
K-transversals of parallel convex setsNina AmentaXerox PARC3333 Coyote Hill RoadPalo Alto, CA 94304, USAamenta@parc.xerox.comMay 6, 1996AbstractRd can be divided into a union of parallel (d�k)-
ats of the form x1 = g1; x2 = g2; : : :xk =gk, where the gi are constant. Let C be a family of parallel (d � k)-dimensional convexsets, meaning that each is contained in one of the above parallel (d � k)-
ats. We give aparameterization of the set of k-
ats in Rd, such that the set of k-
ats which intersect, in apoint, any set c 2 C, is convex. Parameterizing the lines in R3 through horizontal convexsets as convex sets has applications to medical imaging, and interesting connections withrecent work on light �eld rendering in computer graphics. The general case is useful for�tting k-
ats to points in Rd.The following easy reduction is well known. Let C be a �nite set of parallel line segments inRd. We want to �nd a (d�1)-transversal for C, that is, a hyperplane intersecting every segmentin C. Such a hyperplane has to pass below the upper endpoint of each segment and above thelower endpoint. In the dual, the endpoints correspond to linear halfspaces, and the intersectionof these halfspaces corresponds to the set of hyperplane transversals of the parallel segments inthe primal. So the problem is solved by linear programming in dimension d, in linear time if dis �xed.Here, we give the appropriate generalization of this observation for k-transversals, for 1 �k < d. A k-transversal of a family of sets C is a k-
at (that is, a k-dimensional a�ne subspace)intersecting every set in C. Figure 1 shows the case k = 1; d = 3.
Figure 1: The set of lines intersecting all members of a family of parallel polygons can berepresented as a convex set. 1



A family C of (d� k)-dimensional sets in Rd are parallel if they can be rotated so that eachset c 2 C lies in a (d� k)-
at x1 = g1; x2 = g2; : : :xk = gkwhere g1; : : :gk are constants and x1; : : : ; xk are the �rst k coordinates of a point x 2 Rd. Fromnow on we will just assume that C is so rotated. We say that a k-
at y intersects a set c 2 Cnon-degenerately if y \ c consists of a single point; a k-
at in general position intersects a setc 2 C non-degenerately, if at all. Our Main Theorem 2.2 gives a parameterization under whichthe k-
ats intersecting non-degenerately any member of C form a convex set in R(k+1)(d�k).This result is a simple algebraic consequence of adopting the \right" parameterization of k-
atsin Rd. But it has both mathematical and practical implications.1 BackgroundAn immediate consequence is the following.Theorem 1.1 The Helly number for k-transversals of parallel (d� k)-dimensional convex setsis (k + 1)(d� k) + 1.A family of sets C has Helly number h for some property � (here, the property of having ak-transversal) when h is the smallest integer (if one exists) such that any �nite subfamily C � Chas property � if and only if every subfamily B � C with jBj � h also has �. Theorems ofthe form \C has Helly number h" are called Helly-type theorems because they follow the modelof Helly's theorem, which states that the family of convex sets in Rd has Helly number d + 1.Helly's theorem together with Theorem 2.2 implies Theorem 1.1.There are many Helly-type theorems about hyperplane transversals, and some about linetransversals (see [GPW93]), but this is the �rst theorem giving a �nite Helly number for k-transversals for all 1 � k < d for some family of sets. While, as we observed in the introduction,the space of hyperplanes in Rd is isomorphic to Rd, the space of k-
ats in Rd, for 1 � k < (d�1),is a curved projective manifold, known as a Grassmanian, and generally much more di�cult towork with. Goodman and Pollack de�ne the convex sets in a Grassmanian as the sets of k-transversals of convex sets in Rd [GP94]. They show that this de�nition is a generalization ofconvexity, in some senses, but, for instance, convex set under their de�nition can have multipleconnected components. We exhibit subsets of the Grassmanian which are convex in the usualsense.The special case of Theorem 1.1 for k = 1; d = 3, was given by Gr�unbaum [G60], whichsuggested our approach.One immediate algorithmic consequence of Theorem 2.2 is that a k-transversal of a �niteset C of parallel (d � k)-dimensional sets, if one exists, can be found by a convex program indimension (k + 1)(d� k), in linear expected time if d is constant. The case of line transversalsin R3 is the �rst interesting one, and it has some applications in computer graphics.Medical images, such as CAT scans and MRI images, are given as a set of parallel two-
ats.When the regions in each image are decomposed into convex pieces, the line transversals ofthe various possible subsets of pieces form a convex subdivision of R4 under our parameteriza-tion. This subdivision is interesting for volume visualization and, as we discuss below, for pathplanning for lasers, needles or other invasive linear elements.Our parameterization is also used in computer graphics in a recent paper by Hanrahan andLevoy on light �eld rendering [HL96], in which an object is represented by the radiance on the2



directed lines incident to it. A light �eld is a hyper-rectangular set of lines including thoseincident to the object. A quantized light �eld is stored in a four-dimensional array, and animage is constructed by selecting the lines through a particular viewpoint, which correspondto a two-
at through the hyper-rectangle. Theorem 2.1 implies that certain linear halfspacesthrough the hyper-rectangle correspond to the sets of lines of constant depth in R3. This mayhave some application to the important problem of reconstructing the three-dimensional shapeof an object from its light �eld representation.Finding line transversals is an important subproblem in the visibility preprocessing of largescenes in computer graphics, although admittedly it is di�cult to imagine a scene which requiressolving the special case of the problem treated here.In general dimension, Theorem 2.2 can be applied to the problem of �tting k-
ats to points.Every point x 2 Rd is contained in exactly one member g of a set of parallel (d�k)-
ats, and anyk-
at f in general position intersects g in exactly one point. We de�ne the (d� k)-dimensionaldistance between x and f to be the Euclidean distance from x to the point in which f intersectsg. Figure 2 again shows the case k = 1; d = 3. This metric is a higher-dimensional analogue of
Figure 2: The distance between f and x is measured in the (d� k)-
at g.the vertical distance. We show that �nding the k-
at which minimizes the maximum (d� k)-dimensional distance to any member of a set of points is a Convex Programming problem andcan be solved in expected linear time.2 Main TheoremWe have de�ned parallel (d � k)-
ats in Rd to be the a�ne subspaces satisfying x1 = g1; x2 =g2; : : :xk = gk, where the gi are constants. Let us de�ne the set H of parallel (d� k)-half-
atsto be the sets formed by the intersection of a linear halfspace in Rd with one of the parallel(d� k)-
ats, that is, a set satisfying the equalitiesx1 = g1: : :xk = gkand some inequality a1xk+1 + : : : ad�kxd � 1A (d� k)-half-
at ha;g in H is determined by the gi and the aj , and so has d coe�cients.A k-
at in general position in Rd intersects any (d � k)-
at g in a single point. We willparameterize a k-
at in general position by its points of intersection with each of the k + 13



following (d� k)-
ats: u0 = fx1 = 0; x2 = 0; : : : ; xk = 0gu1 = fx1 = 1; x2 = 0; : : : ; xk = 0gu2 = fx1 = 0; x2 = 1; : : : ; xk = 0g: : :uk = fx1 = 0; x2 = 0; : : : ; xk = 1gSuch a point, for each u0, is speci�ed by the (d� k) values of xk+1; : : : ; xd, which we shall cally(i;k+1); : : : ; y(i;d). A k-
at Y in general position is thus speci�ed by (k+ 1)(d� k) independentparameters, the entries in the matrixY = 264 y(0;k+1) : : : y(0;d)� � �y(k;k+1) : : : y(k;d) 375In order to simplify the notation below, we will subtract the �rst row from each of the subsequentrows, representing a k-
at by the matrixY 0 = 26664 y(0;k+1) : : : y(0;d)y(1;k+1) � y(0;k+1) : : : y(1;d) � y(0;d)� � �y(k;k+1) � y(0;k+1) : : : y(k;d) � y(0;d) 37775This corresponds to an a�ne transformation of the space of k-
ats. Rows 1; : : :k now expressthe change in xk+1; : : : ; xd per unit change in x1; : : : ; xk.Theorem 2.1 The (k+ 1)(d� k)-dimensional set of k-
ats in Rd can be parameterized so thatthe k-
ats intersecting, non-degenerately, any (d � k)-dimensional half-
at in H form a linearhalfspace in R(k+1)(d�k).Proof. The points of the k-
at Y are the points of the form: x1; : : : ; xk(1; x1; : : :xk) � Y 0 !This notation indicates the concatenation of x1; : : : ; xk with the vector (1; x1; : : :xk) � Y 0. Ak-
at in general position will intersect the (d� k)-
at x1 = g1; x2 = g2; : : : ; xk = gk in the point g1; : : : ; gk(1; g1; : : :gk) � Y 0 !That point lies in the half-
at ha;g if and only if(1; g1; : : : ; gk) � Y 0 � (a1; : : : ; a(d�k))T � 1Since the gi and the aj are constants, ha;g induces a linear inequality on the y0(i;j), and thereforealso on the y(i;j). 4



Theorem 2.2 The (k+ 1)(d� k)-dimensional set of k-
ats in Rd can be parameterized so thatthe non-degenerate k-transversals of any family C of parallel (d � k)-dimensional convex setsform a convex set in R(k+1)(d�k).Proof. A convex set c 2 C is the intersection of a (possibly in�nite) family H of (d � k)-dimensional half-
ats in H . By Theorem 2.1, the set of k-
ats non-degenerately intersectingsuch a half-
at form a linear halfspace in R(k+1)(d�k). The k-
ats intersecting every half-
atin H correspond to the intersection c0 of the corresponding halfspaces in R(k+1)(d�k). This is aconvex set. So the intersection of the c0 is an intersection of convex sets, and so again a convexset.3 Some algorithmic corollariesWe describe a few of the algorithmic implications of our main theorems.3.1 Finding k-transversalsFrom Theorem 2.1, we can infer immediatelyCorollary 3.1 A non-degenerate k-transversal of a family C of parallel (d � k)-dimensionalpolytopes, if one exists, can be found by linear programming in dimension (k+ 1)(d� k). Whend is �xed, this requires time linear in the total number of facets of C.And, from Theorem 2.2,Corollary 3.2 Let C be a �nite family of parallel (d � k)-dimensional convex sets. A non-degenerate k-transversal of C, if one exists, can be found by convex programming in dimension(k + 1)(d� k).Convex programming is the problem of minimizing a convex objective function over the inter-section of a family of convex sets. Any convex function on the space of k-
ats can be used as theobjective function for the convex program in Theorem 3.2, most conveniently a linear function.Convex programming is an LP-type problem, as de�ned in [MSW92] (see [A94b] for a little moreon convex programming). This means that if d is constant and the k-
at minimizing the objec-tive function for any subset of at most (k + 1)(d� k) + 1 members of C, if one exists, can befound in time tb, then a line transversal for C can be found in expected time O(jCj+ tb lg jCj),which is linear in jCj when tb is small enough.3.2 Medical images and path planningMedical images of three-dimensional anatomy such as CAT scans and MRI images are givenas intensity images in a family of parallel slices. These slices can automatically segmented sothat each is represented as a union of polygonal convex regions of constant or continuouslyvarying intensity. Each region is assumed to represent a slice of a particular kind of tissue.Under our parameterization, the lines bounding these polygons correspond to an arrangementof hyperplanes in the four-dimensional space of lines in R3.We sketch one algorithmic consequence of this observation. Consider the problem of �ndinga path for a biopsy needle which goes to a tumor while missing a collection of vital organs. Thevital organs, the non-vital tissue, and the tumor are all represented by collections of parallelconvex polygons. We wish to �nd all acceptable paths for the needle. The set of acceptable5



paths corresponds to a union of cells in the corresponding hyperplane arrangement in the four-dimensional space of lines. Each cell in this arrangement is a subset of lines.The arrangement can be constructed by random sampling [C87]. We select a constant sizerandom sample of the parallel polygons, construct the arrangement induced by their edges inthe space of lines, and subdivide each cell of this arrangement into simplices. We construct asubproblem for each simplex consisting of the polygons which intersect any of the lines in thesimplex. For each simplex s, we maintain the set of polygons for which are intersected by everyline in s. These can be kept in sorted order, since the polygons are parallel. We also maintainthe �rst polygon in this set corresponding to a vital organ, if any, and the �rst correspondingto the tumor. Recursively proceeding on the subproblems gives us a tree which represents thearrangement. A leaf in this tree is a set of lines, and tracing the path from the leaf to the rootgives us all the polygons intersected by that set of lines.This data structure requires time and space O(n4+"). To �nd the leaf cells correspondingto acceptable needle paths, we traverse the arrangement by depth-�rst search and keep trackof whether the tumor or a vital organ is hit �rst by the current set of lines. If a path exists,we will �nd at least one leaf for which this is true. While this gives an O(n4+") algorithm,our intuition is that in practice it would be much more e�cient. The set of lines passingthrough three polygon edges is unlikely to intersect a fourth edge, so in practice the algorithmas described will probably run in roughly O(n3) time. Furthermore, the only important cellsare those intersecting the tumor. Only constructing those cells could reduce the running timeto something like O(n2). The fact that the representation is linear makes the algorithm feasibleto implement.3.3 Fitting k-
ats to pointsWe de�ned the (d�k)-dimensional distance from a point x to a k-
at f in general position to bethe Euclidean distance from x to the point in which f intersects the unique member g of the setof parallel (d�k)-
ats containing x. This metric is not as exotic as it may seem. When we �t a k-
at to a set of points using Least Squares, we are computing the k-
at which minimizes the sumof the squared (d�k)-dimensional distances to each of the points. The metric is appropriate, forinstance, when x is a multidimensional data point for which the coordinates x1; : : : ; xk representvariables which are known exactly and xk+1; : : : ; xd represent variables which are measured withsome error. Here, we use combinatorial methods to compute the k-
at which minimizes themaximum (d� k)-dimensional distance to any point, in time linear in the number of points.Let X be our set of n points in Rd. The region at (d � k)-dimensional distance at most "from a point x 2 X is a (d � k)-dimensional disk c" in the unique 
at g containing x in theset of parallel (d � k)-
ats. For the entire set X , these disks form a set C" = fc" k x 2 Xg ofparallel (d� k)-dimensional convex polytopes. Now consider the (k+ 1)(d� k) + 1 dimensionalcross-product Y �R+. A point y; " in this space represents a k-
at in Rd and a value of ".Lemma 3.3 Y � R+ can be parameterized so that, for any point x 2 X, the set of points y; "which correspond to a k-
at intersecting, non-degenerately, the disk c" around x form a convexset.Proof. Each disk c" is the intersection in g of an in�nite family Hg;" � H of (d�k)-dimensionalhalf-
ats, each ha;g;" of the forma1xk+1 + : : : ad�kxd � " � ad�k+16



where the ai are normalized so that a21 + a22 + : : : a2d�k = 1, and ad�k+1 is determined by therequirement that at " = 0, the equality a1xk+1 + : : : ad�kxd = ad�k+1 will be satis�ed by thepoint x 2 X at the center of the disk.Any k-
at Y 0 in general position intersects g in the point g � Y 0, and that point lies in ha;g;"if and only if (1; g1; : : : ; gk) � Y 0 � (a1; : : : ; a(d�k))T � " � ad�k+1This is a linear inequality in the Y 0�R+. The set of k-
ats intersecting every c" is the intersectionof this in�nite set Hg;" of linear halfspaces, and hence a convex set.So the sets of close-enough k-
ats at every " form convex sets of points in R(k+1)(d�k)+1.To �nd the minimum " at which there is a k-
at that is within " of every point, we just haveto minimize the linear function " over the intersection of these convex sets. This gives us thefollowing.Theorem 3.4 Let X be a �nite family of points in Rd. The k-
at which minimizes the max-imum (d� k)-dimensional distance to any point of X can be found by convex programming indimension (k + 1)(d� k) + 1, in linear time when d is �xed.Note that this result also applies to distance functions in which the disk around every pointis replaced by some other (d � k)-dimensional unit ball, for example what we might call the(d� k)-dimensional L1 distance or the (d� k)-dimensional L1 distance.4 Remarks4.1 DisclaimerNote that these theorems only apply to non-degenerate k-transversals. If the parallel (d�k)-setsin C fail to span Rd, they might have a degenerate k-transversal, which intersects some c 2 Cin a subspace of dimension greater than zero. In the �rst interesting case of line transversals inR3, there may be a degenerate transversal when the parallel two-dimensional convex sets in Call lie in the same plane. Finding a line transversal of a family of convex sets in the plane isclearly not a convex programming problem, since the set of line transversals may have up to nconnected components, n = jCj. And in fact there is a lower bound of 
(n lgn) for the specialcase of �nding a line transversal for a family of unit balls in the plane [LW86].4.2 Projective transformationThe family of parallel (d�k)-
ats can be de�ned as the set of (d�k)-
ats intersecting a (d�k�1)-
at at in�nity f1 spanned by the points at in�nity on the k+1; : : : ; d axes. Theorem 2.1 tells usthat the family of k-
ats intersecting a (d�k� 1)-
at contained in one of these parallel (d�k)-
ats forms a hyperplane under our parameterization. These (d� k � 1)-
ats also intersect f1.Consider a projective transformation which moves f1 to an arbitrary (d � k � 1)-dimensional
at f .Corollary 4.1 Let Hf be the set of (d � k � 1)-
ats intersecting a given (d � k � 1)-
at f inRd. The set of k-
ats in Rd can be parameterized so that the k-
ats intersecting any (d�k�1)-dimensional 
at in Hf form a hyperplane in R(k+1)(d�k).7



4.3 Axis aligned boxesThe following easy observation is a special case of Theorem 2.2.Observation 4.2 The k-
ats in Rd can be parameterized so that the set of k-
ats intersectingany member of a family of parallel (d� k)-dimensional axis-aligned boxes is convex.Such an axis-aligned box can be de�ned as points satisfyingx1 = g1� � �xk = gkand the inequalities a1 � xk+1 � b1� � �a(d�k) � xd � b(d�k)Substituting in the expression for the intersection of Y 0 and g, we get(a1; : : : ; a(d�k))T � (1; g1; : : : ; gk) � Y 0 � (b1; : : : ; b(d�k))TThis system can be separated into (d� k) separate systems of linear inequalities, one for eachcolumn of Y 0, and solved as (d� k) lower-dimensional linear programs, which is much faster.References[A94b] Nina Amenta, Helly Theorems and Generalized Linear Programming, Discreteand Computational Geometry 12:3 (1994) pages 241-261.[C87] Kenneth L. Clarkson. New Applications of random sampling in computationalgeometry, Discrete and Computational Geometry 2 (1987) pp 195-222[GPW93] Jacob E. Goodman, Richard Pollack and Rephael Wenger. Geometric TransversalTheory, in New Trends in Discrete and Computational Geometry, J�anos Pach, ed.,(1993) Springer Verlag, Berlin, pages 163-198.[GP94] Jacob E. Goodman and Richard Pollack. Foundations of a theory of convexity ona�ne grassmann manifolds, manuscript, (1994)[G60] Branko Gr�unbaum. Common transversals for families of sets, Journal of the Lon-don Mathematical Society 35 (1960), pages 408-16.[HL96] Pat Hanrahan and Mark Levoy. Light �eld rendering, Siggraph 96, to appear.[LW86] D.T. Lee and Y. F. Wu. Geometric complexity of some location problems, Algo-rithmica 1 (1986), pages 193-211.[MSW92] Ji�r�i Matou�sek, Micha Sharir and Emo Welzl. A subexponential bound for lin-ear programming, Proceedings of the 8th Annual Symposium on ComputationalGeometry (1992) pages 1-8. 8


