Automatically attaching semantic metadata to Web services

Andreas Hel3 Nicholas Kushmerick
Computer Science Department, University College Dublieland
{andreas.hess, nigi@ucd.ie

Abstract Secs. 3and 4 Sec. 2 _ Fuwurework
Emerging Web standards promise a network of het- @ @ @ @

erogeneous yet interoperable Web Services. Web S :
Services would greatly simplify the development

of many kinds of data integration and knowledge Figure 1: A Web Service’s category is dependent on the do-
management applications. Unfortunately, this vi- mains and datatypes of its operations_

sion requires that services provide large amounts
of semantic metadata “glue”. As a first step to au-
tomatically generating such metadata, we describe
how machine learning and clustering techniques
can be used to attach attach semantic metadata to

a concept in a domain taxonomy, and to assign each in-
put parameter to a concept in a data-type taxonomy

Web forms and services. 2. A Web Service is a collection of operations, and Web

. Services must be grouped into coherent “categories” of

1 Introduction services supporting similar operations. To enable the

Emerging Web standards such as WSDL [w3.org/TR/wsdl], ~ retrieval of appropriate Web Services, in Sec. 3 we de-
SOAP [w3.org/TR/soap], UDDI [uddi.org] and DAML-S scribe technigues tautomatically assign a Web Service

[www.daml.org/services] promise an ocean of Web Services, ~ t0 @ conceptin a category taxonomy

networked components that can be invoked remotely using

standard XML-based protocols. For example, significant e- 3. Finally, when Web Services are widely deployed, it may

commerce players such as Amazon and Google export Web ~ well be infeasible to agree a category taxonomy in ad-

Services giving public access to their content databases. vance. We therefore propose in Sec. 4ctoster Web
The key to automatically invoking and composing Web Services in order to automatically create a category tax-

Services is to associate machine-understandable semantic onomy

metadata with each service. A central challenge to the

Web Services initiative is therefore a lack of tools to Fig. 1 describes the relationship between the category, do-

(semi-)automatically generate the necessary metadata. \Weain and datatype taxonomies that motivate our research. In

explore the use of machine learning techniques to automatnore detail, our work can be characterized in terms of the fol

ically create such metadata from training data. lowing three levels of metadata. First, we assuntategory
The various Web Services standards involve metadata d@xonomyC. The category of a Web Service describes the

various levels of abstraction, from high-level advertigsens general kind of service that is offered. Second, we assume

that facilitate indexing and matching relevant services, t a domaintaxonomyD. Domains capture the purpose of a

low-level input/output specifications of particular opgmas. specific service operation. Third, we assumsaatypetax-

The various standards are evolving rapidly, and the dethils onomy7. Datatypes relate not to low-level encoding issues,

current standards are beyond the scope of this paper. Rathleut to the expected semantic category of a field's data.

than committing to any particular standard, we investigate Finally, the boxes in Fig. 1 indicate the actual algorithms
the following three sub-problems, which are essential a@mp that we describe in this paper. As indicated above, Sec. 2 fo-
nents to any tool for helping developers create Web Servicegyses on the domain and datatype taxonomies, while Secs. 3—
metadata. 4 focus on the category taxonomy. Note that we do not ex-
1. To automatically invoke a particular Web Service opera-ploit the additional evidence that the category gives ustfer
tion, metadata is needed to indicate the overall “domain’classification at the domain and datatype level. As part of
of the operation, as well as the semantic meaning of eacbur future work, we intend to exploit this connection, aslwel
of the operation’s input parameters. In Sec. 2, we pro-as additional evidence (eg., the data actually sent to/frem
pose tocautomatically assign a Web Service operation toWeb Service).

Pr{SEARCHBOOK] = 0.51
Pr{QUERYFLIGHT] = 0.28
Pr[FINDCOLLEGE] = 0.03

2 Supervised domain and datatype
classification

We begin by describing an algorithm for classifying HTML
forms into semantic categories, as well as assigning seémant
labels to each form field. These techniques are important as
legacy HTML interfaces are migrated to Web Services.

Problem formulation. Web form instances are structured /\ /\ /\
objects: a form comprises one or more fields, and each field
in turn comprises one or more terms. More preciselfigran , . ,
F; is a sequence dields written F; = [f}, f2,...], and each \\\\ \\\\ \\\\
field f/ is a bag oterms written f7 = [t/ (1),¢](2),.. ..

The input is set of labeled forms and fields; that is, a set . .
{Fy, Fy,...} of forms together with a domail; € D for Figure 2: The Bayesian network used to classify a Web form

each formZF;, and a datatyp@“f € 7 foreach fieldff € F;. containing three fields.
The output is a form classifier; that is, a function that maps

an u_nlabeled fornt, to a predicted_ domai; € D, and a lﬁr[t|T] = Wr(t, T)/Wx(T), whereNx(D) is the number
predicted datatyp&; < 7 for each fieldf; € Fi. of forms in the training sef with domainD; M (D) is the
total number of fields in all forms of domaii; M (T, D) is

Generative model. Our solution to the Web form classifi- the number of fields of datatyin all forms of domainD;
cation is based on a stochastic generative model of a hypdV# () is the total number of terms of all fields of datatype
thetical “Web service designer” creating a Web page to host andWx(t, T) is the number of occurrences of tetrim all

a particular service. First, the designer first selects aaiom fields of datatype.

D, € D according to some probability distributidPc[D;].

For example, in our experiments, forms for finding books

were quite frequent relative to forms for finding colleges, s Classification. Our approach to Web form classification in-
Pr[SEARCHBOOK] > Pr[FINDCOLLEGH]. volves converting a form into a Bayesian network (see Fig. 2)

. » The network is a tree that reflects the generative model: a
Second, the designer selects datatypgse T appro- root node represents the form’s domain, children represent

priate toD;, by drawing from some distributioRr[7}[D;]. the datatype of each field, and grandchildren encode thesterm
For example, presumablyr[BookTitlel SEARCHBOOK] > ;sed to code each field.

Pr[DestAirport|] SEARCHBOOK], because services for finding
books usually involve a book’s title, but rarely involve -air
ports. On the other han@®r[BookTitle] QUERYFLIGHT] <

Pr{BookTitle | SEARCHBOOK] = 0.42
Pr[Airport | SEARCHBOOK] = 0.001

Pr[BookTitle | QUERYFLIGHT] = 0.001

Pr[Airport | QUERYFLIGHT] = 0.73

datatype,

datatype,

Pr[cit1e | BookTitle] = 0.39
Prcit1e | DestAirport] = 0.02

Pr{city | BookTitle] = 0.01
Pr[city | DestAirport] = 0.47

In more detail, a Web form to be classified is converted
into a three-layer tree-structured Bayesian network as fol
. lows. The first (root) layer contains just a single naite
Pr[DestAirport| QUERYFLIGHT]. . main that takes on values from the set of domaihs The

Finally, the designer writes the Web page that implementgg.n jayer consists of one childtatype, of domain for
the form by coding each field in turn. More precisely, for eachg 41, field in the form being classified, where edatatype,
selected datatypE’, the designer uses terrjgk) drawnac- take on values from the s@t. ’

cording to some distributioRr[t] (k)|T}]. For example, pre- The third (leaf) layer comprises a set of children
sumablyPr[title[BookTitle] > Pr[city|BookTitle], be- {term! ... termX} for eachdatatype, node, whereX is
cause the ternti t| e is much more likely tharci ty to the number of terms in the field. The term nodes take on val-
occur in a field requesting a book title. On the other hand, preyes from the vocabulary s&t, defined as the set of all terms
sumablyPr[title|DestAirport] < Pr[city|DestAirport]. that have occurred in the training data.

The conditional probability tables associated with each
Parameter estimation. The learning task is to estimate the hode correspond directly to the learned parameters men-
parameters of the stochastic generative model from a set dioned earlier. That is,Pr[domain = D] = Pr(D),
training data. The training data comprises a sefNoiMeb Pr[datatype, = T|domain = D] = 15r(T|D), and
formsF = {F1,..., Fn}, where for each forn¥; the learn- Pr[term” = t|datatype, = T] = Pr(¢|T). Note that the
ing algorithm is given the domaif; € D and the datatypes congitional probabilities tables are identical for all akgpe
T of the fieldsf; € F;. nodes, and for all term nodes.

The parameters to be estimated are the domain probabili- Gjven such a Bayesian network, classifying a faFfin=
tiesPr[D] for D € D, the conditional datatype probabilities [}, f2,..] involves “observing” the terms in each field (i.e.,
Pr[T|D] for D € D andT € 7, and the conditional term setting the probabilitPr[term? =t/ (k)] = 1 for each term
probabilitiesPr[¢|T] for termt¢ andT € 7. We estimate t1(k) € f/), and then computing the maximum-likelihood

these parameters based on their frequency in the traintag da form domain and field datatypes consistent with that evi-
Pr[D] = N£(D)/N, Pr[T|D] = M#(T, D)/Ms(D), and dence.

Domain taxonomyD and number of forms for each domain of “interesting” attributes, such as & nput > tag’snane
SEARCHBOOK (44) ANDCOLLEGE (2) SEARCHCOLLEGEBOOK (17) attribute. The result isEnt er nane: namel”. Next,

QUERYFLIGHT (34) HRNDJOB (23) FNDSTOCKQUOTE (9) . . R
) . we tokenize the string at punctuation and space characters,
Datatype taxonomy (illustrative sample) ; .
— convert all characters to lower case, apply Porter’s stexgmi

Address NAdults Airline Author
BookCode BookCondition BookDetails BookEdition algom_hmy d|SC.ard StOp WOTdS, and insert a spec_lal SymbOI
Bo%kgormat BookSearchType B?Oksubject BoﬁkTitle encoding the field's HTML type (text, select, radio-button,
NChildren City Class College ‘e vi
CollegeSubject GompanyName Gountry Currency etc). This yle[ds the token sequeneaf er , nane, nama_l,
DateDepart DateReturn DestAirport DestCity TypeText]. Finally, we apply a set of term normalizations,
Duration Email EmployeeLevel ... such as replacing terms comprising just a single digitefgtt

with a special symbdbingleDigit (SingleLetter), and delet-

Figure 3: Subsets of the domain and datatype taxonomig8g leading/trailing numbers. In this example the final tesu
used in the experiments. is the sequencespt er , nane, nane, TypeText].

Evaluation. We have evaluated our approach using a col-Results. We begin by comparing our approach to two sim-
lection of 129 Web forms comprising 656 fields in total, for ple bag of terms baselines using a leave-one-out methodol-
an average of 5.1 fields/form. As shown in Fig. 3, the domairogy. For domain classification, the baseline uses a singje ba
taxonomyD used in our experiments contains 6 domains, andf all terms in the entire form. For datatype classificatithre,

the datatype taxonony comprises 71 datatypes. baseline approach is the naive Bayes algorithm over its bag

The forms were manually gathered by manually brows-of terms.
ing Web forms indices such as InvisibleWeb.com for relevant For domain prediction, our algorithm has an F1 score of
forms. Each form was then inspected by hand to assign 8.87 while the baseline scores 0.82. For datatype predic-
domain to the form as a whole, and a datatype to each field.tion, our algorithm has an F1 score of 0.43 while the baseline

After the forms were gathered, they were segmented intscores 0.38. We conclude that our “holistic” approach tator
fields. We discuss the details below. For now, it suf-and field prediction is more accurate than a greedy baseline
fices to say that we use HTML tags such<asmiput > and approach of making each prediction independently.
<t ext ar ea> to identify the fields that will appear to the While our approach is far from perfect, we observe that
user when the page is rendered. After a form has been sefprm classification is extremely challenging, due both tsao
mented into fields, certain irrelevant fields (e.g., sutnesg#t in the underlying HTML, and the fact that our domain and
buttons) are discarded. The remaining fields are then asgign datatype taxonomies contain many classes compared te tradi
a datatype. tional (usually binary!) text classification tasks.

Afinal subtlety is that some fields are not easily interpreted While fully-automated form classification is our ultimate
as “data”, but rather indicate minor modifications to eithergoal, an imperfect form classifier can still be useful in inte
the way the query is interpreted, or the output presentatioractive, partially-automated scenarios in which a humaesgiv
For example, there is a “help” option on one search servicethe domain or (some of) the datatypes of a form to be labelled,
that augments the requested data with suggestions for queand the classifier labels the remaining elements.
refinement. We discarded such fields on a case-by-case basis;Our first experiment measures the improvement in datatype
a total of 12.1% of the fields were discarded in this way. prediction if the Bayesian network is also provided as evi-

The final data-preparation step is to convert the HTMLdence the form’s domain. In this case our algorithm has an
fragments into the “form = sequence of fields; field = bagF1 score of 0.51, compared to 0.43 mentioned earlier.
of terms” representation. The HTML is first parsed into a Our second experiment measures the improvement in do-
sequence of tokens. Some of these tokens are HTML fielghain prediction if evidence is provided for a randomly chose
tags (eg.<i nput >, <sel ect >, <t ext ar ea>). Theform fractiona of the fields’ datatypes, fdr < o < 1. a = 0 cor-
is segmented into fields by associating the remaining tokengsponds to the fully automated situation in which no dataty
with the nearest field. For examplesf‘or m> a <i nput evidence is providedy = 1 requires that a person provide the

name=f1> b ¢ <textarea name=f2>d</form” datatype of every field. We observed that the domain classifi-
would be segmented a®“<i nput nanme=f 1> b” and cation F1 score increases rapidly@approaches 1.
“c <textarea name=f2> d" Our third investigation of semi-automated prediction in-

The intent is that this segmentation process will associat@olves the idea of ranking the predictions rather than requi
with each field a bag of terms that provides evidence of théng that the algorithm make just one prediction. In many
field's datatype. For example, our classification algorithmsemi-automated scenarios, the fact that the second- @k thir
will learn to distinguish labels like “Book title” that aresa ranked prediction is correct can still be useful even if thgt fi
sociated withBookTitle fields, from labels like “Title (Dr, is wrong. To formalize this notion, we calculate F1 based on
Ms, ...)" that indicatePersonTitle. treating the algorithm as correct if the true class is in the t

Finally, we convert HTML fragments likeEnt er name: R predictions as ranked by posterior probability. Fig. 4 show
<i nput nanme=nanel type=t ext si ze=20>
" the F1 score for predicting both domains and datatypes, as a
that correspond to a particular field, into the field’s bag offunction of R. R = 1 corresponds to the cases described
terms representation. We process each fragment as followsso far. We can see that relaxidgyeven slightly results in a

First, we discard HTML tags, retaining the values of a setdramatic increase in F1 score.

LF T y Category taxonomy¢ and number of Web Services for each category
00 L //Q/ i BUSINESS(22) COMMUNICATION (44) CONVERTER (43)

o oy COUNTRY INFO (62) DEVELOPERS(34) FINDER (44)
08 L i + i GAMES (9) MATHEMATICS (10) MoNEY (54)

NEws (30) WEB (39) discarded(33)
= 07k + form domain —&— -
+ field datatype - -+

ool . Figure 5: Web Service categoriés
0.5 M 4
0.4 1,)))))))) B SALCentral / UDDI

1 2 3 4 5 6 7 8 9 10 A

rank threshold R

Figure 4: F1 as a function of rank threshatd

WSDL

So far we have assumed unstructured datatype and domain
taxonomies. However, domains and datatypes exhibit a nat-
ural hierarchical structure (eg, “forms for finding someii
vs. “forms for buying something”; or “fields related to book R
information” vs. “fields related to personal details”). &ems 5 L, §
reasonable that in partially-automated settings, pretjca
similar but wrong class is more useful than a dissimilarlas "Doacoss -

To explore this issue, our research assistants converted)
their domain and datatype taxonomies into trees, creating a S\
ditional abstract nodes to obtain reasonable and compaet hi MQD‘\
archies. We used distance in these trees to measure the “qual r ¢ °
ity” of a prediction, instead of a binary “right/wrong”. For @
domain predictions, our algorithm’s prediction is on avgra
0.40 edges away from the correct class, while the basekine al
gorithm'’s predictions are 0.55 edges away. For datatype pre
diction, our algorithm’s average distance is 2.08 edgesewnhi Figure 6: Text structure for our Web Service corpus.
the baseline algorithm averages 2.51. As above, we conclude
that our algorithm outperforms the baseline.

WSDL Service

25 top level categories. As shown in Fig. 5, we then dis-

. L carded categories with less than seven instances, lea9ihg 3

3 Supervised category classification Web Services in eleven categories that were used in our ex-
eriments. The discarded Web Services tended to be quite
bscure, such as a search tool for a music teacher in an area
pecified by ZIP code. Note that the distribution after dis-
rding these classes is still highly skewed.

The previous section addressed the classification of weB
forms and their fields. We now address how to categorizé)
Web Services. Since Web Services can export more than
one operation, a Web Service corresponds loosely to a s&f
of Web forms. As described in Sec. 1, we are therefore in-
terested in classifying Web Services at the higbategory Ensemble learning. As shown in Fig. 6, the information
level (“Business”, “Games”, etc.), rather than the lowler available to our categorization algorithms comes from two
mainlevel (“search for a book”, “purchase a book”, etc.) usedsources. First, the algorithms use the Web Service de&mmipt

for classifying Web forms. in the WSDL format, which is always available to determine

a service’s category. Second, in some cases, additional de-
scriptive text is available, such as from a UDDI entry. In our
experiments, we use the descriptive text provided by SAL-
Central.org, since UDDI entries were not available. We @ars

text comes from the Web Service’s WSDL description. Un-the ort tvpes. operations and messaqes from the WSDL and
like standard texts, WSDL descriptions are highly struetur port types, op 9 : u
gxtract names as well as comments from various “documen-

Our experiments demonstrate that selecting the right set of”.. =,
features from this structured text improves the perforr’nﬁamcc{atlon tags. We do not extract standard XML Schema data
types like string or integer, or informations about the ssv

of a learning classifier. By combining different classifiérs rovider The extracted terms are stemmed. and a stop-word
is possible to improve the performance even further. IFi)st is uséd ' P

We experimented with four bags of words, denoted¥sy
Web Services corpus. We gathered a corpus of 424 Web D. The composition of these bags of words is marked in
Services from SALCentral.org, a Web Service index. Thesd-ig. 6. We also used combinations of these bags of words,
424 Web Services were classified by our assistant, a researgfhere eg.C+D denotes a bag of words that consists of the
student with no previous experience in Web Services, intalescriptions of the input and output messages. We converted

Problem formulation. We treat the determination of a Web
Service’s category as a text classification problem, wheee t

the resulting bag of words into a feature vector for supedis 80
learning algorithms, with terms weighted based on simge fr s
qguency. We experimented with more sophisticated TFIDF- 70 b
based weighting schemes, but they did not improve the re- 65 -
Sults. g 60 -

As learning algorithms, we used the Naive Bayes, SVM ¢ 5L
and HyperPipes algorithms as implemented in Wgkha Tk L Nai .}fs(/B;(;+D;+,
We combined several classifiers in an ensemble learning ap- . %" o Raive Bree(B/O D) &
proach. Ensemble learners make a prediction by voting to- w0t - — S\g&g{&/g cxe
gether the predictions of several “base” classifiers. Ersem = ‘ HyperPipes(B+C+D/CHD) - « -
ble learning has been shown in a variety of tasks to be more 0 1 2 3
reliable than the base classifiers: the whole is often greate Tolerance

than the sum of its parts. To combine two or more classifiers,
we multiplied the confidence values obtained from the multi-
class classifier implementation. For some settings, we trie

Figure 7: Classification accuracy for WSDL only.

weighting of these values as well, but this did not improve 85 o :
the overall performance. We denote a combination of differ- 80 - e :
ent algorithms or different feature sets by slashes Najve 75 L —
Bayes(A/B+C+D) denoting two Naive Bayes classifiers, one 70 b

trained on the plain text description only and one traineel on
all terms extracted from the WSDL.

65 -

Accuracy

60 F, ...~ g

We split our tests into two groups. First, we tried to find o5 /M;,:gy:mmcw; N
the best split of bags of words using the terms drawn from w0l -~ Naive Bepenh D) 2 |
the WSDL only. These experiments are of particular interest BT SV@;&QG&{&;R Cx]
because the WSDL is usually automatically generated (ex- o — | Naive Bayes(A)/SVM(A/B/C4D) - x --
cept for the occasional comment tags), and the terms that can 0 1 2 3
be extracted from that are basically operation and paramete Tolerance
names. Second, we look how the performance improves, if . o o
we include the plain text description. Figure 8: Classification accuracy for WSDL and descriptions

Evaluation. We evaluated the different approaches using he category exactly, although this is of course desirable.
uman developer would also save a considerable amount of

leave-one-out methodology. Our results show that usin ;
9y 9 work if he or she only had to choose between a small num-

classifier with one big bag of words that contains everythingber of categories. For this reason, we also report the acgura

(ie. A+B+C+D for WSDL and descriptions, dB+C+D for h i X Fias 7 and 8 show how the cl
the WSDL-only tests) generally performs worst. We included"/1€" W€ allow néar misses. Figs. 7 and s show ow the clas-
§|f|ers improve when we increase this tolerance threshald. F

these classifiers as baselines. Ensemble approaches Wwhere o D -
bags of words are split generally perform better. This is in-oug best cla§5|f|er, the correct class is in the top 3 presfisti
tuitive, because we can assume a certain degree of indepefe 70 Of the time.

dence between for example the terms that occur in the plain

text descriptions and the terms that occur in the WSDL de4 Unsupervised category clustering

scription. What is a bit more surprising is that for some set—'?\S a third approach towards our goal of automatically creat-

tings we achieve very good results if we use only a subset o .
the available features, ie. only one of the bags of words. S ng Web Services me’gadata, we explor.ed the use of unsuper-
: yésed clustering algorithms to automatically discover ske

in these cases, sometimes one part is greater than the Whomantic cateqones of a aroun of Web Services. Due to space
However, we could not find a generic rule for how to best estrictions %ve onl brigfl S?Jmmarize our ex .eriments P
split the available bags of words, as this seems to be styongf ' y y P :

dependent on the algorithm and the actual data set.

Figs. 7 and 8 show the accuracy for the ensemble classifieiS|ustering algorithms. We tested five clustering algo-
that performed best and include the classifiers that operatéthms on our collection of Web Services. First, we tried
with one overall bag of words as baselines. Note that SVMa simplek-nearest-neighbour algorithm. Hierarchical group
generally performs better than Naive Bayes, except for thewerage and complete link algorithms serve as represesgati
classifier where we used the plain text descriptions only. Arof traditional approaches. We also tried a variant of theigro
ensemble consisting of three SVM classifiers performs goodverage clusterer that we call Common-Term, and the Word-
for both the WSDL-only setting, and also when including the|C algorithm[6]. Our Common-Term algorithm differs from
descriptions. However, the best results are achieved ®roth the standard group average clustering in the way the cehtroi
combinations. document vector is computed. Instead of using all terms from

For a semi-automatic assignment of the category to a Wehll the sub-clusters, only the common terms from all sub-
Service, it is not always necessary that the algorithm ptedi clusters form the centroid.

07 Service—and it would be interesting to incorporate such ev-
idence into our algorithms. We envision a single algorithm
that incorporates the category, domain, datatype and term e
idence shown in Fig. 1. For instance, to classify all the aper
tions and inputs of a Web Service at the same time, a Bayesian

[Baseine network could be constructed for each operation, and then a

B escrtn higher-level category node could be introduced whose chil-
dren are the domain nodes for each of the operations.

Ultimately, our goal is to develop enabling technologies

that could allow for the semi-automatic generation of Web
Services metadata. We would like to use our techniques to
develop a toolkit that emits metadata conforming to Sermanti
Web standards such as DAML/DAML-S.

0.6

0.5

0.4

0.3

0.2

0.1

0 T T T T T
RND KNN wiC CT GA CcL

RND: Random; KNN: k-nearest-neighbour; WIC: Word-IC;
CT: Common-Term; GA: Group-Average; CL: Complete Link

Related Work. There has been some work on semantic
matching of Web Services (eg[3; 1]), but they require
manually-generated explicit semantic metadata.

When we actually want to simultaneously invoke multiple
The Common-Term and Word-IC algorithms have inherentsimilar Web Services and aggregate the results, we enaounte

halting criteria. For the group average and complete link al the problem of XML schema mapping (efg]).
gorithms, we used a minimum similarity between documents

as a halting criterion. As a baseline, we patrtition the WebC
Services into eleven random clusters.

Figure 9: Precision for the various clustering algorithms.

onclusions. The emerging Web Services protocols rep-
resent exciting new directions for the Web, but interoper-
ability requires that each service be described by a large
Quality Metrics for Clustering. ~ Several quality measures amount of semantic metadata “glue”. We have presented
for clustering have been proposed; $ékfor a recent survey. three approaches to automatically generating such metadat
We introduce a novel measure inspired by the well-knownand evaluated our approach on Web Services and forms.
precision and recall metrics. In previous approaches preci Although we are far from being able to automatically cre-
sion and recall have for clustering only been used on a perate semantic metadata, we believe that the methods we have
class basis. This requires that we match each cluster with Presented here are a reasonable first step. Our preliminary
specific reference class. This may cause problems, eg. whegsults indicate that some of the requisite semantic meiada
the number of clusters and reference classes differ. We moaan be semi-automatically generated using machine legrnin

ify the definitions of precision and recall to consigirsof information retrieval and clustering techniques.
objects rather than individual objects. Our precision metr

correlates well with others in the literature, and has a #mp Acknowledgments. This research was supported by grants

probabilistic interpretation. SFI/01/F.1/C015 from Science Foundation Ireland, and

Precision is equivalent to the conditional probabilityttha N00014-03-1-0274 from the US Office of Naval Research
two documents are in the same reference class given they are '

in the same cluster. Recall is then equivalent to the condi-

tional probability that two documents are in the same chJsteReferenCes

given they are in the same reference class. [1] J. Cardoso. Quality of Service and Semantic Composition of
Workflows PhD thesis, University of Georgia, 2002.

Evaluation. Fig. 9 shows the precision of the clusters gen-[2] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of
erated by the various algorithms we tried. disparate data sources: A machine-learning approacRrdao.

All algorithms outperform the baseline, but none of the al- ~ S/GMOD Conference2001.
gorithms does particularly well. This is not surprising-be [3 M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic
cause in many cases even humans disagree on the correct matchmaking of web services capabilitiesinh Semantic Web
classification. For example, SALCentral.org manually erga ~ Conference2002.
nized their Web Services into their own taxonomy, and theif{4] Alexander Strehl. Relationship-based Clustering and Cluster
classification bears little resemblance to ours. We corclud ~ Ensembles for High-dimensional Data MinirghD thesis, Uni-
from these data that Web Service category clustering is-feas Vversity of Texas, Austin, 2002.
ble based just on WSDL descriptions, through clearly hand{s] |an H. Witten and Eibe FrankData Mining: Practical machine

crafted text descriptions (eg, SALCentral.org’s desasipdr learning tools with Java implementationMorgan Kaufmann,
text drawn from UDDI entries) produce even better results. San Francisco.

. . [6] Oren zamir, Oren Etzioni, Omid Madani, and Richard M. Karp.
5 Discussion Fast and intuitive clustering of web documents.Kinowledge

Future Work. Our approaches ignore a valuable sources ~DiScovery and Data Miningpages 287-290, 1997.

of evidence—such as the actual data passed to/from a Web

