
Improving Software Performance with Configurable Logic

Jason Villarreal, Dinesh Suresh, Greg Stitt, Frank Vahid, Walid Najjar
Department of Computer Science and Engineering
University of California, Riverside
{villarre, dinesh, gstitt, vahid, najjar}@cs.ucr.edu

Abstract. We examine the energy and performance benefits that can be obtained by re-mapping frequently executed loops
from a microprocessor to reconfigurable logic. We present a design flow that finds critical software loops automatically and
manually re-implements these in configurable logic by implementing them in SA-C, a C language variation supporting a
dataflow computation model and designed to specify and map DSP applications onto reconfigurable logic. We apply this
design flow on several examples from the MediaBench benchmark suite and report the energy and performance
improvements.

1. Introduction

Microprocessors are increasingly being supplemented with configurable logic, such as field-programmable gate arrays
(FPGAs), in embedded systems. A typical product may include numerous peripherals or custom logic components previously
implemented as an application-specific integrated circuit (ASIC), in addition to a microprocessor IC. Due to the time and cost
of designing and building ASICs, designers are increasingly implementing those additional peripherals and components in
configurable logic. Furthermore, recent low-cost, mass-produced devices incorporating both a microprocessor and
configurable-logic make such implementations even more attractive.

Given the increasing appearance of configurable logic along with microprocessors in embedded systems, we set out to
develop a method for using a small amount of that logic to improve the performance of the microprocessor software. Our
method utilizes three steps: software loop analysis, critical-loop recoding and compilation, and standard synthesis. Our
method fits into existing design flows and requires a relatively short amount of time to apply to a given application.

To support this method, we developed a general tool for analyzing loops. The tool, called LOOAN, can be integrated
with a variety of different processor simulators - we have so far integrated it with SimpleScalar [4] , an 8051 simulator [22],
and a MIPS simulator [6], all of which are publicly available.

For our critical-loop recoding and compilation, we utilize SA-C [11] - Single-Assignment C, and its associated compiler
and VHDL generation tool. SA-C was originally developed for capturing image processing algorithms and supports a
dataflow computation model. While similar to C, the combination of SA-C's restrictions along with its additional constructs
enable C programmers to straightforwardly describe such algorithms and perform extensive optimizations that otherwise
would have been difficult to apply on regular C code. In our method, we recode the most critical loops, as determined from
our loop analysis, in SA-C, and apply the SA-C compiler, which generates structural VHDL code.

The last step of synthesis can be carried out by any of a variety of commercial synthesis tools.
In this paper, we highlight the LOOAN [23] loop analysis and SA-C compiler tools, and we describe how our method

can be applied by an embedded system designer wishing to improve software performance by using configurable logic. To
validate the method, we applied it to several MediaBench benchmarks [17]. We show significant software speedups can be
obtained by using just a moderate amount of configurable logic. In addition, we achieve significant energy improvements,
which is important for battery-operated embedded systems.

2. Previous Work

Partitioning an application among software and hardware has been investigated from several different viewpoints in the past.
Several partitioning tools have focused on automated partitioning of a program among a microprocessor and a custom
processor (implemented on an ASIC or configurable logic) [13][14][5][9][15]. These approaches read an executable
specification into an internal representation, possibly annotated with frequencies determined through profiling, and then

walid najjar
Kluwer Journal on Design Automation of Embedded Systems, November 2002, Vol. 7, No. 4, pp.325 -339.

apply automated partitioning heuristics of that representation. S
challenging to incorporate into an existing tool flow.

FPGA

p

SA-C
C r

Simulation/ Loop Analysis
(LOOAN)

A

Figure 1: Hardware/software partitioning design flow.

Much work has been done on augmenting microprocessors w
which partitions high level code onto a board consisting of a Motor
a similar approach by compiling C code to hybrid RISC/FPGA ar
microprocessor core with reconfigurable logic.

Recent efforts have focused on generating custom instructions
PICO [19] focus on synthesis of customized processors. Kucukcak
to implement custom instructions.

In contrast to the above approaches, our method does not imp
the key element of automated partitioners - the detection of the mo
easily interfaced with different instruction-set simulators. Our
architecture without requiring special methods of integrating the tw
not change the microprocessor instruction set, but can be complem

3. Design

With microprocessor/reconfigurable logic based systems becoming
the reconfigurable logic efficiently. One such way to use this re
regions of a software application on this logic in order to improve
most of the time spent in software is spent within a small portio
generally difficult to identify at compile time where this small port
of the code, an embedded system designer needs to perform profili
first step towards optimizing.
 Once loop analysis has been done, the designer can identify the
then partition them onto hardware. Several choices exist on h
advantages and disadvantages to each approach. It would be bene
HLL
ompile
Micro-
processor
SA-C and
Synthesis

Tools
Software
pplication
Frequent Loo
uc

it
o
ch

a

o
s

m

en

F

c
th
n

io
ng

o
fi
Remainder of
Application
h partitioners represent sophisticated tools that can be

h FPGAs. PRISM [1] is a high-level language approach
la 68010 and four Xilinx 3060 FPGAs. Napa C [7] takes
itectures. The Garp architecture [12] combines a MIPS

to improve software performance. Tensilica [8] and HP's
r [16] considers using configurable logic in the datapath

se a heavy impact on the tool flow. We instead extracted
t critical loops - and made it a separate tool that could be
ethod uses a simple microprocessor/configurable-logic
o - they merely need to share memory. Our method does
tary to approaches that do.

low

more common, it becomes increasingly important to use
onfigurable logic is to implement only the most-critical
e performance of the application. It is a general rule that
 of the code. However, based on the application, it is
n of the code lies. In order to identify the critical section
 and loop analysis of the high level code (usually C) as a

loops or functions that are the most time-dominating and
w to implement these loops in hardware, with various
cial if the loops that were being taken to hardware could

be implemented in a high level language. Following the partitioning, the designer should be able to simulate the result or run
it on actual hardware and observe the energy and performance savings.

This design flow is illustrated in Figure 1. The design flow starts from a high-level software description of the
application. This application is then executed on a simulator that provides data for the loop analysis. From the results of the
loop analysis, the most frequent loop is determined and then partitioned into hardware while the rest of the application is still
implemented in software. The loop is then re-implemented into SA-C code. The SA-C tools can then generate a hardware
description, which can be synthesized by standard synthesis tools and placed in an FPGA. The remaining software is
compiled with any typical high-level language compiler and run on a microprocessor.

3.1. LOOAN

In order to profile benchmarks, we introduce an automatic tool set that performs loop analysis and profiling. The tool reads a
benchmark’s assembly file, map file (which contains the locations of functions in memory), and instruction trace and creates
a directed acyclic graph (DAG) representation in which the root of the DAG has children that correspond to all of the routines
in the code, e.g., main, printf, etc. Each routine node has children nodes that correspond to that routine’s loops, which are
automatically numbered beginning with 1. Similarly, each loop node has children nodes that correspond to that loop’s sub-
loops. Routine calls are also linked in through a special node linked as a child of the loop in which it appears.

After the DAG is created, the loop analysis program will parse the instruction trace and update each node with usage
information. After we have processed the entire instruction trace, we calculate certain statistical data and output the
information to a file including dynamic instruction counts per loop, average number of iterations per loop, and number of
times each loop is called.

Collectively, we refer to this set of tools as LOOAN [23] (which stands for LOOp ANalysis). The LOOAN tool set
supports applications compiled for the MIPS, the 8051, and was extended to support SimpleScalar for this paper. The tool
itself was written in standard C++ and can be executed on a variety of platforms.

We chose the above approach over a binary instrumentation approach for several reasons. One was that we could easily
update our analysis program to keep additional statistics. A second is because the above approach yields no change in
program behavior. The disadvantages compared to instrumentation are the slower execution and the need to generate large
trace files.

3.2. SA-C

In order to implement the critical sections located by LOOAN into hardware, the designer needs to implement them in a
language that can be translated to hardware. One way to accomplish this is to code the loops directly in a hardware
description language like VHDL, but this can have some drawbacks. First, software writers generally are not familiar with
hardware description languages. Second, the common tools that synthesize from hardware description languages generally
operate at the register-transfer level – behavioral level tools are not common. Another approach is to use a high-level
language, but most high-level languages are not designed to go to hardware. SA-C, however, is one such high-level language
that is specifically designed to generate hardware.

SA-C, which stands for Single Assignment C, is a variant of C and has been designed to express Image Processing (IP)
applications at a high level, while being amenable to efficient compilation to fine grain parallel hardware systems[2][3]. As
the name suggests, SA-C's most important restriction in comparison to C is that the value of any variable can be set only
once, when the variable is declared. This single assignment restriction is found in many functional programming languages,
and has the property that it breaks the von Neumann equivalence between variables and memory locations. Since variables
can be set only once, they correspond to values (not addresses) and can be assigned directly to wires. SA-C also removes the
C de-referencing and address operators (* and &), thus eliminating pointers, and forbids recursion.

One of the main advantages of SA-C is that it hides the details and intricacies of low-level hardware design from the
application programmer. At the same time, the SA-C compiler leverages extensive optimizations and code transformations to
increase the speed and reduce the size of the resulting circuit.

SA-C programs are compiled to FPGA configurations plus a C program that manages the FPGA in terms of
downloading the configuration and data, triggering the FPGA, and uploading the results. Thus, from the point of view of an
application developer, SA-C programs are like any program running on a more traditional processor. The compiler maps SA-
C programs to executables, which are invoked like any other program on the host. The only indication that part of the
program was actually mapped to a circuit and executed on a reconfigurable co-processor is its speed of execution.

The SA-C compiler supports a wide range of optimizations a tion.
Most of these optimizations are aimed at reducing the size of the ci
the propagation delay of the circuit (e.g. pipelining), or reducing th
reorders loops to better access the memory hierarchy). SA-C op
constant folding, operator strength reduction, function in-lining, de
sub-expression elimination. Other optimizations are specific to SA
synthesis tools[10].

Figure 2: Comparison of C code (a) and SA-C code (b).

One important aspect of SA-C is that it was never conceived
selected loops and functions of existing C programs would be re-w
The SA-C compiler would then map these segments to hardware. I
assumed that such operations are carried out in C.

Figure 2(a) shows C code taken from the innermost loop of the
operates on two arrays and returns the sum of the dot product over
indexed by the variables im_pos and x_filt respectively.

Figure 2(b) shows the equivalent SA-C code. In order to run th
function. The input arrays, initial values of the array indices, and
SA-C function. The parameter iterations corresponds to the numb
equal to y_filt_lin – the initial value of x_filt. Here the choice of t
To execute this benchmark on hardware we generated 16 inputs, an

In SA-C, any block of statements must return a value. In Figur
in the given index range. The sum operator computes the sum of al
and sum are built-in operators in the SA-C language. The sum of th
as the final return value in the program. Note that this is functional

3.3. Target Architecture

One of the many target architectures that could be applied to this
consists of a microprocessor and an FPGA connected over a memo
direct control over the activation of the FPGA through an enable
communicate directly to the processor and signal completion. If a
type, then the microprocessor would execute software instructions
onto the FPGA. The microprocessor would wait in a low-power s
was done. We chose this approach because we did not try to extr
portion of it. Future work includes looking at running the FP
performance benefits.

 This architecture is a simplified version of architectures tha
and A7 chip [21]. The E5 combines an 8051 microprocessor with
ARM processor. Both of these systems have components called c
can be read by the custom logic. Our target architecture assumes th
imed at producing a more efficient hardware execu

int32 main(int16 image[:],
 int16 temp[:],
 int16 im_pos, int16 x_filt,
 int16 iterations)
 {
 uint32 res =

for i in
 image[im_pos : im_pos + iterations]
dot
 temp[x_filt:x_filt + iterations]

 return(sum((uint32)i * j));
 }return (res);

b)

 for (im_pos=x_pos+y_im_lin;
 x_filt<y_filt_lin;
 x_filt++,im_pos++)
 sum+=image[im_pos]*temp[x_filt];

a)
rc
e
tim
a
-

r

n

 i
 a

is
 t
er

he
d
e
l
e

ly

 d
ry
 s
n
un
ta
ac
G

t a

on
at
uit (e.g., common sub expression elimination), reducing
I/O requirements of the circuit (e.g. strip-mining, which
izations also include traditional optimizations such as

d code elimination, invariant code motion and common
C or are adapted from vector and parallel compilers or

to be a stand-alone language, rather it is assumed that
itten in SA-C and incorporated in the original program.
fact, SA-C does not support any file I/O operation, it is

nternal_filter function in the epic benchmark. The loop
 section of these arrays. The arrays image and temp are

 loop in hardware, it needs to be written as a standalone
he number of iterations are passed as parameters to the
 of loop iterations in the C code and in this example is
 input data type is dependent on the nature of the input.
hence have declared the arrays to hold 16-bit integers.
2(b), the for loop computes the dot product of the arrays
the values generated during each iteration. Note that dot
dot products is stored in the variable res and is returned
 equivalent to the C code.

esign flow is illustrated in Figure 3. This architecture
 bus. In addition to sharing memory, the processor has

ignal. Similarly, the FPGA has a done signal that can
application was targeted towards an architecture of this
til it jumped to the portion of code that was partitioned
te until the FPGA had finished executing and signals it
t any parallelism from the code but merely speed up a
A and processor in parallel to achieve even greater

re commercially available today, such as Triscend’s E5
configurable logic. The A7 is similar except it uses an
figuration registers, which are writable in software, but
 enabling the custom logic uses a configuration register.

Done

Enable

System RAM

Microprocessor
Core

D
at

a

A
dd

re
ss

FPGA

Figure 3: Target Architecture

There is an additional component on the Triscend chips, called a status register, which is only writable by the custom logic
but can be read by the software. We assume that a status register is used to specify the end of execution in the custom logic.

The Triscend architectures are slightly more complex than our target architecture and generally contain components such
as a DMA in order to share the memory. Our architecture, however, does not require a DMA because we are guaranteed that
the time the processor executes and the time the FPGA executes will be mutually exclusive. The FPGA and processor both
access memory by writing to the address bus and reading from the data bus. The FPGA modifies any variable or memory
location it needs to as normal and the processor will be able to see these changes when it restarts. There are also no
peripherals on our simplified architecture that would interrupt the processor or need access to the memory. There is currently
no cache in this architecture, as this is left as future work.

4. Experiments

4.1. Loop Analysis

For our experiments, we use the MediaBench [17] benchmarks. MediaBench is a benchmark suite of multimedia
applications, specifically designed for embedded systems. We followed the design flow described in Section 3 on five of the
MediaBench benchmarks: EPIC encoding (Efficient Pyramid Image Coder), G721 decoding (voice decompression), MPEG
decoding (video decompression), Pegwit (public-key generation), and JPEG Decoding (still image decompression). We
compiled these benchmarks for SimpleScalar and simulated them using sim-outorder, the out-of-order execution
SimpleScalar simulator. We simulated each benchmark on the data set provided by the MediaBench distribution. By using
the built-in ptrace flag of sim-outorder, we generated a trace file for each benchmark. This, along with an assembly file
generated by one of the binary utilities provided by SimpleScalar, was given as input to LOOAN.
 The loop structure and usage results from LOOAN are reported in Table 1. In the table, the topmost entry of each
benchmark is the statistic for the entire program. Below that are the functions and loops that contribute more than 15% to the
total dynamic instruction count of the program, decreasingly ordered based on their contribution to the total dynamic
instruction count (labeled TDI in the table). Loops are numbered based upon the static order they appear in the assembly file.
Thus, the loop <internal_filter>.3 represents the third loop located in the internal_filter function. Subloops are similarly
numbered, so <internal_filter>.3.1 represents the first subloop located inside the third loop of the internal_filter function.
The entire function itself is represented by the name without a number following it. The table reports the number of
executions of each loop, which is defined as the case when a loop is entered from code outside the loop, as well as the
number of iterations per execution, where an iteration is defined to be a pass through the body of the loop followed by a jump
to the beginning of the loop.

Loop Size Execs TDI % ofInstr/Exec. Iter/Exec.

Table 1: Loop analysis results.
(Instrs) avg min max stddev avg min max stddev Program

EPIC Encoding

. 154009 1586547.54 2 49963774 6518079.28 1 1 1 0 72 114231423 100.00%

..<internal_filter> 7049 145088.9 219 11374866 1092008.2 1 1 1 0 672 97496885 85.35%

..<internal_filter>.3 617 3639304.38 84550 11374840 4550482.25 75 9 255 68.18 24 87343305 76.46%

..<internal_filter>.3.1 473 48507.16 13 94791 31012.86 87.79 1 128 42.14 1800 87312896 76.44%

..<internal_filter>.3.1.1 281 378.59 3 729 290.48 6.68 1 16 6.92 218984 82905440 72.58%

..<internal_filter>.3.1.1.1 153 44.79 2 301 62.44 2.67 1 16 3.26 1401460 62766187 54.95%

G721 Decoding

. 95017 1674.86 11 268566 4255.4 1 1 1 0 320311 536477171 100.00%

..<quan> 241 192.59 4 249 50.22 1 1 1 0 1333098 256739532 47.86%

..<quan>.1 137 181.82 1 236 45.82 11.67 1 15 2.79 1318474 239724588 44.68%

..<update> 4745 1153.88 17 1438 178.02 1 1 1 0 131469 113595109 21.17%

MPEG Decoding

. 197321 10238 11 8674768 90501.44 1 1 1 0 42580 435933911 100.00%

..<Reference_IDCT> 1385 5273.39 79 46795 11608.8 1 1 1 0 69185 350464223 80.39%

..<Reference_IDCT>.2 689 2771.07 74 24936 5635.37 1.92 1 9 1.95 69185 177340943 40.68%

..<Reference_IDCT>.2.1 601 1441.29 16 3167 1141.05 4.82 1 9 3.11 132545 176659823 40.52%

..<Reference_IDCT>.1 585 21846 21846 21846 0 9 9 9 0 7920 173020320 39.69%

..<Reference_IDCT>.1.1 497 2417.78 16 2718 849.16 8.11 1 9 2.51 71280 172339200 39.53%

..<Reference_IDCT>.1.1.1 305 277.19 11 314 98.16 8.01 1 9 2.63 578160 160261200 36.76%

..<Reference_IDCT>.2.1.1 297 271.93 11 308 96.18 8.01 1 9 2.63 578160 157219920 36.07%

Pegwit

. 199913 126146.35 10 2170599 107468.99 1 1 1 0 503 63451614 100.00%

..<gfAddMul> 1305 381.55 2 1260 374.25 1 1 1 0 71947 27451280 43.26%

..<gfMultiply> 1833 19687.73 18826 21117 281.52 1 1 1 0 1298 23985456 37.80%

..<gfAddMul>.2 489 374.01 9 1188 343.89 7.95 1 27 6.68 62297 23300003 36.72%

..<gfMultiply>.2 713 17930.8 17069 19360 281.31 18 18 18 0 1298 23274175 36.68%

..<gfMultiply>.2.1 489 1026.52 892 1171 48.79 18.43 17 24 0.7 22066 22651134 35.70%

JPEG Decoding

. 355065 4441.83 5 347756 24054.33 1 1 1 0 1885 8372848 100.00%

..<jpeg_idct_islow> 7817 4805.36 1732 6799 1150.93 1 1 1 0 851 4089358 48.84%

..<jpeg_idct_islow>.2 3777 3084.07 862 3413 809.28 9 9 9 0 851 2624540 31.35%

..<ycc_rgb_convert> 1017 11914 11914 11914 0 1 1 1 0 149 1775186 21.20%

..<ycc_rgb_convert>.1 769 11883 11883 11883 0 2 2 2 0 149 1770567 21.15%

..<ycc_rgb_convert>.1.1 417 11817 11817 11817 0 228 228 228 0 149 1760733 21.03%

..<jpeg_idct_islow>.1 3817 1694.29 843 3393 534.27 9 9 9 0 851 1441841 17.22%

 As evidenced by this table, only a very small portion of the code contributes to the majority of the execution time.
 The loops we chose to implement were <internal_filter>.3.1.1 for EPIC, <quan>.1 for G721, <Reference_IDCT>.1 for
MPEG, <gfAddMul>.2 for Pegwit, and <jpeg_idct_islow> for JPEG. We chose loops that were frequent but would fit within
an FPGA and would not be overly difficult to code. For MPEG, the loops <Reference_IDCT>.2 and <Reference_IDCT>.1
take approximately the same percentage of time but <Reference_IDCT>.2 included a function call. Implementing functions
in hardware requires them to be inlined, which we plan to investigate as future work.

4.2. SA-C

Once we had identified the loops that took up the majority of the execution time, we coded them up in SA-C. This process
took between one and two hours per benchmark. Several of the benchmarks used floating point numbers in their
implementations. Floating point operations are not efficiently implemented on FPGAs, so when coding them we converted
them to a fixed point implementation that had similar functionality. The conversion from a floating point to a fixed point
constant size was dependent on the precision we needed for the application. For example, a fixed-point representation of 21
bits for the integral portion and 10 bits for the decimal portion provided reasonably accurate results for the JPEG benchmark.

Converting the critical loops from C to SA-C was a straightforward process, but not automated. Because SA-C is a
single assignment language, it is not possible to directly code up a loop that reuses the same memory location. Instead, one
must discover the access pattern inherent in the loop, be it dot product of vectors, cross product of vectors, etc., and apply it
to generate the correct results. Certain C conventions make it difficult to convert to SA-C, such as the use of incrementing
pointers to go through arrays and any recursive functions that are difficult to represent iteratively. Currently, manual
inspection of the code is required to detect these patterns.

Once a benchmark has been coded up in SA-C, in a single step we can get it running on hardware as well as get
information on the area it needs (number of configurable logic blocks, number of slices, number of flip-flops, number of
look-up tables and estimated clock speed). With the information generated, we can perform power estimation.

4.3. Performance and Energy Savings

We used a simulation-based approach for performance evaluation. For the microprocessor core shown in Figure 3, we use a
32-bit MIPS. The number of instructions executed during each application and loop are obtained from the loop analysis tool.
We calculate total cycles for software execution based on a cycles per instruction count (CPI) of 1.5, which was estimated
based on typical results from a MIPS simulator [6]. Given the clock frequency, we can determine the total time taken by the
loop and the entire application. The execution time of all the software excluding the loop is determined by subtracting the
loop time from the total time. We estimate the execution time of the FPGA in a similar manner. We first determine the
number of cycles required by each iteration of the loop. Since the performance of the hardware is limited by one memory
access per cycle, the number of cycles per iteration in the loop is generally the number of memory accesses. The hardware
generated by SA-C is usually able to reach the one memory access per cycle limit by performing optimizations such as
pipelining, loop unrolling, etc. After determining the number of cycles per iteration, we can determine the total number of
cycles required by the hardware by using the number of iterations per execution of the loop and the total amount of
executions of the loop. We obtain the clock frequency for the FPGA after the design has been placed and routed, and use this
frequency to determine total execution time of the hardware. Frequencies for our designs typically ranged from 40 MHz to
50 MHz. Total execution time after implementing the most frequent loop in hardware is determined by adding the execution
time of the hardware with the time of everything but the loop in software.

Power and clock frequency of the MIPS were obtained from the MIPS32 4KP core on the MIPS website [18]. It is quite
common for architectures that combine a microprocessor and configurable logic to run the microprocessor at a much slower
frequency than would typically be used. In order to estimate results for these types of systems, we use two different clock
frequencies. In one set of experiments, we use a frequency of 100MHz for the MIPS in order to represent systems with a
reduced clock. We also used a clock frequency of 200MHz, which is reported as a typical frequency for the MIPS32 4KP
[18], in order to represent higher performance systems.

Table 2: Microprocessor/FPGA performance and energy improvements.

Eg Sw
Loop in

sw
Loop in
FPGA Sw / FPGA

FPGA
Clock
(MHz)

Potential
Speedup

Power
(W)

Energy
Savings

Speed
up Power (W)

Energy
Savings

Speed
up

g721 804,716 359,387 22,414 467,743 45 1.8 0.39 32% 1.6 0.47 24% 1.5
jpeg 12,559 6,134 21 6,447 36 2.0 0.38 44% 1.9 0.45 44% 1.9
pegwit 95,177 34,950 1,994 62,221 50 1.6 0.40 23% 1.5 0.48 18% 1.4
epic 171,347 94,149 14,491 91,689 42 2.2 0.46 38% 2.1 0.56 12% 1.5
mpeg 635,901 259,530 4,625 380,996 30 1.7 0.39 30% 1.6 0.47 28% 1.5

Avg: 0.40 33% 1.8 0.48 25% 1.6

200 MHz MIPS Results100 MHz MIPS ResultsPerformance (kilo-cycles)

All hardware generated from SA-C is synthesized using Synplify [20]. All mapping, placing and routing is handled by
Xilinx tools. We used Xilinx’s Virtex Power Estimator [24] to estimate FPGA power, utilizing a 0.18 micron FPGA
technology (in particular, the XCV2000E). All power analysis was done using 0.18 micron technology running at 1.8 V.

In order to determine total power of the system, we measured actual devices that are similar to our architecture. The
Triscend E5 [21] is one such device, which combines an 8051 microprocessor with configurable logic. We determined that
the microprocessor low-power state on the Triscend E5 was 85% of its active state, and low-power state of the configurable
hardware was 12.5% of its active state, and thus used the following equation to compute total power:

Total power = %Sw * (Sw+ .125*Hw) + %Hw* (Hw + .85*Sw)

where %Sw is the percent of time spent in software, %Hw the percent time spent in the FPGA, Sw is the power of the
software when the microprocessor is active, and Hw is the power of the FPGA when active.

Power and performance results for the MIPS architecture are shown in Table 2. Sw is the performance of the application
when running completely in software, which is determined by multiplying the number of total dynamic instructions reported
by LOOAN by 1.5, which is the approximate cycles per instruction of our MIPS simulator [6]. Loop in sw is the
performance of the loop when running in software, which is the total number of dynamic instructions of the loop reported by
LOOAN multiplied by 1.5. Loop in FPGA is the performance of the loop when implemented in hardware running on the
FPGA, this was calculated by an analysis of the VHDL code to determine the latency of each execution from memory
accesses and computational delays. All performance results are reported in kilo-cycles. FPGA clock is the clock frequency
for the loop when running on the FPGA. Potential speedup is the maximum possible speedup, according to Amdahl's Law,
that can be achieved by partitioning the loop into hardware assuming the loop takes zero time. Power is the overall power of
the system in Watts. Energy savings and speedup represent the improvements made after implementing the loop in the
FPGA.

Notice that two sets of results are given, one for a system using a 100 MHz microprocessor and another using a 200 MHz
processor. Significant speedups are achieved for both sets of results. For the 100 MHz-microprocessor system, we achieved
an average speedup of 1.8. For the 200 MHz system, the average speedups were reduced to 1.6. The large difference
between these results occurs because at 200 MHz, the processor's clock is between 4 and 5 times faster than the clock on the
FPGA, which implies that performance improvements of the hardware become less significant. Notice that all speedups are
somewhat close to the potential speedups determined by Amdahl's Law.

An important point to notice is that energy savings tend to be less than the performance improvements. This occurs
because of an increase in total power, due to the high power consumption of the FPGA. In general, an FPGA typically
consumes much more power than a microprocessor. In our experiments, the power of the microprocessor ranged from .07
Watts to .140 Watts. However, the power of the FPGA ranged from .123 to .233 Watts, excluding quiescent power of .270
Watts. Therefore, the FPGA tends to consume at least twice as much power, even at a lower clock frequency. Average
energy savings for the 100 MHz system are 33%. For the 200MHz system, the average energy savings are 25%. The energy
savings on the 200 MHz MIPS for JPEG can be explained by the fact that SA-C was designed for image processing
applications and could optimize the hardware to a greater degree than the other benchmarks.

5. Conclusions

In this paper, we study the potential performance and energy benefits from partitioning a frequent loop of an application onto
configurable hardware. We show that using a design flow consisting of loop analysis, critical loop recoding into SA-C and
compilation, and standard synthesis, is sufficient for significant improvements. We achieve speedups ranging from 1.5 to 2.1
on systems with clocks running at 100 MHz and 200 MHz. In all examples, we achieve the added benefit of energy savings,
generally ranging from 12% to 44%. Future work includes inlining functions in loops, looking at different architectures, and
automating the recoding of frequent loops.

6. Acknowledgements

This research was supported in part by NSF ITR Award 0083080, DARPA AFRL contract F33615-98-C-1319 , and by a
grant from Trimedia Technologies, Inc.

References

[1] P. Athanas, H. Silverman. Processor reconfiguration through instruction-set metamorphosis. Computer, Volume: 26 Issue: 3 , March

1993 Page(s): 11 –18.
[2] W. Bohm, J. Hammes, B. Draper, M. Chawathe, C. Ross, R. Rinker, and W. Najjar. Mapping a Single Assignment Programming

Language to Reconfigurable Systems. Supercomputing, 21:117-130, 2002.
[3] W. Bohm, B. Draper, W. Najjar, J. Hammes, R. Rinker, M. Chawathe and C. Ross. One-Step Compilation of Image Processing

Applications to FPGAs. IEEE Symposium on Field-programmable Custom Computing Machines, Rohnert Park, CA, April 30 - May
2, 2001.

[4] D. Burger, T. Austin and S. Bennett. "Evaluating Future Microprocessors: The SimpleScalar ToolSet". University of Wisconsin-
Madison. Computer Science Department. Technical Report CS-TR-1308, July 1996.

[5] P. Eles, Z. Peng, K. Kuchchinski and A. Doboli. System Level Hardware/Softeare Partitioning Based on Simulated Annealing and
Tabu Search. Kluwer’s Design Automation for Embedded Systems, vol2, no 1, pp. 5-32, Jan 1997.

[6] T. Givargis, F. Vahid, and J. Henkel. System-Level Exploration for Pareto-Optimal Configurations in Parameterized Systems-on-a-
Chip. International Conference on Computer-Aided Design (ICCAD), San Jose, November 2001.

[7] M. Gokhale, J. Stone. NAPA C: Compiling for hybrid RISC/FPGA architectures. IEEE Symposium on FPGAs for Custom
Computing Machines, FCCM '98.

[8] R. Gonzalez, R.E. Xtensa: A Configurable and Extensible Processor. IEEE Micro, pp. 60-70, 2000.
[9] J. Grode, P. Knudsen, J. Madsen. "Hardware Resource Allocation for Hardware/Software Partitioning in the LYCOS System." Proc.

of the 1998 Design Automation and Test in Europe.
[10] J. Hammes, W. Bohm, C. Ross, M. Chawathe, B. Draper, R. Rinker, and W. Najjar. Loop Fusion and Temporal Common

Subexpression Elimination in Window-based Loops. IPDPS 8th Reconfigurable Architectures Workshop, San Francisco, CA, April
27, 2001.

[11] J. Hammes, R. Rinker, W. Najjar, B. Draper. A High-level, Algorithmic Programming Language and Compiler for Reconfigurable
Systems. The 2nd International Workshop on the Engineering of Reconfigurable Hardware/Software Objects (ENREGLE), part of the
2000 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), Las Vegas, NV, June
26-29, 2000.

[12] J. Hauser, J. Wawrzynek. Garp: a MIPS processor with a reconfigurable coprocessor. IEEE Symposium on FPGAs for Custom
Computing Machines, pages 12-21, Napa Valley, CA, April 1997.

[13] J. Henkel, Y. Li. Energy-conscious HW/SW-partitioning of embedded systems: A Case Study on an MPEG-2 Encoder. Proceedings of
Sixth International Workshop on Hardware/Software Codesign, March 1998, pp. 23-27.

[14] J. Henkel. A low power hardware/software partitioning approach for core-based embedded systems. Proceedings of the 36th
ACM/IEEE conference on Design automation conference, pp. 122 – 127,1999.

[15] A. Kalavade and E.A. Lee. The Extended Partitioning Problem: Hardware/Software Mapping, Scheduling and Implementation-Bin
Selection. Kluwer Design Automation for Embedded Systems, vol 2, no 2, pp. 125-163, Mar 1997.

[16] K. Kucukcakar. An ASIP Design Methodology for Embedded Systems. International Symposium on Hardware/Software Codesign,
May 1999.

[17] Lee, C., M. Potkonjak, and W.H Mangione-Smith, "MediaBench: A Tool for Evaluating and Synthesizing Multimedia and
Communications Systems," Proc. 30th Annual International Symposium on Microarchitecture, Dec. 1997, pp. 330-335.

[18] MIPS Technologies, Inc. http://www.mips.com.
[19] R. Schreiber et al., "High-level synthesis of nonprogrammable hardware accelerators." Proceedings of the International Conference

on Application-Specific Systems, Architectures, and Processors. pp 113-124, July 2000.
[20] Synplicity, www.synplicity.com/products/synplifypro.html.
[21] Triscend Corporation, http://www.triscend.com.
[22] UCR Dalton Project. http://www.cs.ucr.edu/~dalton/
[23] J. Villarreal, R. Lysecky, S. Cotterell, and F. Vahid. Loop Analysis of Embedded Applications. UC Riverside Technical Report UCR-

CSE-01-03, 2001.
[24] Virtex Power Estimator, http://support.xilinx.com/cgi-bin/powerweb.pl.

http://www.triscend.com/
http://support.xilinx.com/cgi-bin/powerweb.pl

	Abstract. We examine the energy and performance benefits that can be obtained by re-mapping frequently executed loops from a microprocessor to reconfigurable logic. We present a design flow that finds critical software loops automatically and manually r
	Introduction
	Previous Work
	Design Flow
	LOOAN
	SA-C
	Target Architecture

	Experiments
	Loop Analysis
	SA-C
	Performance and Energy Savings

	Conclusions
	Acknowledgements
	References

