
Reliably Locking System V Shared Memory for User Level Communication in Linux �
Friedrich Seifert and Wolfgang Rehm
Chemnitz University of Technology
Department of Computer Science
Chair of Computer Architecture

Straße der Nationen 62, 09111 Chemnitz, Germany.fsfr,rehmg@informatik.tu-chemnitz.de

Abstract

A major trend in recent cluster communication systems is to
circumvent the operating system during the actual data trans-
fers. That, on the one hand, reduces latency since there is no
user–kernel transition needed and, on the other hand, increases
bandwidth by avoiding additional intermediate copies. Thedata
transfer is handled completely by the networking hardware and
its DMA engine. For example, the Virtual Interface processes
can access networking hardware directly in a protected manner.
One of its characteristics is that it requires that all memory used
for communication be locked down into physical memory. The
same requirement holds true for the Infiniband ensures reliable
locking of regular, i.e. private, virtual memory without altering
the kernel. In this paper we present an extended solution that
can handle System V shared memory as well.

Keywords—
Linux, User level networking, VIA, Memory locking, Shared

Memory.

1 Introduction

The key point in user level communication is that the net-
working hardware has direct access to the user memory. In
order to perform a DMA operation it must know the physical
addresses of the particular virtual pages. There are two ways
to achieve this in principle. The first requires a more sophis-
ticated hardware since it must maintain a separate MMU or at
least a Translation Lookaside Buffer (TLB), which must be kept
in sync with the page tables of the host CPU by the operating
system. U-Net/MM [10] is an academic implementation of this
approach. However, there is also a commercial solution, Qs-
Net by Quadrics [1], that applies the same principle. When-
ever the NIC wants to access a virtual page that is not currently
mapped by its MMU it requests the operating system to retrieve
the physical address from the page tables. Eventually the page
needs to be swapped in if it is not present. While this approach
is quite flexible and puts no constraints on the communication�The work presented in this paper is carried out in strong interaction with
the project GRANT SFB393/B6 of the DFG (German National Science Foun-
dation).

buffers, performance can suffer significantly in case of frequent
TLB misses and not-present pages. Incoming messages must be
rejected and retransmitted or buffered by the hardware in such
situations. Investigations on U-Net/MM have shown that the
TLB miss rate can be as high as35% in real applications.

The Virtual Interface Architecture (VIA), which was deeply
influenced by the U-Net project, circumvents such awkward-
nesses in that it requires that all communication memory be
locked into physical memory. Besides the physical addresses
of all those pages are permanently stored on the NIC in the so
calledTranslation and Protection Table (TPT). This is what VIA
calls memory registration. Another aspect that has influenced
our implementation of memory locking heavily is the fact that
the VIA specification explicitly allows the same virtual memory
region to be registered several times, see [5].

The problem of memory locking will also be an important
issue in the upcoming Infiniband networking technology. Infini-
band is basically an evolution of the Virtual Interface Architec-
ture and employs a similar memory registration scheme where
all pages must be locked [6, Ch. 10.6.4.2.1 Registered Memory
Residency]. Moreover, any kind of user level communication
facility that does not allow pages to be swapped must care about
memory locking. Another example is our PCI–SCI bridge that
provides Distributed Shared Memory (DSM) and VIA support
[7, 8]. All exported pages of a process have to be locked down.

In this paper we address the issue of providing reliable mem-
ory locking for a VIA, IBA or similar implementation in a Linux
environment. In [5] we have shown how regular, i.e. private,
process memory can be locked reliably, allowing for multiple
registration using a recent kernel mechanism calledkiobufs. At
that time the kiobuf functionality had to be patched into theker-
nel, but now with the 2.4 version it is an integral part of the stan-
dard kernel. Hence, no patches are required, which is important
for the usability of a driver because if one wants to use several
drivers, each of which requiring its own patch it is possiblethat
those patches clash and one comes in trouble. Our solution also
meets all conditions to be integrated into the main stream kernel.

One thing that remained open was the locking of System V
shared memory (in the following referred to as shared mem-
ory). In this paper we show how the Locked Memory Manager
(LMM) can be extended to also handle shared memory prop-
erly. This is desired in certain situations. Suppose, two VIA

1

processes A and B are running on the same node, say node 1,
see figure 1. Both processes want to receive the same data from
process C. This could be achieved by having separate VI con-
nections between A and C resp. B and C. However, the data
had to be transfered twice since VIA does not allow any kind of
multicast. If a shared memory segment is used, a single transfer
is sufficient to make the data available to both processes. Above
that, process B might like to register the shared memory seg-
ment with one of its own VIs. Such setups can be applied to
create efficient collective operations in MPI when there aresev-
eral processes running on each node.

VI

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

VI

process B
process A

Node 1

attach1
attach2

segment

shared
memory

VI connection

Data flow by Send/Recv or RDMA

registered
with VI

Node 2

process C

Figure 1. Using shared memory as VIA communi-
cation buffer

In the following we will discuss the problems that arise when
shared memory comes into play and what are the ways to solve
them. We will start with a short description of locking private
memory. After that we will give an overview of the administra-
tion of shared memory in the Linux 2.4.x kernels. The fourth
section shows the problems shared mappings cause and how
they have been solved. Finally, we will make some conclusions.

2 The Locked Memory Manager so far

In this section we will explain briefly how we managed to lock
private memory reliably. A detailed description can be found in
[5].

The Locked Memory Manager was primarily targeted to a
VIA implementation. So it was implemented inside the Kernel
Agent, which is practically a device driver. In order to makethe
LMM generally usable it has been turned into a separate Linux
kernel module that can be loaded at run time. The Kernel Agent
invokes the LMM during its memory registration/deregistration

functions. Figure 2 illustrates how the LMM and VIA go to-
gether.

VI CQVIVI

R
E
C
E

V
E

I

S
E
N
D

C
O
M
P

E
T

O
N

I

L

R
E
C
E

V
E

I

S
E
N
D

R
E
C
E

V
E

I

S
E
N
D

VI Kernel Agent

Consumer
VI

Application

OS Communication Interface
Sockets, MPI, Cluster, Other

VI Network Adaptor

User Mode

Kernel Mode

Open/Connect/
Register Memory

Send/Receive/
RDMARead/RDMAWrite

VI User Agent (VIPL)

Provider
VI

LMM

Figure 2. The VI Architecture using the LMM

2.1 The Interface

The LMM provides the following functions:

lmm lock area(IN start, IN length,
OUT la handle) Locks the given virtual address range
and returns a handle to it. It can be called several times for
the same addresses even with overlapping ranges, resulting
in distinct handles.

lmm unlock area(IN la handle) Releases the given
locked area. Note, that the corresponding pages may still
stay locked, if the memory area or parts of it have been
locked several times.

lmm get pages(IN la handle, OUT pages) Re-
turns the physical page addresses of a locked area. There
is also a function that returns a list consecutive page blocks
for convenient creation of scatter/gather maps.

lmm cleanup()Releases all locked areas of the calling pro-
cess.

2.2 The Implementation

There are two principal ways to prevent user memory from
being swapped out:� page–based using physical addresses� VMA 1–based using virtual addresses.

The former is performed by setting thePG locked flag in phys-
ical page’s entry in the kernel’smem map array. The swapping

1VMA stands for Virtual Memory Area, a kernel concept for describing the
different parts of a process’ virtual address space.

code leaves all pages with that bit set untouched. The latter
method utilizes theVM LOCKED flag in the VMA describing the
virtual address range. When Linux is going to swap out some-
thing it first selects a process, and then goes through its list of
VMAs to find one to move to secondary storage. While do-
ing so Linux skips all locked VMAs. A user process can lock
part of its memory by means of themlock system call. Al-
though this looks quite simple there are a number of obstacles
in using this method in a device driver. A minor one is that the
mlock function is not visible to driver modules in the standard
kernel. Hence, a small kernel modification would be necessary.
Also, some permission problems have to be solved, since only
superuser processes are normally allowed to lock down mem-
ory. These problems are of minor importance and can be solved
as will be shown in section 4.

A really severe problem is how to retrieve the physical ad-
dresses once a number of pages has been locked. Of course,
the addresses are held in the process’ page table and one could
just walk through them and read the proper entries. However,
a device driver should never apply this method. The reason is
that Linus Torvalds, the Linux maintainer has decided to never
accept a driver that walks the page tables, since there can bebad
interferences with the memory management code. That means,
in order to create a driver that could possibly be adopted to the
main stream kernel, a different way to get the physical addresses
must be used.

Fortunately, a new kernel mechanism, calledkiobufswas in-
troduced recently [9]. It is a integral part of the 2.4.x kernels, but
there is also a patch for the 2.2.x series available. Kiobufswere
created in conjunction with Raw I/O, which allows data trans-
fers between disk and user memory without intermediate copies
by the kernel. During the transfers the pages must be locked.A
kiobuf can be mapped to a part of the user address space. After
that the physical page addresses can be read directly from the
kiobuf, and the page tables don’t have to be touched. While all
pages were locked immediately upon mapping a kiobuf in the
2.2.x kernels, 2.4.x introduced separate functions to lockand
unlock an already mapped kiobuf.

The problematic aspect with kiobufs is that any physical page
can be held in at most one locked kiobuf at any time. This re-
quires a tracking mechanism for locked pages in order to allow
for multiple registrations. Since kiobufs represent a page–based
locking scheme one could assume that the lock count track-
ing could be based on physical page addresses. The problem
is that the physical address had to be known prior to creating
the kiobuf, and the only way to retrieve them is by walking the
page tables. This, however, contradicts the requirements for a
kernel compliant driver as explained above. That is why we
have based the lock count tracking upon virtual addresses. This
is possible because different virtual pages are always mapped
to distinct physical pages for private memory, provided a COW
(Copy–on–write) has been performed.

Locked Memory Areas: LMAs In [5] we introduced a struc-
ture, calledlocked memory area, or LMA. An LMA describes a
contiguous interval[start; end) of virtual pages with the same
lock count. There is one locked kiobuf per LMA, that describes

the physical pages. LMA’s are kept in per process lists in as-
cending order of their start addresses.

Whenever a new area is to be locked the list of existing LMAs
is scanned for intersections. There are five possible types of
intersections that are illustrated in figure 3. Depending onthe
kind of intersection the proper actions are taken. An example
situation is given in figure 4.

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

������
������
������
������

������
������
������
������

������
������
������

������
������
������

��������
��������
��������
��������

��������
��������
��������
��������

new area

INTERSECT_FRONT

INTERSECT_REAR

INTERSECT_MIDDLE

INTERSECT_TOTAL

or INTERSECT_DISJOINT

virtual addresses

LMA

LMA

new area

new area

new area

LMA

LMA

new area

new area

LMA

LMA

Figure 3. Possible types of intersection of new
area and LMA

3 System V Shared Memory in Linux 2.4.x

Before we go on to explain how the Locked Memory Manager
can be extended to handle shared memory, this section gives
an insight in how shared memory is implemented in the 2.4.x
kernels.

3.1 How to use SysV Shm

UNIX System V defines a number of system calls to control
shared memory between processes. Generally, first a segment
must be created, and then processes can attach to it to get it

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

virtual addresses

LMA3 LMA4LMA2LMA1

new area

lc1 lc2 lc4lc3

lc1 lc1 lc4lc4+1lc3+111 1lc2+1
+1

split cr
ea

te

cr
ea

te

cr
ea

te

modify modify split

LMAs lc = lock count

Figure 4. Locking a new area

mapped into their address space. The most important functions
are:

shmget(IN key, IN size, IN shmflg) Opens an
existing segment or creates a new one. It returns a so called
shmid.

shmat (IN shmid, IN shmaddr, IN shmflg)
Maps the segment corresponding toshmidinto the process’
user address space. The virtual start address of this area is
returned.

shmdt (IN shmaddr) Removes the shared segment from
the calling process’ address space.

There are other functions to destroy a segment and to change its
attributes.

3.2 The Implementation of SysV Shm

Following we will have a look at the internals. The imple-
mentation of shared memory in Linux 2.4.x differs significantly
from former versions in that it is now based on the so called
shmemfilesystem.

A shared segment is treated as a file basically with an asso-
ciatedshmid kernel data structure describing the segment
size, its access permissions and times, and the number of at-
taches. Moreover, a segment may have the SHMLOCKED flag
set, that will play an important role later.

In order to create a new segment a newshmid kernel
structure is allocated and filled properly and a new file structure
is allocated, which is assigned a specialmmap method. Fur-
ther, an inode structure is created, which again points to anad-
dress space structure [2, Ch. 4 Linux Page Cache]. The
latter describes the actual pages that make up the shared seg-
ment. Finally, a newshmidis created and the segment is added
to the kernels pool of shared segments.

Once a segment has been established, any process that knows
the shmidand has got the proper permissions can attach to it.
The kernel’s attach function retrieves theshmid kernel struc-
ture by means of the identifier and simply callsdo mmap with

the segment’s size and the file structure assigned during creation.
This results in reserving a free virtual address range, creating
a new VMA and invoking the special shared memorymmap
method. This one assigns special open, close and nopage meth-
ods to the VMA. Finally, the number of attaches of the segment
is increased and the attach operation in complete.

Although the shared area can be accessed now, there are no
pages allocated to it yet. This is done page by page by the
nopage method upon the first access to the attached segment.
If a page is accessed for the very first time, a new page is allo-
cated and added to the segment’saddress space structure.
The page address is also returned and written to the page table,
so that future accesses produce no more page faults.

If, now, a second process attaches to the segment and accesses
one of its pages, an exception is raised, since that process has
not got a valid page table entry for that page. Though, no new
page has to be allocated in this case, since this was already done
when the first process accessed the page. Instead, the page ad-
dress is simply retrieved from theaddress space structure
and written to the page table.

To summarize this section figure 5 shows the interaction of
the various data structure that are used to established shared
memory at the example of two processes sharing a three page
long segment.

4 Locking Shared Memory

As explained above the LMM was based on the assumption
that never two virtual pages are mapped to the same physical
page in order to maintain the requirement that any physical page
is locked at most once by an kiobuf. Obviously this does not
hold true for shared mappings. If one process has locked a
shared segment by means of the LMM and another one tries
to lock its own mapping of that segment, the procedure will fail
at the moment when the kiobuf is to be locked. The kiobuf code
will recognize that the physical page’sPG locked flag is al-
ready set, and return an error.

One could suppose a solution is to have only one process ac-
tually lock a shared segment, while the others just rely on that.
Processes using a shared segment need to cooperate anyways.
While this sounds quite easy to achieve there are two subtle dif-
ficulties.

1. In a VIA context memory is locked implicitly by VipRegis-
terMem, and there is no possibility to tell the Kernel Agent
whether or not to lock the memory, even when all processes
on that node have agreed upon which one should do the
locking. Hence, the Kernel Agent must control which pro-
cess actually locks the memory.

2. Suppose, we have found a strategy for the Kernel Agent
to determine the locking process, and that process has cre-
ated a kiobuf for some part of the shared segment. Now we
come to another, ultimate problem. Any process that wants
to access its own mapping of the locked part, and theses
pages have not been accessed before, will block as long as
the physical pages are locked. The reason for this uninten-
tional behavior can be found in thenopagemethod. As ex-

VMA

vm_end
vm_start
vm_file

VMA

vm_end
vm_start
vm_file

VA 2VA 1

f_dentry

struct file

shmid_kernel

Virtual address
spaces of two

processes

d_inode

struct dentry

struct inode

i_inoshmid ==

shm_file

pages
i_mapping

address_space

page
struct
list of

2

1

1
2
3

1
2
3

3

Figure 5. Implementation of shared memory in
Linux 2.4.x

plained above the nopage routine of shared mappings tries
to get a page from the correspondingaddress space
structure. This should be successful in our case, since the
physical pages were allocated when the first process locked
the area. However, the function retrieving the page needs
to lock it, which is done by setting thatPG locked flag
in the struct page. If the page is already locked, the pro-
cess is put to sleep and reawakened only when that page is
unlocked. This means, when the first process unlocks the
kiobuf in our case.

Thus, we must state that, first, the device driver (i.e. the Ker-
nel Agent in a VIA context) must control memory locking and,
secondly, the pure page–based approach is unsuitable for shared
mappings.

What is left is the opportunity to use some kind of VMA–
based locking. However, a virtual–address only approach is
not enough, since we need a way to determine the physical ad-
dresses without touching the page tables. The solution is tocom-
bine VMA–based locking and kiobufs.

4.1 Combining the VMA–based approach
and kiobufs

As mentioned before there is a SHMLOCKED flags for
shared segments. It can be altered by theshm ctl system call.
Its purpose is to prevent the segment as a whole from paging.
Furthermore there is themlock system call that can be used on
any virtual address range, including shared areas.

In the following we will present the general idea of combining
kiobufs and virtual address based locking as well as discussthe
pros and cons ofmlock andshm ctl.

4.1.1 Introducing Unlocked LMAs

We apply basically the same data structures for shared areasthat
are used for private locked memory, the central one of which
is LMAs. Though, we introduce a new kind of LMAs,un-
lockedLMAs. This terminology might sound contradictory but
unlockedrefers to the kiobuf and, hence, the physical pages.
So the correct naming should bephysically unlockedLMA. For
convenience, we simply sayunlockedknowing that it means the
kiobuf. The area itselfis locked, though by other means. So the
L in LMA retains its legitimacy.

When an LMA is created it can be specified whether or not the
appendant kiobuf should be locked physically. This is possible
since the kiobuf implementation in the 2.4.x kernel separates
mapping and locking. Due to this each process attached to a
shared segment can have its own LMAs and kiobufs.

Now we have got a clean way to get the physical page ad-
dresses, that are needed for the DMA engines of the I/O hard-
ware. What is missing is a way to ensure locking.

4.1.2 shm ctl vs.mlock

Both functions have two common flaws. First, only superuser
processes are normally allowed to use them, and secondly the
functions are not exported to kernel modules by default. The
first problem can easily be solved by having the driver grant the
proper capability to the process. The second one can be solved
in differently elegant ways. The less elegant way is to modify
the kernel slightly to export the symbols in question. Although
it should be really easy to apply such a patch, even manually,it
makes the usage of such a driver less convenient.

If we useshm ctl to lock the segment, we only need a sin-
gle counter per segment. Its value equals the number of LMAs
within the segment across all attached processes. This means
it must be incremented whenever an LMA for this segment is
created, and decremented whenever an LMA for this segment
is destroyed. Upon creation of the first LMA, the segment is
locked via the shared memory control function, while it is un-
locked as soon as the lock counter reaches zero. This versionhas
been implemented and works reliably. However, during our in-
vestigations a kernel bug was discovered, namely the swapping
code did not honor the SHMLOCKED flags of shared segments
at all.

In order to circumvent the kernel modification,shm ctl
should be called from user level through the normal system call
interface. This requires that the user process has got enough

permissions. This can be accomplished by granting the appro-
priate capability, strictly speaking CAPIPC LOCK to the pro-
cess when the device is opened. The crucial problem in moving
the lock operation into the VIPL2 is that theshmidis not known
there anymore, only the virtual address.shm ctl, however,
needs this parameter.

This problem does not occur with mlock, since it takes the
virtual address as parameter. According to the Linux manual
page for mlock a shared mapping stays in RAM as long as at
least one process has mlocked it, however, the current kernel
code (up to 2.4.6) apparently does not honour that.

At the example of VIA we can do the following. The VipReg-
isterMem function of VIPL invokes the corresponding function
of the Kernel Agent (by means of the ioctl system call). The Ker-
nel Agent creates resp. modifies the LMAs appropriately and
returns an indication whether or not the shared segment mustbe
locked along with the segment boundaries. Upon return of the
ioctl, the VipRegisterMem performs an mlock operation on the
given area if necessary. Some care must be taken here to pre-
vent race conditions with the swapper. It is possible and even
probable that the process is descheduled when it returns from
the I/O control. Since the area has not been locked yet by that
time it is possible that parts of it get paged out before the mlock
call is performed. This would lead to inconsistencies as differ-
ent physical pages will be allocated when the area is paged in
again, but the original physical addresses have been passedto
the I/O hardware already. In order to prevent that race condi-
tion, VipRegisterMem must call mlock on the area to be regis-
teredbeforeinvoking the Kernel Agent. Now the Kernel Agent
can safely create the LMAs for the area. It must also return the
virtual start address of the whole shared segment, its length and
an indication for the mlock operation to be performed, whichis
one of those:

MLOCK NOP Do nothing.

MLOCK LOCK Lock the whole segment. This is used when
the process registers some part of the segment for the first
time. According to the specification of the mlock system
call it would be sufficient if only one process, i.e. the first
one, locks the area. A problem arises if that processes
deregisters the area before the other processes. The mem-
ory would be unlocked in this case, or another process had
to lock it subsequently, which is practically impossible. For
this reason all processes have to lock the shared mapping.
Hence, each process needs its own lock counter for every
segment. Note that it is not a problem that a part of the
segment (namely the area to be registered) has been locked
before, since mlock simply sets a bit in the VMAs. Hence,
nothing is changed for the previously locked parts.

MLOCK UNLOCK Unlock the area. This value is returned
by the Kernel Agent when the process’ first registration
within the segment has failed for some reason. In this
case the initial mlock operation must be made undone. Al-
though it is not erroneous to unlock the whole segment,

2Virtual Interface Provider Library, Intel’s name of the VIAUser Agent,
introduced in the Developer’s Guide [3]

since just a bit in the VMAs is cleared, it is more efficient
to only unlock the originally given address range.

Unlocking memory is done in a similar way, execpt that noth-
ing needs to be done prior to calling the Kernel Agent. The
driver modifies and/or destroys the LMAs appropriately, andif
the process’ last LMA for the shared segment has been removed,
MLOCK UNLOCK is returned, whereupon VipDeregisterMem
should call munlock for the whole segment, the boundaries of
which are returned by the Kernel Agent function as well. Other-
wise MLOCK NOP is returned and VipDeregisterMem doesn’t
need to perform any additional action.

Figure 6 illustrates this method.

5 Performance Evaluation and Impact on Lock-
ing Private Memory

Although the intention of all user level communication is to
exclude operating system calls from the communication paths,
in cases such as VIA, where communication buffers must be reg-
istered, zero–copy protocols need on-the-fly registration. How-
ever, it is highly recommended to avoid those expensive oper-
ations by applying cache like strategies on registered memory
[4].

We have conducted several measurements on a Pentium III
machine at 450 MHz running Linux kernel 2.4.0. We examined
the memory registration and deregistration of our VIA imple-
mentation, in the course of which the Locked Memory Manager
has been developed.

First of all we measured the registration and deregistration
times for shared memory using theshm ctl function from in-
side the kernel. The results are shown in table 1. In this test
the shared segment had been registered by another process be-
fore. The times for the very first registration of a shared area are
slightly higer for small buffer sizes, see table 2. The additional
times can be attributed to the locking of the shared segment that
has to be carried out upon the first registration.

As explained in section 4 the method tested so far needs a
small kernel modification. The solution shown above, that does
without kernel changes, adds some more overhead due to the
additional mlock/munlock system calls. Figure 7 compares the
registration times for a shared memory segment usingshm ctl
inside the kernel on the one hand and calling mlock from the
user level on the other. The difference is about3:5�se
 for small
blocks. For large blocks there is no significant difference to be
seen.

The last question to be answered is how much does the user
mlock affect registration of private memory. Note, that mlock
has to be performed in any case, since the VIPL cannot distin-
guish between private and shared memory. Figure 8 shows the
results. It can clearly be seen that there is a significant overhead
for all block sizes. The bottom most line of the graph shows the
relation of the times with and without user mlock, which varies
from 1:7 for a single page to1:3 for 16 megabytes.

switch (mlock_action) {

}

LOCK:

UNLOCK:

mlock(seg_start, seg_len)

munlock(buf+x, len1)

REGMEM:
create/modify LMAs
adjust lockcount of shm seg
return segment bounds,

 mlock_action,...

VipRegisterMem(buf+x,
len1,...)

VIPL Kernel AgentVI Application

VipOpenNic(/dev/...) open(/dev/...) file−>open() {

cap_raise(...,CAP_IPC_LOCK)
...

shmid = shmget(...)
buf = shmat(shmid,...)

mlock(buf+x, len1);
ioctl(...,REGMEM,...) file−>ioctl() {...

}

VipDeregisterMem(buf+y,
len2)

ioctl(...,DEREGMEM,...) file−>ioctl() {
...

adjust lockcount of shm seg
return segment bounds,

 mlock_action,...

DEREGMEM:
modify/destroy LMAs

[other (de)registrations
may happen here]

switch (mlock_action) {

munlock(seg_start, seg_len)
UNLOCK:

NOP:
do nothing

}
...
VipCloseNic(/dev/...) file−>release() {

cap_lower(...,CAP_IPC_LOCK)

close(/dev/...)

}

user kernel

Figure 6. Using mlock from user level

6 Conclusions

In this paper we have proposed an extension to the Locked
Memory Manager [5] that enables it to handle System V shared
memory properly. Each process that has attached to a shared
segment can lock parts of it regardless of other processes at-
tached. We have shown that a purely page-based approach is
not suitable due to the internals of the Linux memory manage-
ment. Instead we have developed a solution combining virtual
address based locking and the kiobuf mechanism. Further, we
have shown that it is possible to find a solution that needs no ker-
nel changes. However, it poses some extra overhead on locking
shared as well as private memory. Hence, one has to trade off be-
tween performance and convenience of installing the driver. The

authors are planning to make a proposal to integrate the LMM
with the main stream kernel, since they believe it is helpfulfor
all kinds of user level communication like VIA, Infiniband, SCI,
direct sockets and so on.

An extension to support all kinds of shared memory mappings
is expected to be easily derived from the current solution, since
they uses the same underlying mechanism. The difference is
that there is noshmid kernel structure for such mappings
and, hence the locking must be based on the file mapped and
be done by means ofdo mlock. Further, there are options for
optimizations left. The LMAs of a process are still stored in
linear lists. A performance improvement could be achieved by
using AVL trees. Besides, it should be figured out if it is useful
to merge adjacent LMAs if they have the same lock count.

Table 1. Times for registration/deregistration
shared memory when is was already registered
by another process (in �s)

Size (KB) register deregister

4 6.9 4.4
8 8.4 4.7

16 10.8 5.3
32 15.8 6.7
64 25.5 9.3

128 47.2 14.8
256 87.8 25.9
512 177 49.5

1024 340 98.8
2048 697 205
4096 1371 409
8192 2739 814

16384 5414 1646

1

10

100

1000

10000

4 16 64 256 1024 4096 16384

Re
gis

trat
ion

 tim
e in

 us
ec

Memorysize in KB

kernel shm_ctl
user mlock

Figure 7. Registering shared memory
with/without user level mlock

References

[1] Quadrics QsNet High Performance Interconnect.
http://www.quadrics.com/web/public/fliers/qsnet.html.

[2] T. Aivazian. Linux kernel internals.
http://www.linuxdoc.org/LDP/lki.

[3] Intel Corporations.Intel Virtual Interface (VI) Architecture Im-
plementation Guide, Draft Revision 0.95, May, 15 1998.

[4] L. Jordan. Entwicklung eines effizienten speichermanagementes
fuer das chempi via/sci device. Study thesis (german), Chair
of Computer Architecture, Chemnitz University of Technology,
2000.

[5] F. Seifert and W. Rehm. Proposing a mechanism for reliably
locking via communication memory in linux. InIn proceedings
of IEEE International Conference on Cluster Computing CLUS-
TER2000, Chemnitz, Germany, Nov 28 - Dec 1 2000.

Table 2. Times for registration/deregistration
shared memory for the first time (in �s)

Size (KB) register deregister

4 7.4 4.5
8 8.8 4.9

16 11.4 7.5
32 16.4 7.2
64 26.1 9.8

128 49.5 15.6
256 86.8 26.5
512 167 49.2

1024 334 101
2048 668 206
4096 1373 409
8192 2841 815

16384 5507 1650

1

10

100

1000

10000

4 16 64 256 1024 4096 16384

Re
gis

trat
ion

 tim
e in

 us
ec

Memorysize in KB

kernel shm_ctl
user mlock

ratio shm_ctl/mlock

Figure 8. Registering private memory
with/without user level mlock

[6] I. Specification and V. Release. Infiniband trade association,
2000.

[7] M. Trams. Design of a system-friendly PCI-SCI bridge with an
optimized user-interface. Diploma thesis, Chair of Computer Ar-
chitecture, Chemnitz University of Technology, 1998.

[8] M. Trams, W. Rehm, D. Balkanski, and S. Simeonov. Memory
management in a combined VIA/SCI hardware. InProceedings
to PC-NOW 2000, International Workshop on Personal Com-
puter based Networks of Workstations held in conjunction with
the International Parallel and Distributed Processing Symposium
(IPDPS 2000), Cancun, Mexico, May 1-5 2000.

[9] S. C. Tweedie et al. Raw I/O enhancements.
http://oss.sgi.com/projects/rawio.

[10] M. Welsh, A. Basu, and T. v. Eicken. Incorporating memory man-
agement into user-level network interfaces. Technical report, De-
partment of Computer Science, Cornell University, Ithaca,1997.

