IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998 279

Short Papers

Sequential Logic Optimization for Low Power Using values of the circuit one clock cycle before they are required, and

Input-Disabling Precomputation Architectures using the precomputed values to reduce internal switching activity
in the succeeding clock cycle [1]. The primary optimization step is
Jog Monteiro, Srinivas Devadas, and Abhijit Ghosh the synthesis of the precomputation logic, which computes the output

values for asubsetof input conditions. If the output values can be
precomputed, the original logic circuit can be “turned off” in the

> .) ; - S P next clock cycle, and will not have any switching activity. Since the
technique which selectively disables the inputs of a logic circuit, thereby . . L . o
reducing switching activity and power dissipation, without changing logic savings In the power (?IISSIpatIOH of the or.lglnal circuit are Oﬁsgt by
functionality. In sequential precomputation, output values required in a the power dissipated in the precomputation phase, the selection of
particular clock cycle are selectively precomputed one clock cycle earlier, the subset of input conditions for which the output is precomputed

a”dl thsvoriginal logic CifClllit is “turned off" in ;]he Succefeding clock , s critical. The precomputation logic adds to the circuit area, and can
cycle. We target a general precomputation architecture for sequential oo e inan increased clock period.,

logic circuits, and show that it is significantly more powerful than the) ; . L
architecture previously treated in the literature. The very power of this The synthesis algorithm presented in [1] suffers from the limitation

architecture makes the synthesis of precomputation logic a challenging that if a logic function is dependent on the values of several inputs for
problem. We present a method to automatically synthesize precomputa- a large fraction of the applied input combinations, then no reduction
tion logic for this architecture. Up to 66% reduction in power dissipation in switching activity can be obtained.

is possible using the proposed architecture. For many examples, the In thi he fi ial . hi
proposed architecture result in significantly less power dissipation than n this pqper, we target t.e Irst sgquentla precomputatlon arcni-
previously developed methods. tecture originally described in [1]. Still, synthesis methods were not
developed in [1]. The key difference is that this architecture allows the
precomputation logic to be a function of all of the input variables. We
term this thecomplete input-disablinggrecomputation architecture,

as opposed to the previous which we call gubset input-disabling

I. INTRODUCTION architecture. We give an example that shows thatctivaplete input-

Average power dissipation has recently emerged as an importéifiablingarchitecture can reduce power dissipation for a larger class
parameter in the design of general-purpose and app|ication_spedpﬁcsequential circuits than theubset input-disablingarchitecture.
integrated circuits. Optimization for low power can be applied a/e propose an algorithm to synthesize precomputation logic for the
many different levels of the design hierarchy. For instance, alggomplete input-disablingrchitecture.
rithmic and architectural transformations can trade off throughput, In Section II, we briefly describe our model for power dissipation.
circuit area, and power dissipation (e.g., [6]), and logic optimizatidﬁ‘ Section Ill, we describe various precomputation architectures, and
methods have been shown to have a significant impact on the pofjggcribe their relative merits as well as synthesis issues. New algo-
dissipation of combinational logic circuits (e.g., [13]). rithms that synthesize precomputation logic for a general sequential

In static CMOS circuits, the switching activity of the circuitarchitecture are presented in Section IV. Experimental results are
determines the average power dissipation of the circuit. Averageesented in Section V.
power dissipation can thus be computed by estimating the average
switching activity. Several methods to estimate power dissipation for Il. A POWER DISSIPATION MODEL

CMOS combinational circuits have been developed (e.g., [9], [10]). Under a simplified model, the energy dissipation of a CMOS circuit

More recently, efficient and accurate methods of power dissipatigN directly related to the switching activity. In particular, the three
estimation for sequential circuits have been developed [15]. simplifying assumptions are as follows.

In this work, we are concerned with the problem of optimizing ,
logic-level circuits for low power. Previous work in the area of se-
quential logic synthesis for low power has focused on state encoding
(e.g., [11]) and retiming [8] algorithms. More recently, techniques
that detect self-loops in finite-state machines in order to stop the
clock signal have been proposed [3]. .

A more general sequential logic optimization method has been
presented that is based on selectivefgcomputingthe output logic

Abstract—Precomputation is a recently proposed logic optimization

Index Terms—Pesign automation, low power, observability don’t-cares,
power management, very-large-scale integration.

The only capacitance in a CMOS logic gate is at the output
node of the gate.

Either current is flowing through some path frovibp to the
output capacitor, or current is flowing from the output capacitor
to ground.

Any change in a logic-gate output voltage is a change from
Vpp to ground or vice versa.

All of these are reasonably accurate assumptions for well-designed
Manuscript received October 18, 1995. This work was supported in p@@MOS gates [7], and when combined, imply that the energy dissi-
by the Advanced Research Projects Agency under Contract DABT63'94‘5ated by a CMOS logic gate each time its output changes is roughly

0053, in part by the Portuguese “Junta Nacional de Investgientfica h . , .
e Tecnobgica” under Project “Praxis XXI.” and in part by an NSF Youngequal to the change in energy stored in the gate’s output capacitance.

Investigator Award with matching funds from Mitsubishi Corporation. Thidf the gate is part of a synchronous digital system controlled by a
paper was recommended by Associate Editor F. Somenzi. global clock, it follows that the average power dissipated by the gate
J. Monteiro is with the Department of Electrical Engineering and Computgs given by
Science, IST/INESC, 1000 Lisbon, Portugal. .
S. Devadas is with the Department of Electrical Engineering and Computer Pavg = 0.5 X Clowa X (Vii/Teye) x E(transitiong (1)
Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA. . .
A. Ghosh is with Synopsys, Inc., Mountain View, CA USA. whereP,.. denotes the average powéii.« is the load capacitance,

Publisher Item Identifier S 0278-0070(98)03083-8. Vaa is the supply voltageT.,. is the global clock period, and

0278-0070/98$10.001 1998 IEEE

280 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

.| I f
R1 A R2 | L A s Df R2|
Fig. 1. Original circuit. L
> g1 —
R1 ; L
A R3 | — | —1 92
R2
D 1 Fig. 3. Complete input-disabling precomputation architecture.
I
i C<n-1>
|
i p<n-1> | R1
— 9 [, | > 1L
i b__n‘ C<n-2> —
r - D<n—2> ﬁ]— C > D —_— R3 7f
92 | Ref—
C<(;> /|— >
D<0>
Fig. 2. Subset input-disabling precomputation architecture. - > L
L—I
E(transitions) is theexpected valuef the number of gate output \
transitions per global clock cycle [10], or equivalently, the average)

number of gate output transitions per clock cycle. All of the pa-

rameters in (1) can be determined from technology or circuit layofBig. 4. Comparator example.

information exceptE (transitions), which depends on both the logic

function being performed and the statistical properties of the primaay reduction in power with marginal increases in circuit area and

inputs. delay, ¢, andg. have to be significantly less complex th#nThis
Equation (1) is used by the power estimation techniques suchaashitecture achieves this by makigg and g. depend on a small
[9], [10] to relate switching activity to power dissipation. subset of the inputs of.
In [1], exact and approximate algorithms for the selection of the
ll. PRECOMPUTATION ARCHITECTURES subset of inputs such that power savings are maximized are given.

We present two precomputation architectures originally described
in [1]. Synthesis algorithms developed in [1] only targetedgshbset

input-disablingarchitecture. B. Complete Input-Disabling Architecture
The basic limitation of thesubset input-disabling@rchitecture is
A. Subset Input-Disabling Architecture that, having chosen a subset of inputs for the precomputation logic,

Consider the circuit of Fig. 1. We have a combinational logic blocp/e can only disable the input registers when the output is the same

A that is bounded by registe® and R>. While R, and R, are or all combinations over all inputs not in the selected subset. Thus,

shown as distinct registers in Fig. 1, they could, in fact, be the safe" if there is only one combination for which this is not true, we

. . .~ .cannot precompute output values since we need to know the value of
register, i.e., all of the results presented apply equally to pipeling . . .)
I . . mput variables that are not in the precomputation logic. dtvaplete
circuits and finite-state machines.

In Fig. 2, thesubset input-disablingrecomputation architecture iS|nput-d|sabIlngprecomputatlon architecture proposed in the following

shown. The inputs to the block have been partitioned into two sets,seCt'on is able to hgndle_ these cases. . . .
. . . Complete Input-Disabling Precomputation Architectube:Fig. 3,
corresponding to the registef?; and R». The output of the logic . . AR
. - the new precomputation architecture for sequential circuits is shown.
block A feeds the registeRs. Two Boolean functiong: andg. are . : o
. . . The functiongy; andg, satisfy the conditions of (2) and (3) as before.
the predictor functions. We require . .

During clock cyclet, if either g; or g» evaluates to a 1, we set the
gpg=1=f=1 (2) load enable signal of the registét; to be 0. This means that in
gp=1= f=0. 3) clock cyclet + 1, the inputs to the combinational _Iogic bIocA(_do

not change. Ify; evaluates to a 1 in clock cyctethe input to register

Therefore, during clock cycle, if either g, or go evaluates to a 1, R»isalinclock cyclg+1, and ifg. evaluates to a 1, then the input
we set the load enable signal of the register to be 0 (we could to registerR- is a 0. Note thay; and g, cannot both be 1 during
alternatively gate the clock signal). This implies that the outpuf®.of the same clock cycle due to the conditions imposed by (2) and (3).
during clock cyclet + 1 do not change. However, since the outputs The important difference between this architecture andstiteset
of registerR; are updated, the functiofiwill evaluate to the correct input-disablingarchitecture shown in Fig. 2 is that the precompu-
logical value. A power reduction is achieved because only a subsetation logic can be a function of all input variables, allowing us
the inputs to blockA changes, implying reduced switching activity.to precompute any input combination. We have additional logic
The choice ofg; and g, is critical. We wish to include as many corresponding to the two flip-flops marked FF and the AND-OR
input conditions as we can i andg:. In other words, we wish to gate shown in the figure. Also, the delay betwe@n and R> has
maximize the probability ofj, or g» evaluating to a 1. To obtain increased due to the addition of this gate.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998 281

C<n-1>

D<n-1>
C<n-2>

D<n-2> R1

| cso) X) i {re|

C<0>+
D<0>

Fig. 5. Modified comparator.

Note that for all input combinations that are included in thg; andg. so that the power consumption of the combinational or
precomputation logic (corresponding § + g2), we are not going sequential circuit is reduced. Algorithms to “discover” possiple
to use the output of . Therefore, we can simplify the combinationaland g- functions within the original circuit which can be used to
logic block A by using these input combinations asiaput don’t- disable unnecessary transitions have been independently developed
care setfor f. in [14].

An Example: A simple example that illustrates the effectiveness
of the subset input-disablingrchitecture is am-bit comparator that
compares twaoe-bit numbersC' and D and computes the function IV. COMPLETE INPUT-DISABLING PRECOMPUTATION
C > D. The optimized circuit with precomputation logic is shown

in Fig. 4. The precomputation logic is as follows: In this section, we describe methods to determine the function-

ality of the precomputation logic for theomplete input-disabling
g1=C{n—-1)-D{n—-1) architecture targeting sequential circuits.

g2 = C{n—1)- D{n —1).

Clearly, wheng, = 1, C is greater tharD, and wheng, = 1, C'is A. Precomputation Logic for Single-Output Functions
less thanD. We have to implement The key tradeoff in selecting the precomputation logic is that we
F ¥ g =Cn—1)@ Din—1) want to incquIe in it as many i_npu_t combinations_ as po_ssibl_e, but
at the same time, keep this logic simple. Théset input-disabling
where @ stands for the exclusive-nor operator. precomputation architecture ensures that the precomputation logic is
Assuming a uniform probability for the inputs, i.e., ea€k:) and significantly less complex than the combinational logic in the original
D{i) has a 0.5 static probability of being a 0 or a 1, the probabilitgircuit by restricting the search space to identifyipgand g- such
that the XNOR gate evaluates to a 1 is 0.5, regardless.dfor that they depend on a relatively small subset of the inputs to the
largen, we can neglect the power dissipation in the XNOR gate, aogic block A.
therefore, we can achieve a power reduction close to 50%. By making the precomputation logic depend on all inputs, the
Now, let us consider a modified comparator shown in Fig. 5 icomplete input-disablingrchitecture allows for a greater flexibility,
which, if C is equal to the all 0's bit vector an® is equal to the but also makes the problem much more complex. The algorithm to
all 1's bit vector, the result should still be 1 and vice versa(’'if determine the precomputation logic that we present in this section
is equal to the all 1's bit vector anéd is equal to the all 0's bit extends the algorithm of [1] to exploit this greater flexibility.
vector, the result should still be 0. This circuit is not precomputable We will be searching for the subset of inputs that are necessary,
using thesubset input-disablin@rchitecture because knowing thata large fraction of the time, to determine what the valuefois.
C{n—1)=0andD{n—1)=1orC(n—1)=1andD{n—1) =0 We follow a strategy of keeping the precomputation logic simple by
is not enough information to infer the value f Thus, although the making the logic dependnostlyon a small subset of inputs. The
input combinationC' equal to the all O’s bit vector anfd equal to difference is that now we are not going to restrict ourselves to those
the all 1's, and vice versa, have a very low probability of occurrencgput combinations for which this subset of inputs defirfesWe
they invalidate this precomputation architecture. will allow for some input combinations that need inputs not in the
Using the complete input-disablingrchitecture, since we have selected set.
access to all input variables for the precomputation logic, we canSelecting a Subset of Inputssiven a functionf, we are going to
simply remove these input combinations frgmandg, , respectively. select the “best” subset of inpu® of cardinality ¥ such that we
This is illustrated in Fig. 6. This way, we will still be precomputingminimize the number of times we need to know the value of the
all other input combinations if’(n — 1) @ D{(n — 1), meaning that other inputs to evaluat¢. For each subset of size we compute
the fraction of the time that we will precompute the output value ithe cofactors off with respect to all combinations of inputs in the
still close to 50%. subset. If the probability of a cofactor gf with respect to a cube
For each of the sequential architectures, algorithms are needed ie close to 1 (or close to 0), it means that for the combination of
determine which inputs to turn off and to determine the functiorieput variables ir, the value off will be 1 (or 0) most of the time.

282 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

C<n-1>
D<n-1>
C<n-2> N
D<n-2> R1 M _D)__ R2 L f
: : O
C<0> i °
D< 0> >
>LE
L
d) FF |
D2l
9) FF
T |/ P>
Qg
i

Fig. 6. Modified comparator under complete input-disabling architecture.

Let us considerf with inputs x;,zs,---,x,, and assume that D to be able to precomputg). The factor (size(BDD1)/size(BDD2))

we have selected the subsef, x2,---,x.. If the probability of tries to measure how much more complex the precomputation logic
the cofactor off with respect tor;z. -- -z, being all 1's is high will be by selecting these approximate factors. We can tune the value
(prob(fz,zq.-.2,) = 1), then over all combinations ef;.,,---,z, of «, thus controlling how many approximate cofactors we select.

there are only a few for whiclf is not 1. So we can include The more we select, the more input combinations will be in the
21T2° @k * faogas-x, N g1. Similarly, if the probability of the precomputation logic, therefore increasing the fraction of the time
farwg--ay, IS 10W (prob(fu us--,) = 0), then over all combinations that we will be disabling the input registers. On the other hand, the
of zx+1,---,z,, there are only a few for whiclf is not 0, so we logic will be more complex since we will need more input variables.
include zi o - @k, + foqap--x, IN g2. Note that in thesubset input- (Note that, in the extreme case af = 0, the input selection will
disabling architecture, we could only do this whefd,.,...., = 1 be the same as in [1] as all the selected input combinations depend
o feiwg -z, = 0. only on the inputs that are in subsBt) We save the selected set
Since there is no limit on the number of inputs that the precongorresponding to the maximum value of the cost function.
putation logic is a function of, we need to monitor its size in order The worst case running time of the algorithm described above is
to ensure that it does not get very large. We estimate how large gxponential in the number of input variables, thus limiting the size of
precomputation logic is by computing the size of its correspondirige circuits on which it can be applied. For large circuits, we resort

ROBDD [5]. to the approximate algorithm initially proposed in [1]. This algorithm
In the sequel, we describe a branching algorithm that selects theks at each input individually and chooses thenost promising
“best” subset of inputs. The pseudocode is shown in Fig. 7. inputs. For each input, we calculate

The procedursSELECT _LOGIC receives as arguments the func- pi = prob(Us, f) + prob(Us. f)
tion £, the desired number of inpuisto select, and the difference pi=p e P i
from 0 and 1 that the probability of an approximate cofactor can beihere p; is the probability that we know the value ¢f without
order to be selecte@ELECT_LOGIC calls the recursive procedure knowing the value of:;. If p; is high, then most of the time we do not
SELECT_RECUR with four arguments. The first is the function toneedz; to computef. Therefore, we select theinputs corresponding
precompute. The second arguméhicorresponds to the set of inputto smaller values of;. We now run the cycle in lines 19-33 of the
variables currently selected. The third argumeghtcorresponds to pseudocode of Fig. 7, and add all of the cofactors that make the cost
the set of “active” variables, which may be selected or discarde@inction increase. Note that, although this loop is exponentid,in
Finally, the argument: corresponds to the number of variables we: is always small, typically less than 10.
want to select. Implementing the Logic:The Boolean operations of OR and co-

If |D|+|@] < k, it means that we have dropped too many variableactoring required in the input selection procedure can be car-
in the earlier levels of recursion, and we will not be able to seledied out efficiently using reduced, ordered binary decision diagrams
a subset ofk input variables. (ROBDD's) [5]. In the pseudocode of Fig. 7, we show how to

At each recursion, we compute the cofactorsfofvith respect to obtain theg, + g» function. We also need to compute and g
all combinations over the input variables currently/ih We want independently. We do this in exactly the same way, by including in
to keep those cofactors that have a high probability of being O gr the cofactors corresponding to probabilities close to 1 anghin
1. Our cost function is the fraction of exact cofactors found (exattie cofactors corresponding to probabilities close to 0.
meaning that the selected inputs determine the valug¢)gblus a Once we have ROBDD’s foy; and g2, these can be converted
factor (size(BDD1)/size(BDD2)) times the fraction of approximatito a multiplexor-based network (see [2]) or into a sum-of-products
cofactors found (with these cofactors, we still need variabtesin cover. The network or cover can be optimized using standard com-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998 283

TABLE |
PoweR REDUCTIONS USING THE COMPLETE INPUT-DISABLING PRECOMPUTATION ARCHITECTURE
Circuit Original Precompute Logic Optimized
I [O Lits | Delay | Power || T [O | Lits [Delay | Delay | Power | % Red
9sym 9 1 303 19.6 1828 7 1 53 13.8 20.4 1255 31.3
Z5xpl 7110 163 34.8 1533 2 1 3 2.8 34.8 1325 13.6
alu2 10 6 501 42.2 2988 5 3 24 8.6 44.0 2648 11.4
apex2 39 3 330 15.6 1978 || 10 3 23 7.2 27.2 984 50.0
cm138 6 8 34 5.8 232 3 8 4 5.4 7.4 136 41.4
cm152 11 1 30 6.4 427 9 1 26 7.8 9.2 301 29.5
cml162 14 5 66 9.8 540 9 5 24 4.8 10.8 370 31.5
cmb 16 4 75 7.0 653 8 4 40 5.4 8.8 224 65.7
dalu 75 1 16 | 1271 46.0 7003 6| 16 68 11.6 46.3 3720 46.9
mux 21 1 65 9.8 806 1 1 1 1.6 11.2 539 33.1
sao?2 10 4 181 24.6 1001 2 5 24 23.6 406 59.3
TABLE 1
COMPARISON OF POWER REDUCTIONS BETWEEN COMPLETE AND SUBSET INPUT DISABLING

Subset Input Disable Complete Input Disable

Circuit || Original || Precomp. Logic Total Precomp. Logic Total
Power || Literals [Delay | Power [% Red || Literals | Delay | Power | % Red
9sym 1828 40 11.0 1610 11.9 53 13.8 1255 31.3
Z5xpl 1533 3 2.8 1390 9.3 3 2.8 1325 13.6
alu?2 2988 8 4.0 2683 10.2 24 8.6 2648 11.4
apex2 1978 15 5.3 1196 39.5 23 7.2 984 50.0
cml138 232 3 2.6 146 37.0 4 5.4 136 41.4
cm1s2 427 5 2.6 395 7.5 26 7.8 301 29.5
cm162 540 2 1.4 466 13.7 24 4.8 370 31.5
cmb 653 13 3.8 436 33.2 40 5.4 224 65.7
cordic 928 13 5.2 798 14.0 114 12.2 553 40.0
dalu 7003 16 5.6 4292 38.7 68 11.6 3720 46.9
mux 806 0 0 591 26.7 1 1.6 539 33.1
5202 1001 2 1.4 446 55.4 5 2.0 406 59.3

binational logic optimization methods that reduce area [4] or thopeobability of the precomputation logic and the number of selected
that target low-power dissipation [13]. outputs. The fewer outputs selected, the higher the probability that
Simplifying the Original Combinational Logic BlockiVhenevery; ¢ evaluates to 1 (therefore, the higher the percentage of the time
or g» evaluate to a 1, we will not be using the result produced ke circuit is being precomputed), but the smaller the fraction of the
the original combinational logic blocld since the value off will circuit that is precomputed. We use the same algorithm as described
be set by eithey; or g.. Therefore, all input combinations in thein [1] to select the optimal subset of outputs.
precomputation logic are new don’t-care conditions for this circuit, Since we are only precomputing a subset of outputs, we may
and we can use this information to simplify the logic in bladk incorrectly evaluate the outputs that we a@ precomputing as we
thus leading to a reduction in area, and consequently to a furtlthsable certain inputs during particular clock cycles. If an output

reduction in power dissipation. that is not being precomputed depends on an input that is being
disabled, then the output will be incorrect. However, an appropriate

B. Multiple-Output Functions duplication of registers and logic will ensure that the outputs which
In general, we have a multiple-output functig, -- -, f,. that are not selected are still implemented correctly (as described in [1]).

corresponds to the logic block in Fig. 1. The procedures described
above can be generalized for the multiple-output case. The functions
g1: andg; are obtained by computing the cofactorsfofseparately.

The functiong whose complement drives the load enable signal is We present in Table | some results using sequential precomputation

V. EXPERIMENTAL RESULTS

obtained as under thecomplete input-disablingrchitecture obtained from logic
m circuits taken from the MCNC benchmark set. Although these are
g = H(gu + g2:). (4) combinational logic circuits, in our experiments, we assumed that
i=1 the inputs to the circuits are outputs of flip-flops, and we applied
The functiong corresponds to the set of input conditions that contr@equential precomputation. All results were obtained using SIS [12],
the values of all the f;’s. after the original circuits have been optimized usingringgedscript

The probability thaty, as defined in (4), is 1 may be very lowand mapped to the MSU library.
since the number of input combinations that allow precomputation ofIn the first columns of Table I, we present for each circuit the
all outputs may be very small. Thus, we need to select a subsetcotuit name, number of inputs, outputs, literals, the maximum delay
outputs to maximize a given cost function that is dependent on the nanoseconds, and power of the original circuit. The remaining

284 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

1. SELECT_LOGIC(f, k, a):

2. {

3 /* f: function to precompute, with the set of inputs X */

4 /* k: # of inputs to select */

5. /* a: probability interval for selection of approximate cofactors */
6 BESTIN_COST =0 ;

7 SELECTEDSET = ¢ ;

8. SELECT RECUR(f, ¢, X, k, o } ;

9. return(SELECTED SET } ;

11.
12. SELECT_RECUR(f, D, Q, k. o):

13. {

14. if(|[D|+1Q| < k)

15. return ;

16. i |D| ==k) {

17. exact = approx = 0

18. BDD1 = BDD2 = 0;

19. foreach combination ¢ over all variables in D {
20. if(prob(f.) == 1 or prob(f.) == 0) {
21. exact = exact + 1;

22. BDD1 = BDD1 + ¢

23. BDD2 = BDD2 + ¢

24.

25. if(prob(fe) >1—a) {

26. approx = approx + 1;

27. BDD2 = BDD2 + ¢ f;

28. }

29. if(prob(f) < a) {

30. approx = approx + 1;

31. BDD2 = BDD2 + ¢ f;

32. }

33. }

34. cost = (exact + :—;Z—%%B;;Xapprox)/ﬂm ;
35. if(cost > BESTIN_COST) {

36. BEST IN_COST = cost ;

37. SELECTED SET = D ;

38. }

39. return ;

40. }

41. choose z; € @ such that 7 is minimum ;

4. SELECT_RECUR(f, DUz, Q — 2, k, a) ;
43. SELECT RECUR(f,D,Q—x;, k, o) ;
4.}

Fig. 7. Procedure to determine the precomputation logic.

columns present results obtained with the neamplete input-

disablingmethod is typically larger than in treubset input-disabling
method; however, it results in larger power reductions. The reason
for this is twofold. First, the probability of the precomputation logic
can be higher in theomplete input-disablingrchitecture. Second,
the original circuit is simplified due to the don’t-care conditions in
the complete input-disablingrchitecture.

VI. CONCLUSIONS AND ONGOING WORK

We have proposed new synthesis algorithms that can be used to
optimize a given sequential logic circuit for low power dissipation by
adding “precomputation logic” which reduces unnecessary transitions
in large parts of the given circuit. As opposed to power-down
techniques applied at the system level, transition reduction is achieved
on a per-clock cycle basis. We are currently exploring techniques
to achieve data-dependent power-down at the register-transfer and
behavioral levels.

ACKNOWLEDGMENT

Thanks to M. Alidina and M. Papaefthymiou for valuable discus-
sions regarding precomputation architectures.

REFERENCES

[1] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou,
“Precomputation-based sequential logic optimization for low power,”
IEEE Trans. VLSI Systvol. 2, pp. 426-436, Dec. 1994.

[2] P. Ashar, S. Devadas, and K. Keutzer, “Path-delay-fault testability
properties of multiplexor-based networktNTEGRATION, VLSI Jvol.

15, pp. 1-23, July 1993.

[3] L. Benini, P. Siegel, and G. De Micheli, “Automatic synthesis of low-
power gated-clock finite-state machineEEE Trans. Computer-Aided
Design vol. 15, pp. 630-643, June 1996.

[4] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, “MIS:
A multiple-level logic optimization system,JEEE Trans. Computer-
Aided Designvol. 6, pp. 1062-1081, Nov. 1987.

[5] R.Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Trans. Comput.vol. C-35, pp. 677-691, Aug. 1986.

[6] A. Chandrakasan, T. Sheng, and R. Brodersen, “Low-power CMOS
digital design,”IEEE J. Solid-State Circuitssol. 27, pp. 473-484, Apr.
1992.

[7] L. Glasser and D. Dobberpuhithe Design and Analysis of VLSI Circuits
Reading, MA: Addison-Wesley, 1985.

J. Monteiro, S. Devadas, and A. Ghosh, “Retiming sequential circuits

disabling architecture, respectively, the number of inputs in the ~ for low power,” in Proc. Int. Conf. Computer-Aided DesigNov. 1993,
selected set, number of precomputed outputs, literals and delay of pp. 398-402.

the precomputation logic, the delay and power of the optimizedg]
precomputed network, and the percent reduction in power. All power

J. Monteiro, S. Devadas, A. Ghosh, K. Keutzer, and J. White, “Es-
timation of average switching activity in combinational logic circuits
using symbolic simulation,TEEE Trans. Computer-Aided Desigwol.

estimates are in microwatts, and were computed using the techniques 16, pp. 121-127, Jan. 1997.
described in [15]. A clock frequency of 20 MHz, a supply voltagdl0] F. Najm, “Transition density: A new measure of activity in digital

of 5V, and uniform input probabilities were assumed. We used a

circuits,” IEEE Trans. Computer-Aided Desigwol. 12, pp. 310-323,
Feb. 1993.

general delay model where the gate delays were obtained from {h¢| k. Roy and S. Prasad, “SYCLOP: Synthesis of CMOS logic for low

MSU generic library. Theuggedscript of SIS was used to optimize

the precompute logic.

We should stress that the delay of the precomputation logic is ado[%a]

power applications,” inProc. Int. Conf. Computer DesigrOct. 1992,

pp. 464-467.

E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, and A.
Sangiovanni-Vincentelli, “Sequential circuit design using synthesis and

to the delay of thepreviousstage in sequential precomputation. The optimization,” inProc. Int. Conf. Comput. Design: VLS| in Comput. and
delay numbers in the third to last column correspond to the critical ProcessorsOct. 1992, pp. 328-333.

delay of the optimized circuit which includes the output AND-OR13]

A. Shen, S. Devadas, A. Ghosh, and K. Keutzer, “On average power dis-
sipation and random pattern testability of combinational logic circuits,”

gate (Fig. 3). However, the use of don't-care conditions to optimize ;" pyoc. Int. Cont. Computer-Aided DesigNov. 1992, pp. 402-407.
the circuit once the precomputation logic has been determined qas] V. Tiwari, P. Ashar, and S. Malik, “Guarded evaluation: Pushing power

reduce the delay of the optimized circuit.
In Table 1I, we compare our method with thebset input-disabling

method. The best results obtained with each method for each of

examples is given. The precomputation logic in twemplete input-

management to logic synthesis/design,Hroc. Int. Symp. Low Power
Design Apr. 1995, pp. 221-226.
{%5] C.-Y. Tsui, J. Monteiro, M. Pedram, S. Devadas, A. Despain, and B. Lin,
€ “Power estimation methods for sequential logic circuiti§EE Trans.
VLSI Syst.vol. 3, pp. 404-416, Sept. 1995.

