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ABSTRACT

In this paper we present a method for recovering the refleetan
properties of all surfaces in a real scene from a sparse getmf
tographs, taking into account both direct and indirechilination.
The result is a lighting-independent model of the scenetarge
etry and reflectance properties, which can be rendered with a
bitrary modifications to structure and lighting via tradital ren-
dering methods. Our techniqgue models reflectance with a low-
parameter reflectance model, and allows diffuse albedoryoarai-
trarily over surfaces while assuming that non-diffuse ektearistics
remain constant across particular regions. The methogistiis a
geometric model of the scene and a set of calibrated highrdina
range photographs taken with known direct illumination.eTdi-
gorithm hierarchically partitions the scene into a polyglomesh,
and uses image-based rendering to construct estimategtofhe
radiance and irradiance of each patch from the photogragtdtia.
The algorithm computes the expected location of specuigin-hi
lights, and then analyzes the highlight areas in the imagesii
ning a novel iterative optimization procedure to recover diffuse
and specular reflectance parameters for each region. | #stise
parameters are used in constructing high-resolution stffalbedo
maps for each surface.

The algorithm has been applied to both real and syntheta, dat
including a synthetic cubical room and a real meeting roore- R
renderings are produced using a global illumination systexter
both original and novel lighting, and with the addition ohélyetic
objects. Side-by-side comparisons show success at preglitie
appearance of the scene under novel lighting conditions.
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1 Introduction

Computer graphics is being increasingly used to visuakzé ob-
jects and environments. Applications in entertainmenthidec-
ture, interior design, virtual reality, and digital musesiiwiten re-
quire that aspects of the real world be rendered realigyidadm
novel viewpoints and/or under novel illumination. For exden
one would want to see how a room in a house would look like with
different lighting, or how a statue would look at various ésnof
day in a different wing of a museum. Lastly, one might want to
realistically render a film location in different lightingnd add in
digital props and characters, with the expectation thatéheered
results would be the same as what would have happened had it al
been for real.

Work in image-based modeling and rendering e.g. [18, 3, 22,
19, 12, 9, 6, 29]) has shown that photographs of a scene can be
used along with geometry to produce realistic renderingslif
fuse scenes under the original lighting conditions. Howegleal-
lenges remain in making modifications to such scenes. Whitthe
changing the geometry or changing the lighting, generagimgw
rendering requires re-computing the interaction of lighttmthe
surfaces in the scene. Computing this interaction requinesv-
ing the reflectance properties (diffuse color, shininess) ef each
surface. Unfortunately, such reflectance property infdiomes not
directly available from the scene geometry or from photpgsa

Considerable work (e.g. [32, 16, 5, 27, 21]) has been dons-to e
timate reflectance properties of real surfaces in laboyagettings
from a dense set of measurements. However, reflectancerpespe
of real scenes are usually spatially varying, and typicaltgnge
with use and age, making priori laboratory measurements im-
practical. It would clearly be preferable to estimate thitertance
properties of an entire scene at once, with the surfaceg lilgimi-
natedin situ rather than as isolated samples, and from a relatively
sparse set of photographs. This is difficult for two reasons.

The first is that we wish to use only a sparse set of photographs
of the scene, rather than exhaustively photographing epeimt
of every surface from a dense set of angles. With such a set of
photographs, we can expect to observe each surface pomt fro
only a small number of angles. As a result, there will be tatbeli
data to determine fully general bi-directional reflectandcstribu-
tion functions (BRDFs) for each surface. We address thiblpro
in two ways. First, we limit ourselves to recovering low-pareter
reflectance models of the surfaces in the scene. Second,-we as
sume that the scene can be decomposed into areas with redated
flectance properties. Specifically, we allow the diffuseaetfince,
or albedq of the object to vary arbitrarily over any surface; the es-
timated albedo is computed as an image calledlaado map. In
contrast, we require that the directional reflectance piagee(such
as specular reflectance and roughness) remain constaneaskr
area. In this work, such areas are specified as part of thegfepm

1The commonly used terrtexture mapis sometimes used to refer to
this same concept. However, texture maps are also sometiseesto store
surface radiance information, which is not lighting-indagent.
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recovery process.

The second problem we face is that in a real scene, surfadles wi
exhibit mutual illumination. Thus, the light that any pattiar sur-
face receives will arrive not just from the light sourcest biso
from the rest of the environment through indirect illumioat As
a result, the incident radiance of an observed surface isrplex
function of the light sources, the geometry of the scene, thed
as-yet-undetermined reflectance properties of all of tees’s sur-
faces. In this work, we use radiance data from photograpks an
image-based rendering to estimate the incident radiantesre
faces in the scene. This allows us to estimate the reflectaioge
erties of the surfaces in the scene via an iterative optitiozgro-
cedure, which allows us to re-estimate the incident radiandVe
refer to this procedure asverse global illumination

Addressing these two problems makes it possible to robuestly
cover reflectance parameters from the limited radiancerimétion
present in a sparse set of photographs, and the accommuslatio
made are appropriate for a wide variety of real scenes. Eveanw
they are not met, the algorithm will compute the reflectanupp
erty parameters that best fit the observed image data, whitlany
cases can still yield a visually acceptable result.

The input to our algorithm is a geometric model of the scene, a
set of radiance maps taken under known direct illuminatan
a partitioning of the scene into areas of similar non-défug-
flectance properties. The algorithm outputs a set of higlattgion
albedo maps for the surfaces in the scene along with thedusge
reflectance properties, yielding a traditional materiaséd model.
This output is readily used as input to traditional rendgratgo-
rithms to realistically render the scene under arbitragiting con-
ditions. Moreover, modifications to the scene’s lightingl @@om-
etry and the addition of synthetic objects is easily accishphd
using conventional modeling methods.

Reflectance
Properties

Inverse Global
lllumination

Global Radiance

Maps

lllumination
Radiance
Maps

Figure 1:Overview of the Method This figure shows the relation-
ship between global illumination and inverse global illuration.
Global illumination uses geometry, lighting, and reflectarprop-
erties to compute radiance maps (i.e. rendered images)iraetdse
global illumination uses geometry, lighting, and radianoaps to
determine reflectance properties.

Reflectance
Properties

1.1 Overview

The rest of this paper is organized as follows. In the nexti@ec
we discuss work related to this paper. Section 3 desciibesse
radiosity, a stepping stone to the full algorithm which considers
diffuse scenes. Section 4 presents a technique for recyegec-
ular reflectance properties for homogeneous surfaces denirsj
direct illumination only. Section 5 describes how these tewch-
nigues are combined to produce our inverse global illunbmeadl-
gorithm. Section 6 completes the technical discussion Isgrite
ing how high-resolution albedo maps are derived for theama$

in the scene. Section 7 presents reflectance recovery sdguiih

both real and synthetic data, a description of our data aden,
and synthetic renderings which are compared to real phapbg:
Section 8 presents some conclusions and avenues for futuke w

2 Background and Related Work

The work we present in this paper has been made possible Wiy pre
ous work in BRDF modeling, measurement and recovery, gegmet
acquisition, image-based rendering, and global illuniamat

In graphics, there is a long history of modeling surface re-
flectance properties using a small number of parametereriReé
forts in this direction include models introduced in [14, 28, 17].
These models have been shown to yield reasonable apprasimsat
to the reflectance properties of many real materials, ang lihge
been used to produce realistic renderings.

On the other hand, considerable recent work has presentiéd me
ods for measuring and recovering the reflectance propedies
materials using imaging devices. [32] and [16] presentath-te
niques and apparatus for measuring reflectance properiigad-
ing anisotropic reflection. [5] measured directional retece
properties of textured objects. [27] and [21] showed théuseé
and specular reflectance properties could be recovered rfratti-
ple photographs of an object under direct illumination.][R&ov-
ered reflectance properties of isolated buildings undeligtatyand
was able to re-render them at novel times of day. [7] estithata-
terial properties of parts of a scene so that they could vecghad-
ows and reflections from synthetic objects. [10, 20] used deho
of the scene and forward radiosity to estimate diffuse albdd in-
teractively modify the scene and its lighting. Although onaltillu-
mination has been considered in the problem of shape frodirsipa
[23], it has not yet been fully considered for recovering 1tliffuse
reflectance properties in real environments. A survey ofesaf
the methods is in Marschner [21].

Certain work has shown that changing the lighting in a scene
does not necessarily require knowledge of the surface tefiee
properties — taking linear combinations of a large set ofsms-
ages [24, 35] can yield images with novel lighting condition

Recent work in laser range scanning and image-based model-
ing has made it possible to recover accurate geometry ofvedd
scenes. A number of robust techniques for merging multiphee
images into complex models are now available [34, 30, 4, 27].
For architectural scenes involving regular geometry, sbtpho-
togrammetric techniques requiring only photographs cao he
employed. The model used in this research was constructed us
such a technique from [9]; however, our basic technique earsied
regardless of how the geometry is acquired.

Work in global illumination (e.g. [11, 15, 31, 37]) has pracl
algorithms and software to realistically simulate lighdrisport in
synthetic scenes. In this work we leverage the hierarctsichti-
vision technique [13, 1] to efficiently compute surface dieance.
The renderings in this paper were produced using GregorydWar
Larson’s RADIANCE system [33].

Photographs taken by a camera involve nonlinearities frioen t
imaging process, and do not have the full dynamic range df rea
world radiance distributions. In this work we use the higimayic
range technique in [8] to solve these problems.

3

Most real surfaces exhibit specular as well as diffuse réflecRe-
covering both diffuse and specular reflectance models samet
ously in a mutual illumination environment is complicatéd.this
section, we consider a simplified situation where all s$ain an
environment are pure diffuse (Lambertian). In this case global
illumination problem simplifies considerably and can beateel in

Inverse Radiosity
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Figure 2: (a) The lighting and viewing directions at diffetgoints on a surface are different with respect to a fixekitlgpurce and a fixed
viewpoint. This fact can be used to recover a low-parameRIDB model for the surface from a single imagg’s and H;’s are the normals
and halfway vectors between lighting and viewing directian different locations on the surface. We can infer thafaserpointP, with

normaln. is close to the center of the highlight, and poifit with normaln, is relatively far away from the center. (b) An example of an
isotropic specular highlight, (c) An example of an anispicasspecular highlight.

the radiosity framework [28]. We defiraverse radiosityas recov-
ering the diffuse albedo at each surface patch in the envieon,
provided that the geometry, the lighting conditions andrdtBance
distribution in the scene are known. In the next section wi wi
discuss another simple case — recovering more general tagfles
models with specularity considering only direct illumiiwst — and
we address the full problem in Section 5.

ous that the 2-dimensional set of measurements for a sisgfe c
erallight source pairing is inadequate to do this in geneirdw-
ever for many materials it is possible to approximate the BRD
adequately by a parameterized BRDF model with a small number
of parameters (e.g. Ward [32], Lafortune [17], He [14] etd)e

use Ward’s parameterization in which the BRDF is modeledhas t
sum of a diffuse termé< and a specular terp; K (o, ©). Here

In the radiosity framework [28], the surfaces in the enviramt pa andp, are the diffuse and specular reflectance of the surface, re-
are broken into a finite number of patches. The partitionsgs- spectively, and< («, ®) is a function of vecto®, the azimuth and
sumed to be fine enough that the radiosity and diffuse albédo o elevation of the incident and viewing directions, and paeterized
each patch can be treated as constant. For each such patch, by a, the surface roughness vector. For anisotropic surfackas

3 components; for isotropic surfaces has only one component

B, = E; + p: Z B;F; 1) and reduces to a scalar. The precise functional fori o, @) in
— the two cases may be found in Appendix 1.

! This leads us to the following equation for each surfacetpBin
whereB;, E;, andp; are the radiosity, emission, and diffuse albedo, iy
respectively, of patch, andF;; is the form-factor between patches Li=(=+p;K(a,9,))I; (2
i andj. The form-factorF;; is the proportion of the total power T
leaving patchi that is received by patclj. It can be shown that
this is a purely geometric quantity which can be computethftioe

known geometry of the environment [28]. . . isotropic or anisotropic model for the specular term we havetal
We take photographs of the surfaces, including the lightcszs) of 3 or 5 unknown parameters, while there are as many constrai
and use a high dynamic range image technique [8] to captere th ing equations as the number of pixels in the radiance imageeof

radiance distribution. Since Lambertian surfaces havéormidi- surface patch. By solving a nonlinear optimization problEee
rectional radiance distributions, one camera positionfiicent for Appendix 1 for details), we can find the best estimatp gps, .
each surface. TheB; and F; in Eqn. (1) become known. Form- There are two important subtleties in the treatment of tipis o
factors F;; can be derived from the known geometry. Once these timization problem. One is that we need to solve a weighted

are donep; = (B; — E;)/()_, B;Fi;). The solution to inverse |east squares problem, otherwise the larger values fronfitjte
radiosity is so simple because the photographs capturenthlesf- light (with correspondingly larger noise in radiance measients)
lution of the underlying light transport among surfaces. cause a bias in parameter estimation. The second is the us®of
information which needs to be done differently for dielextrand
. . metals. Both of these issues are discussed in Appendix 1.
4 R_ecove”ng_ Par_ameterlzed BRDFs from To obtain an obvious global minimum for this optimizatiompr
Direct Illumination lem and achieve robust parameter recovery, the radiancgeima
should cover the area that has a specular highlight as webhag
area with very low specular component. If the highlight issing,
we do not have enough information for recovering speculeapa
eters, and can only consider the surface to be diffuse.

whereL;, I, and®; are known, and the parameters,ps, o are
unknowns to be estimated. Depending on whether we are using a

Before tackling the general case of reflectance recovem fiho-
tographs of mutually illuminated surfaces with diffusedspecular
components, we study another special case. Consider & sagl
face of uniform BRDF which is illuminated by a point light sce
in known position and photographed by a camera, also in a know . . .
geometric position with respect to the surface(Fig. 2). riyexel S5 Recovering .ParamEten_Zed BRDFs in a
in the radiance image provides a measurement of radianoéthe Mutual [lumination Environment
corresponding surface poif%; in the direction of the camera, and
the known light source position lets us calculate the iaade!;
incident on that point.

Our objective is to use these ddtk;, I;) to estimate the BRDF
of the surface. Since the BRDF is a function of four varialjbes
imuth and elevation of incident and viewing directions)sitobvi-

We are now ready to study the general case when the envirdnmen

consists of a number of surfaces and light sources with tHaca

reflectances allowed to have both diffuse and specular coenis.
Consider a poinf; on a surface patch seen by caméta(Fig.

3). The radiance fron®; in the direction of the camera is the re-
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Figure 3: Patch; is in the radiance image captured by cam@ra
The specular component &t; in the direction of sample poin®;
is different from that in the direction of came€a.. The difference
is denoted byA S.

flection of the incident light contributed by all the lightisaes as
well as all the surrounding surfaces. Eqn. (2) generaliaes t

Le,p, = Ec,p; + pa Z]- Lp;a;Fp; 4

3)
+ps Zj Lp,a;Ko,p;a;,

where L¢, p, is the radiance value in the direction of caméra
at some sample poirf®; on the surfaceE¢, p; is the emission in
the direction of camer&’,, L, 4, is the radiance value along the
direction from patchA; to point P; on the surfacefF'p, 4, is the
analytical point-to-patch form-factor [2] between sampt@nt P;
and patchd;, andps K¢, p; 4; is the specular term evaluatedat
for a viewpoint at camer&’, and a light source position at patch
Aj. The argumentsx and®, of K have been dropped to simplify
notation.

As before, our objective is to estimaje;, ps, and specular
roughness parameters. Of the other variables in Egn. (3),
Ec,p, = 0 for nonsources, and.c, , can be measured directly
from the radiance image at camefa. In general, the radiances
Lp, 4; cannot be measured directly but have to be estimated iter-
atively. Suppose patcH; in the environment appears in another
radiance image taken by cameFa(Fig. 3). Only if we assumel;
is Lambertian, doeg. p, 4, in Eqn. (3) equalLc, 4,, the radiance
from A; to cameraC),. Otherwise, the diffuse components will be
equal, but the specular components will differ.

Lp,a; = Loy a; + AScypa; (4)
Here ASc, p,a; = Sp,a; — Sc, 4, is the difference between the
specular componentSp, 4; andSc, a; of the radiances in the two
directions. To compute the specular differenc®Sc, p, 4,, We
need the BRDF of4;, which is initially unknown. The estima-
tion of AS (Section 5.1) therefore has to be part of an iterative
framework. Assuming that the dominant component of refrezga
is diffuse, we can initialize the iterative process witts = 0 (this
setsLp,a; = Loy ;).

To recover BRDF parameters for all the surfaces, we need radi
ance images covering the whole scene. Each surface patds nee
to be assigned a camera from which its radiance image istedlec
At least one specular highlight on each surface needs todialevi
in the set of images, or we will not be able to recover its sfgcu
reflectance and roughness parameters. Each sample pastayiv

For each camera position C
For each polygon T
For each light source O
Obtain the intersection P between plane of T and line CO
(O’ and O are symmetric about T);
Check if P falls inside polygon T;
Check if there is any occlusion between P and O;
Check if there is any occlusion between C and any point
in a local neighborhood of P;
/* A highlight area is detected if P passed all the above t#s
End

Figure 4: The specular highlight detection algorithm.

equation similar to Egn. (3). From these equations, we causea
weighted least-squares problem for each surface as in Alpoén
During optimization, we need to gather irradiance at eachpda
point from the surface patches in the environment. One effici
way of doing this is to subdivide each surface into a hienarch
patches [13, 1] and link different sample points to patchekfir-
entlevels in the hierarchy. The solid angles subtendedélinked
patches at the sample points should always be less thanaipess
threshold. There is a radiance value from the patch to thepkam
point and aA S associated with each hierarchical link.

For each sample point, we build hierarchical links to a large
number of patches, and gather irradiance from these linkse T
amount of memory and computation involved in this procesgs
the number of samples for each highlight area. To make a rea-
sonable tradeoff, we note that irradiance from indirectriiination
caused by surrounding surfaces generally has little hightfency
spatial variation. Because of this, it makes sense to drawsits
of samples, one sparse set, and one densé detr the samples
in the sparse set, we build hierarchical links and gathadiemce
from the environment as usual. For the samples in the dense se
only their irradiance from light sources is computed exgiictheir
irradiance from indirect illumination is computed by inpetation.

We are now ready to state the complete inverse global illumi-
nation algorithm. First detect all specular highlight Bdfalling
inside the radiance images using knowledge of the positibitise
light sources, the camera poses, and the geometry (Fig.e4th&
initial AS associated with each hierarchical link to zero. We can
then recover an initial estimate of the BRDF parameters &mhe
surface independently by solving a series of nonlineamnaigttion
problems. The estimated specular parameters are used &beupd
all AS’s and Lp, 4;'s associated with the hierarchical links. With
the updated incident radiances, we can go back and re-¢stthe
BRDF parameters again. This optimization and update psoises
iterated several times to obtain the final solution of the BREor
all surfaces. The overall algorithm is shown in Fig. 5.

5.1 Estimation of AS

Suppose there is a hierarchical lihk 4, between a sample point
P; and a patchd; which is visible to a camer@), (Fig. 6). TheAS
for Ip, 4, is defined to be the difference of the specular component

in directionsA; P; and A, Cy,. To estimate this difference, we need
to obtain the specular component along these two directiven
the BRDF parameters of patch;. A one-bounce approximation
of AS for link Ip, 4, can be obtained by using Monte Carlo ray-
tracing [32]. Because of off-specular components, mudtiglys

2We choose the two sets of samples as follows. We first find theece
of the highlight area in the image plane and rotate a straiigtaround this
center to a number of different positions. The dense setropfes is the set
of points on the surface corresponding to all the pixels @s¢hlines. We
choose the sparse set of samples on each line by separatimghsecutive
samples by some fixed distance in the object space.
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Detect specular highlight blobs on the surfaces.
Choose a set of sample points inside and around each highlig

area.
Build hierarchical links between sample points and patahéise
environment and use ray tracing to detect occlusion.
Assign to each patch one radiance image and one averagaced
value captured at the camera position.
Assign zero toA S at each hierarchical link.
Foriter=1to N ) )
For each hierarchical link,
use itsA S to update its associated radiance value;
For each surface,
optimize its BRDF parameters using the data
from its sample points;
For each hierarchical link,
estimate itsA S with the new BRDF parameters.

=

a

End

Figure 5: Thenverse Global llluminatioralgorithm.

Figure 6: Random rays are traced around the two cones tanodtai
one-bounce approximation dfS.

should be traced and the direction of the rays is randomiraahal

the mirror directions of4; P; and A;Cy, respectively. For each
possible ray direction, the probability density of shogtimray in

that direction is proportional td( («;, ®) where® encodes the
incident and outgoing directions. Intuitively, most of ttagys fall
inside the two cone§p, 4; andQc, a; centered at the two mir-
ror directions. The width of each cone depends on the specula
roughness parametets; of patch A;. The radiance along each
ray is obtained from the patch hit by the ray. SuppﬁsgDiAj and
LQc, a, are the average radiance values of the rays around the two
cones, respectively, ang, A is the specular reflectance of patch
Aj. Because the average value of Monte Carlo sampling approxi-
mates the total irradiance modulated&yaj, ®), AS can simply

be estimated ag: , (Lqp, A, —Lacy, 4, ). This calculation could

be extended to have multiple bounces by using path tracird; [1
we found that the one-bounce approximation was adequataufor
purposes.

5.2 Practical Issues

We do not have a formal characterization of the conditiondean
which the inverse global illumination algorithm converges of
error bounds on the recovered BRDF parameter values. Itipeac
we found it worked well (Section 7). Here we give some heigrist
advice on how to acquire images to obtain good performance.

e Use multiple light sources.A specular highlight directly

ity that this can be achieved, and lets the whole scene eceiv
more uniform illumination. This also increases the rekativ
contribution of the diffuse component at any particular sam
ple point P;, and supports th\S = 0 initialization, since
highlights from different sources will usually occur atfdif

ent locations on the surface.

Use concentrated light sourcel$.the incoming radiance dis-
tribution is not very directional, the specular highlightsl be
quite extended and it will be difficult to distinguish the spe
ular component from the diffuse one.

6 Recovering Diffuse Albedo Maps

In the previous sections, we modeled the reflectance piepeas
being uniform for each surface. In this section, we contitougo so
for specular parameters because a small number of viewscbf ea
surface does not provide enough information to reliablyneste
specular parameters for each point individually. Howewerrelax
this constraint on diffuse albedo and model it as a spatialying
function, analbedo mapon each surface. The diffuse albedo for
any pointz on a surface is computed as:

pa(x) = wD(z)/1(x) ©)

wherep, () is the diffuse albedo ma@)(z) is the diffuse radiance
map, and/ (z) is the irradiance map.

Suppose there is an image covering the considered surfach wh
gives aradiance map(z) = D(z)+ S(z) whereS(z) is the spec-
ular radiance map seen from the image’s camera positiom e
diffuse radiance map in Eqn. (5) can be obtained by subtmgcti
the specular component from each pixel of the radiance f(ap
using the specular reflectance parameters already recbvéhie
estimate the radiance due to specular reflection as the sspeof
ular reflection due to direct and indirect illumination. Tégecular
reflection due to direct illumination is computed from theokut-
edge of the direct lighting and the estimated reflectancpepties,
and we estimate the indirect specular reflectance by treiper-
turbed reflected ray into the environment in a manner sinhilainat
in Section 5.1.

The irradiancd () can be computed at any point on the surface
from the direct illumination and by using analytical pototpatch
form-factors [2] as in previous sections of this paper. Fficiency,
we compute the irradiance due to the indirect illuminatioyaat
certain sample points on the surfaces, and interpolate thegect
irradiance estimates to generate estimates for all sugao#s x.

Of course, care must be taken to sufficiently sample theiaren
in regions of rapidly changing visibility to the rest of theeme.

Something that complicates estimating diffuse albedosis t
manner is that in highlight regions the specular componétie
reflectanceS(z) will be much larger than the diffuse component
D(z). As aresult, relatively small errors in the estimated:) will
cause large relative errors in(x) and thug,(z). However, just as
a person might shift her view to avoid glare while reading avimo
poster, we make use of multiple views of the surface to sdiie t
problem.

Suppose at a pointon a surface, we have multiple radiance val-
ues{Ly(z)},_, from different images. The highest value in this
set will exhibit the strongest specular component, so welsime-
move this value from consideration. For the remaining v&uee
subtract the corresponding specular estima&ig&e) from the ra-
diance valued ;. (), to obtain a set of diffuse radiance estimates
Dy (x). We compute a final diffuse radiance componBit:) as a
weighted average of thB, (x), with weights inversely proportional

caused by one of the light sources should be captured on eachto the magnitude of the estimated specular compon8pts) to

surface. Having multiple light sources increases the fibba

minimize the relative error ilD(z). We also weight theD;, ()
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values proportionally to the cosine of the viewing anglehaf tam-
era in order to reduce the influence of images at grazing angle
such oblique images typically have poor texture resolutind ex-
hibit particularly strong specular reflection. Since we eoenbin-
ing information taken from different images, we smooth sitions
at image boundaries using the image blending techniqud.in [9
Once diffuse albedo maps are recovered, they could be used t
separate the diffuse and specular components in the spéiglhe
light areas. This would allow recovering more accurate sfae@a-
rameters in the BRDF model. In practice, however, we havadou
good estimates to be obtained without further refinements.

7 Results

7.1 Results for a Simulated Scene

We first tested our algorithm on a simple simulated cubicahro
with mutual illumination. This allowed us to verify the acaay
of the algorithm and compare its results to ground truth. tAd
six surfaces of the room have monochromatic diffuse andudpec
components, but each one has a distinct set of parametezks.oEa
the surfaces has spatially uniform specularity. We assigwe sur-
faces to be anisotropically specular and added 10-20% zesmm
white noise to the uniform diffuse albedo of two surfacesito-s
ulate spatial variations. We used the RADIANCE rendering- sy
tem [33] to produce synthetic photographs of this scene. oBix
the synthetic photographs were taken from the center of the c
with each one covering one of the six surfaces. Another seixof
zoomed-in photographs were taken to capture the highlighasa
The scene was illuminated by six point light sources so thets-
lar highlights could be observed on each surface. Theseévirei-
ages along with the light source intensity and positionsawsed to
solve the BRDF parameters. The images of the specular bighli
are shown in Fig. 2(b)-(c). Some of the highlights are vilguatry
weak, but corresponding parameters can still be recoveneten
ically. The original and recovered BRDF parameters arergine
Table 1. For the last two surfaces with noisy diffuse albeitie,
recovered albedo values are compared to the true averagesval
The total running time for BRDF recovery is about half an honr
a SGIO, 180MHz workstation.

The numerical errors shown in Table 1 are obtained by com-
paring the recovered parameters with the original ones.reThee
three sources of error: BRDF modeling error, renderingreand
BRDF recovery error. BRDF modeling error comes from the in-
ability of a given BRDF model to capture the behavior of a real
material. By using the same model for recovery that RADIANCE
uses for rendering, BRDF modeling error was eliminated ffiis t
test. However, because RADIANCE computes light transpalst o
approximately, rendering error is present. We thus canetére
mine the exact accuracy of our BRDF recovery. However, the te
demonstrates that the algorithm works well in practice.

7.2 Results for a Real Scene

In this section we demonstrate the results of running owrétgm

| [ pa [ ps [ au(a) [ ay [+ |
True 0.3 0.08 0.6 0.03 0
Recovered| 0.318296 | 0.081871| 0.595764 | 0.030520| -0.004161
Error(%) 6.10 2.34 0.71 1.73

True 0.1 0.1 0.3

Recovered| 0.107364 | 0.103015| 0.300194

Error(%) 7.36 3.02 0.06

True 0.1 0.01 0.1

Recovered| 0.100875| 0.010477 | 0.101363

Error(%) 0.88 4.77 1.36

True 0.3 0.02 0.15

Recovered| 0.301775| 0.021799| 0.152331

Error(%) 0.59 8.90 1.55

True 0.2 0.05 0.05

Recovered| 0.206312 | 0.050547 | 0.050291

Error(%) 3.16 1.09 0.58

True 0.2 0.1 0.05 0.3 45
Recovered | 0.209345 | 0.103083 | 0.050867 | 0.305740 | 44.997876
Error(%) 4.67 3.08 1.73 1.91

Table 1. Comparison between true and recovered BRDF parame-

ters for the six surfaces of a unit cube. The first and lasiased
have anisotropic specular reflection. They have two morarpear

ters: second roughness parametgrand the orientatiory of the
principal axes in a local coordinate system. The errors share
the combined errors from both rendering and recoveringestag

7.2.1 Data Acquisition

We illuminated the scene with three heavily frosted 3-in@md
eter tungsten light bulbs. Using high dynamic range phatoly,

we verified that the lights produced even illumination inditec-
tions. A DC power source was used to eliminate 60Hz intensity
fluctuations from the alternating current power cycle.

We used a Kodak DCS520 color digital camera for image acqui-
sition. The radiance response curve of the camera was nexbve
using the technique in [8]. We used a wide-angle lens with a 75
degree field of view so that we could photograph all the sedan
the scene from a few angles with a relatively small numbehofs
Forty high dynamic range radiance images, shown in Fig. Tewe
acquired from approximately 150 exposures. Twelve of thages
were taken specifically to capture specular highlights afases.

The radiance images were processed to correct for radiat lig
falloff and radial image distortion. Each of these correct was
modeled by fitting a polynomial of the forin+ ar? + br? to cali-
bration data captured with the same lens settings useddmdine
images. To reduce glare and lens flare, we shaded the lens from
directly viewing the light sources in several of the imagd®e-
gions in the images corresponding to the light stands (whieh
did not model) or where excessive remaining glare was appare
were masked out of the images, and ignored by the algorithme. T
thin cylindrical light stands which appear in the synthegader-
ings have been added to the recovered model explicitly.

The radiance images were used to recover the scene geometry
and the camera positions (Fig. 8) using the Facade [9] rmaylel
system. Segmentation into areas of uniform specular rafieet
was obtained by having each polygon of each block in the model
(e.g. the front of each poster, the surface of each whitehdae top
of each table) have its own uniform specular reflectancenpaters.

The positions and intensities of the three light sourcesewer
covered from the final three radiance images. During BRDF re-

on areal scene. The scene we chose is a small meeting room withcovery, the area illumination from these spherical lightrses was

some furniture and two whiteboards; we also decorated thero
with colored cards, posters, and three colored metalliesgh
Once the BRDFs of the materials were recovered, we were able t
re-render the scene under novel lighting conditions antl adided
virtual objects.

3The spheres were obtained from Baker's Lawn Ornaments, BT(nB
Plank Road, Somerset PA 15501, (814) 445-7028.

computed by stochastically casting several rays to eadtteou

7.2.2 BRDF Recovery

Given the necessary input data, our program recovered tifecsu
BRDFs in two stages. In the first stage, it detected all thé-hig
light regions and recovered parametrized BRDFs for theasad.
In this stage, even if a surface had rich texture, only anagedif-
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| | pa(red) | pa(green) | pa(blue) | ps(red) [ p.(green) | p(blue) | o |

whiteboard | 0.5794 | 0.5948 0.6121 | 0.0619| 0.0619 0.0619 | 0.0137
roundtable top| 0.7536 | 0.7178 0.7255 | 0.0366 | 0.0366 0.0366 | 0.0976
door 0.6353 | 0.5933 0.5958 | 0.0326 | 0.0326 0.0326 | 0.1271
wall 0.8543 | 0.8565 0.8036 | 0.0243| 0.0243 0.0243 | 0.1456
poster 0.1426 | 0.1430 0.1790 | 0.0261 | 0.0261 0.0261 | 0.0818
red card 0.7507 | 0.2404 0.3977 | 0.0228 | 0.0228 0.0228 | 0.0714
yellow card | 0.8187 | 0.7708 0.5552 | 0.0312| 0.0312 0.0312 | 0.1515
teal card 0.4573 | 0.5951 0.5369 | 0.0320 | 0.0320 0.0320 | 0.1214
lavender card| 0.3393 | 0.3722 0.4437 | 0.0077| 0.0077 0.0077 | 0.1144
red ball 0 0 0 0.5913| 0.1862 0.3112 0
green ball 0 0 0 0.2283 | 0.3694 0.3092 0
blue ball 0 0 0 0.2570 | 0.3417 0.4505 0

Table 2: BRDF parameters recovered for the materials ingsieroom. All of them are isotropic, and most of them are madthe balls are
metallic.

fuse albedo was recovered. Surfaces for which no highliglet®
visible the algorithm considered diffuse. The second stap
the recovered specular reflection models to generate difillzedo delier contains a point light source, it casts a hard shadoural
maps for each surface by removing the specular components. the midsection of the room. The interior of the chandelieadsh

The running time for each of the two stages was about 3 hours is turquoise colored which results in turquoise shadowseurice
on a Pentium Il 300MHz PC. The results show our algorithm can spheres. A small amount of synthetic glare was added tortizige.
recover accurate specular models and high-quality difalbedo (b) shows the result of adding synthetic objects to variogations
maps. Fig. 9 shows how specular highlights on the white board in the room, including two chairs, a crystal ball, two metakés,
were removed by combining the data from multiple images. EQy and a floating diamond. In addition, a very large orange satgp
shows the albedo maps obtained for three identical posi@rsgat was placed at the back of the room. All of the objects exhitdppr
different places in the room. Although the posters wereinally shadows, reflections, and caustics. The sculpture is lavgegh to
seen in different illumination, the algorithm successfuttcovers turn the ceiling noticeably orange due to diffuse interefte. The
very similar albedo maps for them. Fig. 11 shows that therilyn video for this paper shows a fly-through of each of these scene
can remove "color bleeding” effects: colors reflected ontehite
wall from the cards on the table do not appear in the wall'tudi
albedo map. Table 2 shows the recovered specular paranagiegrs
average diffuse albedo for a variety of the surfaces in teescWe
indicated to the program that all the materials are isotrogud that
the metallic spheres only have ideal specular compofients

lier was placed above the spheres on the table. The new lights
reflect specularly off of the posters and the table. Sincectia-

8 Conclusions and Future Work

In this paper we have presented a new technique for detergini
reflectance properties of entire scenes taking into accowttal
illumination. The properties recovered include diffuséeetance
that varies arbitrarily across surfaces, and specularatefhee pa-
rameters that are constant across regions. The technikes &
input a sparse set of geometrically and photometricalljbcated
photographs taken under calibrated lighting conditiossyell as a
geometric model of the scene. The algorithm iterativelynestes
irradiances, radiances, and reflectance parameters. $hk iea
characterization of surface reflectance properties tHagisly con-
sistent with the observed radiances in the scene. We hopevtink
will be a useful step towards bringing visual spaces fromrtag
world into the virtual domain, where they can be visualizezhf
any angle, with any lighting, and with additions, deletioasd
modifications according to our needs and imaginations.

There are a few directions for future research. We wish tdyapp
our technique to more general geometrical and photometia, d
such as multispectral radiance images and geometry aechfuam
laser scanners. It would be of significant practical valubaable
to calibrate and use existing or natural illumination inaeering
reflectance properties. The algorithm should be more roioust-
rors in the geometric model, misregistration of the phoapis,
and errors in the light source measurements. It would alsofbe
theoretical value to obtain conditions under which the atgm
converges.

7.2.3 Re-rendering Results

We directly compared synthetic images rendered with ouowec
ered BRDF models to real images. In Fig. 12, we show the com-
parison under the original lighting conditions in which veek the
images for BRDF recovery. In Fig. 13, we show the comparison
under a novel lighting condition obtained by removing twathod
lights and moving the third to a new location, and adding a new
object. There are a few differences between the real andhetjot
images. Some lens flare appears in the real images of botlesigur
which we did not attempt to simulate in our renderings. We did
not model the marker trays under the whiteboards, so theidsh
ows do not appear in the synthetic images. In Fig. 13, a s§inthe
secondary highlight caused by specular reflection from thjecant
whiteboard appears darker than the one in the real imageshwhi
is likely due to RADIANCE's approximations for renderingcse
ondary specularities. However, in both figures, real andhstic
images appear quite similar.

Fig 14 shows two panoramic views of the rendered scene. (a)
shows the entire scene rendered with novel lighting. Theired
lights were removed and three track lights were virtuallgtatled
on the ceiling to illuminate the posters. Also, a strangendea
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Appendix 1. BRDF Model and Parameter
Recovery

In this appendix we present more details on the BRDF modegbdnced in Section
4, and how its parameters are recovered. We use Ward'’s [38@ghfor the specular
term in the BRDF, which could be modeled as either isotropiarasotropic. In the
isotropic case,

1 exp[— tan? §/a?]
K(a,®) = 5 (6)
\/cos 6; cos 6, dma

wherea is a scalar surface roughness parameteiis the incident angled,. is the
viewing angle, and is the angle between the surface normal and the halfway vecto
H between the lighting and viewing directioné;, 6, are two components (along
with ¢;, ¢..) of the vector® which represents the incidence and viewing directions.
In the anisotropic case, we need two distinct roughnesseteEasa,, o, for
two principal axes on the surface and an azimuth angle define the orientation of
these principal axes on the surface relative to a canonazabiinate system. Then, the
parameter vectotx actually has three componerts. , o, v) and we have:

K(a, ©) 1 exp[— tan? §(cos® ¢/az> + sin? ¢/ay?)]
a, =
' \/cos 0; cos B, Ao, oy

(7)
where/ is the same as in the isotropic case, @nid the azimuth angle of the halfway
vector H projected into the local 2D coordinate system on the surfeteh defined
by the two principal axes. To compuge ~, which relates this coordinate system to
the canonical coordinate system, is necessatry.

Now to parameter recovery. We wish to fing;, ps and a that minimize the
squared error between the measured and predicted radiance,

m

E (Li — Py, paK (o, ©:)1;)?
™

i=1

®

e(pa, ps, ) =

where L; is the measured radiance aifig is the irradiance (computable from the
known light source position) at sample popit on the surface, angh is the number
of sample points.

Note that given a guess @f, K (., ®;) becomes a known quantity, and mini-
mizing the errore reduces to a standard linear least-squares problem fonat#tigp 4
andp,. Plugging in these values in the right hand side of Eqn. (8)ds compute as
a function ofa.. The optimization problem thus simplifies to a search fordpmum
value ofx to minimizee (). This is either a one-dimensional or three-dimensional
search depending on whether an isotropic or anisotropiceinafdthe specular term is
being used. We use golden section search [26] for the iSotagse, and the down-
hill simplex method [26] in the anisotropic case. It is comest that neither method
requires evaluating the derivativé(c), and both methods are fairly robust.

To deal with colored materials, we estimate both diffuse spekcular reflectance
in each of the red, green, blue color channels. The speaughness parameters
are the same for all color channels. The nonlinear optiriumais still over 1 or 3
parameters, since givem, p, andps estimation for each channel remains a linear
least squares problem.

To make the parameter estimation additionally robust, wkent&o simple exten-
sions to the basic strategy derived above. The first is teesmlweighted least squares
problem instead of the vanilla version in Eqn. (8). Radiam@asurements from the
highlight area have much larger magnitude than those fraenntin-highlight area.
Correspondingly the error in those measurements is higbtr because of noise in
imaging as well as error in the BRDF model. Giving all the terim (8) equal weight
causes biased fitting and gives poor estimation of the diffeflectance. From a sta-
tistical point of view, the correct thing to do is to weightchaterm by the reciprocal
of the variance of expected error in that measurement. Ndihbaa good model for
the error term, we chose a heuristic strategy in which theyhtei; for thei-th term
in the summation in Egn. (8) is set tﬁ(ai_—@n wherea. is somead hocor iter-

atively improved roughness vector. Since the roughnessost isotropic materials is
less than 0.2, we used an initial value between 0.1 and Ostdara...

The second refinement to improve parameter recovery is tspseular color in-
formation. For instance, specular highlights on dieleand plastic materials have the
same color as the light source, while the color of speculginlights on metals is the
same as their diffuse components, which is the color of tife inodulated by the dif-
fuse albedo. For plastic objects, there would be one disteniablep; for each color
channel, but the same variahte for all color channels. For metallic objects, there
would be one variable, for each channel and a common ratio between the specular
and diffuse reflectance in all channels. Thus, we can recueel¢gree of freedom
from 2N to N+1 whereN is the number of color channels. For plastic, we can still
obtain both analytic and numerical linear least-squardstisas for the N+1 vari-
ables provided the other parameters are fixed. The prograforpe a heuristic test
to determine whether a material should be estimated witlmiél or plastic specular
reflectance model. Our program first solves for the specelégatance of each color
channel separately and then checks to see if they are ldrgertiie estimated diffuse
components. If they are larger, then the material is comsttimetallic. Otherwise, the
plastic model is used. Then the smaller number of parameterssponding to these
material types are solved.
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Figure 7: The complete set of forty radiance images of thenroo
used to recover reflectance properties. Except for a fewl smess,

every surface in the room was seen in at least one radianaeima. iq e 10: The dlffuse albedo maps of three posters with ainees
Each radiance image was constructed from between one and ter{egture The posters were placed %t dlfferentFI)ocatlonherst:ene
\C/iilg\llflal éﬁéﬂrgfegiﬁ%%g?e ?ggtig?\sdzvnhﬁg;:?Nrearggseagrggg dﬁna; and thus received significantly different illumination. égheless,

- ; the recovered albedo maps are nearly the same. For idefitifica
put images, and are not used by the recovery algorithm. Tte la  1hoses s small yellow gquare Wasyplaced in a differemttioe
three radiance images, reproduced ten stops darker thameshe on the lower right of each poster
intentionally image the light bulbs. They were used to recdahe '
positions and intensities of the sources. Full-resolutinages are
available in the electronic version of this paper.

Figure 8: The model of the room, photogrammetrically recede
from the photographs in Fig 7. The recovered camera positidn
the forty photographs are indicated. 25 1l |

Figure 11: The top image shows a part of a wall that becomes no-
ticeably colored from light reflecting from the cards placedthe
table below, an effect known as "color bleeding”. The bottom
age shows the recovered albedo map of the same part of the wall

=

vt I It is nearly uniform, showing that the color bleeding waspady
LT = il y accounted for. The black line has been added to indicateexther
it 2 table top abutted the wall.

\-\ Lo , !

/.4~ -
Figure 12: A comparison between real images (top) and stinthe
renderings of our room with the recovered reflectance pateise
(bottom). The simulated lighting is the same as in the oabjpic-
tures, and the synthetic viewpoints have been matched tetos-

ered camera positions of the real images. The images shdw tha
good consistency was achieved.

Figure 9: The top picture is a radiance image of a whitebasroy-
ing strong specular highlights. The bottom picture shovesdif-
fuse albedo map of the whiteboard recovered from severajésa
Unlike the radiance image, the diffuse albedo map has ayneaH
form background, and is independent of the illumination.
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Figure 13: A comparison between real and virtual, this tinith wovel lighting. Two of the lights were switched off ancetthird was moved
to a new location. In addition, a real mirrored sphere wasgadaon the red card. The scene was photographed from twadnsatnd these
real views are shown in the top row. To render the bottom rogvr@covered the camera positions and light source posititimei top views,
estimated the reflectance properties and position of therspland added a virtual sphere to the model. The main noteelfference is
lens flare; however, some inaccuracies in the model (e.gwhitboard marker tray was not modeled) are also apparetiter®ise, the
illumination of the scene and appearance and shadows oftileetic object are largely consistent.

(b) Synthetic rendering of room with seven virtual objeaisled.

Figure 14: Panoramic renderings of the room, with variousnges to lighting and geometry.
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