -> Scott satis�esthe preconditions of the abstraction theorem. Verifying thesecond condition is straightforward. However, we have notyet been successful in establishing the �rst condition, namelythat up (f `apply` a) = (up f) `apply` (up a).4.5 Covariant functors su�ceFreyd [12] shows that, somewhat surprisingly, the generali-sation from functors to difunctors is not technically neces-sary to handle exponentials: �xed points of difunctors canbe expressed in terms of �xed points of covariant functors.The result is mainly of theoretical interest, but it is instruc-tive to see how the translation from difunctors to functorsworks. The present class system of Gofer isn't quite power-ful enough to let us implement all aspects of the translationdirectly, so here we just give an outline.As we have seen previously for the case of (->), a difunc-tor f can be made into a covariant functor (f a) by �xingits contravariant argument to a speci�c type a:instance Difunctor f => Functor (f a) wheremap g = id `dimap` gConsider now the mapping on types MyRec f which sends atype a to the �xed point of the covariant functor (f a):type MyRec f a = Rec (f a)By using the cata operator for functors of section 2.2, themapping MyRec f can be extended to a mapping on func-tions, such that MyRec f is then a contravariant functor:mycomap :: (Difunctor f, Functor (f b)) =>(a -> b) -> (MyRec f b -> MyRec f a)mycomap g = cata (In . (g `dimap` id))For technical reasons concerning type classes in Gofer, MyRecf cannot directly be made into an instance of Gofer classCofunctor of contravariant functors.A contravariant functor f can be made into a covariantfunctor Square f by composing f with itself:type Square f a = f (f a) in sqrmapsqrmap :: Cofunctor f =>(a -> b) -> (Square f a -> Square f b)sqrmap g = comap (comap g)instance Cofunctor f => Functor (Square f)where map = sqrmapAgain for technical reasons, sqrmap cannot be de�ned di-rectly within the instance declaration above.Freyd shows now that �xed points of difunctors can bereduced to �xed points of covariant functors in two steps.First of all, the least �xed point Rec f of a difunctor f isisomorphic to the least �xed point Rec (MyRec f) of thecontravariant functor MyRec f (viewed as a difunctor inde-pendent of its second argument). And secondly, the least�xed point Rec f of a contravariant functor is isomorphic tothe least �xed point Rec (Square f) of the covariant func-tor Square f. Combining the two steps, we see that the least�xed point Rec f of a difunctor f can be obtained (up to

or in diagrammatic form,a `f` b bc `f` d d`dimap` h�� phi // h��g OO phi' //^ d `f` c cb `f` a a`dimap` g�� psi'oo g��h OO psioo) Rec f bdcata phi psi //cata phi' psi'SSSSSSSSSSSSSSS)) h��^ Rec f caana phi' psi'oo g��ana phi psiiiSSSSSSSSSSSSSSSIt is interesting to note that the above fusion law turnsout to be the specialisation to functions of Pitt's relationalinduction principle for recursive datatypes [29, Prop 2.10].Let us consider an example of the use of fusion. Aretract from a type b to a type a is a pair of functionsup :: b -> a and down :: a -> b such that up.down=id :: a -> a. In other words, down is an injective functionwith up as a left-inverse. In Gofer, the notion of a retractcan be encapsulated as a type class, as follows:class Retract b a whereup :: b -> adown :: a -> bUsing fusion it can be shown that given a difunctor f, if upand down form a retract from (f a a) to a, then (ana updown) and (cata up down) form a retract from a to (Recf). In Gofer, this can be implemented as follows:instance (Difunctor f, Retract (f a a) a) =>Retract a (Rec f) whereup = ana (up :: Retract (f a a) a =>f a a -> a) (down :: Retract(f a a) a => a -> f a a)down = cata (up :: Retract (f a a) a =>f a a -> a) (down :: Retract(f a a) a => a -> f a a)This result will be used in the next section.4.4 Interpreters for the �-calculusWe illustrate the generalised theory by de�ning a class of in-terpreters for the untyped �-calculus, and taking some stepstowards formally relating such interpreters. We begin byde�ning a datatype Expr of �-expressions:data Expr = Var String| Lambda String Expr| Apply Expr Expr

The datatype Expr could of course be expressed as the �xedpoint of a functor, but we don't do this here, preferringinstead to concentrate on the use of �xed points in de�ningthe semantic domains for �-interpreters.A datatype can serve as such a semantic domain if itis reexive [4]. Formally, a type a is reexive if there is aretract from a to (a -> a). (The notion of a retract wasde�ned in the previous section.) Intuitively then, a type isreexive if it is large enough to faithfully represent its ownfunction-space. In Gofer, the notion of a reexive type canbe encapsulated as a type class, as follows:class Retract a (a -> a) => Reflexive a whereapply :: a -> (a -> a)abstr :: (a -> a) -> af `apply` a = up f aabstr f = down fWe can now de�ne a class of interpreters (one for eachreexive type a) that map a �-expression to its value in thesemantic domain a; as usual, an environment carries thevalues of the free variables in the expression:class Reflexive a => LambdaModel a whereeval :: Expr -> Env a -> aeval (Var x) env =env `lookup` xeval (Lambda x b) env =abstr (\a -> eval b (env `update` (x,a)))eval (Apply f a) env =(eval f env) `apply` (eval a env)Environments are represented as functions from identi�ersto values, and are equipped with two operations:type Env a = String -> a inlookup, update, mapEnvlookup :: Env a -> String -> aupdate :: Env a -> (String,a) -> Env aenv `lookup` x = env xenv `update` (x,a) =\y -> if y==x then a else env `lookup` yLater on in this section, we will use the fact that Env can beextended to a functor, as follows:mapEnv :: (a -> b) -> (Env a -> Env b)mapEnv = (.)instance Functor Env wheremap = mapEnvThe standard (call by name) interpreter for the untyped�-calculus is obtained by taking the reexive datatype Scottof section 3.3 as the semantic domain:instance Retract Scott (Scott -> Scott) whereup (In (Func f)) = fdown f = In (Func f)instance Reflexive Scottinstance LambdaModel ScottAn appropriate reexive type Cont for a (call by name)continuation-based semantics for �-expressions is de�ned by:

4.1 Difunctors and recursive datatypesGiven a difunctor f, its induced recursive datatype Rec fis de�ned as the simultaneous �xed point of f in both ar-guments. In Gofer this de�nition for Rec f can be imple-mented as follows (as previously, strictness of the construc-tor In is necessary to obtain an isomorphism):data Rec f =In (f (Rec f) (Rec f)) {- #STRICT# -}4.2 Catamorphisms and anamorphismsAn isomorphism between types f a a and a is called an f-invariant. An example of an f-invariant is In :: f (Recf) (Rec f) -> Rec f. It is also the minimal f-invariant, inthe sense that copy= id, wherecopy :: Difunctor f => (Rec f -> Rec f)copy (In x) = In ((copy `dimap` copy) x)This de�nition can be expressed in diagrams by(Rec f) `f` (Rec f) Rec f(Rec f) `f` (Rec f) Rec f`dimap` copy�� In // copy��copy OO In //Note that by drawing the arrows g :: a -> b and h ::c -> d of a difunctor g `dimap` h :: (b `f` c) -> (a`f` d) separately, both the contravariance and typing as-sumptions of dimap are made explicit.For datatypes expressed as �xed points of functors, thenotion of a catamorphism arose by abstracting on In in thebody of the de�nition of copy. Let us now try to play thesame game for the difunctors version of copy. As a �rstattempt, abstracting (naively) on In in the body of the di-functors version of copy gives the de�nitioncata phi (In x) =phi (((cata phi) `dimap` (cata phi)) x)However this de�nition is too restrictive, since it forces theargument function phi to have type f (Rec f) (Rec f) ->Rec f, and cata phi itself to have type Rec f -> Rec f.The problem is the use of cata phi as both the covariantand contravariant argument of dimap in the de�nition. Thecovariant use of cata phi requires that the argument func-tion phi have type f b a -> a; a function of this type iscalled an f-dialgebra [12]. The additional contravariant useof cata phi then requires that a = b = Rec f, i.e. that phihave type f (Rec f) (Rec f) -> Rec f.As a �rst step to solving this problem, let us assumethe existence of a function g :: b -> Rec f to use as thecontravariant argument of dimap in the body of cata phi,rather than cata phi itself. This assumption leads to ade�nition for cata phi with su�ciently general typing re-quirements, as illustrated by the following diagram:(Rec f) `f` (Rec f) Rec fb `f` a a`dimap` cata phi�� In // cata phi��g OO phi //A similar problem occurs with the naive generalisationof copy to obtain an anamorphism functional:

ana psi x =In (((ana psi) `dimap` (ana psi)) (psi x))The covariant use of ana psi here requires that psi havetype b -> f a b; a function of this type is called an f-codialgebra. The additional contravariant use of ana psithen requires that a = b = Rec f, i.e. that psi have type Recf -> f (Rec f) (Rec f), and hence that ana psi have typeRec f -> Rec f. However, a de�nition for ana psi withsu�ciently general typing requirements can be obtained byassuming the existence of a function h :: Rec f -> a touse as the contravariant argument of dimap:a `f` b b(Rec f) `f` (Rec f) (Rec f)`dimap` ana psi�� psioo ana psi��h OO outooLet us now consider the above diagrams for cata phiand ana psi simultaneously. We observe that a functiong :: b -> Rec f required to de�ne cata phi can be ob-tained simply as g = ana psi, and similarly, a function h:: Rec f -> a required to de�ne ana psi can be obtainedas h = cata phi. Thus we are naturally led to the followingmutually recursive de�nitions for cata and ana on datatypesexpressed as �xed points of difunctors:cata :: Difunctor f =>(f b a -> a) -> (b -> f a b) -> (Rec f -> a)ana :: Difunctor f =>(f b a -> a) -> (b -> f a b) -> (b -> Rec f)cata phi psi (In x) =phi (((ana phi psi)`dimap` (cata phi psi)) x)ana phi psi x =In (((cata phi psi)`dimap` (ana phi psi)) (psi x))Note that the difunctor versions of cata and ana aboveare proper generalisations of the functor versions from Sec-tion 2, in the sense that if the difunctor f is independentof its contravariant argument, the de�nitions reduce to thestandard de�nitions for functors.4.3 Free theorems and fusionJust as was the case for functors, the cata and ana func-tionals for difunctors satisfy a fusion law, which arises as afree theorem. Because the difunctors versions of cata andana are de�ned mutually recursively, we get a simultaneousfusion law for the two functionals, rather than two separatelaws as was the case previously: for strict functions h,h.phi = phi'.(g `dimap` h)^ psi.g = (h `dimap` g).psi') h.(cata phi psi) = cata phi' psi'^ (ana phi psi).g = ana phi' psi'

exec :: Functor (S a b) => State a b -> [b]exec = cata (\x -> case x ofDone n -> [n]Pause n h -> concat (h n))As a simple application, exec and ana can be used to de�nea function n2d that extracts the list of digits from a number:n2d :: Int -> [Int]n2d = exec . ana (\x ->if x <= 9 then Done xelse Pause x (\n -> [n `div` 10,n `mod` 10]))For example, n2d 1234= [1;2;3;4].A more practical use of the type State is the extensionof a library of parsing combinators [15] with a combinatorfor parallel composition of parsers [9].3.2 Contravariant uses of (->)An example where (->) is used contravariantly is in thede�nition of a �xed point combinator by using recursion ontypes rather than recursion on functions. We �rst de�ne atype Inf a of functions that yield a result of type a from anin�nitely nested argument of such functions:type I a i = (i -> a) in inI, outIinI :: (i -> a) -> I a ioutI :: I a i -> (i -> a)inI = idoutI = idtype Inf a = Rec (I a)The functions inI and outI above play the rôle of construc-tor and destructor functions for the type I a i.Using Inf a we can de�ne Curry's �xed point combi-nator Y f = gg where g = �h:f(hh) from the untyped �-calculus in a typed functional language:fix :: (a -> a) -> afix f = g (In (inI g))where g (In h) = f (outI h (In h))We would like to be able to express recursive functionson Inf a using recursion functionals such as cata, but it isnot possible to de�ne a map that makes I a into a covariantfunctor. However, the following de�nition of a functionalcomap makes I a into a contravariant functor:comap :: (b -> c) -> (I a c -> I a b)comap g h = inI.(h.g).outIA contravariant functor is like a covariant functor, exceptthat the functional comap lifts a function g :: a -> b to afunction comap g :: f b -> f a where the argument andresult types have been interchanged. As a consequence, suchfunctors must distribute contravariantly over function com-position: comap (g:h) = (comap h):(comap g).In Gofer, the concept of a contravariant functor can beencapsulated as a constructor class, as follows:class Cofunctor f wherecomap :: (a -> b) -> (f b -> f a)It is possible, with some e�ort, to de�ne versions of cata,ana, para, and hylo on datatypes expressed as �xed pointsof contravariant functors, but this would only be a partialsolution to the problem. In general, a type constructor in-volving function-spaces can be of mixed variance.

3.3 Mixed variant uses of (->)An example where (->) is used both covariantly and con-travariantly is in the de�nition of a type Scott for modellingthe untyped (lazy) �-calculus [1]:data S s = Func (s -> s)type Scott = Rec SAn occurrence of a type variable in a type expression issaid to be contravariant if it occurs to the left of an oddnumber of nested arrows (->), and covariant otherwise. Theargument s to S above occurs both covariantly (s -> s)and contravariantly (s -> s). The e�ect is that S cannotbe made into a functor, either covariant or contravariant.We can however make the distinction between the twokinds of occurrences of the argument s in the de�nition ofS explicit by de�ning a binary type constructor S':data S' s s' = Func (s -> s')By �xing its �rst argument, S' can be made into a covariantfunctor; by �xing its second argument, S' can be made into acontravariant functor. In general, a binary type constructorwith this property is called a difunctor.Formally, a difunctor [12] is a binary type constructor fthat assigns to each pair of types a and b a type f a b, to-gether with a polymorphic functional dimap that lifts a pairof functions g :: a -> b and h :: c -> d to a functiong `dimap` h :: f b c -> f a d. A difunctor must alsopreserve the identity function and distribute over functioncomposition in the following way:id `dimap` id = id(g:h) `dimap` (i:j) = (h `dimap` i):(g `dimap` j)In Gofer the concept of a difunctor can be encapsulatedas a constructor class, as follows:class Difunctor f wheredimap :: (a -> b) -> (c -> d) ->(f b c -> f a d)One can verify now that the following de�nition for dimapmakes the type constructor S' into a difunctor:instance Difunctor S' where(f `dimap` g) (Func h) = Func (g.h.f)In the above, the Func constructor only plays an auxiliaryrôle. In fact, S' is a difunctor because the function-spaceconstructor (->) is itself a difunctor:instance Difunctor (->) where(f `dimap` g) h = g.h.fIn general, by separating the covariant and contravari-ant occurrences of the argument a in the body of a non-recursive datatype declaration data F a = ..., every suchtype constructor F induces a difunctor F', such that F canbe recovered from F' by diagonalising, i.e. F a = F' a a.4 General datatypesWe have seen in the previous section that (non-recursive)type constructors involving exponentials do not in generalinduce functors, but do induce difunctors. Freyd [12] presentsa categorical theory of recursive datatypes modelled as �xedpoints of difunctors. In this section we explain how Freyd'swork shows how to generalise the recursion functionals cataand ana, together with their associated fusion rules. As wasthe case previously, cata and ana are obtained by suitablygeneralising a simple copy function.

In this case there is no strictness requirement on h, sincedualising h:bot = bot gives bot:h = bot, which is true forall functions h. Using fusion for anamorphisms, togetherwith the fact that ana out is the identity function on Recf, we can show that ana psi is in fact the unique functionsatisfying its de�ning equation.2.6 Primitive and general recursionMeertens has shown that every primitive recursive function,i.e. paramorphism [23], can be expressed as an ana followedby a cata. Let us briey show how paramorphisms can beimplemented in Gofer. The �rst step is to de�ne a family offunctors P f, one for each functor f:type P f a = f (Rec f,a) in mapP, para, ppmapP :: Functor f =>(a -> b) -> (P f a -> P f b)mapP g = map (\(x,a) -> (x, g a))instance Functor f => Functor (P f) wheremap = mapPNote that P above is de�ned as a restricted type synonym[16] so that it can be partially applied. As a consequence,the functional mapP cannot be de�ned directly within theinstance declaration for P f. A functional para that buildsparamorphisms is de�ned now by:para :: Functor (P f) =>(f (Rec f, a) -> a) -> (Rec f -> a)para phi = cata phi . predspreds :: Functor (P f) => Rec f -> Rec (P f)preds = ana pppp :: Functor f => Rec f -> P f (Rec f)pp (In x) = map (\a -> (a,a)) xAgain for technical reasons concerning types, the de�nitionfor para above has to be split up into parts.It came as somewhat of a surprise to the authors to dis-cover that a general �xed point operator can also be de�nedas the composition of an ana followed by a cata, thus pro-viding the full power of recursion. (We have since discoveredthat this observation has already been made by Freyd [11].)The e�ect is that algebraic languages that provide cata andana as the only means to de�ne recursive functions are notlimited in expressive power.Using cata and ana, the least �xed point fix f of afunction f can be computed as the in�nite application f (f(f ...)) in the following way: �rst use an anamorphism tobuild an in�nite list In (Cons f (In (Cons f (In (Consf ...))))), and then use a catamorphism to replace eachconstructor Cons by function application.fix :: Functor (L (a -> a)) => (a -> a) -> afix = cata (\(Cons f x) -> f x). ana (\f -> Cons f f)In general, many functions can be naturally expressed asthe composition of an ana and a cata, so it seems useful toname this idiom. Functions expressed in this way are knownas hylomorphisms [27]:hylo :: Functor f =>(f a -> a) -> (b -> f b) -> (b -> a)hylo phi psi = cata phi . ana psi

A straightforward �xed point induction shows that the twoconstituents of a hylomorphism can be fused together to givea direct recursive de�nition that avoids building an interme-diate [37] (or virtual [35]) value:hylo phi psi = phi . map (hylo phi psi) . psiFor example, if we express fix as a hylomorphism ratherthan the composition of a cata and an ana,fix f =hylo (\(Cons f x) -> f x) (\f -> Cons f f)then by unfolding using the more e�cient de�nition of hylowe �nd that fix f = f (fix f), as expected.3 Problems with exponentialsIn the previous section we reviewed how the functionalsfoldr and unfold are generalised from lists to polynomialdatatypes. While such datatypes are su�cient for many pro-gramming tasks, a central aspect of functional programmingis that functions are �rst-class values.However, exponentials (function-spaces) are problematicbecause the type constructor (->) is contravariant in its�rst argument. The e�ect is that certain type constructorsde�ned using (->) cannot be made into functors, and asa result, functionals such as cata and ana cannot alwaysbe used to de�ne functions on recursive datatypes involvingexponentials. This section gives a number of examples ofrecursive datatypes involving exponentials, and elaborateson the problems with such datatypes.3.1 Covariant uses of (->)An example in which function-spaces are used covariantly isthat of non-deterministic computations [32]. An element ofdatatype State a b is either a �nal value of type b, or an in-termediate state of type a together with a non-deterministiccontinuation of type a -> [State a b]:data S a b s = Done b | Pause a (a -> [s])type State a b = Rec (S a b)To make the type constructor S a b into a functor, we �rstobserve that the sub-component (a ->) can itself be madeinto a functor. That is, �xing the �rst argument of (->)to a speci�c type a yields a functor ((->) a). The re-quired type of the map functional for ((->) a) is (b -> c)-> ((->) a b) -> ((->) a c). Using familiar in�x nota-tion we recognise (b -> c) -> (a -> b) -> (a -> c) asthe type of function composition (.). One can easily verifythat (.) indeed makes ((->) a) into a functor.instance Functor ((->) a) wheremap = (.)Now S a b can be made into a functor, as follows:instance (Functor ((->) a), Functor []) =>Functor (S a b) wheremap g =\x -> case x ofDone n -> Done nPause n h ->Pause n (map (map g) h)Note that map for S a b is not recursive; the uses of map inits de�nition are those for ((->) a) and lists [].A function exec that forces evaluation of a state to itsset of �nal values can now be de�ned as a catamorphism:

functor E for arithmetic expressions. The following func-tion (which replaces the constructors Num and Add by thefunctions id and (+)) is an E-algebra of type E Int -> Int:\x -> case x ofNum n -> id nAdd e e' -> e + e'Applying cata to the above algebra gives the standard eval-uator for arithmetic expressions:eval :: Expr -> Inteval = cata (\x -> case x ofNum n -> id nAdd e e' -> e + e')This de�nition says that expressions can be evaluated by si-multaneously replacing all Num constructors by the id func-tion on integers, and all Add constructors by (+) on integers.Unfolding the de�nition to eliminate the use of cata and mapmakes clear that it has the expected behaviour:eval (In x) =case x ofNum n -> nAdd e e' -> (eval e) + (eval e')2.3 Free theorems and fusionA useful heuristic in functional programming is to inspectthe \free theorem" [36] that comes from the type of a poly-morphic function. The free theorem for cata :: Functorf => (f a -> a) -> (Rec f -> a) is the well-known fu-sion law [27]: for strict functions h,h.phi= phi'.(map h)) h.(cata phi) = cata phi'If we only consider �nite elements of Rec f the strictnesscondition on h can be removed. Fusion can also be proveddirectly using a simple �xed point induction [27], for whichit is also necessary that h be strict.The hidden type information in the fusion law is exposedwhen using commuting diagrams instead of equations:f a f ba bmap h//phi �� phi'��h //) Rec aa bcata phi'EEEEEEE""cata phi �� h //Fusion captures a common pattern of inductive proof onprograms expressed as catamorphisms, in a similar way tothat in which cata itself captures a common pattern of re-cursion over polynomial datatypes. Minimality and fusioncan together be used to show that cata phi satis�es a uni-versal property, namely that cata phi is the unique functionsatisfying its de�ning equation.Returning to our running example, an alternative wayto evaluate arithmetic expressions is to use a stack of type[Int] to store intermediate values. Such a stack-based eval-uator can be de�ned as follows:eval' :: Expr -> ([Int] -> [Int])eval' = cata (\x -> case x ofNum n -> push nAdd e e' -> add.e'.e)where push a as = a:as pushes a number onto the stackand add (a:b:cs) = (b+a):cs adds the top two values.The fact that the stack-based evaluator leaves the ex-pected value on top of the stack, i.e. for all �nite expres-sions e :: Expr we have push (eval e) = eval' e, caneasily be proved using fusion and the distribution of pushover addition: push (a+b)= add.(push a).(push b) [25].

2.4 Coalgebras and anamorphismsUsing cata we can de�ne functions with recursive datatypesas their source. Dually, it is also useful to have a functionalfor de�ning functions with recursive datatypes as their tar-get. Let us begin by re-writing the function copy from whichcatamorphisms arose in the equivalent formcopy :: Functor f => (Rec f -> Rec f)copy x = In (map copy (out x))where out (In x) = x is the inverse of the isomorphism In.If we now generalise this version of copy by replacing theoccurrence of out :: Rec f -> f (Rec f) in its de�nitionby an arbitrary function psi : a -> f a (an f-coalgebra),we obtain the notion of an anamorphism [27]:ana :: Functor f => (a -> f a) -> (a -> Rec f)ana psi x = In (map (ana psi) (psi x))The functional ana|written as \lens" brackets db()ec in theSquiggol literature|is the generic version of the recursionfunctional unfold [8, p173] on lists. The Greek preposition��� means upwards, and its use here reects the fact thatana psi recursively builds up its result by decomposing itsargument using the function psi.We illustrate the notion of an anamorphism by de�ning afunction n2b that converts natural numbers to their binaryrepresentation. The �rst step is to de�ne a type Bin ofbinary numbers as the �xed point of a functor B:data B b = Empty | Zero b | One binstance Functor B wheremap g = \x -> case x ofEmpty -> EmptyZero b -> Zero (g b)One b -> One (g b)type Bin = Rec BThe binary representation of a natural number is built byrecursively splitting o� its least signi�cant bit:n2b :: Int -> Binn2b = ana (\x -> case x of0 -> Empty2*n -> Zero n2*n+1 -> One n)For example, n2b 2 = In (Zero (In (One (In Empty)))).The dual function b2n that converts a binary number backto a natural number can be de�ned as a catamorphism:b2n :: Bin -> Intb2n = cata (\x -> case x ofEmpty -> 0Zero b -> 2*bOne b -> 1+2*b)2.5 Free theorems and fusionThe free theorem for the functional ana :: Functor f =>(a -> f a) -> (a -> Rec f) is also a fusion theorem:psi.h= (map h).psi') (ana psi).h= ana psi'or in diagrammatic form,b af b f apsi �� hoo psi'��map hoo) b aRec fana psi �� hoo ana psi'||yyyyyyy

map g :: f a -> f b. In Gofer, the concept of a functorcan be encapsulated as a constructor class, as follows:class Functor f wheremap :: (a -> b) -> (f a -> f b)Such a declaration is not possible using the standard classsystem, because the parameter f of the class Functor is atype constructor rather than a type.A familiar example of a functor is the type constructor[] (not to be confused with the empty list []) for lists:instance Functor [] wheremap f xs = [f x | x <- xs]Technically, a functor must also preserve the identityfunction id and distribute over function composition (.),i.e. the following two equations must hold:map id = idmap (g:h) = (map g):(map h)However it is not possible to express these extra require-ments directly in the Gofer class de�nition of a functor. Itis the responsibility of the programmer to check that theyindeed hold for each instance of the class.Given a functor f, its induced recursive datatype Recf is de�ned as the �xed point of f. In Gofer this can beimplemented as follows:data Rec f = In (f (Rec f)) {- #STRICT# -}Since Rec f is recursive, we have been forced to de�ne itusing data rather than type, and as a consequence havebeen required to introduce the �ctitious strict constructorIn. Strictness of In is necessary to obtain an isomorphismbetween Rec f and f (Rec f). If In was not strict, therewould be no value in f (Rec f) that corresponds to the\unde�ned" value bot in Rec f, de�ned by bot = bot.The strictness pragma in the de�nition of Rec f is notcurrently permitted in Gofer. However, a number of Haskellimplementations permit such constraints in datatype de�ni-tions (e.g. [2]), as will future releases of Gofer [18].Consider a simple datatype of arithmetic expressions,built out of numbers and binary addition:data Expr = Num Int | Add Expr ExprTo express this datatype as the �xed point of a functor, we�rst de�ne a functor Ewhich captures the recursive structureof arithmetic expressions:data E e = Num Int | Add e einstance Functor E wheremap g = \x -> case x ofNum n -> Num nAdd e e' -> Add (g e) (g e')It is a simple exercise to verify that map satis�es the twoequations required of a functor. The type Expr of expres-sions can now be de�ned as the �xed point of functor E:type Expr = Rec ESome illustrative values of type Expr areIn botIn (Num 3)In (Add bot bot)In (Add (In (Num 1)) bot)In (Add bot (In (Num 5)))In (Add (In (Num 7)) (In (Num 2)))...let e = In (Add e e) in e

It is clear from these examples that In plays no essentialrôle, except as an explicit type coercion between E Expr andExpr, and in general, between f (Rec f) and Rec f. It isalso clear that the type Expr de�ned using Rec is isomorphicto the original Gofer de�nition using recursion. If Rec fcould be de�ned as a recursive type synonym, the two typeswould in fact be identical.Parameterised datatypes can also be de�ned as �xedpoints of functors. The general method is to partially pa-rameterise a binary type constructor with a type variable togive a functor. For example, the datatypedata List a = Nil | Cons a (List a)of lists with elements of type a can be de�ned as follows:data L a l = Nil | Cons a linstance Functor (L a) wheremap g = \x -> case x ofNil -> NilCons a l -> Cons a (g l)type List a = Rec (L a)(In the remainder of this paper, only the Rec de�nition ofmost recursive datatypes used will be given. Such de�nitionscan be translated to normal Gofer recursive de�nitions sim-ply by unfolding the de�nition of Rec.)Mutually recursive datatypes can be reduced to directrecursive datatypes in a similar way to that in which mu-tually recursive functions can be reduced to direct recursivefunctions [5, 10]. So no generality is lost by restricting ourattention to direct recursive datatypes.Note that only the type constructor part of a functor isnecessary to express datatypes as �xed points of functors.As we shall see in the next section, the map part comes intoplay when recursion functionals on datatypes are de�ned.2.2 Invariants, algebras and catamorphismsIn Freyd's terminology [12], an isomorphism between types fa and a is an f-invariant. An example of an f-invariant is In:: f (Rec f) -> Rec f. Among all possible f-invariants,In is special in the sense that it is the minimal f-invariant.Minimality expresses that the functioncopy :: Functor f => (Rec f -> Rec f)copy (In x) = In (map copy x)which recursively replaces the constructor In by itself is theidentity function on the datatype Rec f. That copy = idholds is easily proved by structural induction.Suppose now that we generalise copy to replace In notby itself but by an arbitrary function phi :: f a -> a. Inthis way we obtain the notion of a catamorphism [27]:cata :: Functor f => (f a -> a) -> (Rec f -> a)cata phi (In x) = phi (map (cata phi) x)The functional cata|written as \banana" brackets (j j) inthe Squiggol literature|is the generic version of the fa-miliar recursion functional foldr on lists, generic in thesense that it can be used with any polynomial datatype.The term catamorphism comes from the Greek preposition����, meaning downwards, and reects the fact that cataphi recursively walks down its argument replacing each oc-currence of In by a function phi along the way.Given a functor f and a speci�c type a, a function phi:: f a -> a is known as an f-algebra. Consider again the

Bananas in Space:Extending Fold and Unfold to Exponential TypesErik Meijer and Graham HuttonUniversity of UtrechtThe Netherlandshttp://www.cs.ruu.nl/people/ferik,grahamg/AbstractFold and unfold are general purpose functionals for process-ing and constructing lists. By using the categorical approachof modelling recursive datatypes as �xed points of functors,these functionals and their algebraic properties were gener-alised from lists to polynomial (sum-of-product) datatypes.However, the restriction to polynomial datatypes is a seriouslimitation: it precludes the use of exponentials (function-spaces), whereas it is central to functional programming thatfunctions are �rst-class values, and so exponentials shouldbe able to be used freely in datatype de�nitions. In thispaper we explain how Freyd's work on modelling recursivedatatypes as �xed points of difunctors shows how to gen-eralise fold and unfold from polynomial datatypes to thoseinvolving exponentials. Knowledge of category theory is notrequired; we use Gofer throughout as our meta-language,making extensive use of constructor classes.1 IntroductionDuring the 1980s, Bird and Meertens [6, 22] developed a cal-culus (nicknamed Squiggol) of recursion functionals on lists,using which e�cient functional programs can be derivedfrom speci�cations by using equational reasoning. Squiggolwas subsequently generalised from lists to polynomial (sum-of-product) datatypes [20] by using the categorical approachof modelling recursive datatypes as �xed points of functors[21, 14]. This approach allows foldr, unfold and other re-cursion functionals to be uniformly generalised from lists topolynomial datatypes. The generalised functionals are givenspecial names (such as catamorphism and anamorphism),and are written symbolically using special brackets (such as\banana" brackets (j j) and \lens" brackets db()ec.) The cat-egorical approach also provides a number of algebraic lawsthat can be used to derive, transform and reason about pro-grams expressed using these functionals. The theory andpractice of such generic functionals has been explored bymany authors, e.g. [3, 7, 10, 13, 14, 24, 33].The aim of the bananas paper of Meijer, Fokkinga andPaterson [27] was to bring the ideas of Squiggol closer to lazyfunctional languages. This was achieved by moving from thecategory set of sets and total functions (the world of stan-

dard category theory and Squiggol) to the category cpo ofcpos and continuous functions (the world of cpo-categories[12] and lazy functional programming). However, a seriousde�ciency of the bananas paper | and more generally, thework of the Squiggol community | is its limitation to poly-nomial datatypes [20]. This precludes the use of exponen-tials (function-spaces), whereas it is central to functionalprogramming that functions are �rst-class values, and soexponentials should be able to be used freely in datatypede�nitions. So to truly bring Squiggol closer to functionalprogramming, the theory must be extended to deal withdatatypes that involve exponentials.Technically, exponentials are problematic because theexponential functor is contravariant in its �rst argument.A standard solution to the problem is to move from thecategory cpo to the category cpoep of cpos and embedding-projection pairs, on which category the exponential functorcan be made covariant [34]. But while the setting of cpoepis technically su�cient, from a practical point of view it isnot a convenient category upon which to base a program-ming calculus for reasoning about datatypes and recursionfunctionals, because the arrows in cpoep do not naturallycorrespond to programs.An alternative solution that allows us to stay within cpohas been proposed by Freyd [12]. His key idea is to modelrecursive datatypes as �xed points of difunctors, functorson two variables, contravariant on the �rst, covariant onthe second. In the present article (but see also [29, 28]) weexplain to functional programmers how Freyd's work showshow to generalise fold and unfold from polynomial datatypesto those involving exponentials.We use Gofer throughout as our meta-language, makingextensive use of the constructor classes extension to the stan-dard Gofer (or Haskell) class system [17, 19]. Using Goferrather than category theory as our meta-language makes theconcepts more accessible as well as executable, and elimi-nates the gap between theory and practice.2 Polynomial datatypesWe begin in this section by reviewing the theory introducedin the bananas paper, by implementing it in Gofer. In par-ticular, we implement the generic versions cata and ana ofthe recursion functionals foldr and unfold.2.1 Functors and recursive datatypesA (covariant) functor is a type constructor f that assigns atype f a to each type a, together with a polymorphic func-tional map that lifts a function g :: a -> b to a function

