Reliably Locking System V Shared Memory for User Level Commuication in Linux *

Friedrich Seifert and Wolfgang Rehm
Chemnitz University of Technology
Department of Computer Science
Chair of Computer Architecture
Stral3e der Nationen 62, 09111 Chemnitz, Germany.
{sfr,rehm @informatik.tu-chemnitz.de

Abstract buffers, performance can suffer significantly in case odjfrent
TLB misses and not-present pages. Incoming messages must be

A major trend in recent cluster communication systems is tejected and retransmitted or buffered by the hardware @t su
circumvent the operating system during the actual datagransituations. Investigations on U-Net/MM have shown that the
fers. That, on the one hand, reduces latency since there isTAB miss rate can be as high 88% in real applications.
user—kernel transition needed and, on the other hand, @s#e The Virtual Interface Architecture (VIA), which was deeply
bandwidth by avoiding additional intermediate copies. @h& influenced by the U-Net project, circumvents such awkward-
transfer is handled completely by the networking hardware anesses in that it requires that all communication memory be
its DMA engine. For example, the Virtual Interface processgocked into physical memory. Besides the physical addeesse
can access networking hardware directly in a protected neannof all those pages are permanently stored on the NIC in the so
One of its characteristics is that it requires that all meyased calledTranslation and Protection Table (TP Tlhis is what VIA
for communication be locked down into physical memory. Thells memory registration Another aspect that has influenced
same requirement holds true for the Infiniband ensuresbtdia our implementation of memory locking heavily is the factttha
locking of regular, i.e. private, virtual memory without@ding the VIA specification explicitly allows the same virtual mem
the kernel. In this paper we present an extended solution thagion to be registered several times, see [5].
can handle System V shared memory as well. The problem of memory locking will also be an important
issue in the upcoming Infiniband networking technology.riAfi

Keywords— . . . - :
Linux, User level networking, VIA, Memory locking, Shared band is basically an e_vo_lutlon of the V|rtyal In_terface Aitelo-
Memory. ture and employs a similar memory registration scheme where

all pages must be locked [6, Ch. 10.6.4.2.1 Registered Mgmor

Residency]. Moreover, any kind of user level communication
1 Introduction facility that does not allow pages to be swapped must caretabo

memory locking. Another example is our PCI-SCI bridge that

The key point in user level communication is that the neprovides Distributed Shared Memory (DSM) and VIA support
working hardware has direct access to the user memory. [fh 8]. All exported pages of a process have to be locked down.
order to perform a DMA operation it must know the physical In this paper we address the issue of providing reliable mem-
addresses of the particular virtual pages. There are tweswayy locking for a VIA, IBA or similar implementation in a Linu
to achieve this in principle. The first requires a more sophisnvironment. In [5] we have shown how regular, i.e. private,
ticated hardware since it must maintain a separate MMU or@iocess memory can be locked reliably, allowing for mudipl
least a Translation Lookaside Buffer (TLB), which must bptke registration using a recent kernel mechanism catieufs At
in sync with the page tables of the host CPU by the operatititat time the kiobuf functionality had to be patched intokke
system. U-Net/MM [10] is an academic implementation of thigel, but now with the 2.4 version it is an integral part of thens
approach. However, there is also a commercial solution, Q@ard kernel. Hence, no patches are required, which is iraport
Net by Quadrics [1], that applies the same principle. Whefer the usability of a driver because if one wants to use sgver
ever the NIC wants to access a virtual page that is not cuyrendrivers, each of which requiring its own patch it is possitiat
mapped by its MMU it requests the operating system to redriethose patches clash and one comes in trouble. Our solugon al
the physical address from the page tables. Eventually the paneets all conditions to be integrated into the main streamete
needs to be swapped in if it is not present. While this apgroac One thing that remained open was the locking of System V
is quite flexible and puts no constraints on the communinatishared memory (in the following referred to as shared mem-
*The work presented in this paper is carried out in strongr&mtgon with ory). In this paper we show how the Locked Memory Manager

the project GRANT SFB393/B6 of the DFG (German National ScéeFoun- (LMM) can be e>_<tended to a_lso _handle shared memory prop-
dation). erly. This is desired in certain situations. Suppose, twé VI

processes A and B are running on the same node, say nodtudgctions. Figure 2 illustrates how the LMM and VIA go to-
see figure 1. Both processes want to receive the same data fgmther.
process C. This could be achieved by having separate VI con-

nections between A and C resp. B and C. However, the data Application
had to be transfered twice since VIA does not allow any kind of
multicast. If a shared memory segment is used, a singlefeans OS Communication Interface
is sufficient to make the data available to both processesvéb consumer Sockets, MPI, Cluster, Other
that, process B m_ight like to register the shared memory seg- VI User Agent (VIPL) ‘
ment with one of its own VIs. Such setups can be applied to opentCome Send/iReceivel
create efficient collective operations in MPI when theresane Register Memory @ ROMARead/ROMAWTte
eral processes running on each node. croe Vl*f Vl*f wa cQy
Kernel Mode c
£|E £|E z|E i
shared N/ niie nile e P
process A memory ! (! E
segment process B M M M H
o e LMM | VI Kernel Agent N
attachl S * * * * * *
@ attach2 VI
- < Al Provider VI Network Adaptor
Figure 2. The VI Architecture using the LMM
Node 1
\, \ Data flow by Send/Recv or RDMA 2.1 The Interface

\
VI connection

The LMM provides the following functions:

I mml ock_area(I N start, IN Ilength,
QUT | a_handl e) Locks the given virtual address range
and returns a handle to it. It can be called several times for
the same addresses even with overlapping ranges, resulting
in distinct handles.

process C

I mmunl ock_area(| N | a_handl e) Releases the given
locked area. Note, that the corresponding pages may still
stay locked, if the memory area or parts of it have been
locked several times.

Figure 1. Using shared memory as VIA communi-
cation buffer

In the following we will discuss the problems that arise wherl ™Mmget -pages(IN | a_handl e, OUT pages) Re-
shared memory comes into play and what are the ways to solve tUrns the physical page addresses of a locked area. There
them. We will start with a short description of locking priea is also a function that returns a list consecutive page fslock
memory. After that we will give an overview of the administra OF convenient creation of scatter/gather maps.
tion _of shared memory in the Linux 2.4.x k(_arnels. The fourth) ¢ eanup() Releases all locked areas of the calling pro-
section shows the problems shared mappings cause and how cess
they have been solved. Finally, we will make some conclission '

2.2 The Implementation
2 The Locked Memory Manager so far
There are two principal ways to prevent user memory from

In this section we will explain briefly how we managed to locR€iNg swapped out:
private memory reliably. A detailed description can be fdim
[5].

The Locked Memory Manager was primarily targeted to a ¢ VMA *~based using virtual addresses.

VIA implementation. So it was implemented inside the Kernel)))
Agent, which is practically a device driver. In order to make e formeris performed by setting tR&.| ocked flag in phys-

LMM generally usable it has been turned into a separate Linlf@! P2ge’s entry in the kernelisemnap array. The swapping

!‘emel module that Ca_-n b_e loaded at run_time._ The Kerr_u_el AgenthMA stands for Virtual Memory Area, a kernel concept for deélsing the
invokes the LMM during its memory registration/deregifiba different parts of a process’ virtual address space.

e page—based using physical addresses

code leaves all pages with that bit set untouched. The lattee physical pages. LMAS are kept in per process lists in as-
method utilizes th& M LOCKEDflag in the VMA describing the cending order of their start addresses.

virtual address range. When Linux is going to swap out some-Whenever a new area is to be locked the list of existing LMAs
thing it first selects a process, and then goes through ttsflis is scanned for intersections. There are five possible types o
VMAs to find one to move to secondary storage. While dadntersections that are illustrated in figure 3. Dependinghmn

ing so Linux skips all locked VMAs. A user process can lockind of intersection the proper actions are taken. An exampl
part of its memory by means of thd ock system call. Al- situation is given in figure 4.

though this looks quite simple there are a number of obstacle

in using this method in a device driver. A minor one is that the virtual addresses

mlock function is not visible to driver modules in the stardla

kernel. Hence, a small kernel modification would be necgssar NEW area
Also, some permission problems have to be solved, since only. 7
superuser processes are normally allowed to lock down mem / LMA
ory. These problems are of minor importance and can be solve
as will be shown in section 4.

INTERSECT_FRONT

A really severe problem is how to retrieve the physical ad- new area
dresses once a number of pages has been locked. Of coursE;
the addresses are held in the process’ page table and orte couLMA é// INTERSECT_REAR

just walk through them and read the proper entries. However,
a device driver should never apply this method. The reason is
that Linus Torvalds, the Linux maintainer has decided toemev new area
accept a driver that walks the page tables, since there chade
interferences with the memory management code. That meangji MA
in order to create a driver that could possibly be adopteti¢o t

main stream kernel, a different way to get the physical askbre

INTERSECT_MIDDLE

must be used. new area
Fortunately, a new kernel mechanism, calkéobufswas in- 7
troduced recently [9]. Itis a integral part of the 2.4.x kals) but % LMA /4 INTERSECT_TOTAL

there is also a patch for the 2.2.x series available. Kiotugfie
created in conjunction with Raw 1/O, which allows data trans
fers between disk and user memory without intermediateasopi new area
by the kernel. During the transfers the pages must be looked.
kiobuf can be mapped to a part of the user address space. Aftgq \ia
that the physical page addresses can be read directly from th
kiobuf, and the page tables don't have to be touched. WHile al o\ areq OF INTERSECT_DISJOINT
pages were locked immediately upon mapping a kiobuf in the

2.2.x kernels, 2.4.x introduced separate functions to lmc#
unlock an already mapped kiobuf.

The problematic aspect with kiobufs is that any physicakpag
can be held in at most one locked kiobuf at any time. This re- Figure 3. Possible types of intersection of new
quires a tracking mechanism for locked pages in order tavallo area and LMA
for multiple registrations. Since kiobufs represent a pdgesed
locking scheme one could assume that the lock count track-
ing could be based on physical page addresses. The problem
is that the physical address had to be known prior to creating
the kiobuf, and the only way to retrieve them is by walking th8 System V Shared Memory in Linux 2.4.x
page tables. This, however, contradicts the requirementa f

kernel compliant driver as explgined aboye. That is Why We Before we go on to explain how the Locked Memory Manager
have based the lock count tracking upon virtual address@s. Tean pe extended to handle shared memory, this section gives

is possible because different virtual pages are always B®PR insight in how shared memory is implemented in the 2.4.x
to distinct physical pages for private memory, provided a/CO yaornels.

(Copy—on—write) has been performed.

LMA

3.1 Howto use SysV Shm

Locked Memory Areas: LMAs In [5] we introduced a struc-

ture, calledocked memory argar LMA. An LMA describesa UNIX System V defines a number of system calls to control
contiguous intervalstart, end) of virtual pages with the same shared memory between processes. Generally, first a segment
lock count. There is one locked kiobuf per LMA, that descsibemust be created, and then processes can attach to it to get it

virtual addresses _ the segment’s size and the file structure assigned duriagicre
This results in reserving a free virtual address range,ticrga

LMAs _lc = lock count a new VMA and invoking the special shared memonyap
Ic1 Ic2 Ic3 Ic4 method. This one assigns special open, close and nopage meth
LMAL | LMAZ | [LMA3] LMA4 ods to the VMA. Finally, the number of attaches of the segment

is increased and the attach operation in complete.
Although the shared area can be accessed now, there are no
pages allocated to it yet. This is done page by page by the
i i i i i nopage method upon the first access to the attached segment.
cL lict T2 lice+1 1 lic3+1 11 lica+1]ica If a page is accessed for the very first time, a new page is allo-
+1 cated and added to the segmeiattidr ess_space structure.
| | The page address is also returned and written to the pags tabl
} ! } so that future accesses produce no more page faults.
i i If, now, a second process attaches to the segment and agcesse
one of its pages, an exception is raised, since that pro@sss h
Figure 4. Locking a new area not got a valid page table entry for that page. Though, no new
page has to be allocated in this case, since this was already d
when the first process accessed the page. Instead, the page ad
mapped into their address space. The most important fum:tié]lreSS 'S simply retrieved from theddr ess space structure
are: and written to .the page taple. _ . _
To summarize this section figure 5 shows the interaction of
shnmget (I N key, IN size, IN shnflg) Opens an the various data structure that are used to establishe@dhar
existing segment or creates a new one. It returns a so calfedmory at the example of two processes sharing a three page
shmid long segment.

create
create

shmat (I N shmd, I N shmaddr, |IN shnflg) .
Maps the segment correspondingtonidinto the process’ 4 Locking Shared Memory
user address space. The virtual start address of this area is
returned. As explained above the LMM was based on the assumption
that never two virtual pages are mapped to the same physical
shmdt (I N shmaddr) Removes the shared segment frorgage in order to maintain the requirement that any physieaép

the calling process’ address space. is locked at most once by an kiobuf. Obviously this does not

There are other functions to destroy a segment and to chengd'p!d true for shared mappings. If one process has locked a

attributes. shared segment by means of the LMM and another one tries
to lock its own mapping of that segment, the procedure wil fa

3.2 The Implementation of SysV Shm at the moment when the kiobuf is to be locked. The kiobuf code

will recognize that the physical pagd®s.1 ocked flag is al-

Following we will have a look at the internals. The imple-ready set, and return an error.

mentation of shared memory in Linux 2.4.x differs signifittan One could suppose a solution i_s to have only_ One process ac-
from former versions in that it is now based on the so calldg@!ly lock a shared segment, while the others just rely . th
shmenfilesystem. Processes using a shared segment need to cooperate anyways.

A shared segment is treated as a file basically with an asdyhile this sounds quite easy to achieve there are two sulftle d
ciatedshni d_ker nel data structure describing the segmerjicU/ties:

size, its access permissions and times, and the number of - InaVIA context memory is locked implicitly by VipRegis-
taches. Moreover, a segment may have the SEMCKED flag terMem, and there is no possibility to tell the Kernel Agent
set, that will play an important role later. whether or not to lock the memory, even when all processes

In order to create a new segment a nsivri d _ker nel on that node have agreed upon which one should do the
structure is allocated and filled properly and a new file strrec locking. Hence, the Kernel Agent must control which pro-
is allocated, which is assigned a spearatap method. Fur- cess actually locks the memory.

ther, an inode structure is created, which again points tcan
dr ess_space structure [2, Ch. 4 Linux Page Cache]. The 2. Suppose, we have found a strategy for the Kernel Agent
latter describes the actual pages that make up the shared seg to determine the locking process, and that process has cre-
ment. Finally, a nevshmidis created and the segment is added ated a kiobuf for some part of the shared segment. Now we
to the kernels pool of shared segments. come to another, ultimate problem. Any process that wants
Once a segment has been established, any process that knowsto access its own mapping of the locked part, and theses
the shmidand has got the proper permissions can attach to it. pages have not been accessed before, will block as long as
The kernel’s attach function retrieves thleni d_ker nel struc- the physical pages are locked. The reason for this uninten-
ture by means of the identifier and simply calls_mmrap with tional behavior can be found in tmpagemethod. As ex-

4.1 Combining the VMA—-based approach

VAL and kiobufs

virtual address VA 2

spaces of two
processes

3 As mentioned before there is a SHMDCKED flags for
3 2 shared segments. It can be altered byghenct | system call.
Its purpose is to prevent the segment as a whole from paging.
1 Furthermore there is the ock system call that can be used on
J any virtual address range, including shared areas.

vm_end vm_end . - . .

— - In the following we will present the general idea of combinin
kiobufs and virtual address based locking as well as disitigss
pros and cons afl ock andshmct | .

N
=

vm_start vm_start
vm_file vm_file

VMA ! ! VMA 4.1.1 Introducing Unlocked LMAs

We apply basically the same data structures for shared drats
listof A ¥ are used for private locked memory, the central one of which
struct 5 is LMAs. Though, we introduce a new kind of LMAsin-
‘ struct file page lockedLMAs. This terminology might sound contradictory but
d_inode - A/ unlockedrefers to the kiobuf and, hence, the physical pages.
1 So the correct naming should paysically unlocked MA. For
struct dentry i_mapping|—* convenience, we simply saynlockedknowing that it means the
pages kiobuf. The area itselfs locked, though by other means. So the
/ address_space L in LMA retains its legitimacy.
y - When an LMA is created it can be specified whether or not the
appendant kiobuf should be locked physically. This is gassi
| shm_file struct inode since the kiobuf implementation in the 2.4.x kernel separat
mapping and locking. Due to this each process attached to a
shmid_kernel shared segment can have its own LMAs and kiobufs.

Now we have got a clean way to get the physical page ad-
Figure 5. Implementation of shared memory in dresses, that are needed for the DMA engines of the 1/O hard-
Linux 2.4.x ware. What is missing is a way to ensure locking.

f_dentry

shmid==| i_ino

/

4.1.2 shmectl vs.m ock

Both functions have two common flaws. First, only superuser
processes are normally allowed to use them, and secondly the
plained above the nopage routine of shared mappings trfggictions are not exported to kernel modules by default. The
to get a page from the correspondiagdr ess_space first problem can easily be solved by having the driver graat t
structure. This should be successful in our case, since %per capability to the process. The second one can bedsolve
physical pages were allocated when the first process lockfdjifferently elegant ways. The less elegant way is to modif
the area. However, the function retrieving the page neegh@ kernel slightly to export the symbols in question. Aligh
to lock it, which is done by setting th&G.| ocked flag it should be really easy to apply such a patch, even manially,
in the struct page. If the page is already locked, the prgrakes the usage of such a driver less convenient.
cess is put to sleep and reawakened only when that page iff we useshmct | to lock the segment, we only need a sin-
unlocked. This means, when the first process unlocks th® counter per segment. Its value equals the number of LMAs
kiobuf in our case. within the segment across all attached processes. Thisanean
it must be incremented whenever an LMA for this segment is
created, and decremented whenever an LMA for this segment

Thus, we must state that, first, the device driver (i.e. the Kés destroyed. Upon creation of the first LMA, the segment is

nel Agent in a VIA context) must control memory locking andlocked via the shared memory control function, while it is un

secondly, the pure page—based approach is unsuitablegi@dsh locked as soon as the lock counter reaches zero. This véragon
mapping’s been implemented and works reliably. However, during our in

vestigations a kernel bug was discovered, namely the swgppi
What is left is the opportunity to use some kind of VMA-code did not honor the SHMOCKED flags of shared segments
based locking. However, a virtual-address only approachasall.
not enough, since we need a way to determine the physical adin order to circumvent the kernel modificatioshmct |
dresses without touching the page tables. The solutiorcigite should be called from user level through the normal systein ca
bine VMA-based locking and kiobufs. interface. This requires that the user process has got énoug

permissions. This can be accomplished by granting the appro since just a bit in the VMASs is cleared, it is more efficient
priate capability, strictly speaking CARPC_LOCK to the pro- to only unlock the originally given address range.
cess when the device is opened. The crucial problem in moving

the lock operation into the VIPLis that theshmidis not known Unlocking memory is done in a similar way, execpt that noth-

therg a}[ﬂymore, ontly the virtual addresshmct |, however, ing needs to be done prior to calling the Kernel Agent. The
neeh_s IS Elarangje er. ith mlock. i it tak driver modifies and/or destroys the LMAs appropriately, &nd

_ This problem does not occur wit miock, smce_lt takes ”}ﬂe process’ last LMA for the shared segment has been removed
virtual address as parameter. Accordlng_ to the Linux man%LOCK-UNLOCK is returned, whereupon VipDeregisterMem
page for miock a shared mapping stays in RAM as long aS&lsuld call munlock for the whole segment, the boundaries of

least one process has mlocked it, however, the current ker{;\'/?]ich are returned by the Kernel Agent function as well. ®the

code (up to 2.4.6) apparently does not honogrthat. _ wise MLOCK_NOP is returned and VipDeregisterMem doesn't
At the example of VIA we can do the following. The VipReg- 0o to perform any additional action.

isterMem function of VIPL invokes the corresponding fupcti

of the Kernel Agent (by means of the ioctl system call). TheKe
nel Agent creates resp. modifies the LMAs appropriately and
returns an indication whether or not the shared segment bbeust .
locked along with the segment boundaries. Upon return of tRe _Perfor_mance Evaluation and Impact on Lock-
ioctl, the VipRegisterMem performs an mlock operation oa th ~ Ing Private Memory

given area if necessary. Some care must be taken here to pre-

vent race conditions with the swapper. It is possible andheve

probable that the process is descheduled when it returns fro Although the intention of all user level communication is to
the 1/0 control. Since the area has not been locked yet by t§%€lude operating system calls from the communicationgath
time it is possible that parts of it get paged out before theckl in cases such as VIA, where communication buffers must be reg
call is performed. This would lead to inconsistencies afedif istered, zero—copy protocols need on-the-fly registratidow-

ent physical pages will be allocated when the area is pagecE¥€r it is highly recommended to avoid those expensive-oper
again, but the original physical addresses have been passedtions by applying cache like strategies on registered nngmo
the 1/0 hardware already. In order to prevent that race condftl-

tion, VipRegisterMem must call mlock on the area to be regis- We have conducted several measurements on a Pentium 1lI
teredbeforeinvoking the Kernel Agent. Now the Kernel Agentmachine at 450 MHz running Linux kernel 2.4.0. We examined
can safely create the LMAs for the area. It must also retuen tthe memory registration and deregistration of our VIA imple
virtual start address of the whole shared segment, itsitesigl mentation, in the course of which the Locked Memory Manager
an indication for the mlock operation to be performed, whgh has been developed.

one of those: First of all we measured the registration and deregistnatio
times for shared memory using tesdmct | function from in-
side the kernel. The results are shown in table 1. In this test

MLOCK _LOCK Lock the whole segment. This is used whethe shareo! segment had be_en regi.stere_d by another process be
the process registers some part of the segment for the fﬁ%&e. The_ times for the very flrs_t registration of a sharec.haxlfe
time. According to the specification of the mlock systerfilightly higer for small buffer sizes, see table 2. The addl
call it would be sufficient if only one process, i.e. the firsimes can be attributed to the locking of the shared segrhant t
one, locks the area. A problem arises if that processads to be carried out upon the first registration.
deregisters the area before the other processes. The men#s explained in section 4 the method tested so far needs a
ory would be unlocked in this case, or another process hahall kernel modification. The solution shown above, thasdo
to lock it subsequently, which is practically impossibler F without kernel changes, adds some more overhead due to the
this reason all processes have to lock the shared mappiadditional mlock/munlock system calls. Figure 7 compahes t
Hence, each process needs its own lock counter for eveegistration times for a shared memory segment usimgy.ct |
segment. Note that it is not a problem that a part of thieside the kernel on the one hand and calling mlock from the
segment (namely the area to be registered) has been locledr level on the other. The difference is abéjsec for small
before, since mlock simply sets a bit in the VMAs. Hencéalocks. For large blocks there is no significant differercéé
nothing is changed for the previously locked parts. seen.

The last question to be answered is how much does the user

ock affect registration of private memory. Note, that odo

as to be performed in any case, since the VIPL cannot distin-
ish between private and shared memory. Figure 8 shows the

esults. It can clearly be seen that there is a significantmazl

Br all block sizes. The bottom most line of the graph shoves th

2Virtual Interface Provider Library, Intel's name of the Viliser Agent, felation of the times with and without user mlock, which eari
introduced in the Developer's Guide [3] from 1.7 for a single page td.3 for 16 megabytes.

Figure 6 illustrates this method.

MLOCK _NOP Do nothing.

MLOCK _UNLOCK Unlock the area. This value is returnedmI
by the Kernel Agent when the process’ first registratioH
within the segment has failed for some reason. In th
case the initial mlock operation must be made undone.
though it is not erroneous to unlock the whole segmen

user kernel
VI Application VIPL Kernel Agent

VipOpenNic(idevi..) - | ™ open(devi.) — | file=>open(){

cap_raise(...,CAP_IPC_LOCK)
<—‘/—/de~}

shmid = shmget(...)

buf = shmat(shmid,...)

VipRegisterMem(buf+x, r‘mlock(buf+x, lenl);

leni,.) | ioctl(..REGMEM,.) — |

[~
file=>ioctl() {
REGMEM:
create/modify LMAs
adjust lockcount of shm seg
return segment bounds,
mlock_action,...
/7}
switch (mlock_action) {
LOCK:
__mlock(seg_start, seg_len)
UNLOCK:
munlock(buf+x, lenl)
71
[other (de)registrations
may happen here]

L F——-
VipDeregisterMem(buf+y, ioctl(...,DEREGMEM,...)] file—>ioctl() {

len2) DEREGMEM:
modify/destroy LMAs
adjust lockcount of shm seg
- return segment bounds,
switch (mlock_action) { I mlock_action,...
UNLOCK:
__munlock(seg_start, seg_len)
NOP:
do nothing
-
/\

VipCloseNic(/dev/...) T close(/dev/...) file—>release() {

cap_lower(...,CAP_IPC_LOCK)

Figure 6. Using mlock from user level

6 Conclusions authors are planning to make a proposal to integrate the LMM
with the main stream kernel, since they believe it is helfdul

. _ all kinds of user level communication like VIA, InfinibandC§
In this paper we have proposed an extension to the Lockgect sockets and so on.

Memory Manager [5] that enables it to handle System V shared

memory properly. Each process that has attached to a sharefin extension to support all kinds of shared memory mappings
segment can lock parts of it regardless of other processesistexpected to be easily derived from the current solutiorges
tached. We have shown that a purely page-based approactinéy uses the same underlying mechanism. The difference is
not suitable due to the internals of the Linux memory managiat there is nashni d_ker nel structure for such mappings
ment. Instead we have developed a solution combining Virtuend, hence the locking must be based on the file mapped and
address based locking and the kiobuf mechanism. Further, beedone by means afo_m ock. Further, there are options for
have shown that it is possible to find a solution that need®no koptimizations left. The LMAs of a process are still stored in
nel changes. However, it poses some extra overhead on fpcKinear lists. A performance improvement could be achieved b
shared as well as private memory. Hence, one has to trade-offbbsing AVL trees. Besides, it should be figured out if it is usef
tween performance and convenience of installing the driiee to merge adjacent LMAs if they have the same lock count.

Table 1. Times for registration/deregistration
shared memory when is was already registered

by another process (in

Regisiration time in usec

Figure 7.

)

| Size (KB) [register | deregister

4 6.9 4.4

8 8.4 4.7

16 10.8 5.3
32 15. 8 6.7
64 25.5 9.3
128 47. 2 14. 8
256 87.8 25.9
512 177 49.5
1024 340 98.8
2048 697 205
4096 1371 409
8192 2739 814
16384 5414 1646

10000

kernel shm_cti —————
user mIGck --—-a--—-

1000

a 16

Registering shared memory

with/without user level mlock

References

(1]
(2]
(3]
(4]

(5]

Quadrics QsNet High Performance Interconnect.
http://www.quadrics.com/web/public/fliers/gsnet.html

T. Aivazian. Linux kernel internals.
http://www.linuxdoc.org/LDP/Iki.

Intel Corporations.Intel Virtual Interface (V1) Architecture Im-
plementation Guide, Draft Revision 0,99ay, 15 1998.

L. Jordan. Entwicklung eines effizienten speichermamagntes

fuer das chempi via/sci device. Study thesis (german), iChail®] S. C. Tweedie et

10]

of Computer Architecture, Chemnitz University of Techrmfp
2000.

F. Seifert and W. Rehm. Proposing a mechanism for refiabl
locking via communication memory in linux. lim proceedings
of IEEE International Conference on Cluster Computing CLUS
TER2000 Chemnitz, Germany, Nov 28 - Dec 1 2000.

Table 2. Times for registration/deregistration

shared memory for the first time (in

Registraton time in usec

Figure 8.

)

| Size (KB) [register | deregister

4 7.4 4.5

8 8.8 4.9

16 11. 4 7.5
32 16. 4 7.2
64 26.1 9.8
128 49.5 15.6
256 86. 8 26.5
512 167 49. 2
1024 334 101
2048 668 206
4096 1373 409
8192 2841 815
16384 5507 1650

10000

kernel shm_ctl ——— L
User miock
ratio shm_ctl/miock

1000

10

,,,,,,,,,,,,,,,,,,,,

B aGRRRI" TRRRNC SRS ¥

Registering private memory

with/without user level mlock

(6]
(7]

(8]

I. Specification and V. Release. Infiniband trade assmcia
2000.

M. Trams. Design of a system-friendly PCI-SCI bridge lwén
optimized user-interface. Diploma thesis, Chair of Corspétr-
chitecture, Chemnitz University of Technology, 1998.

M. Trams, W. Rehm, D. Balkanski, and S. Simeonov. Memory
management in a combined VIA/SCI hardware.Pimceedings

to PC-NOW 2000, International Workshop on Personal Com-
puter based Networks of Workstations held in conjuncticth wi
the International Parallel and Distributed Processing $gsium
(IPDPS 2000) Cancun, Mexico, May 1-5 2000.

al. Raw /O enhancements.
http://oss.sgi.com/projects/rawio.

M. Welsh, A. Basu, and T. v. Eicken. Incorporating meynman-
agement into user-level network interfaces. Technicabmepe-
partment of Computer Science, Cornell University, Itha@97.

