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The achromatic number for a graph G = �V�E� is the largest integer m such that
there is a partition of V into disjoint independent sets �V1� � � � � Vm� such that for
each pair of distinct sets Vi, Vj , Vi ∪ Vj is not an independent set in G. Yannakakis
and Gavril (1980, SIAM J. Appl. Math. 38, 364–372) proved that determining this
value for general graphs is NP-complete. For n-vertex graphs we present the first
o�n� approximation algorithm for this problem. We also present an O�n5/12� approx-
imation algorithm for graphs with girth at least 5 and a constant approximation
algorithm for trees.  2001 Elsevier Science
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1. INTRODUCTION

A complete coloring of a graph G = �V�E� is a partition P = �V1� � � � � Vm�
of the vertices V such that each induced subgraph �Vi�, Vi ∈ P , is an inde-
pendent set, and, for each pair of distinct sets Vi� Vj ∈ P , the induced sub-
graph �Vi ∪ Vj� is not an independent set. The largest integer m for which
G has a complete coloring is called the achromatic number of the graph
and is denoted by ��G�.
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The achromatic number was defined and studied by Harary et al. [7] and
Harary and Hedetniemi [6]. Computing the achromatic number for a gen-
eral graph was proved NP-complete by Yannakakis and Gavril [11]. A sim-
ple proof of this fact appears in [5]. Bodlaender [1] proved, further, that the
problem remains NP-complete even when we limit ourselves to connected
graphs that are both interval graphs and co-graphs. The NP-completeness
of the achromatic number for trees was established only recently [9]. For
graphs that are complements of trees this problem can be solved in poly-
nomial time [11].
An approximation algorithm for a problem, loosely speaking, is an algo-

rithm that runs in polynomial time and produces an “approximate solution”
to the problem. We say that an algorithm is an α-approximation algorithm
for a maximization problem if it always delivers a solution whose value is
at least a factor 1

α
of the optimum. α is called the approximation ratio. See

[4] and [10] for more details.
In the next section we present polynomial time algorithms for approx-

imating the achromatic number. Our main result is an approximation
algorithm for general graphs. It achieves an approximation ratio of
O�n/√log n�, where n is the number of vertices. This is the first o�n�
approximation algorithm known for this problem. We then give algorithms
for special classes of graphs. The algorithm for trees achieves an approxi-
mation ratio of 7. For graphs with girth at least 5 we present an algorithm
with an approximation ratio of O�n5/12�. The last two algorithms involve
ideas completely different from those used for general graphs.

1.1. Preliminary Definitions and Results

Let G = �V�E� be a graph. Let u, w ∈ V , and U , W ⊆ V . We use
N�u� to denote the neighborhood of the vertex u and N�U� to denote
the neighborhood of the vertex set U , i.e., N�u� = �w � �u�w� ∈ E� and
N�U� = �w � w �∈ U� ∃u ∈ U � �u�w� ∈ E�. U and W will be termed
adjacent if N�U� ∩W �= � or U ∩N�W � �= �.
A coloring of a graph is a partition of the vertex set into independent

sets. Each such set is called a color class. A coloring is called complete or
irreducible if every pair of distinct color classes Ci, Cj is adjacent. A com-
plete coloring is called maximum when the number of color classes is the
maximum possible, i.e., it is equal to the achromatic number of the graph.
A partial complete coloring is a coloring in which only some of the vertices
have been colored, but each color class is adjacent to each of the other
color classes.
The distance between two vertices of a graph is the number of edges in

the shortest path between the vertices. The distance between a vertex and
an edge is the minimum of the distances between the vertex and an end-
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vertex of the edge. The distance between two edges is the minimum of the
distances between an end-vertex of the one and an end-vertex of the other
edge. A pair of edges is adjacent when the distance between them is 0.
The girth of a graph is the length of the shortest cycle in the graph.
Given a maximum complete coloring for a graph G = �V�E�, we can, for

every pair of color classes, choose an edge that makes the two color classes
adjacent. Such a set of edges is called an essential set.
We record some easy results.

Fact 1.1. Any partial complete coloring can be extended to a complete
coloring of the entire graph.

Fact 1.2. For a graph G = �V�E� the size of any essential set is at
most the size of the edge set, i.e.,

(��G�
2

) ≤ |E|. Consequently, ��G� =
O�√|E|�. In particular, if � is the maximum degree of a vertex in V ,
��G� ≤

√
|V |�+ 1.

Fact 1.3. Let graph G = �V�E� have a maximum complete coloring,
and let U ⊆ V be a subset of vertices such that at most c of the color
classes intersect U . Then a partial complete coloring of size ��G� − c can
be assigned to the induced subgraph �V \U�. Thus ���V \U�� ≥ ��G� − c.
In particular, we always have ���V \U�� ≥ ��G� − |U |.

2. APPROXIMATION ALGORITHMS FOR
THE ACHROMATIC NUMBER

2.1. An Algorithm for General Graphs

Motivation

One approach to finding a complete coloring is to repeatedly remove
maximal independent sets. Let G0 = G. At the ith step, find a maximal
independent set Ii in Gi−1. Set Gi = Gi−1\Ii. It is easy to see that the
independent sets so found make up a complete coloring. The crucial ques-
tion is how to select the maximal independent sets. For instance, consider
the complete bipartite graph minus a perfect matching. If the algorithm
picks the wrong independent set initially (i.e., it picks one of the two par-
tite classes), it outputs only two color classes in the complete coloring. But
it is possible to choose independent sets, each set being the two endpoints
of one of the missing matching edges, such that we get n/2 color classes,
where n is the number of vertices.
A good criterion, perhaps, for picking Ii is that it should be small in size.

The smallest such independent set cannot be found in polynomial time since
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this is the Minimum Maximal Independent Set problem, which is known to
be NP-complete. Indeed, it cannot be approximated in polynomial time to
within a factor of n1−ε for any ε > 0, where n is the number of vertices in
the graph [8].
Our strategy is to follow a semi-greedy approach. We keep picking ver-

tices that are adjacent to or cover a large number of as yet uncovered
vertices and stop if this cannot be done. This guarantees that we have
picked a small set of vertices. The problem is that these vertices may not
cover the entire graph. A naive approach is to discard the portion of the
graph not covered and continue. This may not be efficient since the achro-
matic number might drop drastically. We get around this by using the uncov-
ered portion of the graph in a judicious manner. Details follow.

Rough Description

We begin with a rough description of the algorithm. The algorithm pro-
ceeds in rounds. Each iteration selects an independent set as the next
color class. All the iterations (barring the initial 0th iteration) have the
same format. At the beginning of the ith iteration i color classes have
been constructed. Let the color classes be C0� � � � � Ci−1. Consider G′

i =
G\�C0 ∪ · · · ∪ Ci−1�. During the course of the algorithm we discard some
vertices from G′

i and are left with Gi. (We hide details in this rough descrip-
tion.) The set of vertices in the intersection of the neighborhoods in Gi of
the above color classes is called A (for active). The remaining vertices in
Gi form the set P (for passive).
The algorithm actually finds a strong achromatic coloring; i.e., it finds

a coloring such that, for every i, there is a vertex in Ci with neighbors in
C0� � � � � Ci−1. Our aim is to pick a small set of independent vertices Ci that
covers a large portion of A. That Ci is small would ensure, by Fact 1.3, that
the achromatic number of the rest of the graph does not drop much when
Ci is removed. Also, covering most of A would ensure that we can continue
finding a strong achromatic coloring.
For the next color class Ci we pick some vertices from P and at least one

vertex from A. This ensures that Ci is adjacent to Cj for j < i. Furthermore,
we ensure that the neighborhood of Ci in A\Ci is large.
The construction of Ci is divided into two parts. In the first part, we

repeatedly choose from P a vertex u that is not adjacent to any of the
vertices in the partially constructed independent set Ci and is adjacent to
at least αi as yet uncovered vertices in A; αi is a parameter that we will fix
later. We add u to Ci.
In the second part we choose vertices from A in a similar manner. We

choose fromA a vertex u that is non-adjacent to the partially constructed Ci
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and covers at least αi new vertices in A. We add u to Ci and repeat until
there is no such vertex left. This completes the construction of Ci.
The vertices in the neighborhood of Ci in A form the active set for the

next iteration. There are two options for forming the next passive set. So
the algorithm splits into two branches. In one branch we form the next
passive set using the vertices remaining in P and discard the remaining
(uncovered) vertices in A. In the other branch we discard some vertices
from those remaining in A, as well as from those in P , and combine the
rest to form the passive set for the next iteration.
A branch terminates when the active set for the next iteration is empty.

For each such “leaf” of the “execution tree” we get a partial complete
coloring of size one more than the depth of the leaf. (Note that the depth
of the leaf is the same as the iteration in which the branch terminates.) We
choose a partial complete coloring with the maximum size. We shall show
that, when ��G� ≥ n/

√
log n, there is at least one leaf at depth ��√log n�.

This leaf yields the required large partial complete coloring. If we terminate
the algorithm at this depth, the total number of leaves (and hence the time
taken by the algorithm) is polynomial. This completes the rough description
of the algorithm.
We now describe the algorithm formally.

Algorithm Achromatic-Partition

Iteration 0:
We initialize the color class C0 and the set A to null sets and the set P

to the entire vertex set of the graph.
While there is a vertex u in P with at least α0 neighbors in P we remove

this vertex from P and add it to C0. We also remove its neighbors and add
them to A. α0 is a parameter (an increasing function of n) that we will
determine later.
The vertices in A form the active set for the next iteration, and the

vertices remaining in P form the next passive set. We set δ1 = α0.

Iteration i� �i = 1� � � � �
√
log n/3�:

Comment: C0� � � � � Ci−1 are the color classes formed by the previous itera-
tions. The active set A and the passive set P have been constructed in the
previous iteration. We also have a number of temporary sets which are ini-
tialized to null at the beginning of this iteration. Some of these sets are
not necessary for the algorithm but are needed for the analysis. We now
briefly describe these temporary sets. CP and CA consist of vertices from
P and A, respectively, that are used to form the color class Ci. PP consists
of the neighbors of CP in P , and PA consists of those neighbors of CA in
P that are not already in PP . Similarly, AP consists of the neighbors of CP

in A and AA of those neighbors of CA in A that are not already in AP . PI
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consists of those vertices from the passive set that cannot be used in this
iteration and are ignored. PR is the set of passive vertices left at the end
of the iteration. Similarly, AR is the set of active vertices left at the end of
the iteration and AD is the set of those active vertices that are discarded.

Step 1. While there is a vertex u in P that does not cover A entirely
but has at least αi = nεδi neighbors in A, we transfer u to CP , its neigh-
bors in P to PP , and its neighbors in A to AP . After all such vertices are
removed, we transfer the vertices remaining in P that cover all vertices in
A to PI .

Comment: The value of δi is computed in the previous iteration. We shall
prove later that a vertex in P does not have more than δi neighbors in P .
ε is a positive valued function of n which, with foresight, can be taken to
be 1/

√
log n. The reason we cannot add any vertices from PI to Ci is that

we want to include at least one vertex from A in Ci.

Step 2. Next, while there is a vertex u in A that has at least αi neigh-
bors in A, we transfer u to CA, its neighbors in P to PA, and its neighbors
in A to AA. Suppose no vertex satisfies this condition, we transfer any one
vertex from A to CA and its neighbors in P and A to PA and AA, respec-
tively.

Step 3. The vertices in CP and CA form the color class Ci. The ver-
tices remaining in P form the set PR. If the number of vertices remaining
in A is at most n1−ε we transfer all of them to AD, to be discarded. Oth-
erwise we transfer only those vertices that have more than nεαi neighbors
in PA ∪ PR to AD; the rest of the vertices form the set AR. The vertices in
PP and AD are discarded.

Step 4. If both AP and AA are empty this branch terminates, and
we output the color classes C0� � � � � Ci. Otherwise the vertices in AP and
AA form the next active set. For the next passive set, in one branch of the
algorithm, we combine the vertices in PA, PR, and PI . In the other branch,
we combine vertices in PA, PR, and AR to form the next passive set.

We set δi+1 = 2n2εδi.
End Iteration i.

Among the sets of color classes generated by the various branches, we
choose one with the largest size. Note that the restriction of keeping the
running time polynomial allows us to have #�log n� iterations. But the only
guarantee we have (see the proof of Theorem 2.1) is that some branch
would be alive for

√
log n/3 iterations, and so we stop after that for the

sake of analysis.
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Proofs and Analysis

The Algorithm Achromatic-Partition, as we shall see, results in a large
partial complete coloring as long as for some set of choices, which are made
in Step 4, the active set A does not shrink too fast. We will use Fact 1.3 to
lower bound the value of ���A∪P�� and Fact 1.2 to upper bound the value
of ���P��. A further application of Fact 1.3 will then allow us to lower
bound the size of A. We begin the analysis with some easy observations
followed by a lemma.

Observation 2�1. The Algorithm Achromatic-Partition outputs a partial
complete coloring. This is because at least one vertex in Ci is picked from
A and all vertices in A are adjacent to at least one vertex in each color
class Cj , j < i.

Observation 2�2. For the ith iteration the size of Ci is at most �n/αi�
since each vertex added to Ci, except possibly one, covers at least αi new
vertices.

Lemma 2.1. Let di denote the maximum number of neighbors a vertex in
the passive set has within the passive set during the ith iteration. Then

di ≤ δi = 2i−1n2�i−1�εα0�

Proof. It is easy to see by induction on i that δi = 2i−1n2�i−1�εα0. So
we shall just prove that for all i, di ≤ δi. We again proceed by induction
on i. Note that d1 ≤ δ1 = α0. We now need to prove that di+1 ≤ 2n2εδi.
Consider the end of iteration i. If the next passive set is formed by vertices
of PA, PR, and PI then di+1 ≤ di ≤ δi. Now consider the case when PA,
PR, and AR form the next passive set. A vertex in PA ∪ PR has at most δi
neighbors in PA ∪ PR. It also has less than αi = nεδi neighbors in AR, for
otherwise this vertex is a candidate to be put in CP in Step 1. Therefore
such a vertex has less than �1+ nε�δi neighbors in the new passive set. Now
consider a vertex in AR. It has fewer than than αi neighbors in AR. It also
has at most nεαi neighbors in PA ∪ PR, for otherwise this vertex would end
up in AD while executing Step 3. Thus the number of its neighbors in the
new passive set is less than

�1+ nε�αi = �1+ nε�nεδi ≤ 2n2εδi�

The lemma follows.

We continue the analysis by introducing two parameters. Let ki denote
the achromatic number of the induced subgraph �A ∪ P� at the beginning
of the ith iteration. Similarly, let li denote the achromatic number of the
induced subgraph �P� at the beginning of the ith iteration.
We now prove a bound on the value of k1.
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Lemma 2.2. k1 ≥ ��G� − n/α0.

Proof. Consider the beginning of the first iteration. We have A ∪ P =
V �G�\C0. From Fact 1.3, k1 ≥ ��G� − �C0�. The lemma follows as C0 is at
most n/α0 in size.

Lemma 2.3. At the end of iteration i, for at least one set of choices made
in Step 4,

ki+1 ≥
1
2i

(
��G� − n

α0

)
− 3n1−ε�

and, furthermore, the value of li+1 is at most
√
n2in2iεα0 + 1.

Proof. We shall prove that at the end of iteration i, for at least one
branch,

ki+1 ≥ 1
2

(
ki − 3n1−ε

)
�

The first part of the lemma will then follow by induction on i, the base case
being Lemma 2.2.
Let Hi denote the induced subgraph �A∪P� at the beginning of iteration

i. Consider the state at the end of iteration i. Let H ′ denote the induced
subgraph �V �Hi�\Ci\PP\AD�. From Fact 1.3,

��H ′� ≥ ki − �Ci� − �PP � − �AD�� (1)

We now bound from above the sizes of Ci, PP , and AD.
Recall that αi = nεδi and δi = 2i−1n2�i−1�εα0. From Observation 2.2 it

follows that

�Ci� ≤
⌈

n

nε2i−1n2�i−1�εα0

⌉
≤ n1−ε� (2)

Each vertex in CP can have at most di neighbors in PP . By Lemma 2.1
di ≤ δi. Therefore

�PP � ≤ �CP �δi ≤ ��Ci� − 1�δi ≤
n

αi
δi = n1−ε� (3)

We next prove that the size of AD is also at most n1−ε. The non-trivial
case is when we transfer vertices from A to AD that have more than nεαi
neighbors in PA ∪ PR. Note that a vertex in PA ∪ PR has less than αi neigh-
bors remaining in A; otherwise the vertex would have been transferred to
CP in Step 1. Therefore, it follows that the number of vertices in A that
satisfy the required condition are at most

�PA ∪ PR�αi
nεαi

≤ n1−ε� (4)
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Thus from inequalities (1), (2), (3), and (4) we infer that

��H ′� ≥ ki − 3n1−ε�

Let H ′
A = �V �H ′�\PI� and H ′

P = �V �H ′�\AR�. Note that one branch has
Hi+1 = H ′

A and the other has Hi+1 = H ′
P . Every vertex in PI is adjacent to

every vertex in AR. Therefore for any complete coloring of H ′, vertices in
PI are assigned colors different from those in AR. So, either the vertices in
PI or those in AR are assigned at most ��H ′�/2 colors. This and Fact 1.3
lead to

max���H ′
A����H ′

P�� ≥ ��H ′�
2

�

So at least one branch has ki+1 = ��Hi+1� ≥ �ki − 3n1−ε�/2, and this
proves the first part of the lemma.
Recall from Lemma 2.1 that the maximum degree of a vertex in the

subgraph �P� during iteration �i + 1� is 2in2iεα0. The rest of the proof
follows from Fact 1.2.

Theorem 2.1. The achromatic number of a graph, ��G�, can be approx-
imated to within O�n/√log n�, where n is the number of vertices.

Proof. If ��G� ≤ n/
√
log n we output any complete coloring. If not, we

use Algorithm Achromatic-Partition. We note that the algorithm results in
a partial complete coloring of size at least �i+ 2� as long as there is a vertex
in A at the beginning of the �i+ 1�th iteration. From Fact 1.3 we have that,
at the beginning of the �i+ 1�th iteration,

|A| ≥ ���A ∪ P�� −���P�� = ki+1 − li+1�

Thus from Lemma 2.3 the size of the partial complete coloring is at least
�i+ 2� if

1
2i

(
��G� − n

α0

)
− 3n1−ε −

√
n2in2iεα0 − 1 ≥ 1�

For ��G� ≥ n/
√
log n, α0 = log n, ε = 1/

√
log n, and i = √

log n/3 the
above inequality is satisfied. (The logarithms are base 2.)

2.2. Independent Matchings and Unions of Independent Stars

Definition 2.1. A subset M of the edge set E of a graph G = �V�E�
is a matching in G if no two edges in M have a common vertex; i.e., the
distance between any pair of distinct edges in M is at least one. We call a
matching M independent if there does not exist any edge in E\M that is
adjacent to more than one edge in M; i.e., the distance between any pair
of distinct edges in M is at least two.
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Observation 2�3. Given an independent matching of size
(
k
2

)
for a graph

G = �V�E�, a partial complete coloring of size k can be assigned to the
vertices of G. Furthermore, if the maximum degree of any vertex in V
is at most �, an independent matching of size O�|E| /�2� can be found
by a simple greedy strategy. This, in turn, can be used to obtain a partial
complete coloring of size ����G�/��. (Remember that ��G� = O�√|E|�.)
The concept of an independent matching can be extended to that of

independent stars.

Definition 2.2. Let G = �V�E� be a graph. A set of edges s =
�e1� � � � � e|s|� ⊆ E is called a star if each edge e ∈ s is incident on
a common vertex c. c is called the center of the star. A set of edges
S = �e1� � � � � e|S|� ⊆ E is called a union of independent stars if there exists
a partition P = �s1� � � � � sp� of S, such that each si ∈ P is a star in G, and
for any pair of edges e ∈ si, f ∈ sj , such that i �= j, the distance between e
and f is at least two.

We now make the following observation regarding the use of a union of
independent stars in assigning a partial complete coloring to the graph.

Observation 2�4. Given a union of independent stars S such that the size
(or degree) of each star is at most �S , a partial complete coloring of size
sup�k� (k2)+ �k− 1���S − 1� ≤ �S�� can be assigned to the graph.

2.3. An Algorithm for Trees

The following algorithm generates a partial complete coloring for a tree.

Algorithm Tree-Partition

Input: A tree T = �V�E�, and an integer t.

Comment: t should ideally be ��T �. We do not know the value of ��T �
but run the algorithm for each of the possible n values.

Output: A partial complete coloring for T .

1. Mark any vertex r ∈ V as the root of the tree T .
2. Group the edges in E into levels 0� 1� � � � � l depending on the dis-

tance from r.
3. E0 is the set of edges at levels 0� 3� � � � � 3� l

3�. Similarly E1 and E2
are the sets of edges at levels that are equivalent to 1 mod 3 and 2 mod 3,
respectively.

Comment: It is obvious that E0, E1, and E2 are each unions of independent
stars.
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4. For every vertex v with more than t neighbors, remove all but t of
its neighbors. Let the resultant collection of independent stars be E0, E1,
and E2.

Comment: Note that the degree of each Ei is at most t.
5. Now use Observation 2.4 to generate a partial complete coloring

for each Ei in turn and output the coloring with the largest size.

Theorem 2.2. Algorithm Tree-Partition assigns a partial complete coloring
of size at least ��/7� to a given tree, where � is the achromatic number
of the tree.

Proof. Consider the execution of the Algorithm Tree-Partition when t =
�. Let E′ be a set of essential edges in some maximum coloring of the given
tree. Let E′

i = Ei ∩E′ for 0 ≤ i ≤ 2. Note that E′
0 ∪E′

1 ∪E′
2 = E′. So for at

least one among E′
0, E

′
1, and E′

2, say E
′
k,

∣∣E′
k

∣∣ ≥ 1
3

∣∣E′∣∣ = 1
3

(
�

2

)
�

Furthermore, for any vertex v, there are at most � essential edges incident
on v. Hence �Ek� ≥ �E′

k� ≥ 1
3

(
�
2

)
. Thus, from Observation 2.4, given Ek, we

can assign a partial complete coloring of size

sup
{
k �

(
k

2

)
+ �k− 1���− 1� ≤ 1

3

(
�

2

)}
≥ �

7
�

The theorem follows.

2.4. An Algorithm for Graphs with Large Girth

Definition 2.3. Let G = �V�E� be a graph. The extended neighborhood
of an edge e ∈ E, denoted by NE�e�, is the set of edges at a distance at
most one from e.

Theorem 2.3. If the girth of a graph is at least 5, and the achromatic
number is �, then we can find a complete coloring with at least

√
�/3 colors.

Proof. We construct the color classes incrementally. At the end of the
ith step we have constructed the color classes C1� � � � � Ci, such that the
color class Cj , 1 ≤ j ≤ i, consists of a multiset of independent vertices
vj�1� � � � � vj�i. Vertices vj�k and vk�j , for k �= j, are adjacent.
During the �i + 1�th step we find, for 1 ≤ j < i + 1, adjacent vertices

vj� i+1 and vi+1� j . Note that vj� i+1 could be an already existing vertex in Cj .
We claim that, as long as i <

√
�/3, we can find such vertices.

We find these vertices one by one. At the beginning of the �i+ 1�th stage
we have at most i distinct vertices in each color class, and we are left with
at least n− i2 vertices that have not been put in any color class.
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Suppose that we have found such vertices for j < k < i+ 1. Consider the
color class Ck. If there is already an edge between some vertex in Ck and a
vertex in the class Ci+1, which is being constructed, we are done. If not, let
R′ denote the set of vertices that have not been put in any color class so
far. It is easy to see that

∣∣R′∣∣ > n − i2 − 2k > n − 2i2. Now, let L denote
the set of vertices that have a neighbor in both Ck and Ci+1. Since the girth
is greater than 4 no two vertices in L can have a common neighbor in both
Ck and Ci+1. There are at most i vertices in each of these two color classes.
Consequently, |L| ≤ i2. Let R = R′\L. Supposing there is a vertex in R that
has an edge to one color class but not the other, we are done; we add this
vertex to the color class to which it is not adjacent. We are left with the case
that vertices in R do not have a neighbor in either of the two color classes.
The achromatic number of R is at least �−�n− �R�� > �− 3i2 > 0. Hence
there is at least one edge in R. Place one endpoint in Ck and the other in
Ci+1.

Furthermore, every n-vertex graph with girth at least g has at most
n
⌈
n2/�q−2�

⌉
edges (see [2, Theorem 3.7(a), p. 126]). Putting this together

with the previous theorem and the fact that the achromatic number is at
most O�√�E��, it follows that the achromatic number of graphs with girth
at least 5 can be approximated to O�n5/12�.

3. OPEN PROBLEMS

There are a number of open problems. Find lower bounds for the approx-
imability for general graphs. We believe that the upper bound for general
graphs can be improved to O�nε�. We hazard a guess that it should be√
�. Can one prove good lower bounds, at least for computing the strong

achromatic number of a graph? It seems as if one can get better approxi-
mation ratios as the graph gets sparser. It would be nice to come up with
an algorithm that reflects this phenomenon.
Can geometric methods be used to find good algorithms, like the recent

algorithms for the chromatic number? Let us note that this problem seems
to behave differently from the chromatic number problem. For instance, if
the achromatic number is a constant it can be found in linear time [3].
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