
Automatically attaching semantic metadata to Web services

Andreas Heß Nicholas Kushmerick
Computer Science Department, University College Dublin, Ireland

{andreas.hess, nick}@ucd.ie

Abstract
Emerging Web standards promise a network of het-
erogeneous yet interoperable Web Services. Web
Services would greatly simplify the development
of many kinds of data integration and knowledge
management applications. Unfortunately, this vi-
sion requires that services provide large amounts
of semantic metadata “glue”. As a first step to au-
tomatically generating such metadata, we describe
how machine learning and clustering techniques
can be used to attach attach semantic metadata to
Web forms and services.

1 Introduction
Emerging Web standards such as WSDL [w3.org/TR/wsdl],
SOAP [w3.org/TR/soap], UDDI [uddi.org] and DAML-S
[www.daml.org/services] promise an ocean of Web Services,
networked components that can be invoked remotely using
standard XML-based protocols. For example, significant e-
commerce players such as Amazon and Google export Web
Services giving public access to their content databases.

The key to automatically invoking and composing Web
Services is to associate machine-understandable semantic
metadata with each service. A central challenge to the
Web Services initiative is therefore a lack of tools to
(semi-)automatically generate the necessary metadata. We
explore the use of machine learning techniques to automat-
ically create such metadata from training data.

The various Web Services standards involve metadata at
various levels of abstraction, from high-level advertisements
that facilitate indexing and matching relevant services, to
low-level input/output specifications of particular operations.
The various standards are evolving rapidly, and the detailsof
current standards are beyond the scope of this paper. Rather
than committing to any particular standard, we investigate
the following three sub-problems, which are essential compo-
nents to any tool for helping developers create Web Services
metadata.

1. To automatically invoke a particular Web Service opera-
tion, metadata is needed to indicate the overall “domain”
of the operation, as well as the semantic meaning of each
of the operation’s input parameters. In Sec. 2, we pro-
pose toautomatically assign a Web Service operation to

Secs. 3 and 4 Sec. 2 Future Work

category domain datatype sample data

Figure 1: A Web Service’s category is dependent on the do-
mains and datatypes of its operations.

a concept in a domain taxonomy, and to assign each in-
put parameter to a concept in a data-type taxonomy.

2. A Web Service is a collection of operations, and Web
Services must be grouped into coherent “categories” of
services supporting similar operations. To enable the
retrieval of appropriate Web Services, in Sec. 3 we de-
scribe techniques toautomatically assign a Web Service
to a concept in a category taxonomy.

3. Finally, when Web Services are widely deployed, it may
well be infeasible to agree a category taxonomy in ad-
vance. We therefore propose in Sec. 4 tocluster Web
Services in order to automatically create a category tax-
onomy.

Fig. 1 describes the relationship between the category, do-
main and datatype taxonomies that motivate our research. In
more detail, our work can be characterized in terms of the fol-
lowing three levels of metadata. First, we assume acategory
taxonomyC. The category of a Web Service describes the
general kind of service that is offered. Second, we assume
a domaintaxonomyD. Domains capture the purpose of a
specific service operation. Third, we assume adatatypetax-
onomyT . Datatypes relate not to low-level encoding issues,
but to the expected semantic category of a field’s data.

Finally, the boxes in Fig. 1 indicate the actual algorithms
that we describe in this paper. As indicated above, Sec. 2 fo-
cuses on the domain and datatype taxonomies, while Secs. 3–
4 focus on the category taxonomy. Note that we do not ex-
ploit the additional evidence that the category gives us forthe
classification at the domain and datatype level. As part of
our future work, we intend to exploit this connection, as well
as additional evidence (eg., the data actually sent to/fromthe
Web Service).

2 Supervised domain and datatype
classification

We begin by describing an algorithm for classifying HTML
forms into semantic categories, as well as assigning semantic
labels to each form field. These techniques are important as
legacy HTML interfaces are migrated to Web Services.

Problem formulation. Web form instances are structured
objects: a form comprises one or more fields, and each field
in turn comprises one or more terms. More precisely, aform
Fi is a sequence offields, writtenFi = [f1

i , f2

i , . . .], and each
field f j

i is a bag ofterms, writtenf j
i = [tji (1), tji (2), . . .].

The input is set of labeled forms and fields; that is, a set
{F1, F2, . . .} of forms together with a domainDi ∈ D for
each formFi, and a datatypeT j

i ∈ T for each fieldf j
i ∈ Fi.

The output is a form classifier; that is, a function that maps
an unlabeled formFi, to a predicted domainDi ∈ D, and a
predicted datatypeT j

i ∈ T for each fieldf j
i ∈ Fi.

Generative model. Our solution to the Web form classifi-
cation is based on a stochastic generative model of a hypo-
thetical “Web service designer” creating a Web page to host
a particular service. First, the designer first selects a domain
Di ∈ D according to some probability distributionPr[Di].
For example, in our experiments, forms for finding books
were quite frequent relative to forms for finding colleges, so
Pr[SEARCHBOOK] ≫ Pr[FINDCOLLEGE].

Second, the designer selects datatypesT j
i ∈ T appro-

priate toDi, by drawing from some distributionPr[T j
i |Di].

For example, presumablyPr[BookTitle| SEARCHBOOK] ≫
Pr[DestAirport|SEARCHBOOK], because services for finding
books usually involve a book’s title, but rarely involve air-
ports. On the other hand,Pr[BookTitle| QUERYFLIGHT] ≪
Pr[DestAirport|QUERYFLIGHT].

Finally, the designer writes the Web page that implements
the form by coding each field in turn. More precisely, for each
selected datatypeT j

i , the designer uses termstji (k) drawn ac-
cording to some distributionPr[tji (k)|T j

i]. For example, pre-
sumablyPr[title|BookTitle] ≫ Pr[city|BookTitle], be-
cause the termtitle is much more likely thancity to
occur in a field requesting a book title. On the other hand, pre-
sumablyPr[title|DestAirport] ≪ Pr[city|DestAirport].

Parameter estimation. The learning task is to estimate the
parameters of the stochastic generative model from a set of
training data. The training data comprises a set ofN Web
formsF = {F1, . . . , FN}, where for each formFi the learn-
ing algorithm is given the domainDi ∈ D and the datatypes
T j

i of the fieldsf j
i ∈ Fi.

The parameters to be estimated are the domain probabili-
ties P̂r[D] for D ∈ D, the conditional datatype probabilities
P̂r[T |D] for D ∈ D andT ∈ T , and the conditional term
probabilitiesP̂r[t|T] for term t and T ∈ T . We estimate
these parameters based on their frequency in the training data:
P̂r[D] = NF(D)/N , P̂r[T |D] = MF(T, D)/MF(D), and

Figure 2: The Bayesian network used to classify a Web form
containing three fields.

P̂r[t|T] = WF (t, T)/WF(T), whereNF (D) is the number
of forms in the training setF with domainD; MF(D) is the
total number of fields in all forms of domainD; MF(T, D) is
the number of fields of datatypeT in all forms of domainD;
WF (T) is the total number of terms of all fields of datatype
T ; andWF (t, T) is the number of occurrences of termt in all
fields of datatypet.

Classification. Our approach to Web form classification in-
volves converting a form into a Bayesian network (see Fig. 2).
The network is a tree that reflects the generative model: a
root node represents the form’s domain, children represent
the datatype of each field, and grandchildren encode the terms
used to code each field.

In more detail, a Web form to be classified is converted
into a three-layer tree-structured Bayesian network as fol-
lows. The first (root) layer contains just a single nodedo-
main that takes on values from the set of domainsD. The
second layer consists of one childdatatypei of domain for
each field in the form being classified, where eachdatatypei

take on values from the setT .
The third (leaf) layer comprises a set of children

{term1

i , . . . , termK
i } for eachdatatypei node, whereK is

the number of terms in the field. The term nodes take on val-
ues from the vocabulary setV , defined as the set of all terms
that have occurred in the training data.

The conditional probability tables associated with each
node correspond directly to the learned parameters men-
tioned earlier. That is,Pr[domain = D] ≡ P̂r(D),
Pr[datatypei = T |domain = D] ≡ P̂r(T |D), and
Pr[termk

i = t|datatypei = T] ≡ P̂r(t|T). Note that the
conditional probabilities tables are identical for all datatype
nodes, and for all term nodes.

Given such a Bayesian network, classifying a formFi =
[f1

i , f2

i , . . .] involves “observing” the terms in each field (i.e.,
setting the probabilityPr[termk

i = tji (k)] ≡ 1 for each term
tji (k) ∈ f j

i), and then computing the maximum-likelihood
form domain and field datatypes consistent with that evi-
dence.

Domain taxonomyD and number of forms for each domain
SEARCHBOOK (44) FINDCOLLEGE (2) SEARCHCOLLEGEBOOK (17)
QUERYFLIGHT (34) FINDJOB (23) FINDSTOCKQUOTE (9)

Datatype taxonomyT (illustrative sample)
Address NAdults Airline Author
BookCode BookCondition BookDetails BookEdition
BookFormat BookSearchType BookSubject BookTitle
NChildren City Class College
CollegeSubject CompanyName Country Currency
DateDepart DateReturn DestAirport DestCity
Duration Email EmployeeLevel . . .

Figure 3: Subsets of the domain and datatype taxonomies
used in the experiments.

Evaluation. We have evaluated our approach using a col-
lection of 129 Web forms comprising 656 fields in total, for
an average of 5.1 fields/form. As shown in Fig. 3, the domain
taxonomyD used in our experiments contains 6 domains, and
the datatype taxonomyT comprises 71 datatypes.

The forms were manually gathered by manually brows-
ing Web forms indices such as InvisibleWeb.com for relevant
forms. Each form was then inspected by hand to assign a
domain to the form as a whole, and a datatype to each field.

After the forms were gathered, they were segmented into
fields. We discuss the details below. For now, it suf-
fices to say that we use HTML tags such as<input> and
<textarea> to identify the fields that will appear to the
user when the page is rendered. After a form has been seg-
mented into fields, certain irrelevant fields (e.g., submit/reset
buttons) are discarded. The remaining fields are then assigned
a datatype.

A final subtlety is that some fields are not easily interpreted
as “data”, but rather indicate minor modifications to either
the way the query is interpreted, or the output presentation.
For example, there is a “help” option on one search services
that augments the requested data with suggestions for query
refinement. We discarded such fields on a case-by-case basis;
a total of 12.1% of the fields were discarded in this way.

The final data-preparation step is to convert the HTML
fragments into the “form = sequence of fields; field = bag
of terms” representation. The HTML is first parsed into a
sequence of tokens. Some of these tokens are HTML field
tags (eg.,<input>,<select>,<textarea>). The form
is segmented into fields by associating the remaining tokens
with the nearest field. For example, “<form> a <input
name=f1> b c <textarea name=f2> d </form>”
would be segmented as “a <input name=f1> b” and
“c <textarea name=f2> d”.

The intent is that this segmentation process will associate
with each field a bag of terms that provides evidence of the
field’s datatype. For example, our classification algorithm
will learn to distinguish labels like “Book title” that are as-
sociated withBookTitle fields, from labels like “Title (Dr,
Ms, . . .)” that indicatePersonTitle.

Finally, we convert HTML fragments like “Enter name:
<input name=name1 type=text size=20>
”
that correspond to a particular field, into the field’s bag of
terms representation. We process each fragment as follows.

First, we discard HTML tags, retaining the values of a set

of “interesting” attributes, such as an<input> tag’sname
attribute. The result is “Enter name: name1”. Next,
we tokenize the string at punctuation and space characters,
convert all characters to lower case, apply Porter’s stemming
algorithm, discard stop words, and insert a special symbol
encoding the field’s HTML type (text, select, radio-button,
etc). This yields the token sequence [enter, name, name1,
TypeText]. Finally, we apply a set of term normalizations,
such as replacing terms comprising just a single digit (letter)
with a special symbolSingleDigit (SingleLetter), and delet-
ing leading/trailing numbers. In this example the final result
is the sequence [enter, name, name, TypeText].

Results. We begin by comparing our approach to two sim-
ple bag of terms baselines using a leave-one-out methodol-
ogy. For domain classification, the baseline uses a single bag
of all terms in the entire form. For datatype classification,the
baseline approach is the naive Bayes algorithm over its bag
of terms.

For domain prediction, our algorithm has an F1 score of
0.87 while the baseline scores 0.82. For datatype predic-
tion, our algorithm has an F1 score of 0.43 while the baseline
scores 0.38. We conclude that our “holistic” approach to form
and field prediction is more accurate than a greedy baseline
approach of making each prediction independently.

While our approach is far from perfect, we observe that
form classification is extremely challenging, due both to noise
in the underlying HTML, and the fact that our domain and
datatype taxonomies contain many classes compared to tradi-
tional (usually binary!) text classification tasks.

While fully-automated form classification is our ultimate
goal, an imperfect form classifier can still be useful in inter-
active, partially-automated scenarios in which a human gives
the domain or (some of) the datatypes of a form to be labelled,
and the classifier labels the remaining elements.

Our first experiment measures the improvement in datatype
prediction if the Bayesian network is also provided as evi-
dence the form’s domain. In this case our algorithm has an
F1 score of 0.51, compared to 0.43 mentioned earlier.

Our second experiment measures the improvement in do-
main prediction if evidence is provided for a randomly chosen
fractionα of the fields’ datatypes, for0 ≤ α ≤ 1. α = 0 cor-
responds to the fully automated situation in which no datatype
evidence is provided;α = 1 requires that a person provide the
datatype of every field. We observed that the domain classifi-
cation F1 score increases rapidly asα approaches 1.

Our third investigation of semi-automated prediction in-
volves the idea of ranking the predictions rather than requir-
ing that the algorithm make just one prediction. In many
semi-automated scenarios, the fact that the second- or third-
ranked prediction is correct can still be useful even if the first
is wrong. To formalize this notion, we calculate F1 based on
treating the algorithm as correct if the true class is in the top
R predictions as ranked by posterior probability. Fig. 4 shows
the F1 score for predicting both domains and datatypes, as a
function of R. R = 1 corresponds to the cases described
so far. We can see that relaxingR even slightly results in a
dramatic increase in F1 score.

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

F
1

rank threshold R

form domain

3

3

3

3 3 3

3

field datatype

+

+

+

+

+
+

+ + + +

+

Figure 4: F1 as a function of rank thresholdR.

So far we have assumed unstructured datatype and domain
taxonomies. However, domains and datatypes exhibit a nat-
ural hierarchical structure (eg, “forms for finding something”
vs. “forms for buying something”; or “fields related to book
information” vs. “fields related to personal details”). It seems
reasonable that in partially-automated settings, predicting a
similar but wrong class is more useful than a dissimilar class.

To explore this issue, our research assistants converted
their domain and datatype taxonomies into trees, creating ad-
ditional abstract nodes to obtain reasonable and compact hier-
archies. We used distance in these trees to measure the “qual-
ity” of a prediction, instead of a binary “right/wrong”. For
domain predictions, our algorithm’s prediction is on average
0.40 edges away from the correct class, while the baseline al-
gorithm’s predictions are 0.55 edges away. For datatype pre-
diction, our algorithm’s average distance is 2.08 edges while
the baseline algorithm averages 2.51. As above, we conclude
that our algorithm outperforms the baseline.

3 Supervised category classification
The previous section addressed the classification of Web
forms and their fields. We now address how to categorize
Web Services. Since Web Services can export more than
one operation, a Web Service corresponds loosely to a set
of Web forms. As described in Sec. 1, we are therefore in-
terested in classifying Web Services at the highercategory
level (“Business”, “Games”, etc.), rather than the lowerdo-
mainlevel (“search for a book”, “purchase a book”, etc.) used
for classifying Web forms.

Problem formulation. We treat the determination of a Web
Service’s category as a text classification problem, where the
text comes from the Web Service’s WSDL description. Un-
like standard texts, WSDL descriptions are highly structured.
Our experiments demonstrate that selecting the right set of
features from this structured text improves the performance
of a learning classifier. By combining different classifiersit
is possible to improve the performance even further.

Web Services corpus. We gathered a corpus of 424 Web
Services from SALCentral.org, a Web Service index. These
424 Web Services were classified by our assistant, a research
student with no previous experience in Web Services, into

Category taxonomyC and number of Web Services for each category
BUSINESS (22) COMMUNICATION (44) CONVERTER (43)
COUNTRY INFO (62) DEVELOPERS(34) FINDER (44)
GAMES (9) MATHEMATICS (10) MONEY (54)
NEWS (30) WEB (39) discarded(33)

Figure 5: Web Service categoriesC.

SALCentral / UDDI

A

WSDL

B

Message Descriptions

DC

Service Description

WSDL Service

Port Type More Port Types

Operation More Operations

OutputInputFault

Figure 6: Text structure for our Web Service corpus.

25 top level categories. As shown in Fig. 5, we then dis-
carded categories with less than seven instances, leaving 391
Web Services in eleven categories that were used in our ex-
periments. The discarded Web Services tended to be quite
obscure, such as a search tool for a music teacher in an area
specified by ZIP code. Note that the distribution after dis-
carding these classes is still highly skewed.

Ensemble learning. As shown in Fig. 6, the information
available to our categorization algorithms comes from two
sources. First, the algorithms use the Web Service description
in the WSDL format, which is always available to determine
a service’s category. Second, in some cases, additional de-
scriptive text is available, such as from a UDDI entry. In our
experiments, we use the descriptive text provided by SAL-
Central.org, since UDDI entries were not available. We parse
the port types, operations and messages from the WSDL and
extract names as well as comments from various “documen-
tation” tags. We do not extract standard XML Schema data
types like string or integer, or informations about the service
provider. The extracted terms are stemmed, and a stop-word
list is used.

We experimented with four bags of words, denoted byA–
D. The composition of these bags of words is marked in
Fig. 6. We also used combinations of these bags of words,
where eg.C+D denotes a bag of words that consists of the
descriptions of the input and output messages. We converted

the resulting bag of words into a feature vector for supervised
learning algorithms, with terms weighted based on simple fre-
quency. We experimented with more sophisticated TFIDF-
based weighting schemes, but they did not improve the re-
sults.

As learning algorithms, we used the Naive Bayes, SVM
and HyperPipes algorithms as implemented in Weka[5].
We combined several classifiers in an ensemble learning ap-
proach. Ensemble learners make a prediction by voting to-
gether the predictions of several “base” classifiers. Ensem-
ble learning has been shown in a variety of tasks to be more
reliable than the base classifiers: the whole is often greater
than the sum of its parts. To combine two or more classifiers,
we multiplied the confidence values obtained from the multi-
class classifier implementation. For some settings, we tried
weighting of these values as well, but this did not improve
the overall performance. We denote a combination of differ-
ent algorithms or different feature sets by slashes, eg.Naive
Bayes(A/B+C+D) denoting two Naive Bayes classifiers, one
trained on the plain text description only and one trained one
all terms extracted from the WSDL.

We split our tests into two groups. First, we tried to find
the best split of bags of words using the terms drawn from
the WSDL only. These experiments are of particular interest,
because the WSDL is usually automatically generated (ex-
cept for the occasional comment tags), and the terms that can
be extracted from that are basically operation and parameter
names. Second, we look how the performance improves, if
we include the plain text description.

Evaluation. We evaluated the different approaches using a
leave-one-out methodology. Our results show that using a
classifier with one big bag of words that contains everything
(ie. A+B+C+D for WSDL and descriptions, orB+C+D for
the WSDL-only tests) generally performs worst. We included
these classifiers as baselines. Ensemble approaches where the
bags of words are split generally perform better. This is in-
tuitive, because we can assume a certain degree of indepen-
dence between for example the terms that occur in the plain
text descriptions and the terms that occur in the WSDL de-
scription. What is a bit more surprising is that for some set-
tings we achieve very good results if we use only a subset of
the available features, ie. only one of the bags of words. So,
in these cases, sometimes one part is greater than the whole.
However, we could not find a generic rule for how to best
split the available bags of words, as this seems to be strongly
dependent on the algorithm and the actual data set.

Figs. 7 and 8 show the accuracy for the ensemble classifiers
that performed best and include the classifiers that operate
with one overall bag of words as baselines. Note that SVM
generally performs better than Naive Bayes, except for the
classifier where we used the plain text descriptions only. An
ensemble consisting of three SVM classifiers performs good
for both the WSDL-only setting, and also when including the
descriptions. However, the best results are achieved by other
combinations.

For a semi-automatic assignment of the category to a Web
Service, it is not always necessary that the algorithm predicts

35

40

45

50

55

60

65

70

75

80

0 1 2 3

A
cc

u
ra

cy

Tolerance

Naive Bayes(B+C+D)

3

3

3

3

3

Naive Bayes(B/C+D)

+

+

+

+

+
SVM(B+C+D)

2

2

2

2

2

SVM(B/C/D)
×

×

×

×

×
SVM(C+D)

△

△

△

△

△
HyperPipes(B+C+D/C+D)

⋆

⋆

⋆

⋆

⋆

Figure 7: Classification accuracy for WSDL only.

40

45

50

55

60

65

70

75

80

85

0 1 2 3
A

cc
u
ra

cy

Tolerance

Naive Bayes(A+B+C+D)

3

3

3

3

3

Naive Bayes(A/B+C+D)+

+

+

+

+
SVM(A+B+C+D)

2

2

2

2

2

SVM(A/B/C+D)

×

×

×

×

×
Naive Bayes(A)

△

△

△

△

△
Naive Bayes(A)/SVM(A/B/C+D)

⋆

⋆

⋆
⋆

⋆

Figure 8: Classification accuracy for WSDL and descriptions.

the category exactly, although this is of course desirable.A
human developer would also save a considerable amount of
work if he or she only had to choose between a small num-
ber of categories. For this reason, we also report the accuracy
when we allow near misses. Figs. 7 and 8 show how the clas-
sifiers improve when we increase this tolerance threshold. For
our best classifier, the correct class is in the top 3 predictions
82% of the time.

4 Unsupervised category clustering
As a third approach towards our goal of automatically creat-
ing Web Services metadata, we explored the use of unsuper-
vised clustering algorithms to automatically discover these-
mantic categories of a group of Web Services. Due to space
restrictions, we only briefly summarize our experiments.

Clustering algorithms. We tested five clustering algo-
rithms on our collection of Web Services. First, we tried
a simplek-nearest-neighbour algorithm. Hierarchical group
average and complete link algorithms serve as representatives
of traditional approaches. We also tried a variant of the group
average clusterer that we call Common-Term, and the Word-
IC algorithm[6]. Our Common-Term algorithm differs from
the standard group average clustering in the way the centroid
document vector is computed. Instead of using all terms from
all the sub-clusters, only the common terms from all sub-
clusters form the centroid.

Figure 9: Precision for the various clustering algorithms.

The Common-Term and Word-IC algorithms have inherent
halting criteria. For the group average and complete link al-
gorithms, we used a minimum similarity between documents
as a halting criterion. As a baseline, we partition the Web
Services into eleven random clusters.

Quality Metrics for Clustering. Several quality measures
for clustering have been proposed; see[4] for a recent survey.
We introduce a novel measure inspired by the well-known
precision and recall metrics. In previous approaches preci-
sion and recall have for clustering only been used on a per-
class basis. This requires that we match each cluster with a
specific reference class. This may cause problems, eg. when
the number of clusters and reference classes differ. We mod-
ify the definitions of precision and recall to considerpairs of
objects rather than individual objects. Our precision metric
correlates well with others in the literature, and has a simple
probabilistic interpretation.

Precision is equivalent to the conditional probability that
two documents are in the same reference class given they are
in the same cluster. Recall is then equivalent to the condi-
tional probability that two documents are in the same cluster
given they are in the same reference class.

Evaluation. Fig. 9 shows the precision of the clusters gen-
erated by the various algorithms we tried.

All algorithms outperform the baseline, but none of the al-
gorithms does particularly well. This is not surprising, be-
cause in many cases even humans disagree on the correct
classification. For example, SALCentral.org manually orga-
nized their Web Services into their own taxonomy, and their
classification bears little resemblance to ours. We conclude
from these data that Web Service category clustering is feasi-
ble based just on WSDL descriptions, through clearly hand-
crafted text descriptions (eg, SALCentral.org’s description or
text drawn from UDDI entries) produce even better results.

5 Discussion
Future Work. Our approaches ignore a valuable sources
of evidence—such as the actual data passed to/from a Web

Service—and it would be interesting to incorporate such ev-
idence into our algorithms. We envision a single algorithm
that incorporates the category, domain, datatype and term ev-
idence shown in Fig. 1. For instance, to classify all the opera-
tions and inputs of a Web Service at the same time, a Bayesian
network could be constructed for each operation, and then a
higher-level category node could be introduced whose chil-
dren are the domain nodes for each of the operations.

Ultimately, our goal is to develop enabling technologies
that could allow for the semi-automatic generation of Web
Services metadata. We would like to use our techniques to
develop a toolkit that emits metadata conforming to Semantic
Web standards such as DAML/DAML-S.

Related Work. There has been some work on semantic
matching of Web Services (eg.[3; 1]), but they require
manually-generated explicit semantic metadata.

When we actually want to simultaneously invoke multiple
similar Web Services and aggregate the results, we encounter
the problem of XML schema mapping (eg.,[2]).

Conclusions. The emerging Web Services protocols rep-
resent exciting new directions for the Web, but interoper-
ability requires that each service be described by a large
amount of semantic metadata “glue”. We have presented
three approaches to automatically generating such metadata,
and evaluated our approach on Web Services and forms.

Although we are far from being able to automatically cre-
ate semantic metadata, we believe that the methods we have
presented here are a reasonable first step. Our preliminary
results indicate that some of the requisite semantic metadata
can be semi-automatically generated using machine learning,
information retrieval and clustering techniques.

Acknowledgments. This research was supported by grants
SFI/01/F.1/C015 from Science Foundation Ireland, and
N00014-03-1-0274 from the US Office of Naval Research.

References
[1] J. Cardoso. Quality of Service and Semantic Composition of

Workflows. PhD thesis, University of Georgia, 2002.

[2] A. Doan, P. Domingos, and A. Halevy. Reconciling schemas of
disparate data sources: A machine-learning approach. InProc.
SIGMOD Conference, 2001.

[3] M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic
matchmaking of web services capabilities. InInt. Semantic Web
Conference, 2002.

[4] Alexander Strehl. Relationship-based Clustering and Cluster
Ensembles for High-dimensional Data Mining. PhD thesis, Uni-
versity of Texas, Austin, 2002.

[5] Ian H. Witten and Eibe Frank.Data Mining: Practical machine
learning tools with Java implementations. Morgan Kaufmann,
San Francisco.

[6] Oren Zamir, Oren Etzioni, Omid Madani, and Richard M. Karp.
Fast and intuitive clustering of web documents. InKnowledge
Discovery and Data Mining, pages 287–290, 1997.

