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Abstract. This paper investigates data-refinement by backward stionlawe
introduce four distinct theories and demonstrate thaigtlaes all equivalent. One
theory, SB-refinement, serves as a normative characterisaf backwards re-
finement. The other model-theoretic characterisationsilhate the standard ap-
proach involving non-strictly lifted relational completi operators.

1 Introduction

Refinement underlies theansformational software process modalwhich design de-
cisions are incorporated into an initial abstract spedificederiving, in stages, more
concrete versions. ldata-refinementthe objective is to transform a data type into a
form closer to an implementation: the underlying data spacefined along with the
operation. This process is sometimes called data design Th&re are two refine-
ment techniques which enable us to verify such transfoomatforward simulation
andbackward simulatiofl9, 4]. These are known to be sound goittly complete [8,
20] and can also be formulated as theories of refinement indt right.

In this paper, we consider four data-refinement theoriesficing attention to the the-
ory induced by backward simulation. These constitute gaisations of various op-
eration refinement theories explored in [5] and [6] of whialotare related to previ-
ous work [19,4]. No systematic investigation or results @@ming the relationships
between them, have been presented or published before. Wehaiv that all these
theories are equivalent.

We begin by introducing the notion of data simulations thaderlies the forward and
backward simulation refinement techniques (section 2y ding thelifted simulations
used in refinement based on relational completion operédasussed in, for example,
[19,4] and investigated in detail in [5, 6]). These involve additional distinguished
element, calletbottomand writtenL. We then define three alternative characterisations
of data-refinement (section 3) based on two distinct refalicompletion models dis-
cussed in [5] (see also appendix B). We show that all threeguévalent to a purely
proof theoretic characterisation of backward simulatiefinement (section 4). This
fourth theory, SB-refinement, captures backward simutediata-refinement directly in
terms of the language, the relationship between the dags ywolved, and the concept
of precondition. It is a more abstract, less constructiviéamg not involving the intro-
duction of either an auxiliary semantics, nor the introdutbf an auxiliary element.



Our approach, sheds light on the role of “lifting” in datdinement based on relational
completion models. In addition, we establish SB-refinemamormative theory for
exploring the validity of refinement approaches based ocKivard” simulation.

Our investigation takes place B¢, the logic for Z reported in [12] and a simpbt®n-
servative extensio@;; [5] which incorporatest into the types ofZ¢ (we summarise
this, and additional notational conventions in appendixWis allows us to work with
Z schemas as easily as with abstract relations. Nothing we $tere is specifically
confined to Z; we use this merely as a linguistic vehicle fatestbased specification.
We employ a novel technique of rendering all the theoriegfiiement as sets of intro-
duction and elimination rules. This leads to a uniform amd@é method for proving
the various equivalence results. As such, it contraststivéhmore semantic based tech-
nigues employed in [2].

2 Data Simulations

The methods of data-refinement in state-based systems Hheestadblished. The condi-
tions under which a transformation is a correct refinemesrt sein be summarised by
two simulation based refinement techniguiesward simulationandbackward simula-
tion [3]. In this section we revise these and introduce some éasaraterial underlying
our investigation.

A data simulation [19, 21] is a relation between an abstrata dpace and a concrete
counterpart. Data simulatiohsinderly two refinement techniques which enable us to
verify data-refinement, as shown by the two semi-commutiagrdms in Fig. 1. Both
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Fig. 1. Forward simulation and backward simulation refinement négplres.Aop and Cop rep-
resent the abstract and concrete operations (respegtivahereasS represents the simulation.
Note that a forward simulation is oriented (by compositiyo)n the abstract to the concrete data
space and, in a backward simulation, in the opposite daecti

forward and backward simulatidmefinement techniques are known to be sound but
neither of them is singly complete. However, they are knowibe jointly complete
[20].

1 The notion of simulation is overloaded in the literaturerivas authors use it to denote a
certain refinement technique, whereas others use it to dehetetrieve relationused in a
certain refinement technique. In this paper we use the wanalilation” to specifically denote
a retrieve relation.

2 Forward and backward simulations are also respectivelykresdownwardandupwardsim-
ulations [3, 4, 9] due to their directions in the commutinggteams in Fig. 1.



We will use the meta-variablg$/, and U; to range over our specifications. In this paper
Up will always be the concrete operation abig the abstract operation. We adopt the
approach taken in [2]: our concrete relation is always drésem P(7p v 7}) and the
abstract relation fror®( Ty v 7). A backward simulation (concrete to abstract) belongs
toP(To v T7).

We will need to incorporate the element in a simulation used with lifted-totalised
operations (see appendix A and [5, 6]). Naturally, Wood&ockaotic totalisation [19]

is unacceptable here, as this might enforce a link betwestmaadt and concrete states
that are not supposed to be linked. The conventional appi{d&c4] is to (non-strictly)
lift# 1L in the input set of the simulation, thus retaining its pdit§iaThis leads to the
following definition:

Definition 1 (Non-Strictly Lifted Backward Simulation).

SE(Tov T7) =gr {20 % 2{ € To, * Tl’L | 20 #L= 2 % 2{ € S}
Then the following introduction and elimination rules aerigdable:
Proposition 1.
*xt;€To, * T, to#Llrtgxi € °
fox 1y 0. 1, W¥ 0F "M s ) toxt;€S to#L (o)
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Lemma 1. The following additional rules are derivable for non-sthclifted simula-
tions:

() — (i) —— (i)  fox L€ )

Scs 1e S 1L xt'e § to=1

]

Lemmas 1(i — iv) demonstrate that definition 1 is consisteitl \the intentions de-
scribed in [19] and [4]: the underlying partial relation isntained in the lifting; theL
element is present in the relation and is mapped onto evesysthte, and no other ini-
tial state is so. This raises an immediate question: why theekfting of the simulation
have to be non-strict with respectt® This issue was not explored in [19, 4], where the
non-strict lifting of the simulation is taken as self-ewdé/Ne will gradually provide an
answer to this question in the sequel. For that, we will néeddefinition of a strictly
lifted simulation:

3 We provide some notational conventions in appendix A.

4 Lifting signifies mappingL of the input set of the relation onto all states of the outjait k
general, the notion of strictness discussed in this papeitisrespect toL; therefore, strict
lifting denotes mapping. onto only its output counterpart.



Definition 2 (Strictly Lifted Backward Simulation).

[}
SE(Tov T7) =i {oox 2 € To, x T{ | (0 #L= 20 % 21 € S) A (20 =L= 2 =1)}
Obvious introduction and elimination rules follow from $hi

Lemma 2. The following additional rules are derivable for strictlijtéd simulations:

— (i) — (ii) — (i)
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]

Lemmas 2(iv — v) embody the strictness captured by definRidhthe after state is.
then the initial state must also he and if it is notL then the initial state was not either.

3 Data-Refinement with Backward Simulation

In [5] and [6] we investigated operation refinement for sfieations whose seman-
tics is given by partial relation semantics (again using Zmgxample). We compared
three characterisations operation refinement-refinement, a proof theoretic charac-
terisation closely connected to refinement as introducesidyey [16]; W, -refinement,
based on Woodcock’s relational completion operator [ 18§ W/, -refinement based on
a strict relational completion operator (see appendix B).pAdved that all these refine-
ment theories are equivalent. The investigation also iihated the crucial role of in
total correctness operation refinement.

In this section, we provide four distinct notions of datanmefnent, generalising the
above operation refinement characterisations based omhbatlsimulation. We will
then go on to compare them thus providing a complementagsiiyation to that in [5]
and [6].

3.1 SB-Refinement

In this section, we introduce a purely proof theoretic chtgdasation of backward sim-
ulation refinement, which is closely connected tdfisient refinement conditions in-
troduced by Woodcock [19, p.270] (indicated as “B-corr"fadyy Derrick and Boiten
[4, p.93]. These conditions correspond to the premises oindroduction rule for SB-
refinement.

This generalisation of S-refinement [5, 6] is based on twgertles expected in a re-
finement: thatpostconditions do not weakdwe do not permit an increase in non-
determinism in a refinement) and th@econditions do not strengthéwe do not per-
mit requirements in the domain of definition to disappear refmmement). In this case
these two properties must hold in the presence of a simulatio



The notion can be captured by forcing the refinement relatidmldexactlywhen these

conditions apply. SB-refinement is writtery isb U (Uo SB-refineslU; with respect to
the simulationS)® and is given by theZ. definition that leads directly to the following
rules:

Proposition 2. Letz, zo, 11, 2, 20 be fresh variables.

rx2' €S = Pre Uy 2z + Pre Up z
nxz2 €S=PrelUz,mokz €S, noxaje okt €8
n*xz2' €S=PrelUrz,mokz €S, n0*kaie Uptrtxmz el .
3
Uo 3 Un (s

U2, Uy tx2' €S+ PrelUsz
Pre Ut

(Zow)

toxz €S+ PrelUyz
U3y Uh ik tjeS toxtjelp toxy €S, yxt;eUtr P __

The usual sideconditions apply to the eigenvariaple

This theory does not depend on, and makes no reference to ualele; it is formalised
in the theoryZ.. We take SB-refinement aormative this is our prescription for data-
refinement, and another theory is acceptable providingat Isast sound with respect
toit.

3.2 Relational Completion Based Refinement

We now introduce three backward simulation refinement tlesdn the extended frame-
work Z;. These are based on the two distinct notions of the scheted-libtalisation
set out in appendix B. Each of them captures, schematitaybackward simulation
commuting diagram in Fig. 1 and is based sthemaor, more generallyrelational
composition(see appendix A, proposition 7).

WB.-Refinement.This notion of refinement is also discussed in [19, p.247][&hdt
is written Up 3,5, U1 and is defined as follows:

S o o o 04
Definition 3. Uy 3. U1 =ar Uo §5 €S U1

The following introduction and elimination rules are imnieg@ly derivable for WB-
refinement:

5 We will omit the superscrip§ from now on, in this and other notions of refinement that delpen
upon a simulation.



Proposition 3. Let z, z; be fresh.
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WB,-Refinement.The natural generalisation of Wrefinement [5] (at least in the light
of the standard literature) is to use strict-lifted totatioperations, yet a non-strict lifted
s

simulation. We name this WBrefinement, writterl/p 3,5, U1 and defined as follows:

o

s © o o
Definition 4. Uy Zwb, Ur=gp Up3S €S sh

Obvious introduction and elimination rules follow from $hi

WB . -Refinement. Our third characterisation of refinement is motivated by ¢me
quiry raised in section 2. Establishing a refinement theioryyhich both the opera-
tions and the simulation are strictly lifted, provides argadf reference which will
aid us in investigating two important matters: firstly, whwt the strict and non-strict
relational completion operators are still interchangeabiderlying generalisations of
data-refinement; secondly, whether the non-strict liftfthe simulation is an essential

s
property. We name this theory WBrefinement, writtenlp 3,,, . Us; it is defined as
follows:

. . s < I:I I:I ©
Definition 5. Up3,;, U1 =4s Uo 35S €S ¢h

Obvious introduction and elimination rules follow from $hdefinition.

4 Four Equivalent Theories

In this section, we demonstrate that all four theories ohegfient are equivalent and
we will clearly see the critical role that the value plays in the three model-theoretic
approaches.

We shall be showing that all judgements of refinement in om®rh are contained
among the refinements sanctioned by another. Such resultshwvays be established
proof-theoretically because we have expressed even ouelrtlogloretic approaches as
theories. Specifically, we will show that the refinementtielaof a theoryT, satisfies
the elimination rule (or rules) for refinement of anothertheT’. Since the elimination
rules and introduction rules of a theory enjoy the usual sptmynproperties, this is
sufficient to show that allp-refinements are als®é; -refinements. Equivalence can then
be shown by interchangin@, and 7.



4.1 WB.-Refinement and SB-Refinement are Equivalent

We begin by showing that WBrefinement implies SB-refinement, by proving that
WB.-refinement satisfies both SB-refinement elimination rut@stly the rule for pre-
conditions.

Proposition 4. The following rule is derivable:

Uo3yp, U1 tx2' €Sk PrelUiz

Pre Upt
Proof
(1) te Top (T)
= Pre Uot te T()i ..
x (L. 4iii)) ————— (L. 1(ii))
tx L'e Uy 1Lx1'e§
Up 3, U tx L'e [.]0 g S 6
tx 1L'e X [} l
S 31 false @
false )
Pre Upt
Wheres stands for the following branch:
— (T
—— (2 teT M
txy €8 t#L1
txy €8
— @ :
yx L'e Uy Pre Ury
Y* 1’'e U
——— (L.
false 3

O

There are two observations we can make from the proof. Firstite that the ability to
distinguish betweec and Z; types is a crucial factor: the proof steps labell&)l (
denote the use of proposition 2.3 in [12]. This is an admissaziom forZ¢, in which
every term of typeT is a member of the correspondinarrier sef. It is not admissible
for Z; as terms may involveL values. Hence, this proof step is valid because SB-
refinement is defined iZ¢ (section 3.1). Secondly, notice the explicit use.lofn
the proof. This is reminiscent of our previous investigataf operation refinement,
in which the explicit use ofL is critical for proving that W-refinement satisfies the
precondition elimination rule for S-refinement (see, foaewple, proposition 4.11 in
[5]). Much the same observation can be made here, only teatsk of lemmas 4(iii)
and 1(ii) in the proof suggests thiadththe lifted-totalisation of the operations and the

51n Z¢ we call thesenatural carrier setawhich explicitly exclude bindings that contain at least
one observation bound to (see appendix A for further detail).



lifting of the simulation are essential for showing that \Wigfinement guarantees that
preconditions do not strengthen in the presence of the sitionl.
Turning now to the second elimination rule in SB-refinement.

Proposition 5. The following rule is derivable:

lox2z' €S+ PrelUyz
UoZyp, U1 tixt;eS togxtjely toxy €S, yxtje U+ P

P
Proof
to x t; € Uo N hxtES ,
——— (L.4(0) —2—= (L.1(3))
toxt; € Up thxty €S
Uo 3wy, Un tox ty€ Up 38 ?
* 1) € S 9 U P
xheSEh > (2)
Wheres stands for the following branch:
. (]_) to*tiEUo L3
toky €8 to #L L3
toxy €8
— @ to*tier( 3) — @ :
toxy €8 to #L : y*xty el Pre Uy y
to*y,ES y*téEUl

to*y'eS/Ty*tée Ux
5
O
Theorem 1. Up 3y, U1 = Up g Un

Proof This follows immediately, byd,), from propositions 4 and’50
We now show that SB-refinement satisfies the Jdmination rule.

Proposition 6.

U3y, U toxt;€lUp S

toxt; €S 3
Proof Letgpbe: Vzetoxz2 € S=PrelUyzvdzetgx2’ € SA-PrelU;z

" The proofs of such theorems are always automatic by thetstaisymmetry between intro-
duction and elimination rules. We shall not give them in fatu
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Notice that this proof depends on use of the of excluded middiésee, for example,
[18]). We suspect that this result is strictly classical] #imere appear to be many other
examples of this in refinement theory, so abandoningtivestructive approackor Z
taken in, for example, [10,11] and [13, 14] may be inevitable

Theorem 2. Uy 3,, U1 = Up 3, Ui

Theorems 1 and 2 together establish that the theories ofe8Bement and WB
refinement are equivalent.

4.2 WB,-Refinement and WB, -Refinement are Equivalent to SB-Refinement

We now show that both WBrefinement and WB-refinement are equivalent to SB-
refinement.
Proving that WB -refinement satisfies both SB-elimination rules leads t@fxralen-

tical to propositions 4 and 5, modulo a substitutionDf,,, for 2,,, , 5 for U , ap-
plications of () for (e;) and lemmas 5(iv) and 5(i) in place of lemmas 4(iii) and 4(i)
(respectively). Likewise, proving that SB-refinement sfidls WB,-elimination rule is
very similar to the proof of proposition 6. In this case, weuge the same general
substitutions as above, in addition to a modification in th@opbranch labelled: ap-
plying lemma 5(v) in place of lemma 4(iv) requires the valéalb; to range over the
natural carrier set rather than thextended carrierhence, the proof step labelled)(

is redundant here. From this we have:

Theorem 3. Uy 3, U1 © Up 3, Ui

A very similar situation arises when we consider WHBefinement. SB-refinement con-
stitutes our common ground and again we need to make use stbistitutions and
amendments to the proofs of proposmons 4,5 and 6 as we dittorem 3 except that

Jup, replacesd,,, , S replacess‘ and we apply lemmas 2(i) and 2(iii) in place of
lemmas 1(i) and 1(ii) (respectively). Moreover, applioas of {;) and {7 ) replace ¢;)
and @7) (respectively). From this we immediately get implicatiorboth directions:

Theorem 4. Uy 3, U1 © Up 3y Uh o

Despite their superficial dissimilarity, all four theoriase equivalent. In establishing
this we reinforce the results from [5] and [6] showing clgatthe significance ofL
(proposition 4). Additionally we have shown that strictitify of both the operations
and the simulation is sficient for introducing a model based refinement theory that
preserves the natural properties of SB-refinement.

The fact that, given the appropriate substitutions, thefsrm this section are identi-
cal to the ones in section 4.1 suggests thamntirdmal mathematical properties of the

©
models, which are essential for establishing theorems 12aare the ones of/ and

E‘ . To be more specific, the use of lemma 4(iii) (propositiomélicates that everything
outside the preconditions of the underlying operationluding L, should be mapped
onto L of the output set; and the use of the proof step labekgdn( conjunction with



lemma 4(iv) (proposition 6) indicates that everything @esthe preconditionthat is
not L should be mapped onto everything in the output set. Theseradifons are pre-
cisely the properties of strictly-lifted totalised refatis within a non-strict framework.
A similar observation can be made for the simulation: they d&inma concerning the
lifting of the simulation used in the proofs is 1(ii) (propiisn 4); there is no evidence
for using lemma 1(iii), which expresses the non-strictriift

5 Conclusions and Future Work

In this paper, we introduced four distinct notions of datéimement founded upon back-
ward simulation. By reformulating these as theories, nathan stficient conditions,
we establish a mathematical framework, based on the logig,favhich underlies our
analysis. We demonstrated that what look lik&etient models of specification and
refinement are, in fact, closely related. Having a non-malebretic benchmark (SB-
refinement) allows us to scrutinise the role of thevalue in the model-theoretic ap-
proaches and evaluate the essence of the relational tiftatisation found in the liter-
ature.

SB-refinement theory is entirely proof-theoretic, chaggising refinement directly in
terms of the language and the behaviour of preconditionsvadasic observations
regarding the properties one expects in a refinement: pdédons do not strengthen
and postconditions do not weaken in the presence of (backwamulation. We advo-
cate a diferent approach to [19] and [4] by taking SB-refinement to leeftimdamental
characterisation of refinement, rather than (what we deas}&VR -refinement. Such
approach has two major advantages: first, we establish a mteenative framework
based on unquestionable properties. We shall see in futoietivat whenever a poten-
tial theory fails to be sound with respect to the normativeotly, we can pinpoint the
grounds for that failure, in terms of the two basic properttencerning preconditions
and postconditions. This aids us in isolating the problethtarconstruct representative
counterexamples, illuminating relational completiongemeral, and the non-lifted to-
talisation €.9.[5]) underlying data-refinement, in particular. Secondly,we reported
in section 4, having a normative theory for investigating thlationships amongst var-
ious candidate theories not only simplifies the processgfample, as we have seen:
similarities in the proofs), it also enables us to compargitteof the proofs. In this
paper this has led us to the conclusion that the strict andstvigt relational comple-
tion models are interchangeable in the context of backwiandlation refinement, and
similarly for the strict and non-strict lifting of the simation.

In this paper we have not provided an analysis of forward &itien data-refinement.
The results in this paper cannot be taken as self-evidenijogous in a counterpart
investigation of forward simulation theories. Indeed, wi#l,\wn future work, show that
forward simulation refinement is less permissive: the stiied non-strict relational
completion models are still interchangeable in this framdybut the strict lifting of
the simulation has a restrictiv@fect: WF, -refinement (the forward simulation counter-
part of WB, -refinement) is sound with respect to SF-refinement (the atiwatheory
in this case), but it is not complete because, under cerieinrostances, iprevents
weakening of preconditions



There is much more to say about data-refinement, partigujgmeralising results we
have detailed in [5] in the context of operation refinemeng, formulating forward
and backward simulation refinement theories basedsmisaof implementatiomsodel
or data-refinement theories based on weakest preconditioisthen exploring their
relationships with SB and SF-refinement. There is an aduitimteresting dimension,
in which we explore generalisationsfiring conditionsrefinement [6, 4, 17] underlying
forward and backward simulation techniques. We can ingesti their relationships
with a variety of data-refinement theories based onathertive relational completion
model as given in [6], [4] and [1].
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A Specification Logic - A Synopsis

In this appendix, we will revise a little Z logic, settlingree notational conventions in the process.
This is included for convenience only and the reader may teednsult [12] and [5] at least
in order to fully understand our notational and meta-notal conventions. Our mathematical
account takes place in a simple conservative extengipof Z., the core Z-logic of [12]. This
provides a convenient basis, in particular a satisfactogychl account of the schema calculus,
upon which the present work can be formalised.

A.1 Schemas

Zc is a typed theory in which the types of higher-order logic exéended withschema types
whose values are unordered, label-indexed tuples caliedings For example, if theT; are
types and the; are labels (constants) then:

is a (schema) type. Values of this type are bindings, of th@fo
4"'Zi3ti"'b

where the ternt; has typeT;.

The symbols<, A andv denote theschema subtypeelation, and the operations s€thema type
intersectionand (compatibleschema type unioWe let U (with diacriticals when necessary)
range over operation schema expressions. These are seitsdofgs linking, as usual before
(unprimed) observations with after (primed) observatiortss captures the informal account to
be found in the literaturee(g.[7, 15, 19]). We can always, then, write the type of such djamna
schemas aB(T*" v T°*") whereT*" is the type of the input sub-binding aréP*!’ is the type of
the output sub-binding. We also perrhihding concatenationwritten #, x ¢, when the alphabets
of ¢, and ¢, are disjoint. This is, in fact, exclusively used for paditing bindings in operation



schemas into before and after components, so the terms@wake necessarily disjoint. We lift
this operation to sets (of appropriate type):

Co*oj_:df{Zo*leZoECo/\Z;lGCl}

The same restriction obviously applies here: the types @fstits involved must be disjoint. In
this way reasoning in Z becomes no more complex than reagavith binary relations.

We simplify the introduction and elimination rules for sof@ composition (provided in [12]). A
composition of two operation schem&gg U, has the typ@(T, v T)) where, as expected), is
of typeP(T, v T,) and Uy is of typeP(T v T7).

Proposition 7. The following rules are derivable (the usual sidecondii@pply to the eigen-
variable y):

to*téEUo tg*tiEUl
fox t] € Up§ Uy

foxtic UpgUr toxy € Up,ykxt,e U+ P
P

)

Uy

O

We introduce a notational convention in order to avoid theeeged use of filtering in the context
of equality propositions.

Definition 6. #,° =7t/ =4 to 1 T=t I T (T < Toand T < Ty).

The only modification we need to make &y is to include the new distinguished terms which
are explicitly needed in the approach taken in [19]. Spadlificthe types ofZ. are extended to
include termsL T for every typeT. There are, additionally, a number of axioms which ensure
that all the newL T values interact properly, e.g.

| [20:Tozn'Tn] — {zo> 170 ... Z,S J_THD

In other words, (7Tl z, =1 Ti (0 < 4 < n). Note that this is th@nly axiom concerning
distinguished bindings, hence, binding constructionds-strictwith respect to the. 7 values.
Finally, the extension ofZ; which introduces schemas as sets of bindings and the vesipus
erators of the schema calculus is undertaken as usual (Bpeb[it the carrier sets of the types
must be adjusted to form what we call thatural carrier setswhich are those sets of elements
of types whichexplicitly excludehe L7 values:

Definition 7. Natural carrierdor each type are defined by closing: =4 {z" | z #L"} under
the operations of cartesian product, powerset and schetifa se

As a result the schema calculushisreditarily L-free
Definition 8 (Semantics for atomic schemas].T | P] =4 {z € T | z.P}

Note that this definition draws bindings from the naturatieaof the typeT'. As a consequence,
writing #(L) for a binding satisfying.x =L for some observatior, we have:

Lemma 3. t(L) € U = false O
We will also need thextended carriersThese are defined for all types as follows:
Definition9. T, =, TU{LT}

8 The notational ambiguity does not introduce a problem,esimdly a set can appear in a term
or proposition, and only a type can appear as a superscript.



A.2 Preconditions

We can formalise the idea of theconditionsof an operation schema (domain of the relation,
between before and after states, the schema denotes) &sexpe partiality involved.

Definition 10. Pre U zV =4 A2 € U 0 1 =7 2 (T < V).

Clearly, the precondition of on an operation schema, in geneill not be the whole ofT'™. In
this sense operation schemas dematdial relations

B Relational Completion

In this appendix, we review the chaotic relational completperators discussed in [5] and [6].
Firstly, we define the non-strict-lifted totalisation imd with the intentions described in [19],
chapter 16. We will writeT'* for the setT™ % T

Definition 11. 7 =4 {20 % 2] € T* | Pre U 2= 2 % 7, € U}
Then the following introduction and elimination rules aeridable:

Proposition 8.

’ * ’ . .
oxh€T” PrelUbrboxUel . fxtel PreUt ,  hxhel -
4 L] e
toxt el toxt el O toxteTr T
]
Lemma 4. The following extra rules are derivable for lifted-totadid sets:
- PreUt teTh -Pre Uty toe T ¢ e Tow
— (i) — (i) — L (i) PR 1T ()
Ucvu 1le U tk L'e U foxt €U

The strict-lifted totalisation is defined as follows:
Definition 12. 8’ =g looxzy e T*|(PreUzn=2n*2 €U)A(n=L= 2z =1")}

We obtain obvious introduction and elimination rules, whiie this case we will not state explic-
itly. In addition, we have fairly standard properties:

Lemma 5. . .
= (@ — (i) - (i)
Ucvu UcU le U
- PreUt teT™ =Pre U t, e T teTow
e U8 te T Gy o bel” BE )
tk L'e U toxt €U

Notice that in (V) ranges over the natural carrier set, rather than the extehdarrier. o0



