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Abstract

We describe a tracking algorithm to address the inter-
actions among objects, and to track them individually and
confidently via a static camera. It is achieved by construct-
ing an invariant bipartite graph to model the dynamics of
the tracking process, of which the nodes are classified into
objects and profiles. The best match of the graph corre-
sponds to an optimal assignment for resolving the identi-
ties of the detected objects. Since objects may enter/exit the
scene indefinitely, or when interactions occur/conclude they
could form/leave a group, the number of nodes in the graph
changes dynamically. Therefore it is critical to maintain an
invariant property to assure that the numbers of nodes of
both types are kept the same so that the matching problem
is manageable. In addition, several important issues are
also discussed, including reducing the effect of shadows, ex-
tracting objects’ shapes, and adapting large abrupt changes
in the scene background. Finally, experimental results are
provided to illustrate the efficiency of our approach.

1. Introduction

There has been considerable work on visual tracking for
a variety of applications. We will concentrate mostly on
real-time tracking systems/algorithms.

The CONDENSATION introduced by Isard and Blake
is to track curves even in clutter background [7], [8]. They
modeled objects as a set of parameterized curves in terms
of B-splines, then used factored sampling to predict the po-
sitions of curves during tracking. The algorithm is supe-
rior to previous Kalman filter-based approaches. More re-
cently, Toyama and Blake have established a probabilistic
exemplar-based framework, theMetric Mixture model, to
combine the exemplars in a metric space with a probabilis-
tic treatment for visual tracking [15].

Paragios and Deriche [12], [13] addressed the problem
of simultaneously tracking several non-rigid objects and
estimating their motion parameters using a coupled front
propagation model, of which it integrates boundary and

region-based information. Their implementation for solv-
ing the PDEs used a level set approach to deal with topo-
logical changes of the moving front. In [9], Isard and Mac-
Cormick adopted multi-blob likelihoods as the observation
models for both background and foreground, and described
a Bayesian tracker via particle filtering to track multiple ob-
jects efficiently.

Another vein of approaches in visual tracking is based
on frame differencingandshape analysis. Pfinder [17] is a
real-time system to perform person segmentation, tracking
and interpretation. To find and follow the head and body
parts of a person, the system can build up a blob model dy-
namically using a multi-class statistical model of color and
shape. Haritaogluet al. [6] proposed theW 4 system that
combines shape analysis and statistical techniques to track
people and their part structures in an outdoor environment.
To handle interactions among the tracked people, they used
appearance modelsto resolve the ambiguities. TheBack-
packsystem [5] was designed to work under the control of
W 4 silhouette model. The basic steps of Backpack are his-
togram projection, shape periodicity analysis and symmetry
analysis. A non-symmetric region which has insignificant
periodicity is classified as an object carried by a person.

Unlike most background extraction tracking algorithms,
Lipton [10] combined temporal differencing and template
correlation matching to perform target tracking. In [11] a
system for color image sequences was presented. The ap-
proach is similar toW 4 built upon a background model
combining pixel RGB and chromaticity values with local
image gradients.

The mean shiftwas used by Comaniciuet al. to track
objects by modeling them as probability distributions [3].
It does not require a static camera, and can track objects,
even with partial occlusions. In [2], Chen and Liu have pro-
posed a new tracking algorithm based ontrust-regionmeth-
ods. They showed that a trust-region tracker should per-
form better than aline-searchtracker. In particular, track-
ing with mean shift is a typical line-search one since the
iterative optimization process is driven by mean shift vec-
tors, i.e., the iterates are restricted to the approximatedgra-



dient directions. Another tracking method based on theco-
inferencebetween shape and color models has been recently
presented by Wu and Huang [18]. The tracking system was
implemented with a sequential Monte Carlo technique to
approximate the co-inference process between the models.

1.1. Our Approach

A variety of issues must be investigated when designing
a reliable real-time multi-object tracking system. We con-
centrate on resolving the ambiguities caused by the inter-
actions among the objects. More specifically, our approach
contributes to this field of research by addressing the fol-
lowing three problems.

• Shape contour extraction and shadow deletion:Shad-
ows caused by indoor lighting and interactions be-
tween objects should be detected and removed so that
they will not interfere with the performance of the
tracking system. We have used a two-pass shadow
deletion algorithm to reduce the effects of shadows.
Furthermore, a contour extraction scheme motivated
by the level set method is developed to derive the
shape/silhouette of each target object.

• Dynamical bipartite graph and best assignment:Dur-
ing tracking, each target object is represented with its
color distribution. To simulate the process of multi-
object tracking and account for interactions, aninvari-
ant bipartite graphis constructed. The invariant prop-
erty makes sure that the two classes of nodes in the
graph will have the same number, i.e., the number of
target objects currently in the scene. Since our goal
is to track objects without mixing up their identities, a
multiple mode detection method via kernel analysis is
used to segment the foreground pixels in an interaction
area such that each object can be tracked individually.
Once the bipartite graph is available, it is convenient to
find the optimal matching, of which it corresponds to
the best identity assignment to all detected objects.

• Scene background change and automatic adaption:
There are two types of background change to be dis-
cussed. Illumination change during tracking is of the
first type concerned us most since this happens grad-
ually and persistently. We use a scheme combining
short-time updating and iterative training to guarantee
that at any moment of a tracking process, the statis-
tical quantities used for the reference background are
mostly derived from real data rather than by approxi-
mation. The other type of background change is more
drastic, e.g. an object that is initially part of the ref-
erence background later becomes active, then starts
to move and interacts with other objects in the scene.

How to detect and handle such events is quite difficult,
and it will be explained in detail later.

2. Foreground Separation and Contour Ex-
traction

We assume a stationary background scene where the
interactions of multiple objects occur. When the system
starts to perform tracking, the first few image frames will
be used to compute some statistical quantities about the
scene. By a reference background, we mean the back-
ground scene and the derived statistical quantities. To detect
moving objects in an image frame, the algorithm uses fore-
ground/background extraction, shadow deletion and shape
contour extraction to separate foreground objects from the
background scene.

2.1. Foreground/Background Separation

The initial background training is carried out, say over
the first N image frames, where we assume that there is
no object undertaking large/significant movements in the
scene. Then for each pixelpj,k, its intensity meanµj,k

and unbiased sample varianceσ2
j,k can be computed us-

ing the following iterative formula. For image framef =
2, . . . , N , we have

[µj,k]f = [µj,k]f−1 +
1

f
([Ij,k]f − [µj,k]f−1) ,

[σ2
j,k]

f
=

f − 2

f − 1
[σ2

j,k]f−1 +
1

f
([µj,k]f−1 − [Ij,k]f )2 ,

(1)

where[·]f denotes the corresponding value at framef , and
[µj,k]1 = [Ij,k]1 and [σ2

j,k]1 = 0. Equations (1) can be
shown by straightforward calculations that they yield the
sample mean and unbiased sample variance for the firstN

image frames. Right after the training stage, the system is
ready to perform real-time tracking. In each new image
frame, the foreground pixels can be obtained by compar-
ing their intensity values to the corresponding mean values.
A pixel pj,k is extracted as a foreground pixel if its intensity
Ij,k satisfies|Ij,k − µj,k| > α · σj,k where the parameterα
can be adjusted to yield more or less foreground pixels.

In general, the extracted foreground pixels are raw and
sensitive to noise. Thus several low-level image processing
techniques are used to refine the foreground. To efficiently
manage the low-level image processing, we create a support
map to represent the foreground region. A support map is a
binary image where pixel values are set to 1 if they belong
to foreground or set to 0 otherwise. Firstly, one iteration
of erosion is applied to support map to eliminate single-
pixel noise. Secondly, the support map is divided into8× 8



blocks. A block is marked as valid block if it contains more
than 20 foreground pixels. Thirdly, connected components
of valid blocks are constructed to locate the corresponding
minimal bounding box enclosing each’s foreground pixels.

After the low-level image processing, several steps of
high-level grouping are performed to obtain the final shape
contours and bounding boxes. We first eliminate bounding
boxes which consist of less than5 blocks since we don’t
want to track small objects. Bounding boxes with small
width/height ratios or at inadequate locations are ignored.
The rest of bounding boxes are verified to see if they can
be grouped into larger ones. Such grouping step is nec-
essary for handling partial occlusions or undetected fore-
ground due to similar color to the background. Once the
bounding boxes are determined, the foreground pixels in-
side each bounding box can be further refined by one itera-
tion of dilation.

As mentioned before, it is preferable that the system can
adapt to the illumination change automatically. Thus, dur-
ing tracking, we periodically update the background statis-
tics for pixels outside the bounding boxes (those are back-
ground pixels). Let[µj,k]

old
and[σ2

j,k]
old

, respectively, be
the old intensity mean and variance before updating has oc-
curred at pixelpj,k. Then the update rules for pixelpj,k at
image framef are

[µj,k]f = [µj,k]f−1 +
1

N
([Ij,k]f − [µj,k]old)

[σ2
j,k]

f
= [σ2

j,k]
f−1

+
1

N − 1
([Ij,k]2f − [µj,k]2old)

−
N

N − 1
([µj,k]2f − [µj,k]2f−1) −

1

N
[σ2

j,k]old .

With the above formulae, if some pixel has been updated
N times, not necessary over consecutive frames, then the
newly computed mean and variance will be the exact ones
rather than by approximation. Again, this can be easily ver-
ified by straightforward calculation. Thus, if some pixel’s
referenced mean and variance have been updatedN times,
they will be replaced by the newly computed ones. In this
way, the related statistical quantities of the reference back-
ground will be more accurate.

2.2. Shadow Deletion

Lighting in an indoor environment can cause serious
problem of shadows (e.g. Figure 1(a)). Typically the inten-
sity changes within shadow areas are significant enough to
make some pixels to be incorrectly detected as foreground
ones. Thus a bounding box will be enlarged by shadows
since it would contain more foreground pixels. Such phe-
nomenon is rather undesirable especially when most sta-
tistical features are determined by the foreground pixels.

Nevertheless, the problem of shadows is common to all
background-extraction based tracking algorithms.

(a) (b)

Figure 1. (a) Shadows caused by lighting and
moving object interactions in an indoor en-
vironment. (b) Foreground object segmen-
tations derived after shadow deletions.

McKenna et al. have used chromatic information to de-
tect and eliminate shadows [11]. It is also possible to use
more than one camera and depth information to identify the
plane of shadow as described in [6]. More complicated is
to remove shadows in a grayscale image without using any
information from stereo. Our approach follows the ideas
proposed in [14], i.e., to model the shadows as regions of
constant contrast change. This gives us two heuristics to
detect shadows.

• The pixel intensity values within shadow regions de-
crease in most cases, when compared to the means
computed in the reference background.

• The intensity reduction rate changes smoothly between
neighboring pixels, i.e., the photometric gain does not
vary much in a shadow region. Furthermore, it is also
true most shadow regions do not have strong edges.

The two criteria will fail and mistakenly remove correct
foreground pixels when pixels of foreground objects are
darker than the background and have a uniform gain with
respect to the surface they occlude. However, it only occurs
occasionally and should be considered as an exception.

We use a two-pass shadow deletion algorithm, where the
foreground pixels are scannedhorizontallyandvertically,
respectively. Such scheme makes sure most of the shadow
pixels will be investigated and deleted. Therefore to deter-
mine that a pixel is within a shadow region or not, we check
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Figure 2. Shape contour extraction for a disconnected set of foreground pixels.

whether the intensity reduction rates decrease smoothly in
a small neighborhood. To improve the accuracy and robust-
ness, information of neighboring pixels are considered to
support the decision. After eliminating shadow pixels from
foreground pixels, each bounding box needs to be adjusted
to fit the corrected foreground data.

2.3. Shape Contour Extraction

Once the foreground pixels are identified, we are ready
to extract the shape contours. Foreground pixels enclosed
by a bounding box are considered to belong to a same ob-
ject. However, they may not form a connected component
as it could happen that some part of the object may have
color distribution similar to the background (e.g., see Fig-
ure 2 (a),(b)). To overcome such circumstance, we design
a fast contour extraction algorithm motivated by the basic
idea of level set methods. Recall that the level set methods
are designed to solve the initial value problems, where in
our case we focus on the 2D closed curve evolution prob-
lem. More precisely, the level set equation is

φt + V |∇φ| = 0 given φ(x, t = 0) , (2)

whereV is the speed, andφ is the level set function and its
zero level set at any timet, {x | φ(x, t) = 0,x ∈ R2} is
the curve’s locus at timet. In practice, for real-time multi-
object tracking application, it is not feasible to solve the
above equation accurately. Instead, we try to come out with
a good approximating solution for (2) in one time step. To
achieve such effectiveness, one needs to first have a good
guess for the initial curveφ(x, 0) = 0, then a reasonable
mechanism to assign the speedV for points on the initial

curve. Nevertheless, it turns out that the two issues can be
simplified a lot as we are solving a level-set evolution prob-
lem over a binary image. The details of contour extraction
scheme are summarized as follows.

1. Finding the initial contour:To find the initial contour
inside a bounding box, two probes are carried out to es-
timate the object’s shape. The first one is performed by
horizontal scan. We first create a binary image, called
X , with the same dimension as the bounding box’s and
set all its pixel values to 0. The probe is executed row
by row, starting from the first one. Each row is scanned
simultaneously using two pointers at the two ends xL
and xR (see Figure 2(b)). Each pointer will continue
to move toward the center until it reaches a foreground
pixel or the two pointers meet each other. When a row
scan is completed, we check if there are any pixels in
between the two pointers (including the two pointers),
then set the pixels at the corresponding positions inX

to 1. When the row probe is done, a dilation operation
is applied toX for robustness. The column probe can
be performed in a similar manner, and the resulting
shape will be named asY . Finally, we set the initial
contour to be the boundary of the union of two probe
sets, i.e.,

{x | φ(x, 0) = 0} = ∂(X ∨ Y ) , (3)

whereX ∨ Y = {x | X(x) = 1 or Y (x) = 1}.
Analogously, we defineX ∧ Y = {x | X(x) =
1 andY (x) = 1} (see Figure 2(e),(f)). Notice that
an initial contour yielded according to (3) will always
include the object’s silhouette.



2. Estimating the speed function:Since the curve evolu-
tion is assumed to be completed in one time step, we
only need to figure out the speed for points on the ini-
tial contour. Following a counter-clockwise order, for
eachx on the contour, its speedV (x) will be set to
0, if F (x) = 1, that is,x is a foreground pixel (see
Figure 2(b)). The other case is more complicated that
one needs to check whetherx is on a vertical edge or
a horizontal one. Supposex = (x, y)t is on a vertical
edge. Then its speed will be defined as

V (x) = min{|x − xi| | (xi, y)t ∈ ∂(X ∧ Y )}.

Likewise, forx on a horizontal edge, its speed can be
defined in a similar way. In case that there is a gap in
X ∧ Y , the above definition may not be appropriate.
However a smoothness property is imposed onV so
that if a jump inV (x) is too large thenV (x) will be
adjusted to its previous neighbor’s speed.

In all our experiments, except for few frames, the out-
comes of the shape contour extraction are quite satis-
factory, e.g., in Figure 2(g),(h), the initial contour and
the final contour are shown, respectively.

3. Tracking with Dynamical Graph Matching

After applying background/foreground separation and
shape contour extraction, every detected object is enclosed
by a shape contour. Our task is now to identify each object
by taking account of information provided by the current
image frame as well as the tracking outcome so far.

Before proceeding to discuss how the detected objects
are tracked, we need to define a representation model to
characterize an object. In our approach, each object is
represented by a probability distribution of intensity val-
ues via histogram analysis. The intensity space is divided
inton bins, and a well-defined single-valued bin assignment
functionb is defined uniquely by pixel’s intensity value as
b : x 7→ {1, . . . , n}, wherex is any pixel in an image.
Suppose now the detected shape contour of an object isC,
and the area enclosed is denoted asA(C). Then it can be
represented with the following probability distribution,

p(u) =
1

|A(C)|

∑

x∈A(C)

δ(b(x) − u) ,

whereδ is the Kronecker delta function, and it is clear that∑n

u=1 p(u) = 1.

3.1. Dynamical Graph Matching

Intuitively, it makes sense to use a bipartite graph to
model a multi-object tracking problem. When a new frame

is under investigated, what we have is the previously track-
ing history left behind and the currently detected objects.
The two classes of objects are well divided, and finding
a best matching among them is the key to determine their
identities. Thus, we classify the two classes of nodes in the
bipartite graph asprofile nodesandobject nodes, where they
correspond to the past and the present, respectively. More
precisely, both types of nodes have the same type of data
structure, calledprofileandobject, respectively , where po-
sition, intensity distribution, and dimension of its enclosing
bounding box are stored.

(a) (b) (c)

(d) (e) (f)

Figure 3. (a) End of frame f − 1. The match-
ing information is used to update the pro-
files used in frame f .(b)Beginning of frame
f . The bipartite graph only has 2 profile
nodes. (c)After contour extraction, 3 ob-
jects are detected so the graph now has 3
new object nodes. (d) A bipartite matching
is carried out. Since there is one object node
left unmatched, a profile node is created to
match it as shown in (e) and (f).

During tracking, say at the beginning of framef (for
illustration, see Figure 3), the profile nodes are constructed
first according to the tracking outcome from last frame. No-
tice that the number of profile nodes reveals how many ob-
jects are in the scene in the beginning of framef . (Later,
we will explain some of the nodes may need to be counted
according to itsmultiplicity due to interaction.) After the
foreground pixels and shape contour extraction, the num-
ber of objects currently in the scene is determined. Thus,
the same number of object nodes are created. We then use
a bipartite matching algorithm to find the best match to re-
solve the identities. If there are any unmatched object nodes



left, this implies that new objects have been detected so new
profiles will be created to track them.

For convenience, the object nodes are named in an alpha-
betical order depending on the raster order at each image
frame. To name the profile nodes, the system maintains a
non-decreasingglobal numeral counter. Each time a profile
data structure is created the counter will be increased by 1.
Since objects may enter or leave the scene indefinitely, the
number of nodes in the graph changes dynamically. How-
ever, an invariant property is always maintained that the
numbers of nodes of both types are kept the same. Dur-
ing tracking, when interactions of multiple objects cause
them to be segmented inside one single bounding box, the
corresponding object node in the graph will be represented
with a multi-person icon, and such nodes will be counted
according to their multiplicities (see Figure 5(c),(g)). In the
following, we summarize the details of the tracking via bi-
partite matching algorithm.

1. The matching cost/dissimilarity between a profile node
and an object node is measured by theKullback-
Leibler distance,

D(p(u)||q(u)) =
n∑

u=1

p(u) log
p(u)

q(u)
,

wherep(u) andq(u) are the corresponding intensity
probability distribution of the profile and object, re-
spectively. After finding the optimal bipartite match,
the position, and the dimension of every matched pro-
file are set to the same values of its corresponding ob-
ject except that its new representation model is up-
dated by averaging the intensity distributions from
each matching pair.

2. If there exist unmatched object nodes, then new pro-
files are is created for each newly detected object b

If there exist unmatched object nodes, then a new pro-
file is created for each of them, by setting all of its fea-
tures to be the same as the associated object node’s.
Note that when an object is entering the scene, the
properties of its dimension change continuously. Thus
it is appropriate to assume that an object will only be
tracked/matched when it completely enters the scene.

3. When an object leaves the scene, its corresponding
profile will become unmatched. To detect such event,
an aging tag is maintained in the profile data structure.
An aging tag will be reset to0 every time a profile is
matched to some object. However, the aging tag of an
unmatched profile will be increased by1 to indicate
the profile is about to be deleted. A profile node will
be deleted from the bipartite graph if its aging value
exceeds a threshold.

4. After finding the optimal bipartite matching, we check
all profiles to see if there are some profiles getting too
close to others. If so, this is a good indication that
interactions are likely to happen soon. Those profiles
will be marked as ”TBM” (to-be-merged). In the next
image frame, the TBM profiles will be processed sep-
arately to see if any interaction has occurred or not.
More precisely, we check every bounding box’s posi-
tion and dimension to see if it covers more than one
TBM profile significantly. In case this is true, an in-
teraction has occurred, and the number of objects in-
volved is exactly the number of profiles covered by
the bounding box. To track the objects engaged in an
interaction individually, an adaptive kernel smooth-
ing technique is used to detect the modes of the hori-
zontal projection of the distribution for the foreground
pixels inside the bounding box [1], [16]. Specifically,
we apply theiterative plug-inscheme, as suggested in
[1], to the projected distribution to find its modes. If
the number of derived modes is no less than the num-
ber of objects, then the objects are tracked separately
(see Figure 5(d),(h)). Only when insufficient modes
are detected, some of the objects will be tracked as a
whole (see Figure 5(c),(g)). The system will resume
to track these interacting objects separately when suf-
ficient modes are detected again, or they no longer take
part in the interaction.

Note that the whole process of bipartite matching must
fulfill the invariant property that the number of profiles and
bounding boxes must be kept equal. By maintaining the in-
variant property, it becomes more manageable to track ob-
jects with interactions, and yields a more stable system.

3.2. Background Change Adaption

Most background-extraction based tracking systems are
vulnerable to abrupt changes in the reference background.
Of course, it is not possible to build a tracking system to
account for all sorts of background change scenarios. We
concentrate on problems caused by objects that arealmost
stationary during the training stage, and later start to move
indefinitely.

The key idea is to integrate background differencing with
inter-frame temporal differencing. When the algorithm de-
tects a new object, and it is not matched to any of the exist-
ing profiles, if this is not due to an object entering the scene
or an object breaking from others (see Figure 5(a),(b)), it
must be caused by some object that is part of the back-
ground. To handle such events, an object of this kind will
not be processed until the object moves to a certain distance
away from its original location. This can be detected, say at
framef , when it starts to separate into two bounding boxes.
We then check the set ofmoving pixels, consisting of the



(a) (c) (e)
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Figure 4. (a) Two image frames, say frame
1 and f , of a video sequence are pasted to-
gether to show a person’s motion at frame
f . The same person on the right is cropped
from frame 1 to indicate he is originally part
of the referenced background. (b) The re-
sult of frame differencing between frame f

and the reference background. (c) The ab-
solute inter-frame temporal differencing be-
tween frame f and f −1. (d) The moving pixels
are obtained by an intersection of (b) and (c).
(e) The object has been detected. (f) The
background referencing indicates that the
reference background has been updated.

intersection between the background differencing and the
absolute temporal differencing between framef − 1 and
f (see Figure 4). Only the bounding box containing more
moving pixels should be kept, and a profile will be gener-
ated to match it. It is because that the deleted bounding
box is caused by the background change. To adapt to the
background change, for each pixelpj,k inside the deleted
bounding box of framef , the corresponding reference mean
µj,k will be set topj,k’s intensity value, andσ2

j,k set to0.
In the following frames, we have to re-train the mean and
variance for eachpj,k inside this region using the iterative
training rules (1). However, it is not required to wait until
the re-training process to complete for the system to extract
foreground pixels in the region. In our experiments, the sys-
tem starts to extract foreground pixels only 2 frames after
the reference background has been updated, and the results
are fairly good.

4. Experimental Results and Discussion

We have presented a tracking system using shape con-
tour extraction and dynamical graph matching. Overall, the
approach is effective and promising. Our system runs com-
fortably at 20fps on a P-III 1GHz PC. For illustration, two
sets of tracking results are provided. The first is to demon-
strate that the tracker can deal with interactions. The second
is to show that it works reliably even when there are signifi-
cant changes in the reference background. We are currently
investigating into adding other possible profile features to
assure the tracker’s performance, and extending the algo-
rithm for tracking via a non-static camera.
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