
IEEE Workshop on Multimedia Signal Processing, Princeton, NJ, June 1997.

SPLICING MPEG VIDEO STREAMS

IN THE COMPRESSED DOMAIN

Susie J. Wee and Bhaskaran Vasudev

Hewlett-Packard Laboratories
1501 Page Mill Road, MS 3U-4

Palo Alto, CA 94304
swee@hpl.hp.com

Abstract - An algorithm is proposed for e�ciently splicing two MPEG-

coded video streams. The algorithm only processes the portion of each

video stream that contains frames a�ected by the splice and it operates

directly on the DCT coe�cients and motion vectors of those frames. The

algorithm achieves good visual performance with very low computational

complexity, and incorporates rate control to prevent bu�er underow

and overow. If additional processing power is available, it can be used

to further improve the quality of the spliced stream.

INTRODUCTION

Splicing is a technique commonly used in video editing applications. When
splicing uncompressed video, the solution is obvious: simply discard the un-
used frames and concatenate the remaining data. In other words, for uncom-
pressed video, splicing is simply a cut-and-paste operation. The simplicity
of this solution relies on the ordering and independence of the uncompressed
video data.

Modern video compression algorithms such as MPEG use predictive meth-
ods to reduce the temporal redundancies inherent to typical video sequences.
These methods achieve high degrees of compression, but in doing so, they
create temporal dependencies in the coded data stream. These dependencies
complicate a number of operations previously considered simple { splicing is
one such operation.

In this work, we examine the problem of splicing two MPEG-coded video
data streams. The only previous work we found published in the literature
on this topic was as part of a video editing system by Meng and Chang
[1]. In this work, we develop a compressed-domain splicing algorithm that
provides a natural tradeo� between computational complexity and compres-
sion e�ciency; this algorithm can be tailored to meet the requirements of
a particular system. This paper begins by describing the problem of splic-
ing MPEG-coded video streams. The proposed algorithm is then presented,
and the frame conversion and rate control issues are discussed. The splicing
algorithm was implemented in software and experimental results are given.



SPLICING ALGORITHM

The goal of the splicing operation is to form a video data stream that
contains the �rst Nhead frames of one video sequence and the last Ntail
frames of another video sequence. A naive splicing solution is to completely
decompress the two video streams, cut-and-paste the decompressed video
frames in the pixel domain, and recompress the result. With this method,
each frame in the spliced video must be completely recoded. This method has
a number of disadvantages including high computational requirements, high
memory requirements, and low performance due to recoding.

In the proposed algorithm, the computational requirements are reduced
by only processing the frames a�ected by the splice. For example, in most
instances the only frames that need to be processed or recoded are those in
the GOPs a�ected by the head and tail cut points; at most, there will be one
such GOP in the head data stream and one in the tail data stream. Further-
more, the data need not be decompressed into its pixel domain representation;
improved performance is achieved by only partially decompressing the data
stream into its motion vector and sparse DCT representation.

The splicing algorithm has three parts: form the head data stream which
contains a series of frames from one sequence, form the tail data stream which
contains a series of frames from another sequence, and match these data
streams to form an MPEG-compliant data stream. The splice cut points of
the head and tail streams can occur at any point in the IPB video sequence.
One di�culty in splicing MPEG-coded video stems from the fact that video
data needed to decode a frame in the spliced sequence may depend on data
from frames not included in the spliced sequence.

In the proposed algorithm, the temporal dependence problem is solved by
converting the picture types of the appropriate frames. The allowable conver-
sions retain the ordering of the original coded data streams for frames included
in the spliced sequence, thereby simplifying the computational requirements
of the splicing algorithm. The algorithm results in an MPEG-compliant data
stream with variable-sized GOPs, exploiting the fact that the GOP header
does not specify the number of frames in the GOP or its structure, rather
these are fully speci�ed by the ordering and type of the picture data in the
coded data stream. The algorithm uses rate control to ensure that the result-
ing spliced stream satis�es the speci�ed bu�er constraints. The steps of the
proposed splicing algorithm are described below.

1. Form the head data stream The simplest case occurs when the cut for
the head data occurs immediately after an I or P frame. When this occurs,
all the relevant video data is contained in one contiguous portion of the data
stream. The irrelevant portion of the data stream can simply be discarded,
and the remaining relevant portion does not need to be processed. When the
cut occurs immediately after a B frame, some extra processing is required
because one or more B-frame predictions will be based on an anchor frame
that is not included in the �nal spliced video sequence. In this case, the



leading portion of the data stream is extracted up to the last I or P frame
included in the splice, then the remaining B frames are converted to P frames
as described below in the Frame Conversion section.

2. Form the tail data stream. The simplest case occurs when the cut
occurs immediately before an I frame. When this occurs, the video data
preceding this frame may be discarded and the remaining portion does not
need to be processed. When the cut occurs before a P frame, the P must be
converted to an I frame, and the remaining data remains in tact. When the
cut occurs before a B frame, extra processing is required because one of the
anchor frames are not included in the spliced sequence. In this case, if the
�rst non-B frame is a P frame, convert it to an I frame. Then, convert the
�rst consecutive B frames to Bback mode as described below in the Frame

Conversion section.

3. Match the head and tail data streams. The IPB structure and the
bu�er parameters of the head and tail data streams determine the complexity
of the combining operation. When using the steps described above, this step
requires �rst concatenating the two streams and then processing the data
near the splice point to ensure that the bu�er constraints are satis�ed. This
requires matching the bu�er parameters of the pictures surrounding the splice
point. In the simplest case, a simple requantization will su�ce. However,
in more di�cult cases, a frame conversion will also be required to prevent
decoder bu�er underow. This process is discussed further in the Rate Control
section.

FRAME CONVERSION

The splicing algorithmmay require converting frames between the I, P, and
B prediction modes. Converting P or B frames to I frames is quite straightfor-
ward, however, conversion between any other set of prediction modes is much
more complicated. Exact algorithms require performing motion estimation
on the decompressed video { this process can dominate the computational
requirements of the splicing algorithm. In this work, we use approximate
algorithms that signi�cantly reduce the number of computations required for
this conversion. If additional computational power is available, then addi-
tional processing can be used to improve quality.

The �rst two steps of the proposed splicing algorithm may require B-to-
P, P-to-I, and B-to-Bback frame conversions; and in the next section it will
be shown that the third step may require I-to-P frame conversions. Each
of these conversions is described below. In these conversions, the data is
only partially decoded into its DCT and motion vector (DCT+MV domain)
representation. This data is then converted into its new DCT+MV or DCT
domain representation, and the result is recoded into the MPEG stream.
The frame conversions will often require an inverse motion compensation
operation. When this is needed, an e�cient DCT-domain algorithm is used



to calculate the new DCT coe�cients of the motion-compensated prediction
directly from the intraframe DCT coe�cients of the anchor frame [2].

P to I Frame Conversion In order to decode a P frame, the previous I and
P frames in the GOP must �rst be decoded. Similarly, when converting a P
frame to an I frame, the previous I and P frames in the GOP are �rst partially
decoded into their DCT-domain representations. Then, for each P frame
the DCT-domain inverse motion compensation algorithm is used to calculate
the DCT coe�cients of the motion compensated prediction, which is then
added to the partially decoded residual DCT coe�cients to form intraframe
DCT coe�cient representation. Finally, the intraframe DCT coe�cients are
recoded into the MPEG stream.

I to P Frame Conversion The di�culty of I to P frame conversion stems
from the fact that no motion vectors are available for forward prediction.
Because of the high computational cost of performing motion estimation, each
macroblock of the frame is initially coded in intraframe mode or in forward
prediction mode with a motion vector of (0,0). If additional computational
power is available, a fast DCT-domain motion estimation algorithms is used
to �nd better motion vectors to improve the motion compensated prediction
of each block.

B to P Frame Conversion In P frames, each macroblock can be coded in
intraframe mode or with forward prediction. In B frames, each macroblock
can be coded in intraframe mode or with forward, backward, or bidirectional
prediction. The B-to-P frame conversion requires each macroblock of the B
frame to be converted to an allowable P-frame macroblock. Thus, if the B
macroblock was coded with forward prediction or in intraframe mode, it can
be left as is, but if the macroblock was coded with backward or bidirectional
prediction, it must be converted to an intraframe or forward predicted mac-
roblock. In our conversion, the bidirectional macroblocks are converted to
forward predicted macroblocks using the given forward motion vector. The
new prediction is calculated and the residual DCT coe�cients are adjusted
appropriately. If the macroblock used backward prediction, then it is coded
either in intraframe mode or with forward prediction with a motion vector
of (0,0). As in the I to P conversion, if additional computational power is
available, a fast DCT-domain motion estimation algorithm is used to re�ne
the motion vector.

B to Bback Frame Conversion The Bback frame is de�ned as one in which
the macroblocks can be coded with backward prediction or in intraframe mode
{ this is essentially the dual of a P frame but for backward prediction. Thus,
the B to Bback conversion is simply the dual of the B to P conversion in
which the forward and backward instances are reversed.



RATE CONTROL

In MPEG, each picture is coded into a variable-length data segment.
However, the frame rate of the displayed sequence is constant. Achieving
constant bit rate (CBR) transmission of the MPEG stream requires bu�ers
at both the encoder and the decoder. In CBR transmission, the decoder
bu�er is �lled at a constant rate and the I, P, or B picture data is emptied at
regular time intervals corresponding to the frame rate of the sequence. If a
picture contains a large amount of data, the bu�er empties by a large amount.
Thus, a stream that contains many large frames in close succession may cause
the bu�er to underow, i.e. in a CBR channel, the picture data may not be
received in time to be displayed.

The MPEG syntax requires the bu�er size to be speci�ed in the sequence
header, thus it is speci�ed once at the beginning of the stream and can not be
changed. MPEG also requires a vbv delay parameter to be speci�ed in each
picture header; vbv delay indicates the length of time the picture start code
must be stored in the bu�er before it is decoded [3].

In the proposed splicing algorithm, a number of frames are converted be-
tween various temporal modes. I frames typically require more data than P
or B frames; thus, if many I frames are created, the resulting data stream
may cause the bu�er to underow. The splicing algorithm must incorporate
some form of rate control to prevent bu�er underow and overow.

The problem becomes one of matching the bu�er parameters of the head
and tail data streams. More precisely, the head and tail frames near the splice
point should be processed so that the vbv delay parameter of the remaining
tail frames retain their original values. Thus, if we assume that the two
original streams satisfy the bu�er constraints, then by properly matching the
head and tail streams we ensure that the spliced stream also satis�es bu�er
constraints.

Meng and Chang solve the rate control problem by inserting synthetic fade-
in pictures with low data rates [1]. They mention the possibility of applying
a rate modi�cation algorithm by using data partitioning, but do not develop
this further.

In this algorithm, we achieve rate control with one of two methods. If the
bu�er occupancy of the pictures surrounding the splice point are similar, we
requantize the DCT coe�cients in the frames near the splice point to obtain
a suitable match. If the resulting stream satis�es the bu�er constraints and
has acceptable video quality, then the splicing operation is complete. If the
bu�er occupancies are very di�erent or if the requantized stream still causes
the bu�er to underow, then a more drastic operation is needed to lower the
bit rate. In this case, the I frames near the splice point in the head and
tail streams are converted to P frames. Speci�cally, the last I frame in the
head sequence and the second I frame in the tail sequence are converted to P
frames. In addition, requantization is used to �ne tune the bu�er matching
problem. Note that these frame conversions do not change the coding order
of the picture data.



0 50 100 150
20

30

40
Football Sequence

frame number

P
S

N
R

 (
dB

)

0 50 100 150
20

30

40
Cheerleader Sequence

frame number

P
S

N
R

 (
dB

)

0 50 100 150
20

30

40
Original Frames (top) and Spliced Stream (bottom)

frame number

P
S

N
R

 (
dB

)
0 50 100 150

−1
0
1
2
3

x 10
5 Football Sequence

frame number

bu
ffe

r 
oc

cu
pa

nc
y 

(b
its

)

0 50 100 150

−1
0
1
2
3

x 10
5 Cheerleader Sequence

frame number

bu
ffe

r 
oc

cu
pa

nc
y 

(b
its

)

0 50 100 150

−1
0
1
2
3

x 10
5 Spliced Sequence: Before (bottom) and After (top) Buffer Matching

frame number

bu
ffe

r 
oc

cu
pa

nc
y 

(b
its

)

Figure 1: PSNR and bu�er occupancy of the original and spliced sequences.

EXPERIMENTAL RESULTS

The proposed algorithm was used to splice the MPEG-coded football and
cheerleader video streams. Both sequences had resolutions of 352 by 240
pixels at 30 fps and were coded with a target data rate of 1.152 Mbps. The
PSNR and bu�er occupancy of the streams are shown in the top of Figure
1. The streams have 15-frame GOPs with one I frame, 4 P frames, and 10
B frames. The spliced stream switches between the football and cheerleader
sequences every twenty frames.

If the streams are spliced without addressing rate control, the bu�er un-
derows as shown in the lower trace in the lower right plot in Figure 1. When
applying rate control with requantization, the bu�er underow problem is
eliminated. The resulting PSNR is shown in the lower left plot in the �gure.
The solid line represents the PSNR of the original coded frames, and the
dotted line represents the PSNR of the spliced stream.

ACKNOWLEDGMENTS

The authors would like to thank Sam Liu for providing the MPEG parsing
software that was used in these simulations.

References

[1] J. Meng and S.-F. Chang, \Bu�er control techniques for compressed-domain video
editing," in Proceedings of IEEE International Symposium on Circuits and Systems,
(Atlanta, GA), May 1996.

[2] N. Merhav and B. Vasudev, \Fast inverse motion compensation algorithms for MPEG-2
and for partial DCT information," HP Laboratories Technical Report, vol. HPL-96-53,
April 1996.

[3] MPEG-2 International Standard, Video Recommendation ITU-T H.262, ISO/IEC
13818-2, January 1995.


