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Abstract

Without an independence assumption, combining multi-
ple classifiers deals with a high order probability distribu-
tion composed of classifiers and a class label. Storing and
estimating the high order probability distribution is expo-
nentially complex and unmanageable in theoretical analy-
sis, so we rely on an approximation scheme using the depen-
dency. In this paper, as an extension of the second-order de-
pendency approach, the probability distribution is optimally
approximated by the third-order dependency and multiple
classifiers are combined. The proposed method is evaluated
on the recognition of unconstrained handwritten numerals
from Concordia University and the University of California,
Irvine. Experimental results support the proposed method
as a promising approach.

1. Introduction

Many methods for combining multiple classifiers have
been proposed using three decision forms: measurement
scores, ranking, and a single choice [1]. It is desirable that
combination methods be developed at a single choice level,
because the combination methods could be independent of
the classification results, and the results easily combined.
Previous combination methods at the single choice level in-
clude majority voting [1], the Behavior-Knowledge Space
(BKS) method [2], the use of a Dempster-Shafer formalism
used in evidential reasoning [3], and the use of a Bayesian
formalism with an independence assumption [1, 4] or a
dependency-based approximation [5].

Combining multiple classifiers at the single choice level
can be formulated as follows, using probability theory
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and the Bayesian formalism. When an input x is given
to K classifiers (e.g., E1, E2, · · · , EK) in parallel, a K-
dimensional decision vector C =< E1(x) = M1, E2(x) =
M2, · · · , EK(x) = MK > is observed, where a set of L de-
cisions or classes is denoted by M = {M1,M2, · · · ,ML}.
A set of K-dimensional decision vectors and a set of class
labels can be used to build a high order frequency table with
the BKS method and to estimate a high order probability
distribution with the use of the Bayesian formalism.

The main task of combining multiple classifiers with the
Bayesian formalism is to determine a hypothesized class m
which maximizes a posterior probability P ∗, that is, max

m

P (m ∈ M |E1(x) = M1, E2(x) = M2, · · · , EK(x) =
MK). That is, a (K + 1)st-order probability distribu-
tion should be estimated from samples at a training stage.
This idea entails the computation of the (K + 1)st-order
probability distribution, P (m,E1(x) = M1, E2(x) =
M2, · · · , EK(x) = MK).

Without an independence assumption, dealing with such
a high order probability distribution composed of classifiers
and a class label is exponentially complex and unmanage-
able in theoretical analysis, so we rely on an approximation
scheme using the dependency. Chow and Liu [6] attempted
to approximate an nth-order distribution with a product of
(n − 1) second-order component distributions by the first-
order dependency. To find an optimal product set of (n−1)
first-order dependencies among n variables, a procedure
was derived to yield an approximation of a minimum dif-
ference in information. Kang et al. [5] incorporated the
dependency into combining multiple classifiers. In addi-
tion to finding the optimal set by first-order dependencies,
a new method to find an optimal product approximation by
second-order dependency is proposed using the same mea-
sure of the minimum information.

In this paper, as an extension of the second-order de-
pendency approach, the probability distribution is optimally
approximated by the third-order dependency and multiple
classifiers are combined. The proposed method is evaluated
with multiple classifiers recognizing unconstrained hand-
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written numerals from Concordia University and the Uni-
versity of California, Irvine.

The remainder of this paper is organized as follows. Sec-
tion 2 explains how to combine multiple classifiers based
on dependency. Background on finding the optimal product
approximation by the third-order dependency is provided in
Section 3. The experimental results of combining multiple
classifiers based on dependency are provided in Section 4
and a discussion is presented in Section 5.

2. Combining Multiple Classifiers based on De-
pendency

The assumption that classifiers perform independent of
each other is not invulnerable, because the classifiers tend
to be statistically dependent on others. Therefore, it is de-
sirable to take into account dependencies among the classi-
fiers. Combining multiple classifiers based on dependency
consists of two sequential steps: a dependency-directed ap-
proximation and a combination using the approximation by
the Bayesian formalism. The dependency-directed approx-
imation finds the optimal product set of the (K +1)st-order
probability distribution by the dth-order dependency, where
(1 ≤ d ≤ K). The probabilistic combination applies the
optimal product set found in the dependency-directed ap-
proximation to the Bayesian decision rules for combining
multiple classifiers.

In this paper, it is assumed that the dependency is sta-
tistically measured by computing the average mutual infor-
mation. The mutual information is defined as a quantitative
measure of how much the occurrence of a particular event
tells us about the possibility of some alternative [6]. Mathe-
matical background on mutual information has been derived
from the measure of closeness by Lewis [7]. Therefore, the
dependency provides a theoretical basis for approximating
the (K + 1)st-order probability distributions with a product
of low order component distributions.

The dependency-based approximation scheme plays an
intermediate role between the Bayesian method based on
independence assumptions and the BKS method in several
respects. Considering dth-order dependency makes the stor-
age needs of the framework (K + 1− d) ·Ld+1 and makes
a potentially high rejection rate like in the BKS method
lowered. In other words, the complexity of storage needs
O(Ld+1) is in the range of O(L2) in the case of indepen-
dence assumption to O(LK+1) in the case of BKS method.
The order of dependency, d, can be adjusted under permissi-
ble resources for better approximation or performance. But,
it still remains an open issue as to how one should select an
appropriate value of d to obtain the best performance.

For a combination of K classifiers, an optimal product
by the dth-order dependency should be found in the first
approximation step. Let V be a (K + 1)-dimensional vari-

able composed of a class label and K decisions. When the
(K + 1)st-order probability is approximated by a dth-order
dependency, a criterion is needed to measure how close the
approximate distribution Pa(V ) is to the actual distribution
P (V ). Such a criterion, depending on an information the-
ory model, was developed by Lewis and is called the mea-
sure of closeness [6, 7]. The measure of closeness I is math-
ematically defined as follows:

I(P (V ), Pa(V )) =
∑
V

P (V ) log
P (V )
Pa(V )

. (1)

The closeness of approximation is defined as the difference
between the information contained in the actual distribution
and the information contained in the approximate distribu-
tion. Therefore, the optimal approximate product can be
obtained by minimizing the difference of information.

3. Combining Multiple Classifiers based on
Third-Order Dependency

In this section, dependency-directed approximation for
the optimal product of the (K+1)st-order probability distri-
bution by the third-order dependency is described in detail.
For notational convenience, we will denote Ej(x) = Mj

by Cj and m ∈ M by CK+1 respectively in the (K + 1)st-
order probability distribution. That is, the (K + 1)st-
order probability distribution P (V ) is also represented by
P (C1, · · · , CK+1). We propose a new method for finding
the optimal product of the (K + 1)st-order probability dis-
tribution P (V ) by the third-order dependency. Considering
the first- and second-order dependencies in approximating
the high order probability distribution can be found in [5].

When third-order dependency is considered, the approx-
imate distribution is defined in terms of fourth-order com-
ponent distributions as follows:

Pa(C1, · · · , CK+1) =

K+1∏
j=1

P (Cnj |Cni3(j) , Cni2(j) , Cni1(j)), (2)

(0 ≤ i3(j), i2(j), i1(j) < j),

such that Cnj
is conditioned on all Cni3(j) , Cni2(j)

and Cni1(j) , and where (n1, · · · , nK , nK+1) is an un-
known permutation of integers (1, · · · ,K,K + 1) and
C0 is a null component. P (Cnj

|C0, C0, C0) is
P (Cnj

), P (Cnj
|C0, C0, Cni·(j)) is P (Cnj

|Cni·(j)), and
P (Cnj

|C0, Cni·(j) , Cni·(j)) is P (Cnj
|Cni·(j) , Cni·(j)), by

definition, where Cni·(j) is Cni3(j) , Cni2(j) , or Cni1(j) . By
applying the following algorithm proposed for a third-order
dependency approximation to the (K +1)st-order probabil-
ity distribution P , we can determine the unknown permu-
tation (n1, · · · , nK+1) and their unknown conditioned per-
mutations (ni3(1), · · · , ni3(K+1)), (ni2(1), · · · , ni2(K+1)),
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and (ni1(1), · · · , ni1(K+1)) from the obtained optimal third-
order dependencies.

On the other hand, if Cni1(j) in the equation (2) is iden-
tical to all Cnj

, that is, Cj is assumed to be conditionally
dependent on Cni3(j) and Cni2(j) for the given CK+1, then
the approximate distribution is defined in terms of fourth-
order distributions as follows:

Pa(C1, · · · , CK+1) =

K∏
j=1

P (Cnj |Cni3(j) , Cni2(j) , CK+1), (3)

(0 ≤ i3(j), i2(j) < j).

Such an approximation is regarded as the conditional
second-order dependency approximation which can be de-
fined as a specific case of the third-order dependency ap-
proximations.

For notational convenience, we will drop the subscript n
and denote, for example, Cnj

by Cj in subsequent discus-
sions. We can apply the (K + 1)st-order probability distri-
bution P and the third-order dependency approximation Pa
to the measure of closeness (i.e. equation (1)) for an optimal
product set as in the following expressions:

I(P (V ), Pa(V )) =
∑

V

P (V ) log
P (V )

Pa(V )

=

∑
V

P (V ) log P (V )−

∑K+1

j=1

∑
V

P (V ) log P (Cj |Ci3(j), Ci2(j), Ci1(j))

= −
K+1∑
j=1

U(Cj ; Ci3(j), Ci2(j), Ci1(j)) +

K+1∑
j=1

H(Cj) − H(V )(4)

H(V ) = −
∑

V

P (V ) log P (V ) (5)

H(Cj) = −
∑

V

P (V ) log P (Cj) (6)

U(Cj ; Ci3(j), Ci2(j), Ci1(j)) =
∑

V

P (Cj , Ci3(j), Ci2(j), Ci1(j))

log
P (Cj |Ci3(j),Ci2(j),Ci1(j))

P (Cj) . (7)

From the derived equation (4), mini-
mizing I(P (V ), Pa(V )) is to maximize∑K+1

j=1 U(Cj ;Ci3(j), Ci2(j), Ci1(j)) which is the sum
of average third-order mutual information, since remaining
entropy terms (i.e.

∏K+1
j=1 H(Cj) and H(V )) are constant.

Then, the next step is how to find the optimal product set
of third-order dependencies which satisfies the permutation
constraints in the formulation of the approximate distribu-
tions, from all the permissible product sets. Finding the
optimal product set is described in the following algorithm.

Algorithm for third-order dependency by the measure of closeness

Input:
The set of w samples S1, S2, · · · , Sw .

Output:
The optimal product set of third-order dependencies as per the average mutual
information measure.

Method:
1. Estimate the second-, third-, and fourth-order marginals from the samples.
2. Compute the weights U(Cj ; Ci(j)), U(Cj ; Ci2(j), Ci1(j)), and

U(Cj ; Ci3(j), Ci2(j), Ci1(j)) for all pairs, triplets, and quadruplets
from the samples.

3. Find the maximum weight of first-, second-, and third-order dependencies
and its associated optimal product set, as in the following statements.

maxTweight = 0.;
for n1 = 1 to number of first-order dependencies do

T1 = weight of the chosen first-order dependency;
for n2 = 1 to number of second-order dependencies do

T2 = weight of the chosen second-order dependency according to the
chosen first-order one;
T3 = 0;
for n3 = 1 to number of untraversed classifiers do

choose one of untraversed classifiers;
choose the largest permissible third-order dependencies associated
with the chosen classifiers;
T3 = MAX(T3,T1+T2+(weight of the chosen third-order dependen-
cies));
store T3 and its associated first-, second-, and third-order depen-
dencies;

end
end
maxTweight = MAX(maxTweight,T3);
store maxTweight and its associated first-, second-, and third-order depen-
dencies;

end
obtain maximum maxTweight and its associated first-, second-, and
third-order dependencies;

End of Algorithm

This algorithm finds the optimal product set by accu-
mulating the weights and composing the permissible prod-
uct sets by the for loops, as the order of dependency in-
creases from the first to the third, and by choosing the prod-
uct set having maximum maxTweight which is the sum of
the average third-order mutual information. The computa-
tional complexity of the proposed algorithm is O(n3), so
some efforts will be needed for reducing the computational
complexity in the future. However, this algorithm is only
run once from training samples, and thus the computational
complexity is not significant to the combining multiple clas-
sifiers.

By using the systematic dependency-directed approxi-
mation, the order of dependency to be considered can be
extended to the dth-order under permissible resource re-
quirements. The optimal dth-order dependency product set
consists of one first-order dependency, one second-order de-
pendency, ..., one (d− 1)st-order dependency, and multiple
(i.e. (K − d)) dth-order dependencies as in the following
approximate distribution:

Pa(C1, · · · , CK+1) =

K+1∏
j=1

P (Cnj |Cnid(j) , · · · , Cni1(j)), (8)

(0 ≤ id(j), · · · , i1(j) < j),

such that Cnj
is conditioned on permissible max-

imum d components from Cni1(j) to Cnid(j) , where
(n1, · · · , nK , nK+1) is an unknown permutation of integers
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(1, · · · ,K,K + 1) and C0 is a null component. The equa-
tion (8) looks like the definition of the chain rule of prob-
ability when (d = K), because the chain rule is one of
Kth-order dependency approximations.

4. Bayesian Decision Combination

In order to combine K classifiers, the approximate distri-
bution found from the optimal product set of third-order de-
pendencies is applied to the Bayesian formalism. Bayesian
decision combination for K classifiers is derived from the
Bayesian formalism and the approximate distribution. For
the hypothesized class candidate m, a supported belief func-
tion Bel(m) is defined by the following expression:

Bel(m) = P (m ∈ M|C1, · · · , CK). (9)

By using the Bayesian theorem and the optimal product
set of third-order dependencies, and by allowing the class
candidate m ∈ M to be denoted by CK+1, we have the
following belief expressions from the equations (2) and (9):

Bel(m) = P (m ∈ M|C1, · · · , CK)

=
P (C1, · · · , CK , CK+1)

P (C1, · · · , CK)

=

∏K+1

j=1
P (Cnj |Cni3(j) , Cni2(j) , Cni1(j) )

P (C1, · · · , CK)

≈ η

K+1∏
j=1

P (Cnj |Cni3(j) , Cni2(j) , Cni1(j)), (10)

with η as a constant that ensures that
∑L

i=1 Bel(Mi) = 1
and (n1, · · · , nK+1) as an unknown permutation of integers
(1, · · · ,K+1). Depending on the belief Bel(Mi) computed
from the given decision vector C, we choose a maximized
posterior probability P ∗(m ∈ M|C1, · · · , CK), and then a
combined decision is determined or not, according to the
decision rule D(C):

D(C) =

{
Mi, if Bel(Mi) = max

Mj∈M
Bel(Mj)

L + 1, otherwise.
(11)

5. Experimental Results

Six classifiers, E1, E2, E3, E4, E5, E6, will be used in
this section. These classifiers were developed by using the
features in [8, 9] or by using the structural knowledge of nu-
merals in [10], such as the bounding box, centroid, and the
width of horizontal runs or strokes, developed at KAIST
and Chonbuk National Universities. Their characteristics
are described in Table 1. As the classifiers E4 and E5 were
trained by the structural knowledge obtained from the nu-
merals of Concordia University, they are not as good as the

Table 1. Introduction of individual classifiers

archi. classifier distance function
E1 singular neural net. pixel distance funct.
E2 modular neural net. directional distance distri.
E3 singular neural net. mesh feature
E4 modular rule-based modified structural know.
E5 modular rule-based structural knowledge
E6 singular neural net. contour feature
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Figure 1. Results of individual classifiers on
test data sets: T, windep

numerals of UCI. The performance of individual classifiers
is shown in Figure 1 for the test data sets.

The handwritten numeral databases are as follows. The
UCI data sets in [11] are used for optical recognition of
handwritten digits and consist of three training data sets
tra, cv, wdep and one test data set windep. The data set
tra has about 190 digits per a class, the data sets cv, wdep
have about 95 digits per a class, and the data set windep has
about 180 digits per a class. The CENPARMI data sets con-
sist of two training data sets A, B and one test data set T.
Each data set has 200 digits per a class. Each neural net-
work based classifier was trained with the training data sets
A and tra. For the dependency-directed approximation, the
optimal product sets were found by using the two data sets
A, B and the three data sets tra, cv, wdep. The reject results
of a classifier were used in finding the optimal product set.

The five classifiers, shown in Table 2, were evaluated
by the Bayesian combination methods abbreviated as in
Table 3 and the BKS method. From the Figure 2, the
second-order dependency provides higher performance than
the first-order dependency, however, the third-order depen-
dency does not provide higher performance than the second-
order dependency in all groups. On the other hand, the
third-order dependency provides higher performance than
the second-order dependency in 2 out of 6 groups from the
Figure 3 and the second-order dependency provides higher
performance than the first-order dependency in all groups.
However, the Bayesian combination methods based on de-
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pendency provide higher performance than the BKS method
being without any approximations.

Table 2. Groups of five classifiers

group name classifiers
D51 E1, E3, E4, E5, E6
D52 E1, E2, E4, E5, E6
D53 E1, E2, E3, E4, E6
D54 E1, E2, E3, E5, E6
D55 E1, E2, E3, E4, E5
D56 E2, E3, E4, E5, E6

Table 3. Bayesian combination methods

method meaning
CIAB Condi. Independ. Assump. based Bayesian
FODB First-Order Dependency based Bayesian

CFODB Condi. First-Or. Depend. based Bayesian
SODB Second-Order Depend. based Bayesian

CSODB Condi. Second-Or. Depend. based Bayesian
TODB Third-Order Depend. based Bayesian

��

��

��

��

��

���

�	� �	� �	
 �	� �		 �	�

���������

��
�
�
�
��
��
	�
�

�
�

����

����

�����

����

�����

����

���

Figure 2. Results of five classifiers on Con-
cordia data set: T

6. Discussion

Although the third-order dependency does not provide
higher performance than the second-order dependency in all
cases, combining multiple classifiers based on third-order
dependency is the extended work of second-order depen-
dency based Bayesian combination methods and is useful
in a few groups as shown in the results. With a larger
the order of dependency, an approximation error becomes
smaller, but the computational complexity for finding the
optimal product set increases and there are also the risks of
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Figure 3. Results of five classifiers on UCI
data set: windep

over-fitting and data sparsity. So, it will be useful to deal
with the selection on an appropriate order of dependency
for the best performance.
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