
CENTRO PER LA RICERCA

SCIENTIFICA E TECNOLOGICA

38050 Povo (Trento), Italy
Tel.: +39 0461 314312
Fax: +39 0461 302040
e−mail: prdoc@itc.it − url: http://www.itc.it

TROPOS: AN AGENT−ORIENTED SOFTWARE
DEVELOPMENT METHODOLOGY

Bresciani P., Giorgini P., Giunchiglia F.,
Mylopoulos J., Perini A.

December 2002

Technical Report # 0212−82

 Istituto Trentino di Cultura, 2002

LIMITED DISTRIBUTION NOTICE

This report has been submitted for
publication outside of ITC and will probably be copyrighted if accepted for publication. It has been
issued as a Technical Report for
early dissemination of its contents. In view of the transfert of copy right to
the outside publisher, its
distribution outside of ITC prior
to publication should be limited to peer communications and specific
requests. After outside publication,
material will be available only in
the form authorized by the copyright owner.

Tropos: An Agent-Oriented Software DevelopmentMethodologyPaolo Bres
ianiITC-Irst - Povo (Trento) - Italy - bres
iani�irst.it
.itPaolo GiorginiDepartment of Information and Communi
ation Te
hnologyUniversity of Trento - Italy - paolo.giorgini�dit.unitn.itFausto Giun
higliaDepartment of Information and Communi
ation Te
hnologyUniversity of Trento - Italy - fausto�dit.unitn.itJohn MylopoulosDepartment of Computer S
ien
e - University of Toronto - Canada -jm�
s.toronto.eduAnna PeriniITC-Irst - Povo (Trento) - Italy - perini�irst.it
.itJanuary 16, 2003Abstra
t.Our goal in this paper is to introdu
e and motivate a methodology,
alled Tro-pos,1 for building agent oriented software systems. Tropos is based on two key ideas.First, the notion of agent and all related mentalisti
 notions (for instan
e goals andplans) are used in all phases of software development, from early analysis downto the a
tual implementation. Se
ond, Tropos
overs also the very early phases ofrequirements analysis, thus allowing for a deeper understanding of the environmentwhere the software must operate, and of the kind of intera
tions that should o

urbetween software and human agents. The methodology is illustrated with the helpof a
ase study. The Tropos language for
on
eptual modeling is formalized in ametamodel des
ribed with a set of UML
lass diagrams.Keywords: Agent-Oriented Software Engineering, Multi-Agent Systems, and Agent-Oriented Methodologies 1. Introdu
tionAgent oriented programming (AOP, from now on) is most often moti-vated by the need for open ar
hite
tures that
ontinuously
hange andevolve to a

ommodate new
omponents and meet new requirements.More and more, software must operate on di�erent platforms, withoutre
ompilations, and with minimal assumptions about its operating en-vironment and users. It must be robust, autonomous and proa
tive.1 From the Greek \trop�e", whi
h means \easily
hangeable", also \easilyadaptable".

 2003 Kluwer A
ademi
 Publishers. Printed in the Netherlands.
jaa-mas.tex; 16/01/2003; 18:43; p.1

2 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. PeriniExamples of appli
ations where AOP seems most suited and whi
hare widely quoted in literature [31, 33℄ are ele
troni

ommer
e, en-terprise resour
e planning, air-traÆ

ontrol systems, personal digitalassistants, and so on.To qualify as an agent, a software or hardware system is often re-quired to have properties su
h as autonomy, so
ial ability, rea
tivity,and proa
tivity. Other attributes whi
h are sometimes required [33℄are mobility, vera
ity, rationality, and thee like. The key that makesa software system possess these properties is that it is
on
eived andprogrammed at a knowledge level [23℄. Thus, in AOP, we talk of mentalstates and beliefs instead of ma
hine states, of plans and a
tions insteadof pro
edures and methods, of
ommuni
ation, negotiation and so
ialability instead of intera
tion and I/O fun
tionalities, of goals, desires,and so on. Expli
it representations of su
h mental notions provide, atleast in part, the software with the extra
exibility needed in order todeal with the intrinsi

omplexity of appli
ations su
h as those men-tioned earlier. The expli
it representation and manipulation of goalsand plans fa
ilitates, for instan
e, a run-time adaptation of systembehavior in order to
ope with unforeseen
ir
umstan
es, or for a moremeaningful intera
tion with other human and software agents.We are de�ning a software development methodology,
alled Tropos,whi
h allows us to exploit all the
exibility provided by AOP. In anutshell, the two novel features of Tropos are:1. The notion of agent and related mentalisti
 notions are used inall software development phases, from early requirements analy-sis down to the a
tual implementation. Our mentalisti
 notionsare founded on BDI (Belief, Desire, and Intention) agent ar
hite
-tures [28℄.2. A
ru
ial role is given to early requirements analysis that pre
edesthe pres
riptive requirements spe
i�
ation of the system-to-be. Thismeans that we in
lude in our methodology earlier phases of thesoftware development pro
ess than those supported by other agentor obje
t oriented software engineering methodologies (see Se
tion 6for a detailed dis
ussion). We
onsider this move as
ru
ial in orderto a
hieve our obje
tives.The idea of fo
using the a
tivities that pre
ede the spe
i�
ation ofsoftware requirements, in order to understand how the intended systemwill meet organizational goals, is not new. It has been �rst proposedin requirements engineering, see for instan
e [13, 36℄, and spe
i�
allyin Eri
 Yu's work with his i* model. This model has been appliedin various appli
ation areas, in
luding requirements engineering [35℄,
jaa-mas.tex; 16/01/2003; 18:43; p.2

TROPOS: An Agent-Oriented Software Development Methodology 3business pro
ess reengineering [39℄, and software pro
ess modeling [38℄.The i* model o�ers a
tors, goals and a
tor dependen
ies as primitive
on
epts [36℄. The main motivation underlying this earlier work wasto develop a ri
her
on
eptual framework for modeling pro
esses whi
hinvolve multiple parti
ipants (both humans and software systems). Therationale of the i* model is that by doing an earlier analysis, one
an
apture not only the what or the how, but also the why a pie
e ofsoftware is developed. This, in turn, supports a more re�ned analysisof system dependen
ies and en
ourages a uniform treatment of thesystem's fun
tional and non-fun
tional requirements.Neither Yu's work, nor, as far as we know, any earlier work on re-quirements analysis was developed with AOP in mind. The appli
ationof these ideas to AOP, and the de
ision to use mentalisti
 notions in allphases of analysis, has important
onsequen
es. While developing agentoriented spe
i�
ations and programs, one uses the same notions andabstra
tions used to des
ribe the behavior of human or so
ial agents,and the pro
esses involving them. The
on
eptual gap from what thesystem must do and why, and what the users intera
ting with it mustdo and why, is redu
ed to a minimum, thus providing (part of) theextra
exibility needed to
ope with appli
ation
omplexities.Indeed, the software engineering methodologies and spe
i�
ationlanguages developed for Obje
t-Oriented Programming (OOP) supportonly phases from ar
hite
tural design downwards. This means thatthere is no formal a

ount or analysis of the
onne
tion between theintentions of the di�erent stakeholders (human, so
ial or otherwise) andthe system-to-be. By using UML, for instan
e, the software engineer
anstart with use
ase analysis (possibly re�ned with a
tivity diagrams)and then move to ar
hite
tural design. In this phase, the engineer
ando stati
 analysis using
lass diagrams, or dynami
 analysis using, forinstan
e, sequen
e or intera
tion diagrams. The target is to rea
h indetail of abstra
tion level of the a
tual
lasses, methods and attributesused to implement the system. However, while applying this approa
hand related te
hniques to AOP, the software engineer misses most of theadvantages
oming for the fa
t that in AOP one
on
eives of programsat the knowledge level. UML for
es the programmer to translate goalsand other mentalisti
 notions into software level notions, for instan
e
lasses, attributes and methods of
lass diagrams. Consequently, theformer notions must be reintrodu
ed in the programming phase. Thework on AUML [2, 25℄, though relevant in that it provides a �rst map-ping from OOP to AOP spe
i�
ations, is an example of work su�eringfrom this kind of problem.The obje
tive of this paper is to introdu
e and motivate the Troposmethodology, in all its phases. Consisten
y
he
king for Tropos models
jaa-mas.tex; 16/01/2003; 18:43; p.3

4 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Periniis dis
ussed in [16℄ and [17℄. In addition, [7℄ presents a
omplementary
ase study of the Tropos methodology.The paper is stru
tured as follows. Se
tion 2 introdu
es the
ore
on
epts of the Tropos methodology and provides an early glimpseof how the methodology works. The methodology is then des
ribedin Se
tion 3, as applied to eCulture system example, a fragment of aweb-based broker of
ultural information and servi
es developed forthe government of Trentino (Provin
ia Autonoma di Trento, or PAT).The Tropos modeling language and its diagrammati
 representationare introdu
ed �rst, while a more pre
ise de�nition of the developmentpro
ess is given in Se
tion 4. The des
ription of the metamodel of thespe
i�
ation language is given in Se
tion 5. A dis
ussion of related workis presented in Se
tion 6, while Se
tion 7 summarizes the results of thepaper and o�ers dire
tions for future work.2. The methodologyThe Tropos methodology is intended to support all analysis and de-sign a
tivities in the software development pro
ess, from appli
ationdomain analysis down to the system implementation. In parti
ular,Tropos rests on the idea of building a model of the system-to-be andits environment, that is in
rementally re�ned and extended, providinga
ommon interfa
e to various software development a
tivities, as wellas a basis for do
umentation and evolution of the software.In the following, we introdu
e the �ve main development phasesof the Tropos methodology: Early Requirements, Late Requirements,Ar
hite
tural Design, Detailed Design and Implementation. The lastfour phases are well-established in the Software Engineering literatureand are supported by various methodologies and tools. The �rst one(early requirements analysis) is well a

epted in the Requirements En-gineering resear
h
ommunity, but not widely pra
ti
ed. We then de�nethe basi
 notions to be modeled during ea
h one of these phases andthe te
hniques that guide model re�nement. Finally, we des
ribe themodeling a
tivities performed during the �ve phases pointing out howthe modeling fo
us shifts with the pro
ess.2.1. Development phasesRequirements analysis represents the initial phase in many softwareengineering methodologies. As with other approa
hes, the ultimate ob-je
tive of requirement analysis in Tropos is to provide a set of fun
tionaland non-fun
tional requirements for the system-to-be.
jaa-mas.tex; 16/01/2003; 18:43; p.4

TROPOS: An Agent-Oriented Software Development Methodology 5Requirements analysis in Tropos is split in two main phases: EarlyRequirements and Late Requirements analysis. Both share the same
on
eptual and methodologi
al approa
h. Thus most of the ideas in-trodu
ed for early requirements analysis are used for late requirementsas well. More pre
isely, during the �rst phase, the requirements en-gineer identi�es the domain stakeholders and models them as so
iala
tors, who depend on one another for goals to be a
hieved, plans tobe performed, and resour
es to be furnished. By
learly de�ning thesedependen
ies, it is then possible to state the why, beside the what andhow, of the system fun
tionalities and, as a last result, to verify how the�nal implementation mat
hes initial needs. In the Late Requirementsanalysis, the
on
eptual model is extended in
luding a new a
tor, whi
hrepresents the system, and a number of dependen
ies with other a
torsof the environment. These dependen
ies de�ne all the fun
tional andnon-fun
tional requirements of the system-to-be.The Ar
hite
tural Design and the Detailed Design phases fo
us onthe system spe
i�
ation, a

ording to the requirements resulting fromthe above phases. Ar
hite
tural Design de�nes the system's global ar-
hite
ture in terms of subsystems, inter
onne
ted through data and
ontrol
ows. Subsystems are represented, in the model, as a
tors anddata/
ontrol inter
onne
tions are represented as dependen
ies. Thear
hite
tural design provides also a mapping of the system a
tors toa set of software agents, ea
h
hara
terized by spe
i�

apabilities.The Detailed Design phase aims at spe
ifying agent
apabilities andintera
tions. At this point, usually, the implementation platform hasalready been
hosen and this
an be taken into a

ount in order toperform a detailed design that will map dire
tly to the
ode.1The Implementation a
tivity follows step by step, in a natural way,the detailed design spe
i�
ation on the basis of the established map-ping between the implementation platform
onstru
ts and the detaileddesign notions.2.2. The key
on
eptsModels in Tropos are a
quired as instan
es of a
on
eptual metamodelresting on the following
on
epts/relationships:A
tor, whi
h models an entity that has strategi
 goals and intention-ality within the system or the organizational setting. An a
torrepresents a physi
al, so
ial or software agent as well as a role or1 Noti
e that Tropos (as well as other agent-oriented software engineeringmethodologies)
an be used independently of the fa
t that one uses AOP asimplementation te
hnology.
jaa-mas.tex; 16/01/2003; 18:43; p.5

6 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Periniposition. While we assume the
lassi
al AI de�nition of softwareagent, that is, a software having properties su
h as autonomy,so
ial ability, rea
tivity, proa
tivity, as given, for instan
e in [24℄,in Tropos we de�ne a role as an abstra
t
hara
terization of thebehavior of a so
ial a
tor within some spe
ialized
ontext or do-main of endeavor, and a position represents a set of roles, typi
allyplayed by one agent. An agent
an o

upy a position, while aposition is said to
over a role. A dis
ussion on this issue
an befound in [37℄.Goal, whi
h represents a
tors' strategi
 interests. We distinguish hardgoals from softgoals, the se
ond having no
lear-
ut de�nitionand/or
riteria for de
iding whether they are satis�ed or not. A
-
ording to [8℄, this di�erent nature of a
hievement is underlinedby saying that goals are satis�ed while softgoals are satis�
ed.Softgoals are typi
ally used to model non-fun
tional requirements.For simpli
ity, In the rest of the paper goals refer to hard goalswhen there is no danger of
onfusion.Plan, whi
h represents, at an abstra
t level, a way of doing something.The exe
ution of plan
an be a means for satisfying a goal or forsatis�
ing a softgoal.Resour
e, whi
h represents a physi
al or an informational entity.Dependen
y between two a
tors, whi
h indi
ates that one a
tor de-pends, for some reason, on the other in order to attain some goal,exe
ute some plan, or deliver a resour
e. The former a
tor is
alledthe depender, while the latter is
alled the dependee. The obje
taround whi
h the dependen
y
enters is
alled dependum. In gen-eral, by depending on another a
tor for a dependum, an a
tor isable to a
hieve goals that it would otherwise be unable to a
hieveon its own, or not as easily, or not as well. At the same time, thedepender be
omes vulnerable. If the dependee fails to deliver thedependum, the depender would be adversely a�e
ted in its abilityto a
hieve its goals.Capability, whi
h represents the ability of an a
tor of de�ning,
hoos-ing and exe
uting a plan for the ful�llment of a goal, given
ertainworld
onditions and in presen
e of a spe
i�
 event.Belief, whi
h represents a
tor knowledge of the world.These notions are more formally spe
i�ed synta
ti
ally in the languagemetamodel des
ribed in Se
tion 5.
jaa-mas.tex; 16/01/2003; 18:43; p.6

TROPOS: An Agent-Oriented Software Development Methodology 72.3. Modeling a
tivitiesVarious a
tivities
ontribute to the a
quisition of a �rst early require-ment model, to its re�nement and to its evolution into subsequentmodels. They are:A
tor modeling, whi
h
onsists of identifying and analyzing both thea
tors of the environment and the system's a
tors and agents.In parti
ular, in the early requirement phase a
tor modeling fo-
uses on modeling the appli
ation domain stakeholders and theirintentions as so
ial a
tors whi
h want to a
hieve goals. Duringlate requirement, a
tor modeling fo
uses on the de�nition of thesystem-to-be a
tor, whereas in ar
hite
tural design, it fo
uses onthe stru
ture of the system-to-be a
tor spe
ifying it in terms of sub-systems (a
tors), inter
onne
ted through data and
ontrol
ows.In detailed design, the system's agents are de�ned spe
ifying allthe notions required by the target implementation platform, and�nally, during the implementation phase a
tor modeling
orre-sponds to the agent
oding.Dependen
y modeling, whi
h
onsists of identifying a
tors whi
hdepend on one another for goals to be a
hieved, plans to be per-formed, and resour
es to be furnished. In parti
ular, in the earlyrequirement phase, it fo
uses on modeling goal dependen
ies be-tween so
ial a
tors of the organizational setting. New dependen
iesare eli
ited and added to the model upon goal analysis performedduring the goal modeling a
tivity dis
ussed below. During laterequirements analysis, dependen
y modeling fo
uses on analyzingthe dependen
ies of the system-to-be a
tor. In the ar
hite
turaldesign phase, data and
ontrol
ows between sub-a
tors of thesystem-to-be a
tors are modeled in terms of dependen
ies, provid-ing the basis for the
apability modeling that will start later inar
hite
tural design together with the mapping of system a
torsto agents.A graphi
al representation of the model obtained following thesemodeling a
tivities is given through a
tor diagrams (see Se
tion 5 formore details), whi
h des
ribe the a
tors (depi
ted as
ir
les), their goals(depi
ted as ovals and
loud shapes) and the network of dependen
yrelationships among a
tors (two arrowed lines
onne
ted by a graph-i
al symbol varying a

ording to the dependum: a goal, a plan or aresour
e). An example is given in Figure 1.Goal modeling rests on the analysis of an a
tor goals,
ondu
tedfrom the point of view of the a
tor, by using three basi
 rea-
jaa-mas.tex; 16/01/2003; 18:43; p.7

8 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Perinisoning te
hniques: means-end analysis,
ontribution analysis, andAND/OR de
omposition. In parti
ular, means-end analysis aims atidentifying plans, resour
es and softgoals that provide means fora
hieving a goal. Contribution analysis identi�es goals that
an
ontribute positively or negatively in the ful�llment of the goalto be analyzed. In a sense, it
an be
onsidered as an extension ofmeans-end analysis, with goals as means. AND/OR de
omposition
ombines AND and OR de
ompositions of a root goal into sub-goals, modeling a �ner goal stru
ture. Goal modeling is applied toearly and late requirement models in order to re�ne them and toeli
it new dependen
ies. During ar
hite
tural design, it
ontributesto motivate the �rst de
omposition of the system-to-be a
tors intoa set of sub-a
tors.Plan modeling
an be
onsidered as an analysis te
hnique
omple-mentary to goal modeling. It rests on reasoning te
hniques anal-ogous to those used in goal modeling, namely, means-end,
ontribu-tion analysis and AND/OR de
omposition. In parti
ular, AND/ORde
omposition provides an AND and OR de
ompositions of a rootplan into sub-plans.A graphi
al representation of goal and planmodeling is given throughgoal diagrams, see, for instan
e, Figure 3 but also Se
tion 5 for moredetails.Capability modeling starts at the end of the ar
hite
tural designwhen system sub-a
tors have been spe
i�ed in terms of their owngoals and the dependen
ies with other a
tors. In order to de�ne,
hoose and exe
ute a plan for a
hieving its own goals, ea
h system'ssub-a
tor has to be provided with spe
i�
 \individual"
apabili-ties. Additional \so
ial"
apabilities should be also provided formanaging dependen
ies with other a
tors. Goals and plans previ-ously modeled be
ome integral part of the
apabilities. In detaileddesign, ea
h agent's
apability is further spe
i�ed and then
odedduring the implementation phase.A graphi
al representation of these
apabilities is given by
apabilityand plan diagrams. UML a
tivity diagrams (see Figure 9 for an exam-ple) and AUML intera
tion diagrams [25℄ (Figure 11) are used to thispurpose (more details in Se
tion 5).

jaa-mas.tex; 16/01/2003; 18:43; p.8

TROPOS: An Agent-Oriented Software Development Methodology 93. An exampleIn this se
tion we go through and dis
uss the �ve Tropos phases viaa substantial
ase study. The example
onsidered is a fragment of areal appli
ation developed for the government of Trentino (Provin
iaAutonoma di Trento, or PAT). In the exposition, the example has beensuitably modi�ed to take into a

ount a non dis
losure agreement andalso to make it simpler and therefore more easily understandable. Thesystem (whi
h we will
all throughout the eCulture system) is a web-based broker of
ultural information and servi
es for PAT, in
ludinginformation obtained from museums, exhibitions, and other
ulturalorganizations and events [18℄. It is the government's intention that thesystem be usable by a variety of users, in
luding Trentino
itizens andtourists, looking for things to do, or s
holars and students looking formaterial relevant to their studies.3.1. Early Requirements AnalysisEarly Requirements analysis
onsists of identifying and analyzing thestakeholders and their intentions. Stakeholders are modeled as so
iala
tors who depend on one another for goals to be a
hieved, plans tobe performed, and resour
es to be furnished. Intentions are modeledas goals whi
h, through a goal-oriented analysis, are de
omposed into�ner goals, that eventually
an support evaluation of alternatives.In our eCulture example we
an start by informally listing (someof) the stakeholders:� Provin
ia Autonoma di Trento (PAT), that is the governmentagen
y funding the proje
t; its obje
tives in
lude improving publi
information servi
es, in
reasing tourism through new informationservi
es, also en
ouraging Internet use within the provin
e.� Museums, that are the major
ultural information providers fortheir respe
tive
olle
tions; museums want government funds tobuild/ improve their
ultural information servi
es, and are willingto interfa
e their systems with other
ultural systems or servi
es.� Visitors, who want to a

ess
ultural information, before or dur-ing their visit to Trentino, to make their visit interesting and/orpleasant.� (Trentino) Citizens, who want easily a

essible information, of anysort, and (of
ourse) good administration of publi
 resour
es.
jaa-mas.tex; 16/01/2003; 18:43; p.9

10 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Perini

increase
internet use

get cultural
information

Citizen

Visitor

enjoy visit

Actor

 Softgoal
dependency

depender

dependum

dependee

PAT

taxes well
spent

Hardgoal

Softgoal

Museum

provide
cultural
services

Figure 1. A
tor diagram modeling the stakeholders of the eCultural proje
t.Figure 1 shows the a
tor diagram for the eCulture domain. In par-ti
ular, Citizen is asso
iated with a single relevant goal: get
ulturalinformation, while Visitor has an asso
iated softgoal enjoy visit. Alongsimilar lines, PAT wants to in
rease internet use while Museum wantsto provide
ultural servi
es. Finally, the diagram in
ludes one softgoaldependen
y where Citizen depends on PAT to ful�ll the taxes well spentsoftgoal.On
e the stakeholders have been identi�ed, along with their goalsand so
ial dependen
ies, the analysis pro
eeds in order to enri
h themodel with further details. In parti
ular, the rationale of ea
h goalrelative to the stakeholder who is responsible for its ful�llment has tobe analyzed. Basi
ally, this is done through means-end analysis andgoal/plan de
omposition. It is important to stress that what goals areasso
iated with ea
h a
tor is a de
ision of the
orresponding stake-holder, not the design team.A �rst example of the result of su
h an analysis from the perspe
-tive of Citizen and Visitor is given by the goal diagrams depi
ted inFigure 2. For the a
tor Citizen, the goal get
ultural information isde
omposed into visit
ultural institutions and visit
ultural web systems.These two subgoals
an be seen as alternative ways of ful�lling the goalget
ultural information (and we will
all this a \OR-de
omposition").Goal de
omposition
an be
losed through a means-end analysis aimedat identifying plans, resour
es and softgoals that provide means fora
hieving the goal. For example, the plan (depi
ted as a hexagon) visiteCulture System is a means to ful�ll the goal visit
ultural web systems.
jaa-mas.tex; 16/01/2003; 18:43; p.10

TROPOS: An Agent-Oriented Software Development Methodology 11
visit cultural
institutions

visit
eCulture
System

use
eCulture
System

access
internet

get cultural
information

Visitor

enjoy visit

plan a visit

eCulture
System

available

PAT

internet
infrastructure

available

Actor perspective
AND decomposition

+

visit cultural
web systems

usable
eCulture
Sysyem

ContributionOR decomposition

Plan

+/-

Citizen

Figure 2. Goal diagrams for Citizen and Visitor. Noti
e the goal and plan de
ompo-sition, the means-end analysis and the (positive)softgoal
ontribution.This plan
an be de
omposed into sub-plans, namely use eCulture Sys-tem and a

ess internet. These two sub-plans be
ome the reasons for aset of dependen
ies between Citizen and PAT: eCulture System available,internet infrastru
ture available and usable eCulture System. The analysisfor Visitor is simpler: planning a visit
an give a positive
ontributionto the goal enjoy visit, and for this the Visitor needs the eCulture Systemtoo.A se
ond example, in Figure 3, shows portions of the goal analysisfor PAT, relative to the goals that Citizen delegates to PAT as a resultof the previous analysis. The goals in
rease internet use and eCultureSystem available are both well served by the goal build eCulture System.Inside the a
tor diagram, softgoal analysis is performed identifying thegoals that
ontribute positively or negatively to the softgoal. The soft-
jaa-mas.tex; 16/01/2003; 18:43; p.11

12 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Perini

increase
internet use

PAT

internet
infrastructure

available

eCulture
System

available

reasonable
expenses

good cultural
services

fundig
museums for
own systems

good
services

build
eCulture
System

offer
inexpensive
infrastructure

+

+

+

+

+

+

+

provide
eCultural
services

Means-ends analysis

educate
citizens provide

interesting
systems

taxes well
spent

Figure 3. Goal diagram for PAT.goal taxes well spent gets positive
ontributions from the softgoal goodservi
es, and, in the end, from the goal build eCulture System too.The �nal result of this phase is a set of strategi
 dependen
ies amonga
tors, built in
rementally by performing goal/plan analysis on ea
hgoal, until all goals have been analyzed. Goals lower down in a goalhierar
hy are more spe
i�
, and are motivated by goals higher up inthe hierar
hy. For instan
e, in the example in Figure 3, the goal buildeCulture System is motivated by its two supergoals.3.2. Late Requirements AnalysisLate requirement analysis fo
uses on the system-to-be (the eCultureSystem in our
ase) within its operating environment, along with rel-evant fun
tions and qualities. The system-to-be is represented as onea
tor whi
h has a number of dependen
ies with the other a
tors of theorganization. These dependen
ies de�ne the system's fun
tional andnon-fun
tional requirements.
jaa-mas.tex; 16/01/2003; 18:43; p.12

TROPOS: An Agent-Oriented Software Development Methodology 13
PAT

eCulture
System

provide
eCultural
services

available
eCulture
System

portable

scalable

use internet
technology

+

+

+

+

make
reservations

provide
info

educational
services

cultural infologistic info

extensible
eCulture
System

flexible
eCulture
System

usable
eCulture
System

user friendly
eCulture
System

virtual visits

+

temporal
availabilityFigure 4. A portion of the a
tor diagram in
luding PAT and eCulture System andgoal diagram of the eCulture System.The a
tor diagram in Figure 4 in
ludes the eCulture System andshows a set of goals and softgoals that PAT delegates to it. In parti
ular,the goal provide eCultural servi
es, whi
h
ontributes to the main goalof PAT in
rease internet use (see Figure 3), and the softgoals extensibleeCulture System,
exible eCulture System, usable eCulture System, anduse internet te
hnology. These goals are then analyzed from the point ofview of the eCulture System. In Figure 4 we
on
entrate on the analysisof the goal provide eCultural servi
es and the softgoal usable eCultureSystem. The goal provide eCultural servi
es is de
omposed (AND de
om-position) into four subgoals: make reservations, provide info, edu
ationalservi
es and virtual visits. As basi
 eCultural servi
e, the eCulture Systemmust provide information (provide info), whi
h
an be logisti
 info, and
ultural info. Logisti
 info
on
erns, for instan
e, timetables and visiting
jaa-mas.tex; 16/01/2003; 18:43; p.13

14 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Periniinstru
tions for museums, while
ultural info
on
erns the
ultural
on-tent of museums and spe
ial
ultural events. This
ontent may in
ludedes
riptions and images of histori
al obje
ts, the des
ription of an ex-hibition, and the history of a parti
ular region. Virtual visits are servi
esthat allow, for instan
e, Citizen to pay a virtual visit to a
ity of the past(Rome during C�sar's time!). Edu
ational servi
es in
ludes presentationof histori
al and
ultural material at di�erent levels (e.g., high s
hoolor undergraduate university level) as well as on-line evaluation of thestudent's grasp of this material. Make reservations allows the Citizento make reservations for parti
ular
ultural events, su
h as
on
erts,exhibitions, and guided museum visits.Softgoal
ontributions
an be identi�ed applying the same kind ofanalysis des
ribed by the goal diagram of Figure 3. So for instan
e,the softgoal usable eCulture System has two positive (+)
ontributionsfrom softgoals user friendly eCulture System and available eCulture Sys-tem. The former
ontributes positively be
ause a system must be userfriendly to be usable, whereas the latter
ontributes positively be
auseit makes the system portable, s
alable, and available over time (temporalavailability).Often, some dependen
ies in the a
tor diagram must be revised uponthe introdu
tion of the system a
tor. We have seen in Figure 2 that forCitizen a possible subplan of getting eCultural info is using an eCul-ture system. Now we
an model this in terms of a dire
t dependen
ybetween the a
tors Citizen and eCulture System. Figure 5 shows howthis dependen
y is analyzed inside the goal diagram of the eCultureSystem. The goal sear
h information (a subgoal of the goal provide info)
an be ful�lled by four di�erent plans: sear
h by area (themati
 area),sear
h by geographi
al area, sear
h by keyword, and sear
h by time period.The de
omposition into sub-plans is almost the same for all four kindsof sear
h. For example, the sub-plan get info on area is de
omposedin �nd info sour
es, that �nds whi
h information sour
es are moreappropriate to provide information
on
erning the spe
i�ed area, andthe sub-plan query sour
es, that queries the information sour
es. Thesub-plan �nd info sour
es depends on the museums for the des
riptionof the information that the museums
an provide, i.e., the resour
edependen
y info about sour
e (a re
tangle in Figure 5), and synthesizeresults depends on museums for query result. Finally, in order to sear
hinformation about a parti
ular themati
 area, the Citizen is required toprovide information using an area spe
i�
ation form.The analysis
ondu
ted so far is intended to provide a
ontext withinwhi
h the system-to-be is to be designed. Skipping this analysis
an leadto misunderstandings about what the system should be doing or thespe
ial qualities it should possess. Indeed, it has been well do
umented
jaa-mas.tex; 16/01/2003; 18:43; p.14

TROPOS: An Agent-Oriented Software Development Methodology 15
eCulture
System

get cultural
information

search
information

search by
geographical

area

search by
area

get info on
area

clssify
area

synthesize
results

query
sources

find info
sources

area
specification

form

info about
source query result

Museum

search by
keywords

search by
time period

Citizen

Figure 5. Goal diagram for the goal get
ultural information and dependen
iesbetween the a
tor eCulture System and other environment' a
tors.in the Software Engineering literature that many software faults andfailures originate in misunderstood requirements [1℄.3.3. Ar
hite
tural DesignThe ar
hite
tural design phase de�nes the system's global ar
hite
turein terms of subsystems (a
tors) inter
onne
ted through data and
on-trol
ows (dependen
ies). This phase is arti
ulated in three steps, asfollows.Step 1. As �rst step, the overall ar
hite
tural organization is de�ned.New a
tors (in
luding sub-a
tors) are introdu
ed in the system as aresult of analysis performed at di�erent levels of abstra
tion, su
h as:� in
lusion of new a
tors and delegation of subgoals to sub-a
torsupon goal analysis of system's goals;
jaa-mas.tex; 16/01/2003; 18:43; p.15

16 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Perini
provide info

educational
services

make
reservations virtual visits

provide
interface

Info
Broker Educational

Broker
Reservation

Broker
Virtual Visit

Broker
System

Manager

system
interfacing

user
interfacing

System
Interface
Manager

User
Interface
Manager

eCulture
System

Figure 6. A
tor diagram for the eCulture System ar
hite
ture (step 1).� in
lusion of new a
tors a

ording to the
hoi
e of a spe
i�
 ar-
hite
tural style (see [15, 21℄ for more details about the use ofar
hite
tural patterns and styles);� in
lusion of a
tors
ontributing positively to the ful�llment of somenon-fun
tional requirements.Figure 6 shows the de
omposition in sub-a
tors of the eCulture Systemand the delegation of some goals from the eCulture System to them.The eCulture System depends on the Info Broker to provide info, on theEdu
ational Broker to provide edu
ational servi
es, on the ReservationBroker to make reservations, on Virtual Visit Broker to provide virtualvisits, and on System Manager to provide interfa
e. Additionally, ea
hsub-a
tor
an be itself de
omposed in sub-a
tors responsible for theful�llment of one or more sub-goals.The �nal result of this �rst step is an extended a
tor diagram, inwhi
h new a
tors and their dependen
ies with the other a
tors arepresented. Figure 7 shows the extended a
tor diagram with respe
t tothe Info Broker and the assigned plan sear
h by area. The User Interfa
eManager and the Sour
es Interfa
e Manager are responsible for interfa
-
jaa-mas.tex; 16/01/2003; 18:43; p.16

TROPOS: An Agent-Oriented Software Development Methodology 17
Area

Classifier

Info
Searcher

Info
Broker

area
information

query
information

Results
Synthesizerarea

specification
form

area
informationCitizen

Interfacing
to the eCulture

System

interfacing
to the users

services
information

Services
Broker

services
description

Sources
Broker

sources
information

interfacing
to sources

Sources
Interface
Manager

Interfacing
to the eCulture

System

Museum

source
description

User
Interface
Manager

query results

Figure 7. Extended a
tor diagram w.r.t. the Info Broker (step 1).ing the system to the external a
tors Citizen and Museum. The Servi
esBroker and Sour
es Broker have been also introdu
ed to fa
ilitate generi
intera
tions outside the system. Servi
es Broker manages a repository ofdes
riptions for servi
es o�ered by a
tors within the eCulture System.Analogously, Sour
es Broker manages a repository of des
riptions forinformation sour
es available outside the system.The three sub-a
tors: the Area Classi�er, the Results Synthesizer, andthe Info Sear
her (Figure 7) have been introdu
ed upon the analysis ofthe plan sear
h by area reported in Figure 5. Area Classi�er is responsiblefor the
lassi�
ation of the information provided by the user. It dependson the User Interfa
e Manager for interfa
ing to the users, and on theServi
e Broker to have information about the servi
es provided by othera
tors. The Info Sear
her depends on Area Classi�er to have informationabout the themati
 area that the user is interested in, on the Sour
eBroker for the des
ription of the information sour
es available outsidethe system, and on the Sour
es Interfa
e Manager for interfa
ing to thesour
es. The Results Synthesizer depends on the Info Sear
her for the
jaa-mas.tex; 16/01/2003; 18:43; p.17

18 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Periniinformation
on
erning the query that the Info Sear
her asked, and onthe Museum to have the query results.Table I. A
tors'
apabilities (step 2).A
tor Name N CapabilityArea Classi�er 1 get area spe
i�
ation form2
lassify area3 provide area information4 provide servi
e des
riptionInfo Sear
her 5 get area information6 �nd information sour
e7
ompose query8 query sour
e9 provide query informationprovide servi
e des
riptionResults Synthesizer 10 get query information11 get query results12 provide query results13 synthesize area query resultsprovide servi
e des
riptionSour
es Interfa
e 14 wrap information sour
eManager provide servi
e des
riptionSour
es Broker 15 get sour
e des
ription16
lassify sour
e17 store sour
e des
ription18 delete sour
e des
ription19 provide sour
es informationprovide servi
e des
riptionServi
es Broker 20 get servi
e des
ription21
lassify servi
e22 store servi
e des
ription23 delete servi
e des
ription24 provide servi
es informationUser Interfa
e 25 get user spe
i�
ationManager 26 provide user spe
i�
ation27 get query results28 present query results to the userprovide servi
e des
ription
Step 2. This step
onsists in the identi�
ation of the
apabilitiesneeded by the a
tors to ful�ll their goals and plans. Capabilities
an be

jaa-mas.tex; 16/01/2003; 18:43; p.18

TROPOS: An Agent-Oriented Software Development Methodology 19easily identi�ed by analyzing the extended a
tor diagram. In parti
ular,ea
h dependen
y relationship
an give pla
e to one or more
apabilitytriggered by external events. To give an intuitive idea of this pro
esslet's fo
us on a spe
i�
 a
tor of the extended a
tor diagram, su
h as theArea Classi�er, and
onsider all the in-going and out-going dependen-
ies, as shown in Figure 8. Ea
h dependen
y is mapped to a
apability.So, for instan
e, the dependen
y for the resour
e area spe
i�
ation form
alls for the
apability get area spe
i�
ation form, and so on. The AreaClassi�er's
apabilities as well as the
apabilities of the other a
tors ofthe extended a
tor diagram of Figure 7 are listed in Table I.
Info

Searcher

Info
Broker

query
information

area
information

Interfacing
to the eCulture

System

Services
Broker

Sources
Broker

sources
information

Sources
Interface
Manager

Interfacing
to the eCulture

System

Museum

source
description

User
Interface
Manager

query results

Area
Classifier

area
specification

form

interfacing
to the users

area
information

Results
Synthesizer

Citizen interfacing
to sources

services
information

services
descriptionFigure 8. Identifying a
tor
apabilities from a
tor dependen
ies w.r.t. the AreaClassi�er (step 2).Step 3. The last step
onsists of de�ning a set of agent types andassigning ea
h of them one or more di�erent
apabilities (agent as-signment). Table II reports the agents assignment with respe
t to the
apabilities identi�ed in Table I. Of
ourse, many other
apabilities
jaa-mas.tex; 16/01/2003; 18:43; p.19

20 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Periniand agent types are needed in
ase we
onsider all the goals and plansasso
iated with the
omplete extended a
tor diagram.Table II. Agent types and their
apabilities.Agent CapabilitiesQuery Handler 1, 3, 4, 5, 7, 8, 9, 10, 11, 12Classifier 2, 4Sear
her 6, 4Synthesizer 13, 4Wrapper 14, 4Agent Resour
e Broker 15, 16, 17, 18, 19, 4Dire
tory Fa
ilitator 20, 21, 22, 23, 24, 4User Interfa
e Agent 25, 26, 27, 28, 4In general, the agents assignment is not unique and depends onthe designer. The number of agents and the
apabilities assigned toea
h of them are
hoi
es driven by the analysis of the extend a
tordiagram and by the way in whi
h the designer think the system interm of agents. Tropos o�ers a set of pre-de�ned patterns re
urrent inmulti-agent literature that
an help the designer [21℄.3.4. Detailed designThe detailed design phase deals with the spe
i�
ation of the agents'mi
ro level. Agents' goals, beliefs, and
apabilities, as well as
ommuni-
ation among agents are spe
i�ed in detail. Pra
ti
al approa
hes for thisa
tivity are usually proposed within spe
i�
 development platforms anddepend on the features of the adopted agent programming language.In other words, this step is usually stri
tly related to implementation
hoi
es. Moreover, the Obje
t Management Group (OMG) and theFoundation for Intelligent Physi
al Agents (FIPA) are supporting theextension of the Uni�ed Modeling Language (UML) [3℄ as the languagewhi
h should enable the spe
i�
ation of agent systems [2℄. Agent UMLpa
kages modelling well-known agent
ommuni
ation proto
ols, su
has the Contra
t Net, are already available [25℄.In Tropos, we adapt existing results from these approa
hes to agentsystem design. However, our detailed design step takes as input thespe
i�
ations resulting from the ar
hite
tural design phase and thereasons for a given element, designed at this level,
an be tra
ed ba
kto early requirement analysis.
jaa-mas.tex; 16/01/2003; 18:43; p.20

TROPOS: An Agent-Oriented Software Development Methodology 21
EE: inform(SIA, UIA, query results)

Query results

evaluate query
results

IE: (result set)

present empty present query
results results

IE: (empty result set)

Figure 9. Capability diagram represented as an AUML a
tivity diagram.During detailed design, we use UML a
tivity diagrams for repre-senting
apabilities and plans, and we adopt a subset of the AUMLdiagrams proposed in [25℄ for spe
ifying agent proto
ols.Capability diagrams. The UML a
tivity diagram allows us to model a
apability (or a set of
orrelated
apabilities) from the point of view ofa spe
i�
 agent. External events set up the starting state of a
apabil-ity diagram; a
tivity nodes model plans, transition ar
s model events,and beliefs are modeled as obje
ts. For instan
e, Figure 9 depi
ts the
apability diagram of the present query results
apability of the UserInterfa
e Agent.Plan diagrams. Ea
h plan node of a
apability diagram
an be furtherspe
i�ed by UML a
tivity diagrams. For instan
e, Figure 10 depi
tsthe plan evaluate query results
orresponding to the
apability depi
tedin Figure 9. The plan evaluate query results is a
tivated by the arrivalof the query results from the Synthesizer, and it ends storing an emptyor non-empty result set. Query results are
ompared to a set of possibleresult models
ontained in an agent's beliefs. Possible errors during the
omparison end the plan without any side e�e
t. If there are no errors,the plan ends su

essfully storing a result set
onform to the foundresult model. The plan
an end su

essfully also when there are noresult models
omparable to the query results. In this
ase, the agentstores an empty result set.
jaa-mas.tex; 16/01/2003; 18:43; p.21

22 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Perini
read query

results

EE: inform(SIA, UIA, query results)

find result
model

compare results
vs. model

Store result
set

store empty
result set

no

not found?

no

unrecoverable errors?

yes

yes

Figure 10. Plan diagram for the plan evaluate query. Ovals
orrespond to simple or
omplex a
tions, ar
s to transitions from an a
tion to the subsequent one, start andend states transitions to events.Agent intera
tion diagrams. Here AUML sequen
e diagrams
an beexploited. In AUML sequen
e diagrams, agents
orrespond to obje
ts,whose life-line is independent from the spe
i�
 intera
tion to be mod-eled (in UML an obje
t
an be
reated or destroyed during the intera
-tion);
ommuni
ation a
ts between agents
orrespond to asyn
hronousmessage ar
s.Figure 11 shows a simple part of the
ommuni
ative intera
tionamong the system's agents and the user. In parti
ular, the diagrammodels the intera
tion among the user (
itizen), the User Interfa
e Agent(UI), the Dire
tory Fa
ilitator (DF), and the Query Handler (QH). The
jaa-mas.tex; 16/01/2003; 18:43; p.22

TROPOS: An Agent-Oriented Software Development Methodology 23
UI: Agent DF: Agent QH: Agent

citizen : user

info request

query specs. request

query spec. submission

query for service

QH agent address

query committment

results communication

results presentation

Figure 11. Agent intera
tion diagram. Boxes represent agents and arrows model
ommuni
ative a
ts.intera
tion starts with an info request by the user to the UI, and endswith the results presentation by the UI to the user. The UI asks the userfor the query spe
i�
ations, and when the user replays, the UI asks theDF for the address of an agent able to provide the requested servi
e.The DF sends the QH address to the UI so that the UI
an ask theQH for the servi
e. Finally, the QH sends the results to the UI, andthen the UI presents the results to the user. The template pa
kages
jaa-mas.tex; 16/01/2003; 18:43; p.23

24 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Periniof sequen
e diagrams, proposed in [25℄ for modeling Agent Intera
tionProto
ols,
an be straightforwardly applied to our example. In su
h a
ase, ea
h
ommuni
ative a
t of Figure 11 must be analyzed in detail.3.5. Implementation Using JACKThe BDI platform
hosen for the implementation is JACK IntelligentAgents [12℄, an agent-oriented development environment built on topand fully integrated with Java. Agents in JACK are autonomous soft-ware
omponents that have expli
it goals (desires) to a
hieve or eventsto handle. Agents are programmed with a set of plans in order tomake them
apable of a
hieving goals. The implementation a
tivityfollows in a natural way the detailed design spe
i�
ation des
ribed inSe
tion 3.4. In fa
t, the notions introdu
ed in that se
tion have a dire
t
orresponden
e with the following JACK's
onstru
ts, as explainedbelow:� Agent. A JACK agent is used to de�ne the behavior of an intel-ligent software agent. This in
ludes the
apabilities an agent has,the types of messages and events it responds to and the plans ituses to a
hieve its goals.� Capability. A JACK
apability
an in
lude plans, events, beliefsand other
apabilities. An agent
an be assigned a number of
apabilities. Furthermore, a given
apability
an be assigned todi�erent agents. JACK's
apability notion provides a means toreuse.� Belief. The JACK database amounts to a generalized relationaldatabase that des
ribes a set of beliefs as
ribed to an agent.� Event. Internal and external events spe
i�ed in the detailed designmap to JACK's event
onstru
t. In JACK, an event des
ribes atriggering
ondition for agents a
tions.� Plan. The plans
ontained in a
apability spe
i�
ation resultingfrom a detailed design map to JACK plans. In JACK, a plan is asequen
e of instru
tions the agent follows to try to a
hieve goalsand deal with o

uren
es of events.Figure 12 depi
ts the JACK layout presenting the eCulture Systemanalyzed in the previous se
tions. The �rst window fo
uses on thede
laration of the �ve agents, and in parti
ular on the User Interfa
eAgent and its
apabilities. The de�nition for the User Interfa
e Agent isas follows:
jaa-mas.tex; 16/01/2003; 18:43; p.24

TROPOS: An Agent-Oriented Software Development Methodology 25

Figure 12. JACK Developing Environment for the eCulture proje
t.publi
 agent UserInterfa
e extends Agent {#has
apability GetQueryResults;#has
apability ProvideUserSpe
ifi
ation;#has
apability GetUserSpe
ifi
ation;#has
apability PresentQueryResults;#handles event InformQueryResults;#handles event ResultsSet; }The se
ond window lists all the
apabilities asso
iated with theagents of the system. The
apability present query results, analyzed inFigure 9, is de�ned as follows:publi

apability PresentQueryResults extends Capability {#handles external event InformQueryResults;#posts event ResultsSet ;#posts event EmptyResultsSet ;#private database QueryResults ();#private database ResultsModel ();#uses plan EvaluateQueryResults;#uses plan PresentEmptyResults;#uses plan PresentResults; }The last window presents the plans asso
iated with the
apabilitypresent query results. The plan evaluate query results, analyzed in detail
jaa-mas.tex; 16/01/2003; 18:43; p.25

26 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Periniin the previous se
tion (i.e., the plan evaluate query des
ribed in theplan diagram of Figure 10), is de�ned as follows:publi
 plan EvaluateQueryResults extends Plan {#handles event InformQueryResults ev;stati
 boolean relevant(InformQueryResults ev) {return true}stati
 model md;stati
 queryResults qr;body (){ if (readQueryResults(qr)){ if (findResultModel(qr,md)){ if(
ompareResultModel(md)) {storeResults(qr,md)} }else { storeEmptyResults(); }}else { System.err(1); }}}4. The Development Pro
essThe previous se
tions introdu
ed the primitive
on
epts supported byTropos and the di�erent kinds of modeling a
tivities one performsduring a Tropos-based software development proje
t. In this se
tion,we fo
us on the generi
 design pro
ess through whi
h these modelsare
onstru
ted [19℄. The pro
ess is basi
ally one of analyzing goals onbehalf of di�erent a
tors, and is des
ribed in terms of a non determinis-ti

on
urrent algorithm, in
luding a
ompleteness
riterion. Note thatthis pro
ess is
arried out by software engineers (rather than softwareagents) at design-time (rather than run-time).Intuitively, the pro
ess begins with a number of a
tors, ea
h witha list of asso
iated root goals (possibly in
luding softgoals). Ea
h rootgoal is analyzed from the perspe
tive of its respe
tive a
tor, and assubgoals are generated, they are delegated to other a
tors, or the a
tortakes on the responsibility of dealing with them him/her/itself. Thisanalysis is
arried out
on
urrently with respe
t to ea
h root goal.Sometimes the pro
ess requires the introdu
tion of new a
tors whi
hare delegated goals and/or tasks. The pro
ess is
omplete when all goalshave been dealt with to the satisfa
tion of the a
tors who want them(or the designers thereof.)Assume that a
torList in
ludes a �nite set of a
tors, also that thelist of goals for a
tor is stored in goalList(a
tor). In addition, weassume that agenda(a
tor) in
ludes the list of goals a
tor has under-taken to a
hieve personally (with no help from other a
tors), along withthe plan that has been sele
ted for ea
h goal. Initially, agenda(a
tor)
jaa-mas.tex; 16/01/2003; 18:43; p.26

TROPOS: An Agent-Oriented Software Development Methodology 27is empty. dependen
yList in
ludes a list of dependen
ies among a
tors,while
apabilityList(a
tor) in
ludes hgoal; plani pairs indi
atingthe means by whi
h the a
tor
an a
hieve parti
ular goals. Finally,goalGraph stores a representation of the goal graph that has beengenerated so far by the design pro
ess. Initially, goalGraph
ontainsall root goals of all initial a
tors with no links among them. We willtreat all of the above as global variables whi
h are a

essed and/orupdated by the pro
edures presented below. For ea
h pro
edure, weuse as parameters those variables used within the pro
edure.global a
torList; goalList; agenda; dependen
yList;
apabilityList; goalGraph;pro
edure rootGoalAnalysis(a
torList; goalList; goalGraph)beginrootGoalList = nil;for a
tor in a
torList dofor rootGoal in goalList(a
tor) dorootGoalList = add(rootGoal; rootGoalList);rootGoal:a
tor = a
tor;end ;end ;end ;
on
urrent for rootGoal in rootGoalList dogoalAnalysis(rootGoal; a
torList)end
on
urrent for ;if not[satisfied(rootGoalList; goalGraph)℄then fail;end pro
edureThe pro
edure rootGoalAnalysis
ondu
ts
on
urrent goal anal-ysis for every root goal. Initially, root goal analysis is
ondu
ted forall initial goals asso
iated with a
tors in a
torList. Later on, moreroot goals are
reated as goals are delegated to existing or new a
tors.Note that the
on
urrent for statement spawns a
on
urrent
all togoalAnalysis for every element of the list rootGoalList. Moreover,more
alls to goalAnalysis are spawn as more root goals are added torootGoalList.
on
urrent for is assumed to terminates when all itsthreads do. The predi
ate satisfied
he
ks whether all root goals ingoalGraph are satis�ed. This predi
ate is
omputed in terms of a labelpropagation algorithm su
h as the one des
ribed in [22℄. Its details arebeyond the s
ope of this paper. rootGoalAnalysis su

eeds if there isa set of non-deterministi
 sele
tions within the
on
urrent exe
utionsof goalAnalysis pro
edures whi
h leads to the satisfa
tion of all rootgoals.
jaa-mas.tex; 16/01/2003; 18:43; p.27

28 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. PeriniThe pro
edure goalAnalysis
ondu
ts
on
urrent goal analysis forevery subgoal of a given root goal. Initially, the root goal is pla
edin pendingList. Then,
on
urrent for sele
ts
on
urrently goalsfrom pendingList and for ea
h de
ides non-deterministi
ally whetherit will be expanded, adopted as a personal goal, delegated to an exist-ing or new a
tor, or whether the goal will be treated as unsatis�able('denied'). When a goal is expanded, more subgoals are added topendingList and goalGraph is augmented to in
lude the new goalsand their relationships to their parent goal. Note that the sele
tionof an a
tor to delegate a goal is also non-deterministi
, and so isthe
reation of a new a
tor. The three non-deterministi
 operationsin goalAnalysis are highlighted with itali
-bold font. These are thepoints where the designers of the software system will use their
reativein designing the system-to-be.pro
edure goalAnalysis(rootGoal; a
torList)pendingList = add(rootGoal; nil);
on
urrent for goal in pendingList dode
ision = de
ideGoal(goal)
ase of de
isionexpand :beginnewGoalList = expandGoal(goal; goalGraph);for newGoal in newGoalList donewGoal:a
tor = goal:a
tor;add(newGoal; pendingList);end ;end ;solve : a

eptGoal(goal; agenda(goal:a
tor));delegate :begina
tor = sele
tA
tor(a
torList);delegateGoal(goal; a
tor; rootGoalList; dependen
yList);end ;newA
tor :begina
tor = newA
tor(goal);a
torList = add(a
tor; a
torList);delegateGoal(goal; a
tor; rootGoalList; dependen
yList);end ;fail : goal:label =0denied0;end
ase of ;end
on
urrent for ;
jaa-mas.tex; 16/01/2003; 18:43; p.28

TROPOS: An Agent-Oriented Software Development Methodology 29end pro
edureFinally, we spe
ify two of the sub-pro
edures used in goalAnalysis,for the la
k of spa
e, others are left to the imagination of the reader.delegateGoal adds a goal to an a
tor's goal list be
ause that goalhas been delegated to the a
tor. This goal now be
omes a root goal(with respe
t to the a
tor it has been delegated to), so another
all togoalAnalysis is spawn by rootGoalAnalysis. Also, dependen
yListis updated. The pro
edure a

eptGoal simply sele
ts a plan for a goalthe a
tor will handle personally from the a
tor's
apability list. Thepro
ess we present here does not provide for extensions to a
apabilitylist to deal with a newly assigned goal.pro
edure delegateGoal(goal; toA
tor; rootGoalList;dependen
yList)beginadd(goal; goalList(toA
tor));add(goal; rootGoalList);goal:a
tor = toA
tor;add(hgoal:a
tor; toA
tor; goali; dependen
yList);endend pro
edurepro
edure a

eptGoal(goal; agenda)beginplan = sele
tPlan(goal;
apabilityList(goal:a
tor));add(hgoal; plani; agenda(goal:a
tor));goal:label =0 satisfied0;endend pro
edureDuring early requirements, this pro
ess analyzes initially-identi�edgoals of external a
tors ("stakeholders"). At some point (late require-ments), the system-to-be is introdu
ed as another a
tor and is delegatedsome of the subgoals that have been generated from this analysis. Dur-ing ar
hite
tural design, more system a
tors are introdu
ed and aredelegated subgoals to system-assigned goals. Apart from generatinggoals and a
tors in order to ful�ll initially-spe
i�ed goals of exter-nal stakeholders, the development pro
ess in
ludes spe
i�
ation stepsduring ea
h phase whi
h
onsist of further spe
ifying ea
h node of amodel su
h as those shown in Figures 3-4. Spe
i�
ations are given in aformal language (Formal Tropos) des
ribed in detail in [16℄. These spe
-i�
ations add
onstraints, invariants, pre- and post-
onditions whi
h
jaa-mas.tex; 16/01/2003; 18:43; p.29

30 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Perini
apture more of the semanti
s of the subje
t domain. Moreover, su
hspe
i�
ations
an be simulated using model
he
king te
hnology forvalidation purposes [16, 10℄.Table III. Tropos language metamodel. The four level ar
hite
ture.Level Des
ription ExamplesMeta-Metamodel Spe
i�es language Attribute,stru
tural elements EntityMetamodel An instan
e of the meta-metamodel A
tor, Goal,De�nes knowledge level notions PlanDomain An instan
e of the metamodel PAT, Citizen,Models appli
ation domain entities MuseumInstan
e Instantiates domain model elements John: instan
e ofCitizen
5. The modeling languageThe modeling language is at the
ore of the Tropos methodology. Inthis se
tion, the abstra
t syntax of the language is de�ned in terms of aUML metamodel. Following standard approa
hes [26℄, the metamodelhas been organized in four levels, as shown in Table III. The four-layerar
hite
ture makes the Tropos language extensible in the sense that new
onstru
ts
an be added. The semanti
s of the language (augmentedwith a powerful fragment of Temporal Logi
 [11℄) is handled in [16℄and will not be dis
ussed here.The Meta-Metamodel level provides the basis for metamodel exten-sions. In parti
ular, the meta-metamodel
ontains language primitivesthat allows for the in
lusions of
onstru
ts su
h as those proposed in[16℄. The Metamodel level provides
onstru
ts for modeling knowledgelevel entities and
on
epts. The Domain level
ontains a representa-tion of entities and
on
epts of a spe
i�
 appli
ation domain, builtas instan
es of the metamodel level
onstru
ts. So, for instan
e, theexamples used in Se
tion 2 illustrate portions of the eCulture domainmodel. The Instan
e level
ontains instan
es of the domain model.

jaa-mas.tex; 16/01/2003; 18:43; p.30

TROPOS: An Agent-Oriented Software Development Methodology 31Before moving to the details of the metamodels for the
on
eptsa
tor, goal and plan2, let us present the Tropos model and diagrams.A Tropos model is a dire
ted labeled graph whose nodes are in-stan
es of meta
lasses of the metamodel, namely a
tor, goal, plan andresour
e, and whose ar
s are instan
es of the meta
lasses representingrelationships between them, dependen
y, means-end analysis,
ontribu-tion and AND/OR de
omposition.Ea
h element in the model has its own graphi
al representation. Inparti
ular, we use two types of diagram for visualizing the model: thea
tor diagram and the goal diagram.An a
tor diagram is a graph, where ea
h node represents an a
tor,and ea
h ar
 represents a dependen
y between the two
onne
tingnodes. The ar
 is labeled by a spe
i�
 dependum. Examples of simplea
tor diagrams have been presented in Figure 1 and in Figure 6.A goal diagram represents the perspe
tive of a spe
i�
 a
tor. It isdrawn as a balloon and
ontains graphs whose nodes are goals (ovals)and /or plans (hexagonal shape) and whose ar
s are the di�erent rela-tionships that
an be identi�ed among its nodes.AUML a
tivity diagrams and AUML intera
tion diagrams are usedto represent, respe
tively, properties (
apability and plan diagrams) andagents' intera
tion.A

ording to the spe
i�
 pro
ess development phase we are
onsid-ering, we
an de�ne di�erent views of the model. For instan
e, the earlyrequirement view of the model will be
omposed of a set of a
tor andgoal diagrams
on
erning the so
ial a
tors modeling, while the detaileddesign view will be
omposed of a set of AUML diagrams spe
ifyingthe agents's mi
rolevel.5.1. The
on
ept of A
torA portion of the Tropos metamodel
on
erning the
on
ept of a
toris shown in the UML
lass diagram of Figure 13. A
tor is representedas a UML
lass. An a
tor
an have 0 : : : n goals. The UML
lass Goalrepresents here both hard and softgoals. A goal is wanted by 0 : : : na
tors, as spe
i�ed by the UML asso
iation relationship. An a
tor
anhave 0 : : : n beliefs and,
onversely, beliefs are believed by 1 : : : n a
tors.An a
tor dependen
y is a quaternary relationship represented as aUML
lass. A dependen
y relates respe
tively a depender, dependee,and dependum (as de�ned earlier), also an optional reason for thedependen
y (labelled why). Examples of dependen
y relationships are2 The metamodels
on
erning the other
on
epts are de�ned analogously withthe partial des
ription reported here. A
omplete des
ription of the Tropos languagemetamodel
an be found in [30℄.
jaa-mas.tex; 16/01/2003; 18:43; p.31

32 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Perinishown in Figures 1, 4, and 6. The early requirements model depi
ted inFigure 1, for instan
e, shows a softgoal dependen
y between the a
torsCitizen and PAT. Its dependum is the softgoal taxes well spent, whilethe a
tors Citizen and PAT play the roles of depender and dependee,respe
tively
Dependency

Actor

dependee depender

Belief

dependum Plan

Resource

Goal

{XOR}{XOR}

dependum

dependum

why
0..1

why
0..1

why
0..1

wants
0..n

has

1..n0..n

are
believed

wanted
by

0..nFigure 13. The UML
lass diagram spe
ifying the a
tor
on
ept in the Troposmetamodel.5.2. The
on
ept of GoalThe
on
ept of goal is represented by the
lass Goal in the UML
lass diagram depi
ted in Figure 14. The distin
tion between hard andsoftgoals is
aptured through a spe
ialization of Goal into sub
lassesHardgoal and Softgoal, respe
tively.Goals
an be analyzed, from the point of view of an a
tor, performingmeans-end analysis,
ontribution analysis and AND/OR de
omposition(listed in order of strength). Let us
onsider these in turn.Means-end Analysis is a ternary relationship de�ned among an a
tor,whose point of view is represented in the analysis, a goal (the end), anda Plan, Resour
e or Goal (the means). Means-end analysis is a weakform of analysis,
onsisting of a dis
overy of goals, plans or resour
esthat
an provide means for rea
hing a goal. Means-end analysis is
jaa-mas.tex; 16/01/2003; 18:43; p.32

TROPOS: An Agent-Oriented Software Development Methodology 33used in the model shown in Figure 3, where the goals edu
ate
itizensand provide eCultural servi
es, as well as the softgoal provide interestingsystems are means for a
hieving the goal in
rease internet use.Contribution Analysis is a ternary relationship between an a
tor, whosepoint of view is represented, and two goals. Contribution analysis strivesto identify goals that
an
ontribute positively or negatively towardsthe ful�llment of a goal (see asso
iation relationship labelled
ontributesto in Figure 14). A
ontribution
an be annotated with a qualitativemetri
, as used in [8℄, denoted by +;++;�;��. In parti
ular, if thegoal g1
ontributes positively to the goal g2, with metri
 ++ then if g1is satis�ed, so is g2. Analogously, if the plan p
ontributes positively tothe goal g, with metri
 ++, this says that p ful�lls g. A + label for agoal or plan
ontribution represents a partial, positive
ontribution tothe goal being analyzed. With labels ��, and � we have the dual situ-ation representing a suÆ
ient or partial negative
ontribution towardsthe ful�llment of a goal. Examples of
ontribution analysis are shownin Figure 3. For instan
e, the goal funding museums for own systems
ontributes positively to both the softgoals provide interesting systemsand good
ultural servi
es, and the latter softgoal
ontributes positivelyto the softgoal good servi
es.Contribution analysis applied to softgoals is often used to evaluatenon-fun
tional (quality) requirements.AND/OR De
omposition is also a ternary relationship whi
h de�nes anAND- or OR-de
omposition of a root goal into subgoals. The parti
ular
ase where the root goal g1 is de
omposed into a single subgoal g2, isequivalent to a ++
ontribution from g2 to g1.5.3. The
on
ept of PlanThe
on
ept of plan in Tropos is spe
i�ed by the
lass diagram depi
tedin Figure 15. Means-end analysis and AND/OR de
omposition, de�nedabove for goals,
an be applied to plans also. In parti
ular, AND/ORde
omposition allows for modeling the plan stru
ture.6. Related WorkAs stated in the introdu
tion and also presented in [7℄, the most im-portant feature of the Tropos methodology is that it aspires to spanthe overall software development pro
ess, from early requirements toimplementation. This is represented in Figure 16 whi
h shows the rel-ative
overage of Tropos as well as i* [36℄, KAOS [13℄, GAIA [34℄,
jaa-mas.tex; 16/01/2003; 18:43; p.33

34 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Perini
Means-Ends analysis

Goal

{XOR}{XOR}

mean

Resource

Plan

mean

mean

AND-OR decomposition

OR-decomposition AND-decomposition

0..n0..n

1..n

Hardgoal Softgoal

root

Contribution

contributes to

contributed by

Actor
pointview

end

1..n

1..n

Figure 14. The UML
lass diagram spe
ifying the the goal
on
ept in the Troposmetamodel.AAII [20℄ and MaSE [14℄, and AUML [25, 2, 6℄. Many other agentoriented software methodologies have been proposed in the past, see forinstan
e [9, 32, 4, 29℄. The
onsiderations raised for the methodologiesshown in Figure 16 apply to these latter methodologies as well.While Tropos
overs the full range of software development phases,it is at the same time well-integrated with other existing work. Thus,for early and late requirements analysis, it takes advantage of workdone in the Requirements Engineering
ommunity, and in parti
ularEri
 Yu's i* methodology [36℄. As already noted, mu
h of the Troposmethodology
an be
ombined with non-agent (e.g., obje
t-oriented orimperative) software development te
hniques. For example, one maywant to use Tropos for early development phases and then use UML [3℄for later phases. At the same time, work on AUML [25℄ allows us toexploit existing UML te
hniques adapted for agent-oriented softwaredevelopment. As indi
ated in Figure 16, our idea is to adopt AUMLfor the detailed design phase. An example of how this
an be done isgiven in [27℄.
jaa-mas.tex; 16/01/2003; 18:43; p.34

TROPOS: An Agent-Oriented Software Development Methodology 35
Means-Ends analysis

Plan

{XOR}

mean

Resource
mean

AND-OR decomposition

OR-decomposition AND-decomposition

0..n0..n

1..n

root

Actor

pointview

end

1..n

1..n

0..n

Goal
is fulfilled

pointview

1..n

is capable of
1..n

Figure 15. The UML
lass diagram spe
ifying the plan
on
ept in the Troposmetamodel.
The metamodel presented in Se
tion 5 has been developed in thesame spirit as the UML metamodel for
lass diagrams. A
omparisonbetween UML
lass diagrams and the diagrams presented in Se
tion 5emphasizes the distin
t representational and ontologi
al levels used for
lass diagrams and a
tor diagrams (the former being at the softwarelevel, the latter at the knowledge level). This
ontrast also de�nes thekey di�eren
e between obje
t-oriented and agent-oriented developmentmethodologies. Agents (and a
tor diagrams)
annot be thought as aspe
ialization of obje
ts (and
lass diagrams), as argued in previouspapers. The di�eren
e is rather the result of an ontologi
al and repre-sentational shift. Finally, it should be noted that inheritan
e, a
ru
ialnotion for UML diagrams, plays no role in a
tor diagrams. This isn'tyet a �nal de
ision. However inheritan
e, at the
urrent state of the artseems more useful at a software, rather than a knowledge, level. Thisview is impli
it in our de
ision to adopt AUML for the detailed designphase.

jaa-mas.tex; 16/01/2003; 18:43; p.35

36 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Perini
Tropos

Gaia

AAII and Mase

AUML

Requirements Requirements
ArchitecturalLateEarly

Design
Detailed
Design

Kaos

i*

Figure 16. Comparison of Tropos with other software development methodologies.7. Con
lusions and future workThis paper provides a detailed a

ount of Tropos, a new agent orientedsoftware development methodology whi
h spans the software devel-opment pro
ess from early requirements to implementation for agentoriented software. The paper presents and dis
usses the �ve phasessupported by Tropos, the development pro
ess within ea
h phase, themodels
reated through this pro
ess, and the diagrams used to des
ribethese models.Throughout, we have emphasized the uniform use of a small set ofknowledge level notions during all phases of software development. Wehave also provided an iterative, a
tor and goal based, re�nement al-gorithm whi
h
hara
terizes the re�nement pro
ess during ea
h phase.This re�nement pro
ess, of
ourse, is instantiated di�erently duringea
h phase.Of
ourse, the Tropos methodology is not intended for any type ofsoftware. For system software (su
h as a
ompiler) or embedded soft-ware, the operating environment of the system-to-be is an engineeringartifa
t, with no identi�able stakeholders. In su
h
ases, traditionalsoftware development te
hniques may be most appropriate. However,a large and growing per
entage of software does operate within open,dynami
 organizational environments. For su
h software, the Troposmethodology and others in the same family apply and promise to de-liver more robust, reliable and usable software systems. The Troposmethodology in its
urrent form is also not suitable for sophisti
atedsoftware agents requiring advan
ed reasoning me
hanisms for plans,goals and negotiations. Further extensions will be required to the Tro-
jaa-mas.tex; 16/01/2003; 18:43; p.36

TROPOS: An Agent-Oriented Software Development Methodology 37pos methodology, mostly at in detailed design phase, to address this
lass of software appli
ations.Our long term obje
tive is to provide a detailed a

ount of theTropos methodology. Obje
t-oriented and stru
tured software devel-opment methodologies are examples of the breadth and depth of detailexpe
ted by pra
titioners who use a parti
ular software developmentmethodology. Of
ourse, mu
h remains to be done towards a
hievingthis goal. We are
urrently working on several open problems, su
has the development of formal analysis te
hniques for Tropos [16℄; theformalization of the transformation pro
ess in terms of primitive trans-formations and re�nement strategies [5℄; the de�nition of a
atalogueof ar
hite
tural styles for multi-agent systems whi
h adopt
on
eptsfrom organization theory and strategi
 allian
es literature [21℄; and thedevelopment of tools whi
h support the methodology during parti
ularphases.We
onsider a broad
overage of the software development pro
essas essential for agent-oriented software engineering. It is only by goingup to the early requirements phase that an agent-oriented methodology
an provide a
onvin
ing argument against other, for instan
e obje
t-oriented, methodologies. Spe
i�
ally, agent-oriented methodologies areinherently intentional, founded on notions su
h as those of agent, goal,plan, et
. Obje
t-oriented ones, on the other hand, are inherently notintentional, sin
e they are founded on implementation-level ontologi-
al primitives. This fundamental di�eren
e shows most
learly whenthe software developer is fo
using on the (organizational) environmentwhere the system-to-be will eventually operate. Understanding su
h anenvironment
alls (more pre
isely,
ries out) for knowledge level mod-eling primitives. The agent-oriented programming paradigm is the onlyprogramming paradigm that
an gra
efully and seamlessly integrate theintentional models of early development phases with implementationand run-time phases. This is the argument that justi�es agent-orientedsoftware development, and at the same time promises for it a brightfuture. A
knowledgementsWe thank all Tropos Proje
t parti
ipants working in Trento, Torontoand elsewhere for useful
omments, dis
ussions and feedba
k. Spe-
ial thanks to the anonymous reviewers of this paper for their helpfulfeedba
k.
jaa-mas.tex; 16/01/2003; 18:43; p.37

38 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. PeriniReferen
es1. F. Giun
higlia and. Software Requirements: Obje
ts, Fun
tions and States.Prenti
e Hall, 1993.2. B. Bauer, J. P. M�uller, and J. Odell. Agent UML: A formalism for spe
ify-ing multiagent software systems. Int. Journal of Software Engineering andKnowledge Engineering, 11(3):207{230, 2001.3. G. Boo
h, J. Rambaugh, and J. Ja
obson. The Uni�ed Modeling LanguageUser Guide. The Addison-Wesley Obje
t Te
hnology Series. Addison-Wesley,1999.4. F.M.T. Brazier, B. Dunin Kepli
z, N. Jennings, and J. Treur. DESIRE:Modelling Multi-Agent Systems in a Compositional Formal Framework. In-ternational Journal of Cooperative Information Systems, 9(1), 1997.5. P. Bres
iani, A. Perini, P. Giorgini, F. Giun
higlia, and J. Mylopoulos. Mod-eling early requirements in tropos: a transformation based approa
h. InWooldridge et al. [32℄.6. G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, J. Pavon,P. Kearney, J. Stark, and P. Massonet. Agent oriented analysis usingMESSAGE/UML. In Wooldridge et al. [32℄.7. J. Castro, M. Kolp, and J. Mylopoulos. Towards Requirements-Driven In-formation Systems Engineering: The Tropos Proje
t. Information Systems.Elsevier, Amsterdam, the Netherlands.8. L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-Fun
tionalRequirements in Software Engineering. Kluwer Publishing, 2000.9. P. Cian
arini and M. Wooldridge, editors. Agent-Oriented Software En-gineering, volume 1957 of Le
ture Notes in AI. Springer-Verlag, Mar
h2001.10. A. Cimatti, E. M. Clarke, F. Giun
higlia, and M. Roveri. NuSMV: a new sym-boli
 model
he
ker. International Journal on Software Tools for Te
hnologyTransfer (STTT), 2(4), Mar
h 2000.11. E. M. Clarke and E. A. Emerson. Design and Synthesis of Syn
hronizationSkeletons using Bran
hing Time Temporal Logi
. In D. Kozen, editor, Pro-
eedings of the Workshop on Logi
s of Programs, volume 131 of Le
ture Notesin Computer S
ien
e, pages 52{71, Yorktown Heights, New York, May 1981.Springer-Verlag.12. M. Coburn. JACK Intelligent Agents User Guide. AOS Te
h-ni
al Report, Agent Oriented Software Pty Ltd, July 2000.http://www.ja
kagents.
om/do
s/ja
k/html/index.html.13. A. Dardenne, A. van Lamsweerde, and S. Fi
kas. Goal-dire
ted requirementsa
quisition. S
ien
e of Computer Programming, 20(1{2):3{50, 1993.14. S. A. Deloa
h. Analysis and Design using MaSE and agentTool. In 12th Mid-west Arti�
ial Intelligen
e and Cognitive S
ien
e Conferen
e (MAICS 2001),Miami University, Oxford, Ohio, Mar
h 31 - April 1 2001.15. A. Fuxman, P. Giorgini, M. Kolp, and J. Mylopoulos. Information Systems asSo
ial Stru
tures. In Se
ond International Conferen
e on Formal Ontologiesfor Information Systems (FOIS-2001), Ogunquit, USA, O
tober 17-19 2001.16. A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. Model
he
king earlyrequirements spe
i�
ation in Tropos. In Pro
. of the 5th IEEE InternationalSymposium on Requirements Engineering, Toronto, CA, August 2001.17. P. Giorgini, J. Mylopoulos, E. Ni

hiarelli, and R. Sebastiani. Reasoning withGoal Models. In S. Spa

apietra, S. T. Mar
h, and Y. Kambayashi, editors, 21st
jaa-mas.tex; 16/01/2003; 18:43; p.38

TROPOS: An Agent-Oriented Software Development Methodology 39International Conferen
e on Con
eptual Modeling (ER02), Tampere, Finland,volume 2503 of Le
ture Notes in Computer S
ien
e. Springer-Verlag, 2002.18. P. Giorgini, A. Perini, J. Mylopoulos, F. Giun
higlia, and P. Bres
iani. Agent-oriented software development: A
ase study. In S. Sen J.P. M�uller, E. Andreand C. Frassen, editors, Pro
eedings of the Thirteenth International Conferen
eon Software Engineering - Knowledge Engineering (SEKE01), Buenos Aires -ARGENTINA, June 13 - 15 2001.19. F. Giun
higlia, J. Mylopoulos, and A. Perini. The Tropos Software Devel-opment Methodology: Pro
esses, Models and Diagrams. In F. Giun
higlia,J. Odell, and G. Wei�, editors, Agent-Oriented Software Engineering III, ThirdInternational Workshop (AOSE2002), Bologna, Italy, LNCS. Springer-Verlag,2003 (to appear).20. D. Kinny, M. George�, and A. Rao. A Methodology and Modelling Te
hniquefor Systems of BDI Agents. In W. Van de Velde and J. W. Perram, editors,Agents Breaking Away: Pro
. of the 7th European Workshop on Modelling Au-tonomous Agents in a Multi-Agent World, Springer-Verlag: Berlin, Germany,1996.21. M. Kolp, P. Giorgini, and J. Mylopoulos. An goal-based organizational perspe
-tive on multi-agents ar
hite
tures. In Pro
. of the 8th Int. Workshop on AgentTheories, Ar
hite
tures, and Languages (ATAL-2001), Seattle, WA, August2001.22. J. Mylopoulos, L. K. Chung, and B. A. Nixon. Representing and using non-fun
tional requirements: A pro
ess-oriented approa
h. IEEE Transa
tions onSoftware Engineering, June 1992.23. A. Newell. The Knowledge Level. Arti�
ial Intelligen
e, 18:87{127, 1982.24. H. Nwana. Software agents: An overview. Knowledge Engineering ReviewJournal, 11(3), November 1996.25. J. Odell, H. Parunak, and B. Bauer. Extending UML for agents. In G. Wagner,Y. Lesperan
e, and E. Yu, editors, Pro
. of the Agent-Oriented InformationSystems workshop at the 17th National
onferen
e on Arti�
ial Intelligen
e,pages 3{17, Austin, TX, 2000.26. OMG. OMG Uni�ed Modeling Language Spe
i�
ation, version 1.3, alphaedition, January 1999.27. A. Perini, P. Bres
iani, F. Giun
higlia, P. Giorgini, and J. Mylopoulos. AKnowledge Level Software Engineering Methodology for Agent Oriented Pro-gramming. In Pro
. of the 5th Int. Conferen
e on Autonomous Agents,Montreal CA, May 2001. ACM.28. A.S. Rao and M.P. George�. Modelling rational agents within a BDI-ar
hite
ture. In Pro
eedings of Knowledge Representation and Reasoning(KRR-91) Conferen
e, San Mateo CA, 1991.29. J. Sabater, C. Sierra, S. Parsons, and N. R. Jennings. Using Multi-ContextSystems to Engineer Exe
utable Agents. In N. R. Jennings and L. Lesperan
e,editors, Pro
eedings of the 6th International Workshop on Agent Theories, Ar-
hite
tures, and Languages (ATAL-99), number 1757 in LNCS, pages 277{294.Springer-Verlag, 1999.30. F. Sanni
ol�o, A. Perini, and F. Giun
higlia. The Tropos modeling language. aUser Guide. Te
hni
al report, ITC-irst, De
ember 2001.31. G. Weiss, editor. Multiagent System: a modern approa
h to Distributed AI.MIT Press, 1999.
jaa-mas.tex; 16/01/2003; 18:43; p.39

40 P. Bres
iani, P. Giorgini, F. Giun
higlia, J. Mylopoulos, and A. Perini32. M. Wooldridge, P. Cian
arini, and G. Weiss, editors. Pro
. of the 2nd Int.Workshop on Agent-Oriented Software Engineering (AOSE-2001), Montreal,CA, May 2001.33. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and pra
ti
e.Knowledge Engineering Review, 10(2), 1995.34. M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia methodology foragent-oriented analysis and design. Journal of Autonomous Agents and Multi-Agent Systems, 3(3), 2000.35. E. Yu. Modeling organizations for information systems requirements en-gineering. In Pro
eedings of the First IEEE International Symposium onRequirements Engineering, pages 34{41, San Jose, January 1993. IEEE.36. E. Yu. Modelling Strategi
 Relationships for Pro
ess Reengineering. PhD thesis,University of Toronto, Department of Computer S
ien
e, 1995.37. E. Yu. Agent-oriented modeling: Software versus the world. In Wooldridgeet al. [32℄.38. E. Yu and J. Mylopoulos. Understanding `why' in software pro
ess modeling,analysis and design. In Pro
eedings Sixteenth International Conferen
e onSoftware Engineering, Sorrento, Italy, May 1994.39. E. Yu and J. Mylopoulos. Using goals, rules, and methods to support reasoningin business pro
ess reengineering. International Journal of Intelligent Systemsin A

ounting, Finan
e and Management, 1(5), January 1996.

jaa-mas.tex; 16/01/2003; 18:43; p.40

