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ABSTRACT

We present an anisotropic diffusion equation designed
to restore interferometric images. It has two main purposes.
the first is to preserve the structures and discontinuities formed
by the fringes. The second is to incorporate the noise mod-
eling which is specific to this kind of images. Besides we
show that our model formalizes previous related work in in-
terferometry filtering.

1. INTRODUCTION

Interferometry with Synthetic Aperture Radars (SAR) has
become of main interest in order to obtain topographic mea-
surements. The SAR radar images the same scene from two
slightly different look angles. The interferometric product
gives the interferogram and the coherence map. The inter-
ferogram represents the phase difference between the two
acquisitions and only contains the information to estimate
terrain height. This phase image has fringes representing
the phase within the range of�� to �. Any phase values
greater than� are wrapped back around to��. To recon-
struct the geometry for each point in the image, the phase
needs to be unwrapped. Due to phase discontinuities this
problem is ambiguous and makes phase unwrapping a com-
plex and crucial processing. Another difficulty comes from
the high level of speckle noise which will introduce some
errors in the reconstruction. To reduce phase noise, multi-
look [1] processing can be used, but this implies a loss of
spatial resolution. For that reason, noise filtering is applied
before phase unwrapping.

Several filters have been applied to this kind of images
[2, 3], but they are not adapted to local noise level varia-
tions. To preserve phase discontinuities, most of them un-
wrap the phase in the small filtering window before smooth-
ing, and wrapping it again. Amongst the class of filtering
approaches, we focus on the J.S. Lee et al. [4] filtering
method which preserves phase gradient and reduces phase
noise according to the coherence. It contains two main fea-
tures. The first is that the specificity of the interferometric
noise is taken into account. The variance of the phase noise
depends on the coherence, that is the best estimator of the
quality of the phase data extracted from the interferometric

radar data. The second is the use of a directional window
dependent of the noise level along interferometric fringes,
in order to smooth within a fringe and prevent smoothing
across fringes.

This idea of filtering while preserving some structures
has been widely expressed in the framework of partial dif-
ferential equations (PDE’s). The so called anisotropic dif-
fusion equations allow to remove noise while keeping the
edges ( see [5] for a review). So it appears natural to intro-
duce such a methodology for interferometric image filter-
ing.

We propose in this paper an anisotropic diffusion model
which incorporates the specificities of noise statistics. In
Section 2, we recall theprobability density function (pdf)of
interferometric phase images, and the noise decomposition
usually taken for these images. Section 3 presents the first
step of our new noise filter, which is the restoration of the
coherence map. In Section 4 we describe the anisotropic fil-
ter proposed by Weickert [6], and adapt it to interferograms.
some results showing the advantages of this approach are
discussed in Section 5.

2. CHARACTERISTICS OF PHASE NOISE

2.1. Construction of the interferometric product

The optimal strategy for topographic mapping requires si-
multaneous acquisition of images forming the interferomet-
ric pair. Let(y1; y2) = (jy1jei'1 ; jy2jei'2) be the two com-
plex valued images of the same scene with slight different
geometry, acquired by the sensor. Interferometry process
combinesy1 andy2 to extract informations of the surface
topography. But SAR images are affected by speckle. One
way to improve SAR images, at some expense of geometric
resolution, is given by the multilook process. The multilook
interferogramz is implemented by averaging the correlation
on neighboring pixels of a window of sizeNl:z = 1Nl NlXk=1 y1(k)y2(k) = jzjei' (1)

where' = '1 � '2 is the interferometric phase.
Moreover, the interferometric phase depends on the cor-

relation between the images of an interferometric pair. The



complex coefficient� = E[y1y�2 ℄pE[jy1j2℄E[jy2j2℄ = �0ei�
is a statistical measure of the correlation between images.
The coherence magnitude�0 between the two images, given
by the interferometric product, is a measure of the data qual-
ity. It is the best estimator of the quality of the phase data
extracted from interferometric data. Comparison between
the correlation map and the phase data shows that the decor-
related (noisy) regions of the phase data corresponds to the
lowest-quality regions of the coherence image.

2.2. Phase noise model

Complex SAR images can be characterized as circular Gaus-
sian random variables [7]. The expression of the 1-lookpdf
of the phase' is given by (Nl = 1 in (1)):8<: f'(') = (1��02)[(1��(')2)1=2+�(')(��aros �('))℄2�(1� �(')2)3=2�(') = �0 os(' � �); ' 2 [�� + �; � + �[

(2)
Let us note that the standard deviation� of the interfero-
gram depends on the coherence�0.

Since�(� � ') = �(� + '), the pdf of the interfer-
ogram', defined in (2), is symmetrical with respect to�.
It follows thatE['℄ = �, and we can easily show that the
standard deviation of' is not a function of the parameter�. This fact enables us to eliminate the multiplicative noise
model. Every random variableZ, such thatE[Z℄ = �, can
be split in the formZ = �+(Z��). From this observation,
if we note ~' the interferometric phase without noise andb
the noise with zero mean, an additive noise model is often
proposed:' = ~'+ b where

� ~' andb are independent
andE[b℄ = 0 (3)

3. VARIATIONAL FILTER FOR THE COHERENCE

The coherence magnitude between the images is classically
used as a measure of the quality of the interferogram. Let
us remind that our filter will take into account the variance
of the interferometric noise that depends on the coherence.
Because the coherence map looks ”grainy” it is commonly
smoothed by averaging in3�3windows. But such a method
does not preserve edges.

We propose here to filter the given coherence�0 through
the classical Perona-Malik nonlinear diffusion equation in
order to keep the edges as much as possible [5].8<: �t� = div(d(jr�j)r�); in 
� (0;1)hr�; ni = 0; on�
� (0;1)�(x; 0) = �0(x); in 
 (4)

wheren denotes the outer normal,h:; :i is the usual inner
product andd(s) = 1=(1 + s2). Figure 1 shows the result
on the coherence map of the region of Utah.

Fig. 1. Filtering of the coherence map with total variation
on the region of Utah. Left: initial coherence�0. Right:
filtered coherence�.

4. NOISE ADAPTIVE ANISOTROPIC FILTER

Variational filters are often used for optical images where
the noise is usually considered as gaussian. Observing the
pdfof the interferometric phase noise, given in equation (2),
it is then clear that standard variational methods will not be
adapted. In this section, we propose a new noise adaptive
filtering model, linked to anisotropic diffusion equations,
that preserves phase jumps discontinuities (fringes bound-
ary) and reduces noise according to the coherence. More-
over phase interferometric images present typical structures
because of fringes. It is crucial to take into account the di-
rection of fringes to smooth interferograms. To do that, we
use an edge-descriptor different from the gradient. For op-
tical images, Weickert [6] has introduced a structure tensor
that describes the local image structure at each pixel. Then,
instead of the scalar diffusivityd in equation (4), Weickert
propose to use in the nonlinear diffusion process, a diffusion
tensor, adapted to the image for enhancing coherent struc-
tures. The preferred direction is determined according to
the phase angle of the structure tensor. We will show how
to compute this structure tensor taking into account noise
information according to Lee et al. [4].

4.1. The structure tensor

The preferred smoothing direction is the one that minimizes
gray value variations. The idea to take into account local
variations is to consider the quadratic form:f(d) = dTr':r'T d
The directiond which maximizes (resp. minimizes)f(d), is
the one of highest (resp. lowest) variations. It corresponds
to the highest (resp. lowest) eigenvector ofr':r'T , and is
parallel (resp. perpendicular) tor'. To avoid noise ampli-
fication in computingr', the interferogram is regularized:'�(x; t) = (K� � '(:; t))(x); 8x 2 
;
whereK� is a Gaussian kernel,' is defined on IR2 such that'j
 = ' and is obtained by mirroring with respect to�
.



In our case, we will choose� as the standard deviation of
the interferogram, depending on the smoothing coherence
(see section 2.2). Unfortunately, image information coming
out from the neighborhood of point are not taken into ac-
count. Thestructure tensor, J�, proposed by Weickert, is
constructed by convolving componentwiser'�r'T� with
a Gaussian kernelK�.J�(r'�) = K� � �r'�r'T� � :
Hence the matrixJ� = (jlk)jl;k=1;2 is symmetric positive
semidefinite. ThusJ� possesses two orthonormal eigenvec-
torsw1; w2:w1 = 0BBBBB� 2j12r�j22�j11+p(j11�j22)2+4j212�2+4j212j22�j11+p(j11�j22)2+4j212r�j22�j11+p(j11�j22)2+4j212�2+4j212

1CCCCCA ;
andw2 is taken such ashw1; w2i = 0, whereh:; :i is the
usual inner product. The correspondingeigenvalues�1 � �2
are given by:�1;2 = 12 �j11 + j22 �q(j11 � j22)2 + 4j212�
The vectorw1 indicates the orientation maximizing the gray
value fluctuations whilew2 gives the preferred local direc-
tion of smoothing. The interpretation of the eigenvalues in
terms of image structure is described in the following table.

Comparison of �1 and �2 Type of areas�1 = �2 = 0 constant areas�1 = �2 isotropic structures�1 � �2 = 0 straight edges�1 � �2 � 0 corners

Moreover, it is important to point out that the two pa-
rameters� and� play two different roles.� is an integra-
tion scale parameter that reflect the characteristic size ofthe
texture. The eigenvalues describe average contrast in the
eigendirections within a neighborhood of sizeO(�). The
noise parameter� makes the descriptor insensible to details
of scale smaller thanO(�).
4.2. Noise level estimation

The noise level is not constant in the image (low coherence
areas correspond to high noise level areas in the interfero-
gram), then the filter must be adaptive. Since thepdf of the
phase is given by (2), the standard deviation� can be evalu-
ated. But the dependence of� with respect to the coherence,

plotted in Figure 2, has to be taken into account in the pro-
posed model. From a numerical point of view, the filtered
coherence map� is first quantified, in order to approximate
the standard deviation� with piecewise constant function.

� �
Fig. 2. Plot of the variance� of the interferometric phase with
respect to the smoothed coherence�.

4.3. Diffusion equation

Let'0(x) be the noisy interferogram represented by a bounded
function'0 : 
 �! IR. It is then proposed to solve:8<: �t' = div(D(J�(r'�))r') in 
� (0;1)hD(J�(r'�))r'; ni = 0 on�
� (0;1)'(x; 0) = '0(x) in 
 (5)

wheren denotes the outer normal. The diffusion tensorD 2
IR2�2 is chosen as a function of the local image structure.
We adapt the diffusion tensorD(J�(r'�)) to the structure
tensorJ�, as follows:D(J�(r'�)) = (w1jw2)� ~�1 00 ~�2 �� wT1wT2 �
The eigenvectors of the diffusion tensor must correspond to
the local structure of the image, so we choose them equal to
the eigenvectors of the structure tensor. Its eigenvalues~�1,~�2 must be adapted in the context of interferometric phase
images. Hence because we do not want any diffusion in the
perpendicular direction to fringes, we impose~�1 = 0. For
the corresponding eigenvalue in the preferred smoothing di-
rectionw2, we take a function of(�1 � �2)2, that charac-
terizes the saliency of the structures. In a window of size�,w2 is the direction where the mean contrast is the lowest.~�2 = (� if det(J�(r'�)) = 0�+ (1� �)e� 1(�1��2)2 otherwise

The parameter� is introduced for theorical reasons (see [6]
for the demonstrations).

J-S. Lee et al. were the first who took into account the
orientation of the gradients. To incorporate fringes struc-
tures in their model, they consider sixteen directional win-
dows, for which variance is calculated. The one correspond-
ing to the minimal variance is selected. Our filter contributes



to an automatic research of the principal smoothing direc-
tion. In fact, at each pixel, the use of the structure tensor
allows us to avoid the calculus of the minimal variance of
Lee. In addition, the noise adaptivity appears in two steps of
the construction of our filter: via the calculus of� with re-
spect to the quantified filtered coherence, and via the struc-
ture tensor.

5. NUMERICAL RESULTS

The performance of the filter is demonstrated with SAR data
from ERS satellites of Utah region in Fig. 3, using the fil-
tered coherence from Fig. 1. We focus on a region of in-
terest containing both fringes and a strongly noisy part. To
estimate the quality of the representation, we display the
residue which is classically used in SAR [1].

We recall that the residues are based on the most com-
mon assumption, that is the desired unwrapped phase has
local phase derivatives that are less than� in magnitude ev-
erywhere. It enables us to define the corrected phase dif-
ference. The sum of the corrected phase difference along a
closed contour, defined by four adjacents pixels, is neces-
sarily 0, 2� or �2�. Points for which the sum is not0 are
called residues. We refer to [1] for more details.

The aim of filtering is to have residues concentrated on
fringes locations and removed in noisy areas. We first present
the results obtained with the Perona-Malik model applied
directly to the interferogram. This naive approach which
does not take into account noise statistics does not smooth
properly fringes and some residus are still present in noisy
areas. By using the coherence information, our approach
is effective in removing isolated residues. Compared to
Perona-Malik, we can observe that more residues are found
on fringes lines which is due to the scale parameter�. Dis-
continuities are also well smoothed.

6. CONCLUSION

The filtering model we describe in this paper takes into ac-
count the noise information given through the coherence,
as in Lee et al. [4], and also preserves fringe discontinu-
ities from smoothing by using anisotropic diffusion equa-
tions given by Weickert [6]. We have also shown that this
framework allows to interpret and extend previous Lee et al.
contribution. Future work will use these filtered interfero-
grams to retrieve the absolute phase.
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