
Four Theories for Backward Simulation
Data-Refinement

Moshe Deutsch and Martin C. Henson

Department of Computer Science, University of Essex, UK.
{mdeuts, hensm}@essex.ac.uk

Abstract. This paper investigates data-refinement by backward simulation. We
introduce four distinct theories and demonstrate that these are all equivalent. One
theory, SB-refinement, serves as a normative characterisation of backwards re-
finement. The other model-theoretic characterisations illuminate the standard ap-
proach involving non-strictly lifted relational completion operators.

1 Introduction

Refinement underlies thetransformational software process model, in which design de-
cisions are incorporated into an initial abstract specification deriving, in stages, more
concrete versions. Indata-refinement, the objective is to transform a data type into a
form closer to an implementation: the underlying data spaceis refined along with the
operation. This process is sometimes called data design [21]. There are two refine-
ment techniques which enable us to verify such transformations: forward simulation
andbackward simulation[19, 4]. These are known to be sound andjointly complete [8,
20] and can also be formulated as theories of refinement in their own right.
In this paper, we consider four data-refinement theories, confining attention to the the-
ory induced by backward simulation. These constitute generalisations of various op-
eration refinement theories explored in [5] and [6] of which two are related to previ-
ous work [19, 4]. No systematic investigation or results concerning the relationships
between them, have been presented or published before. We will show that all these
theories are equivalent.
We begin by introducing the notion of data simulations that underlies the forward and
backward simulation refinement techniques (section 2), including thelifted simulations
used in refinement based on relational completion operators(discussed in, for example,
[19, 4] and investigated in detail in [5, 6]). These involve an additional distinguished
element, calledbottomand written⊥. We then define three alternative characterisations
of data-refinement (section 3) based on two distinct relational completion models dis-
cussed in [5] (see also appendix B). We show that all three areequivalent to a purely
proof theoretic characterisation of backward simulation refinement (section 4). This
fourth theory, SB-refinement, captures backward simulation data-refinement directly in
terms of the language, the relationship between the data types involved, and the concept
of precondition. It is a more abstract, less constructive notion, not involving the intro-
duction of either an auxiliary semantics, nor the introduction of an auxiliary element.

Our approach, sheds light on the role of “lifting” in data-refinement based on relational
completion models. In addition, we establish SB-refinement, a normative theory for
exploring the validity of refinement approaches based on “backward” simulation.
Our investigation takes place inZC, the logic for Z reported in [12] and a simplecon-
servative extensionZ⊥

C
[5] which incorporates⊥ into the types ofZC (we summarise

this, and additional notational conventions in appendix A). This allows us to work with
Z schemas as easily as with abstract relations. Nothing we show here is specifically
confined to Z; we use this merely as a linguistic vehicle for state-based specification.
We employ a novel technique of rendering all the theories of refinement as sets of intro-
duction and elimination rules. This leads to a uniform and simple method for proving
the various equivalence results. As such, it contrasts withthe more semantic based tech-
niques employed in [2].

2 Data Simulations

The methods of data-refinement in state-based systems are well established. The condi-
tions under which a transformation is a correct refinement step can be summarised by
two simulation based refinement techniques:forward simulationandbackward simula-
tion [3]. In this section we revise these and introduce some essential material underlying
our investigation.
A data simulation [19, 21] is a relation between an abstract data space and a concrete
counterpart. Data simulations1 underly two refinement techniques which enable us to
verify data-refinement, as shown by the two semi-commuting diagrams in Fig. 1. Both

Aop

Cop

S
 S

Forward Simulation

Aop

Cop

S
 S

Backward Simulation

Fig. 1. Forward simulation and backward simulation refinement techniques.Aop andCop rep-
resent the abstract and concrete operations (respectively), whereasS represents the simulation.
Note that a forward simulation is oriented (by composition)from the abstract to the concrete data
space and, in a backward simulation, in the opposite direction.

forward and backward simulation2 refinement techniques are known to be sound but
neither of them is singly complete. However, they are known to be jointly complete
[20].

1 The notion of simulation is overloaded in the literature. Various authors use it to denote a
certain refinement technique, whereas others use it to denote theretrieve relationused in a
certain refinement technique. In this paper we use the word “simulation” to specifically denote
a retrieve relation.

2 Forward and backward simulations are also respectively known asdownwardandupwardsim-
ulations [3, 4, 9] due to their directions in the commuting diagrams in Fig. 1.

We will use the meta-variables3 U0 andU1 to range over our specifications. In this paperU0 will always be the concrete operation andU1 the abstract operation. We adopt the
approach taken in [2]: our concrete relation is always drawnfrom P(T0 g T ′0) and the
abstract relation fromP(T1gT ′1). A backward simulation (concrete to abstract) belongs
to P(T0 g T ′1).
We will need to incorporate the⊥ element in a simulation used with lifted-totalised
operations (see appendix A and [5, 6]). Naturally, Woodcock’s chaotic totalisation [19]
is unacceptable here, as this might enforce a link between abstract and concrete states
that are not supposed to be linked. The conventional approach [19, 4] is to (non-strictly)
lift 4 ⊥ in the input set of the simulation, thus retaining its partiality. This leads to the
following definition:

Definition 1 (Non-Strictly Lifted Backward Simulation).

◦S P(T0gT ′1)
=df {z0 ⋆ z ′1 ∈ T0⊥ ⋆ T ′1⊥ | z0 ,⊥⇒ z0 ⋆ z ′1 ∈ S }

Then the following introduction and elimination rules are derivable:

Proposition 1.t0 ⋆ t ′1 ∈ T0⊥ ⋆ T ′1⊥ t0 ,⊥ ⊢ t0 ⋆ t ′1 ∈ St0 ⋆ t ′1 ∈ ◦S (◦+) t0 ⋆ t ′1 ∈ ◦S t0 ,⊥t0 ⋆ t ′1 ∈ S (◦−0)t0 ⋆ t ′1 ∈ ◦St0 ⋆ t ′1 ∈ T0⊥ ⋆ T ′1⊥ (◦−1)

�

Lemma 1. The following additional rules are derivable for non-strictly lifted simula-
tions: S ⊆ ◦S (i)

⊥∈
◦S (ii)

t ′ ∈ T ′1⊥
⊥ ⋆t ′ ∈ ◦S (iii) t0⋆ ⊥′∈ ◦St0 =⊥ (iv)

�

Lemmas 1(i – iv) demonstrate that definition 1 is consistent with the intentions de-
scribed in [19] and [4]: the underlying partial relation is contained in the lifting; the⊥
element is present in the relation and is mapped onto every after state, and no other ini-
tial state is so. This raises an immediate question: why doesthe lifting of the simulation
have to be non-strict with respect to⊥? This issue was not explored in [19, 4], where the
non-strict lifting of the simulation is taken as self-evident. We will gradually provide an
answer to this question in the sequel. For that, we will need the definition of a strictly
lifted simulation:
3 We provide some notational conventions in appendix A.
4 Lifting signifies mapping⊥ of the input set of the relation onto all states of the output set. In

general, the notion of strictness discussed in this paper iswith respect to⊥; therefore, strict
lifting denotes mapping⊥ onto only its output counterpart.

Definition 2 (Strictly Lifted Backward Simulation).

➞S P(T0gT ′1)
=df {z0 ⋆ z ′1 ∈ T0⊥ ⋆ T ′1⊥ | (z0 ,⊥⇒ z0 ⋆ z ′1 ∈ S) ∧ (z0 =⊥⇒ z ′1 =⊥′)}

Obvious introduction and elimination rules follow from this.

Lemma 2. The following additional rules are derivable for strictly lifted simulations:S ⊆ ➞S (i)
➞S ⊆ ◦S (ii)

⊥∈
➞S (iii)t0 ⋆ t ′1 ∈ ➞S t ′1 =⊥′t0 =⊥ (iv)

t0 ⋆ t ′1 ∈ ➞S t ′1 ,⊥′t0 ⋆ t ′1 ∈ S (v)

�

Lemmas 2(iv – v) embody the strictness captured by definition2: if the after state is⊥
then the initial state must also be⊥, and if it is not⊥ then the initial state was not either.

3 Data-Refinement with Backward Simulation

In [5] and [6] we investigated operation refinement for specifications whose seman-
tics is given by partial relation semantics (again using Z asan example). We compared
three characterisations ofoperation refinement: S-refinement, a proof theoretic charac-
terisation closely connected to refinement as introduced bySpivey [16]; W•-refinement,
based on Woodcock’s relational completion operator [19]; and W
-refinement based on
a strict relational completion operator (see appendix B). We proved that all these refine-
ment theories are equivalent. The investigation also illuminated the crucial role of⊥ in
total correctness operation refinement.
In this section, we provide four distinct notions of data refinement, generalising the
above operation refinement characterisations based on backward simulation. We will
then go on to compare them thus providing a complementary investigation to that in [5]
and [6].

3.1 SB-Refinement

In this section, we introduce a purely proof theoretic characterisation of backward sim-
ulation refinement, which is closely connected to sufficient refinement conditions in-
troduced by Woodcock [19, p.270] (indicated as “B-corr”) and by Derrick and Boiten
[4, p.93]. These conditions correspond to the premises of our introduction rule for SB-
refinement.
This generalisation of S-refinement [5, 6] is based on two properties expected in a re-
finement: thatpostconditions do not weaken(we do not permit an increase in non-
determinism in a refinement) and thatpreconditions do not strengthen(we do not per-
mit requirements in the domain of definition to disappear in arefinement). In this case
these two properties must hold in the presence of a simulation.

The notion can be captured by forcing the refinement relationto holdexactlywhen these

conditions apply. SB-refinement is writtenU0

s
⊒sb U1 (U0 SB-refinesU1 with respect to

the simulationS)5 and is given by theZC definition that leads directly to the following
rules:

Proposition 2. Letx , x0, x1, z , z0 be fresh variables.x ⋆ z ′ ∈ S ⇒ Pre U1 z ⊢ Pre U0 xz0 ⋆ z ′ ∈ S ⇒ Pre U1 z , x0 ⋆ x ′1 ∈ S , z0 ⋆ x ′0 ∈ U0 ⊢ z0 ⋆ t ′ ∈ Sz0 ⋆ z ′ ∈ S ⇒ Pre U1 z , x0 ⋆ x ′1 ∈ S , z0 ⋆ x ′0 ∈ U0 ⊢ t ⋆ x ′1 ∈ U1U0 ⊒sb U1
(⊒+sb)U0 ⊒sb U1 t ⋆ z ′ ∈ S ⊢ Pre U1 zPre U0 t (⊒−sb0

)t0 ⋆ z ′ ∈ S ⊢ Pre U1 zU0 ⊒sb U1 t1 ⋆ t ′2 ∈ S t0 ⋆ t ′1 ∈ U0 t0 ⋆ y ′ ∈ S , y ⋆ t ′2 ∈ U1 ⊢ PP (⊒−sb1
)

The usual sideconditions apply to the eigenvariabley . �

This theory does not depend on, and makes no reference to, the⊥ value; it is formalised
in the theoryZC. We take SB-refinement asnormative: this is our prescription for data-
refinement, and another theory is acceptable providing it isat least sound with respect
to it.

3.2 Relational Completion Based Refinement

We now introduce three backward simulation refinement theories in the extended frame-
workZ⊥

C
. These are based on the two distinct notions of the schema lifted-totalisation

set out in appendix B. Each of them captures, schematically,the backward simulation
commuting diagram in Fig. 1 and is based onschemaor, more generally,relational
composition(see appendix A, proposition 7).

WB•-Refinement.This notion of refinement is also discussed in [19, p.247] and[3]. It

is writtenU0

s
⊒wb• U1 and is defined as follows:

Definition 3. U0

s
⊒wb• U1 =df •U0

o
9

◦S ⊆ ◦S o
9

•U1

The following introduction and elimination rules are immediately derivable for WB•-
refinement:

5 We will omit the superscriptS from now on, in this and other notions of refinement that depend
upon a simulation.

Proposition 3. Let z0, z1 be fresh.z0 ⋆ z ′1 ∈ •U0
o
9

◦S ⊢ z0 ⋆ z ′1 ∈ ◦S o
9

•U1U0 ⊒wb• U1
(⊒+wb•

)
U0 ⊒wb• U1 t0 ⋆ t ′1 ∈ •U0

o
9

◦St0 ⋆ t ′1 ∈ ◦S o
9

•U1

(⊒−wb•
)

�

WB�-Refinement.The natural generalisation of W
-refinement [5] (at least in the light
of the standard literature) is to use strict-lifted totalised operations, yet a non-strict lifted

simulation. We name this WB�-refinement, writtenU0

s
⊒wb�

U1 and defined as follows:

Definition 4. U0

s
⊒wb�

U1 =df
U0
o
9

◦S ⊆ ◦S o
9

U1

Obvious introduction and elimination rules follow from this.

WB
-Refinement.Our third characterisation of refinement is motivated by theen-
quiry raised in section 2. Establishing a refinement theory,in which both the opera-
tions and the simulation are strictly lifted, provides a point of reference which will
aid us in investigating two important matters: firstly, whether the strict and non-strict
relational completion operators are still interchangeable underlying generalisations of
data-refinement; secondly, whether the non-strict liftingof the simulation is an essential

property. We name this theory WB
-refinement, writtenU0

s
⊒wb

U1; it is defined as
follows:

Definition 5. U0

s
⊒wb

U1 =df
U0
o
9

➞S ⊆ ➞S o
9

U1

Obvious introduction and elimination rules follow from this definition.

4 Four Equivalent Theories

In this section, we demonstrate that all four theories of refinement are equivalent and
we will clearly see the critical role that the⊥ value plays in the three model-theoretic
approaches.
We shall be showing that all judgements of refinement in one theory are contained
among the refinements sanctioned by another. Such results can always be established
proof-theoretically because we have expressed even our model-theoretic approaches as
theories. Specifically, we will show that the refinement relation of a theoryT0 satisfies
the elimination rule (or rules) for refinement of another theoryT1. Since the elimination
rules and introduction rules of a theory enjoy the usual symmetry properties, this is
sufficient to show that allT0-refinements are alsoT1-refinements. Equivalence can then
be shown by interchangingT0 andT1.

4.1 WB•-Refinement and SB-Refinement are Equivalent

We begin by showing that WB•-refinement implies SB-refinement, by proving that
WB•-refinement satisfies both SB-refinement elimination rules.Firstly the rule for pre-
conditions.

Proposition 4. The following rule is derivable:U0 ⊒wb• U1 t ⋆ z ′ ∈ S ⊢ Pre U1 zPre U0 t
Proof

U0 ⊒wb• U1

¬ Pre U0 t (1)
t ∈ T0

(T)t ∈ T0⊥t⋆ ⊥′∈ •U0

(L. 4(iii))
⊥ ⋆ ⊥′∈

◦S (L. 1(ii))t⋆ ⊥′∈ •U0
o
9

◦St⋆ ⊥′∈ ◦S o
9

•U1

δ....falsefalse (2)Pre U0 t (1)

Whereδ stands for the following branch:

y⋆ ⊥′∈ •U1

(2)

t ⋆ y ′ ∈ ◦S (2) t ∈ T0
(T)t ,⊥t ⋆ y ′ ∈ S....Pre U1 yy⋆ ⊥′∈ U1false (L. 3)

�

There are two observations we can make from the proof. Firstly, note that the ability to
distinguish betweenZC andZ⊥

C
types is a crucial factor: the proof steps labelled (T)

denote the use of proposition 2.3 in [12]. This is an admissible axiom forZC, in which
every term of typeT is a member of the correspondingcarrier set6. It is not admissible
for Z⊥

C
as terms may involve⊥ values. Hence, this proof step is valid because SB-

refinement is defined inZC (section 3.1). Secondly, notice the explicit use of⊥ in
the proof. This is reminiscent of our previous investigation of operation refinement,
in which the explicit use of⊥ is critical for proving that W•-refinement satisfies the
precondition elimination rule for S-refinement (see, for example, proposition 4.11 in
[5]). Much the same observation can be made here, only that the use of lemmas 4(iii)
and 1(ii) in the proof suggests thatboth the lifted-totalisation of the operations and the

6 InZ⊥
C

we call thesenatural carrier setswhich explicitly exclude bindings that contain at least
one observation bound to⊥ (see appendix A for further detail).

lifting of the simulation are essential for showing that WB•-refinement guarantees that
preconditions do not strengthen in the presence of the simulation.
Turning now to the second elimination rule in SB-refinement.

Proposition 5. The following rule is derivable:t0 ⋆ z ′ ∈ S ⊢ Pre U1 zU0 ⊒wb• U1 t1 ⋆ t ′2 ∈ S t0 ⋆ t ′1 ∈ U0 t0 ⋆ y ′ ∈ S , y ⋆ t ′2 ∈ U1 ⊢ PP
Proof U0 ⊒wb• U1

t0 ⋆ t ′1 ∈ U0t0 ⋆ t ′1 ∈ •U0

(L. 4(i))
t1 ⋆ t ′2 ∈ St1 ⋆ t ′2 ∈ ◦S (L. 1(i))t0 ⋆ t ′2 ∈ •U0

o
9

◦St0 ⋆ t ′2 ∈ ◦S o
9

•U1

δ....PP (1)

Whereδ stands for the following branch:

t0 ⋆ y ′ ∈ ◦S (1) t0 ⋆ t ′1 ∈ U0t0 ,⊥ (L. 3)t0 ⋆ y ′ ∈ S y ⋆ t ′2 ∈ •U1

(1)

t0 ⋆ y ′ ∈ ◦S (1) t0 ⋆ t ′1 ∈ U0t0 ,⊥ (L. 3)t0 ⋆ y ′ ∈ S....Pre U1 yy ⋆ t ′2 ∈ U1t0 ⋆ y ′ ∈ S ∧ y ⋆ t ′2 ∈ U1....P
�

Theorem 1. U0 ⊒wb• U1⇒ U0 ⊒sb U1

Proof This follows immediately, by (⊒+sb), from propositions 4 and 57. �

We now show that SB-refinement satisfies the WB•-elimination rule.

Proposition 6. U0 ⊒sb U1 t0 ⋆ t ′1 ∈ •U0
o
9

◦St0 ⋆ t ′1 ∈ ◦S o
9

•U1

Proof Let φ be: ∀ z • t0 ⋆ z ′ ∈ S ⇒ Pre U1 z ∨ ∃ z • t0 ⋆ z ′ ∈ S ∧ ¬ Pre U1 z
7 The proofs of such theorems are always automatic by the structural symmetry between intro-

duction and elimination rules. We shall not give them in future.

t0 ⋆ t ′1 ∈ •U0
o
9

◦S φ
(LEM)

δ0....t0 ⋆ t ′1 ∈ ◦S o
9

•U1

δ1....t0 ⋆ t ′1 ∈ ◦S o
9

•U1t0 ⋆ t ′1 ∈ ◦S o
9

•U1

(2)t0 ⋆ t ′1 ∈ ◦S o
9

•U1

(1)

Whereδ0 stands for the following branch:U0 ⊒sb U1 ∀ z • t0 ⋆ z ′ ∈ S ⇒ Pre U1 z (2)

β0....t0 ⋆ y ′ ∈ U0

β1....y ⋆ t ′1 ∈ S β2....t0 ⋆ t ′1 ∈ ◦S o
9

•U1t0 ⋆ t ′1 ∈ ◦S o
9

•U1

(3)

Whereβ0 is: t0 ⋆ y ′ ∈ •U0

(1) U0 ⊒sb U1 ∀ z • t0 ⋆ z ′ ∈ S ⇒ Pre U1 z (2)Pre U0 t0t0 ⋆ y ′ ∈ U0

andβ1, β2 are respectively:y ⋆ t ′1 ∈ ◦S (1)

β0....t0 ⋆ y ′ ∈ U0y ,⊥ (L. 3)y ⋆ t ′1 ∈ S t0 ⋆ w ′0 ∈ S (3)t0 ⋆ w ′0 ∈ ◦S (L. 1(i))
w0 ⋆ t ′1 ∈ U1

(3)w0 ⋆ t ′1 ∈ •U1

(L. 4(i))t0 ⋆ t ′1 ∈ ◦S o
9

•U1

δ1 stands for the following branch:

∃ z • t0 ⋆ z ′ ∈ S ∧ ¬ Pre U1 z (2)

t0 ⋆ w ′1 ∈ S ∧ ¬ Pre U1 w1
(4)t0 ⋆ w ′1 ∈ St0 ⋆ w ′1 ∈ ◦S (L. 1(i))

α....w1 ⋆ t ′1 ∈ •U1t0 ⋆ t ′1 ∈ ◦S o
9

•U1t0 ⋆ t ′1 ∈ ◦S o
9

•U1

(4)

Whereα is:t0 ⋆ w ′1 ∈ S ∧ ¬ Pre U1 w1
(4)

¬ Pre U1 w1

t0 ⋆ w ′1 ∈ S ∧ ¬ Pre U1 w1
(4)t0 ⋆ w ′1 ∈ Sw1 ∈ T1w1 ∈ T1⊥

(♣)

y ⋆ t ′1 ∈ ◦S (1)y ⋆ t ′1 ∈ T0⊥ ⋆T ′1⊥t ′1 ∈ T ′1⊥w1 ⋆ t ′1 ∈ •U1

(L. 4(iv))

�

Notice that this proof depends on use of thelaw of excluded middle(see, for example,
[18]). We suspect that this result is strictly classical, and there appear to be many other
examples of this in refinement theory, so abandoning theconstructive approachfor Z
taken in, for example, [10, 11] and [13, 14] may be inevitable.

Theorem 2. U0 ⊒sb U1⇒ U0 ⊒wb• U1 �

Theorems 1 and 2 together establish that the theories of SB-refinement and WB•-
refinement are equivalent.

4.2 WB�-Refinement and WB
-Refinement are Equivalent to SB-Refinement

We now show that both WB�-refinement and WB
-refinement are equivalent to SB-
refinement.
Proving that WB�-refinement satisfies both SB-elimination rules leads to proofs iden-

tical to propositions 4 and 5, modulo a substitution of⊒wb�
for ⊒wb• ,

U for
•U , ap-

plications of (
−0) for (•−0) and lemmas 5(iv) and 5(i) in place of lemmas 4(iii) and 4(i)
(respectively). Likewise, proving that SB-refinement satisfies WB�-elimination rule is
very similar to the proof of proposition 6. In this case, we require the same general
substitutions as above, in addition to a modification in the proof branch labelledα: ap-
plying lemma 5(v) in place of lemma 4(iv) requires the variable w1 to range over the
natural carrier set, rather than theextended carrier; hence, the proof step labelled (♣)
is redundant here. From this we have:

Theorem 3. U0 ⊒wb�
U1⇔ U0 ⊒sb U1 �

A very similar situation arises when we consider WB
-refinement. SB-refinement con-
stitutes our common ground and again we need to make use of thesubstitutions and
amendments to the proofs of propositions 4, 5 and 6 as we did intheorem 3 except that

⊒wb

replaces⊒wb• ,

➞S replaces
◦S and we apply lemmas 2(i) and 2(iii) in place of

lemmas 1(i) and 1(ii) (respectively). Moreover, applications of (➞−0) and (➞−1) replace (◦−0)
and (◦−1) (respectively). From this we immediately get implicationin both directions:

Theorem 4. U0 ⊒wb

U1⇔ U0 ⊒sb U1 �

Despite their superficial dissimilarity, all four theoriesare equivalent. In establishing
this we reinforce the results from [5] and [6] showing clearly the significance of⊥
(proposition 4). Additionally we have shown that strict lifting of both the operations
and the simulation is sufficient for introducing a model based refinement theory that
preserves the natural properties of SB-refinement.
The fact that, given the appropriate substitutions, the proofs in this section are identi-
cal to the ones in section 4.1 suggests that theminimalmathematical properties of the

models, which are essential for establishing theorems 1 and2 are the ones of

U and

➞S . To be more specific, the use of lemma 4(iii) (proposition 4) indicates that everything
outside the preconditions of the underlying operation,including⊥, should be mapped
onto⊥ of the output set; and the use of the proof step labelled (♣) in conjunction with

lemma 4(iv) (proposition 6) indicates that everything outside the preconditionsthat is
not⊥ should be mapped onto everything in the output set. These observations are pre-
cisely the properties of strictly-lifted totalised relations within a non-strict framework.
A similar observation can be made for the simulation: the only lemma concerning the
lifting of the simulation used in the proofs is 1(ii) (proposition 4); there is no evidence
for using lemma 1(iii), which expresses the non-strict lifting.

5 Conclusions and Future Work

In this paper, we introduced four distinct notions of data-refinement founded upon back-
ward simulation. By reformulating these as theories, rather than sufficient conditions,
we establish a mathematical framework, based on the logic for Z, which underlies our
analysis. We demonstrated that what look like different models of specification and
refinement are, in fact, closely related. Having a non-model-theoretic benchmark (SB-
refinement) allows us to scrutinise the role of the⊥ value in the model-theoretic ap-
proaches and evaluate the essence of the relational lifted-totalisation found in the liter-
ature.
SB-refinement theory is entirely proof-theoretic, characterising refinement directly in
terms of the language and the behaviour of preconditions andtwo basic observations
regarding the properties one expects in a refinement: preconditions do not strengthen
and postconditions do not weaken in the presence of (backward) simulation. We advo-
cate a different approach to [19] and [4] by taking SB-refinement to be the fundamental
characterisation of refinement, rather than (what we denoteas) WB•-refinement. Such
approach has two major advantages: first, we establish a clear normative framework
based on unquestionable properties. We shall see in future work that whenever a poten-
tial theory fails to be sound with respect to the normative theory, we can pinpoint the
grounds for that failure, in terms of the two basic properties concerning preconditions
and postconditions. This aids us in isolating the problem and to construct representative
counterexamples, illuminating relational completion, ingeneral, and the non-lifted to-
talisation (e.g.[5]) underlying data-refinement, in particular. Secondly,as we reported
in section 4, having a normative theory for investigating the relationships amongst var-
ious candidate theories not only simplifies the process (forexample, as we have seen:
similarities in the proofs), it also enables us to compare details of the proofs. In this
paper this has led us to the conclusion that the strict and non-strict relational comple-
tion models are interchangeable in the context of backward simulation refinement, and
similarly for the strict and non-strict lifting of the simulation.
In this paper we have not provided an analysis of forward simulation data-refinement.
The results in this paper cannot be taken as self-evidently analogous in a counterpart
investigation of forward simulation theories. Indeed, we will, in future work, show that
forward simulation refinement is less permissive: the strict and non-strict relational
completion models are still interchangeable in this framework, but the strict lifting of
the simulation has a restrictive effect: WF
-refinement (the forward simulation counter-
part of WB
-refinement) is sound with respect to SF-refinement (the normative theory
in this case), but it is not complete because, under certain circumstances, itprevents
weakening of preconditions.

There is much more to say about data-refinement, particularly generalising results we
have detailed in [5] in the context of operation refinement,e.g. formulating forward
and backward simulation refinement theories based on asets of implementationsmodel
or data-refinement theories based on weakest preconditions, and then exploring their
relationships with SB and SF-refinement. There is an additional interesting dimension,
in which we explore generalisations offiring conditionsrefinement [6, 4, 17] underlying
forward and backward simulation techniques. We can investigate their relationships
with a variety of data-refinement theories based on theabortive relational completion
model as given in [6], [4] and [1].

6 Acknowledgements

Moshe Deutsch is supported by the British Council through anORS award. Special
thanks for particularly important discussions and comments go to Steve Reeves, Ray
Turner, Eerke Boiten, John Derrick, Lindsay Groves, Ralph Miarka, Greg Reeve, David
Streader, Jim Woodcock and Rob Arthan.

References

1. C. Bolton, J. Davies, and J. C. P. Woodcock. On the refinement and simulation of data types
and processes. In K. Araki, A. Galloway, and K. Taguchi, editors,Integrated Formal Methods
(IFM’99). Springer, 1999.

2. W. P. de Roever and K. Engelhardt.Data Refinement: Model-Oriented Proof Methods and
Their Comparison. Prentice Hall International, 1998.

3. J. Derrick and E. Boiten. Calculating upward and downwardsimulations of state-based
specifications.Information and Software Technology, 41:917–923, July 1999.

4. J. Derrick and E. Boiten.Refinement in Z and Object-Z: Foundations and Advanced Appli-
cations. Formal Approaches to Computing and Information Technology – FACIT. Springer,
May 2001.

5. M. Deutsch, M. C. Henson, and S. Reeves. An analysis of total correctness refinement
models for partial relation semantics I.University of Essex, technical report CSM-362, 2001.
To appear in the Logic Journal of the IGPL.

6. M. Deutsch, M. C. Henson, and S. Reeves. Results on formal stepwise design in Z. In9th
Asia Pacific Software Engineering Conference (APSEC 2002), pages 33–42. IEEE Computer
Society Press, December 2002.

7. A. Diller. Z: An Introduction to Formal Methods. J. Wiley and Sons, 2nd edition, 1994.
8. J. He and C.A.R Hoare. Prespecification and data refinement. In Data Refinement in a Cat-

egorical Setting, Technical Monograph PRG-90. Oxford University ComputingLaboratory,
1990.

9. J. He, C.A.R Hoare, and J.W. Sanders. Data refinement refined. In G. Goos and J. Hartmanis,
editors,European Symposium on Programming (ESOP ’86), volume 213 ofLecture Notes in
Computer Science, pages 187–196. Springer-Verlag, 1986.

10. M. C. Henson and S. Reeves. Constructive foundations forZ. In S. Kuru, M. U. Caglayan,
and H. L. Akin, editors,Proc. 12th International Symposium on Computer and Information
Sciences: ISCIS XII, pages 585–591. Bogazici University press, 1997.

11. M. C. Henson and S. Reeves. New foundations for Z. In J. Grundy, M. Schwenke, and
T. Vickers, editors,Proc. International Refinement Workshop and Formal MethodsPacific
’98, pages 165–179. Springer, 1998.

12. M. C. Henson and S. Reeves. Investigating Z.Logic and Computation, 10(1):43–73, 2000.
13. S. H. Mirian-Hosseinabadi.Constructive Z. PhD thesis, University of Essex, 1997.
14. S. H. Mirian-Hosseinabadi and R. Turner. Constructive Z. Logic and Computation, 8(1):49–

70, 1998.
15. B. Potter, J. Sinclair, and D. Till.An Introduction to Formal Specification and Z. Prentice

Hall, 2nd edition, 1996.
16. J. M. Spivey.The Z Notation: A Reference Manual. Prentice Hall, 2nd edition, 1992.
17. B. Strulo. How firing conditions help inheritance. In J. P. Bowen and M. G. Hinchey, editors,

ZUM ’95: The Z Formal Specification Notation, volume 967 ofLecture Notes in Computer
Science, pages 264–275. Springer Verlag, 1995.

18. N. W. Tennant.Natural Logic. Edinburgh University Press, 2nd edition, 1990.
19. J. C. P. Woodcock and J. Davies.Using Z: Specification, Refinement and Proof. Prentice

Hall, 1996.
20. J. C. P. Woodcock and C. C. Morgan. Refinement of state-based concurrent systems. In

D. Bjørner, C. A. R. Hoare, and H. Langmaack, editors,VDM ’90 VDM and Z – Formal
Methods in Software Development, volume 428 ofLecture Notes in Computer Science, pages
340–351. Springer-Verlag, April 1990.

21. J. B. Wordsworth.Software Development with Z – A Practical Approach to FormalMethods
in Software Engineering. Internalional Computer Science Series. Addison-Wesley,1992.

A Specification Logic - A Synopsis

In this appendix, we will revise a little Z logic, settling some notational conventions in the process.
This is included for convenience only and the reader may needto consult [12] and [5] at least
in order to fully understand our notational and meta-notational conventions. Our mathematical
account takes place in a simple conservative extensionZ⊥

C
of ZC, the core Z-logic of [12]. This

provides a convenient basis, in particular a satisfactory logical account of the schema calculus,
upon which the present work can be formalised.

A.1 Schemas

ZC is a typed theory in which the types of higher-order logic areextended withschema types
whose values are unordered, label-indexed tuples calledbindings. For example, if theTi are
types and thezi are labels (constants) then:

[· · · zi : Ti · · ·]
is a (schema) type. Values of this type are bindings, of the form:

〈| · · · zi⇛ti · · · |〉
where the termti has typeTi .
The symbols�, f andg denote theschema subtyperelation, and the operations ofschema type
intersectionand (compatible)schema type union. We letU (with diacriticals when necessary)
range over operation schema expressions. These are sets of bindings linking, as usual before
(unprimed) observations with after (primed) observations. This captures the informal account to
be found in the literature (e.g.[7, 15, 19]). We can always, then, write the type of such operation
schemas asP(T ingT out ′) whereT in is the type of the input sub-binding andT out ′ is the type of
the output sub-binding. We also permitbinding concatenation, written t0⋆ t1 when the alphabets
of t0 and t1 are disjoint. This is, in fact, exclusively used for partitioning bindings in operation

schemas into before and after components, so the terms involved are necessarily disjoint. We lift
this operation to sets (of appropriate type):C0 ⋆ C1 =df {z0 ⋆ z1 | z0 ∈ C0 ∧ z1 ∈ C1}

The same restriction obviously applies here: the types of the sets involved must be disjoint. In
this way reasoning in Z becomes no more complex than reasoning with binary relations.
We simplify the introduction and elimination rules for schema composition (provided in [12]). A
composition of two operation schemasU0

o
9U1 has the typeP(T0gT ′1) where, as expected,U0 is

of typeP(T0 gT ′2) andU1 is of typeP(T2 gT ′1).

Proposition 7. The following rules are derivable (the usual sideconditions apply to the eigen-
variabley):t0 ⋆ t ′2 ∈ U0 t2 ⋆ t ′1 ∈ U1t0 ⋆ t ′1 ∈ U0

o
9 U1

(U+o
9
)

t0 ⋆ t ′1 ∈ U0
o
9 U1 t0 ⋆ y ′ ∈ U0, y ⋆ t ′1 ∈ U1 ⊢ PP (U−o

9
)

�

We introduce a notational convention in order to avoid the repeated use of filtering in the context
of equality propositions.

Definition 6. tT0
0 =T tT1

1 =df t0 ↾ T = t1 ↾ T (T � T0 andT � T1).

The only modification we need to make inZ⊥
C

is to include the new distinguished terms which
are explicitly needed in the approach taken in [19]. Specifically: the types ofZC are extended to
include terms⊥T for every typeT . There are, additionally, a number of axioms which ensure
that all the new⊥T values interact properly, e.g.

⊥[z0 :T0 ···zn :Tn]= 〈| z0⇛ ⊥
T0 · · · zn⇛ ⊥Tn |〉

In other words,⊥[z0 :T0 ···zn :Tn] .zi =⊥Ti (0 ≤ i ≤ n). Note that this is theonly axiom concerning
distinguished bindings, hence, binding construction isnon-strictwith respect to the⊥T values.
Finally, the extension ofZ⊥

C
which introduces schemas as sets of bindings and the variousop-

erators of the schema calculus is undertaken as usual (see [12]) but the carrier sets of the types
must be adjusted to form what we call thenatural carrier setswhich are those sets of elements
of types whichexplicitly excludethe⊥T values:

Definition 7. Natural carriersfor each type are defined by closing:N =df {zN | z ,⊥N} under
the operations of cartesian product, powerset and schema set.8

As a result the schema calculus ishereditarily⊥-free:

Definition 8 (Semantics for atomic schemas).[T | P] =df {z ∈ T | z .P }
Note that this definition draws bindings from the natural carrier of the typeT . As a consequence,
writing t(⊥) for a binding satisfyingt .x =⊥ for some observationx, we have:

Lemma 3. t(⊥) ∈ U ⇒ false �
We will also need theextended carriers. These are defined for all types as follows:

Definition 9. T⊥ =df T ∪ {⊥T }
8 The notational ambiguity does not introduce a problem, since only a set can appear in a term

or proposition, and only a type can appear as a superscript.

A.2 Preconditions

We can formalise the idea of thepreconditionsof an operation schema (domain of the relation,
between before and after states, the schema denotes) to express the partiality involved.

Definition 10. Pre U xV =df ∃ z ∈ U • x =T in z (T in � V).

Clearly, the precondition of on an operation schema, in general, will not be the whole ofT in . In
this sense operation schemas denotepartial relations.

B Relational Completion

In this appendix, we review the chaotic relational completion operators discussed in [5] and [6].
Firstly, we define the non-strict-lifted totalisation in line with the intentions described in [19],
chapter 16. We will writeT⋆ for the setT in

⊥ ⋆ T out ′
⊥ .

Definition 11.
•U =df {z0 ⋆ z ′1 ∈ T⋆ | Pre U z0 ⇒ z0 ⋆ z ′1 ∈ U }

Then the following introduction and elimination rules are derivable:

Proposition 8.t0 ⋆ t ′1 ∈ T⋆ Pre U t0 ⊢ t0 ⋆ t ′1 ∈ Ut0 ⋆ t ′1 ∈ •U (•+) t0 ⋆ t ′1 ∈ •U Pre U t0t0 ⋆ t ′1 ∈ U (•−0)
t0 ⋆ t ′1 ∈ •Ut0 ⋆ t ′1 ∈ T⋆ (•−1)

�

Lemma 4. The following extra rules are derivable for lifted-totalised sets:U ⊆ •U (i)
⊥∈

•U (ii)
¬ Pre U t t ∈ T in

⊥t⋆ ⊥′∈ •U (iii)
¬Pre U t0 t0 ∈ T in

⊥ t ′1 ∈ T out ′
⊥t0 ⋆ t ′1 ∈ •U (iv)

�

The strict-lifted totalisation is defined as follows:

Definition 12.

U =df {z0 ⋆ z ′1 ∈ T⋆ | (Pre U z0 ⇒ z0 ⋆ z ′1 ∈ U) ∧ (z0 =⊥⇒ z ′1 =⊥′)}

We obtain obvious introduction and elimination rules, which in this case we will not state explic-
itly. In addition, we have fairly standard properties:

Lemma 5. U ⊆
U (i)

U ⊆

•U (ii)
⊥∈

U (iii)

¬ Pre U t t ∈ T in
⊥t⋆ ⊥′∈
U (iv)

¬Pre U t0 t0 ∈ T in t ′1 ∈ T out ′
⊥t0 ⋆ t ′1 ∈
U (v)

Notice that in (v)t0 ranges over the natural carrier set, rather than the extended carrier.�

