
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998 279

Short Papers

Sequential Logic Optimization for Low Power Using
Input-Disabling Precomputation Architectures

Jośe Monteiro, Srinivas Devadas, and Abhijit Ghosh

Abstract—Precomputation is a recently proposed logic optimization
technique which selectively disables the inputs of a logic circuit, thereby
reducing switching activity and power dissipation, without changing logic
functionality. In sequential precomputation, output values required in a
particular clock cycle are selectively precomputed one clock cycle earlier,
and the original logic circuit is “turned off” in the succeeding clock
cycle. We target a general precomputation architecture for sequential
logic circuits, and show that it is significantly more powerful than the
architecture previously treated in the literature. The very power of this
architecture makes the synthesis of precomputation logic a challenging
problem. We present a method to automatically synthesize precomputa-
tion logic for this architecture. Up to 66% reduction in power dissipation
is possible using the proposed architecture. For many examples, the
proposed architecture result in significantly less power dissipation than
previously developed methods.

Index Terms—Design automation, low power, observability don’t-cares,
power management, very-large-scale integration.

I. INTRODUCTION

Average power dissipation has recently emerged as an important
parameter in the design of general-purpose and application-specific
integrated circuits. Optimization for low power can be applied at
many different levels of the design hierarchy. For instance, algo-
rithmic and architectural transformations can trade off throughput,
circuit area, and power dissipation (e.g., [6]), and logic optimization
methods have been shown to have a significant impact on the power
dissipation of combinational logic circuits (e.g., [13]).

In static CMOS circuits, the switching activity of the circuit
determines the average power dissipation of the circuit. Average
power dissipation can thus be computed by estimating the average
switching activity. Several methods to estimate power dissipation for
CMOS combinational circuits have been developed (e.g., [9], [10]).
More recently, efficient and accurate methods of power dissipation
estimation for sequential circuits have been developed [15].

In this work, we are concerned with the problem of optimizing
logic-level circuits for low power. Previous work in the area of se-
quential logic synthesis for low power has focused on state encoding
(e.g., [11]) and retiming [8] algorithms. More recently, techniques
that detect self-loops in finite-state machines in order to stop the
clock signal have been proposed [3].

A more general sequential logic optimization method has been
presented that is based on selectivelyprecomputingthe output logic

Manuscript received October 18, 1995. This work was supported in part
by the Advanced Research Projects Agency under Contract DABT63-94-C-
0053, in part by the Portuguese “Junta Nacional de Investiga¸cão Cient´ıfica
e Tecnoĺogica” under Project “Praxis XXI,” and in part by an NSF Young
Investigator Award with matching funds from Mitsubishi Corporation. This
paper was recommended by Associate Editor F. Somenzi.

J. Monteiro is with the Department of Electrical Engineering and Computer
Science, IST/INESC, 1000 Lisbon, Portugal.

S. Devadas is with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.

A. Ghosh is with Synopsys, Inc., Mountain View, CA USA.
Publisher Item Identifier S 0278-0070(98)03083-8.

values of the circuit one clock cycle before they are required, and
using the precomputed values to reduce internal switching activity
in the succeeding clock cycle [1]. The primary optimization step is
the synthesis of the precomputation logic, which computes the output
values for asubsetof input conditions. If the output values can be
precomputed, the original logic circuit can be “turned off” in the
next clock cycle, and will not have any switching activity. Since the
savings in the power dissipation of the original circuit are offset by
the power dissipated in the precomputation phase, the selection of
the subset of input conditions for which the output is precomputed
is critical. The precomputation logic adds to the circuit area, and can
also result in an increased clock period.

The synthesis algorithm presented in [1] suffers from the limitation
that if a logic function is dependent on the values of several inputs for
a large fraction of the applied input combinations, then no reduction
in switching activity can be obtained.

In this paper, we target the first sequential precomputation archi-
tecture originally described in [1]. Still, synthesis methods were not
developed in [1]. The key difference is that this architecture allows the
precomputation logic to be a function of all of the input variables. We
term this thecomplete input-disablingprecomputation architecture,
as opposed to the previous which we call thesubset input-disabling
architecture. We give an example that shows that thecomplete input-
disablingarchitecture can reduce power dissipation for a larger class
of sequential circuits than thesubset input-disablingarchitecture.
We propose an algorithm to synthesize precomputation logic for the
complete input-disablingarchitecture.

In Section II, we briefly describe our model for power dissipation.
In Section III, we describe various precomputation architectures, and
describe their relative merits as well as synthesis issues. New algo-
rithms that synthesize precomputation logic for a general sequential
architecture are presented in Section IV. Experimental results are
presented in Section V.

II. A POWER DISSIPATION MODEL

Under a simplified model, the energy dissipation of a CMOS circuit
is directly related to the switching activity. In particular, the three
simplifying assumptions are as follows.

• The only capacitance in a CMOS logic gate is at the output
node of the gate.

• Either current is flowing through some path fromVDD to the
output capacitor, or current is flowing from the output capacitor
to ground.

• Any change in a logic-gate output voltage is a change from
VDD to ground or vice versa.

All of these are reasonably accurate assumptions for well-designed
CMOS gates [7], and when combined, imply that the energy dissi-
pated by a CMOS logic gate each time its output changes is roughly
equal to the change in energy stored in the gate’s output capacitance.
If the gate is part of a synchronous digital system controlled by a
global clock, it follows that the average power dissipated by the gate
is given by

Pavg = 0:5� Cload � (V 2
dd=Tcyc)�E(transitions) (1)

wherePavg denotes the average power,Cload is the load capacitance,
Vdd is the supply voltage,Tcyc is the global clock period, and

0278–0070/98$10.00 1998 IEEE

280 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

Fig. 1. Original circuit.

Fig. 2. Subset input-disabling precomputation architecture.

E(transitions) is theexpected valueof the number of gate output
transitions per global clock cycle [10], or equivalently, the average
number of gate output transitions per clock cycle. All of the pa-
rameters in (1) can be determined from technology or circuit layout
information exceptE(transitions), which depends on both the logic
function being performed and the statistical properties of the primary
inputs.

Equation (1) is used by the power estimation techniques such as
[9], [10] to relate switching activity to power dissipation.

III. PRECOMPUTATION ARCHITECTURES

We present two precomputation architectures originally described
in [1]. Synthesis algorithms developed in [1] only targeted thesubset
input-disablingarchitecture.

A. Subset Input-Disabling Architecture

Consider the circuit of Fig. 1. We have a combinational logic block
AAA that is bounded by registersR1 andR2. While R1 andR2 are
shown as distinct registers in Fig. 1, they could, in fact, be the same
register, i.e., all of the results presented apply equally to pipelined
circuits and finite-state machines.

In Fig. 2, thesubset input-disablingprecomputation architecture is
shown. The inputs to the blockAAA have been partitioned into two sets,
corresponding to the registersR1 andR2. The output of the logic
blockAAA feeds the registerR3. Two Boolean functionsg1 andg2 are
the predictor functions. We require

g1 = 1) f = 1 (2)

g2 = 1) f = 0: (3)

Therefore, during clock cyclet; if either g1 or g2 evaluates to a 1,
we set the load enable signal of the registerR2 to be 0 (we could
alternatively gate the clock signal). This implies that the outputs ofR2

during clock cyclet + 1 do not change. However, since the outputs
of registerR1 are updated, the functionf will evaluate to the correct
logical value. A power reduction is achieved because only a subset of
the inputs to blockAAA changes, implying reduced switching activity.

The choice ofg1 and g2 is critical. We wish to include as many
input conditions as we can ing1 andg2. In other words, we wish to
maximize the probability ofg1 or g2 evaluating to a 1. To obtain

Fig. 3. Complete input-disabling precomputation architecture.

Fig. 4. Comparator example.

a reduction in power with marginal increases in circuit area and
delay,g1 and g2 have to be significantly less complex thanf . This
architecture achieves this by makingg1 and g2 depend on a small
subset of the inputs off .

In [1], exact and approximate algorithms for the selection of the
subset of inputs such that power savings are maximized are given.

B. Complete Input-Disabling Architecture

The basic limitation of thesubset input-disablingarchitecture is
that, having chosen a subset of inputs for the precomputation logic,
we can only disable the input registers when the output is the same
for all combinations over all inputs not in the selected subset. Thus,
even if there is only one combination for which this is not true, we
cannot precompute output values since we need to know the value of
input variables that are not in the precomputation logic. Thecomplete
input-disablingprecomputation architecture proposed in the following
section is able to handle these cases.

Complete Input-Disabling Precomputation Architecture:In Fig. 3,
the new precomputation architecture for sequential circuits is shown.
The functionsg1 andg2 satisfy the conditions of (2) and (3) as before.
During clock cyclet; if either g1 or g2 evaluates to a 1, we set the
load enable signal of the registerR1 to be 0. This means that in
clock cyclet+ 1; the inputs to the combinational logic blockAAA do
not change. Ifg1 evaluates to a 1 in clock cyclet, the input to register
R2 is a 1 in clock cyclet+1, and ifg2 evaluates to a 1, then the input
to registerR2 is a 0. Note thatg1 and g2 cannot both be 1 during
the same clock cycle due to the conditions imposed by (2) and (3).

The important difference between this architecture and thesubset
input-disablingarchitecture shown in Fig. 2 is that the precompu-
tation logic can be a function of all input variables, allowing us
to precompute any input combination. We have additional logic
corresponding to the two flip-flops marked FF and the AND–OR
gate shown in the figure. Also, the delay betweenR1 andR2 has
increased due to the addition of this gate.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998 281

Fig. 5. Modified comparator.

Note that for all input combinations that are included in the
precomputation logic (corresponding tog1 + g2), we are not going
to use the output off . Therefore, we can simplify the combinational
logic blockAAA by using these input combinations as aninput don’t-
care setfor f .

An Example: A simple example that illustrates the effectiveness
of the subset input-disablingarchitecture is ann-bit comparator that
compares twon-bit numbersC andD and computes the function
C > D. The optimized circuit with precomputation logic is shown
in Fig. 4. The precomputation logic is as follows:

g1 = Chn� 1i �Dhn� 1i

g2 = Chn� 1i �Dhn� 1i:

Clearly, wheng1 = 1; C is greater thanD, and wheng2 = 1; C is
less thanD. We have to implement

g1 + g2 = Chn� 1i
Dhn� 1i

where
 stands for the exclusive-nor operator.
Assuming a uniform probability for the inputs, i.e., eachChii and

Dhii has a 0.5 static probability of being a 0 or a 1, the probability
that the XNOR gate evaluates to a 1 is 0.5, regardless ofn. For
largen, we can neglect the power dissipation in the XNOR gate, and
therefore, we can achieve a power reduction close to 50%.

Now, let us consider a modified comparator shown in Fig. 5 in
which, if C is equal to the all 0’s bit vector andD is equal to the
all 1’s bit vector, the result should still be 1 and vice versa, ifC

is equal to the all 1’s bit vector andD is equal to the all 0’s bit
vector, the result should still be 0. This circuit is not precomputable
using thesubset input-disablingarchitecture because knowing that
Chn�1i = 0 andDhn�1i = 1 or Chn�1i = 1 andDhn�1i = 0

is not enough information to infer the value off . Thus, although the
input combinationC equal to the all 0’s bit vector andD equal to
the all 1’s, and vice versa, have a very low probability of occurrence,
they invalidate this precomputation architecture.

Using the complete input-disablingarchitecture, since we have
access to all input variables for the precomputation logic, we can
simply remove these input combinations fromg2 andg1, respectively.
This is illustrated in Fig. 6. This way, we will still be precomputing
all other input combinations inChn� 1i
Dhn� 1i, meaning that
the fraction of the time that we will precompute the output value is
still close to 50%.

For each of the sequential architectures, algorithms are needed to
determine which inputs to turn off and to determine the functions

g1 and g2 so that the power consumption of the combinational or
sequential circuit is reduced. Algorithms to “discover” possibleg1

and g2 functions within the original circuit which can be used to
disable unnecessary transitions have been independently developed
in [14].

IV. COMPLETE INPUT-DISABLING PRECOMPUTATION

In this section, we describe methods to determine the function-
ality of the precomputation logic for thecomplete input-disabling
architecture targeting sequential circuits.

A. Precomputation Logic for Single-Output Functions

The key tradeoff in selecting the precomputation logic is that we
want to include in it as many input combinations as possible, but
at the same time, keep this logic simple. Thesubset input-disabling
precomputation architecture ensures that the precomputation logic is
significantly less complex than the combinational logic in the original
circuit by restricting the search space to identifyingg1 and g2 such
that they depend on a relatively small subset of the inputs to the
logic block AAA.

By making the precomputation logic depend on all inputs, the
complete input-disablingarchitecture allows for a greater flexibility,
but also makes the problem much more complex. The algorithm to
determine the precomputation logic that we present in this section
extends the algorithm of [1] to exploit this greater flexibility.

We will be searching for the subset of inputs that are necessary,
a large fraction of the time, to determine what the value off is.
We follow a strategy of keeping the precomputation logic simple by
making the logic dependmostly on a small subset of inputs. The
difference is that now we are not going to restrict ourselves to those
input combinations for which this subset of inputs definesf . We
will allow for some input combinations that need inputs not in the
selected set.

Selecting a Subset of Inputs:Given a functionf; we are going to
select the “best” subset of inputsD of cardinality k such that we
minimize the number of times we need to know the value of the
other inputs to evaluatef . For each subset of sizek, we compute
the cofactors off with respect to all combinations of inputs in the
subset. If the probability of a cofactor off with respect to a cube
c is close to 1 (or close to 0), it means that for the combination of
input variables inc; the value off will be 1 (or 0) most of the time.

282 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

Fig. 6. Modified comparator under complete input-disabling architecture.

Let us considerf with inputs x1; x2; � � � ; xn; and assume that
we have selected the subsetx1; x2; � � � ; xk. If the probability of
the cofactor off with respect tox1x2 � � � xk being all 1’s is high
(prob(fx x ���x) � 1), then over all combinations ofxk+1; � � � ; xn
there are only a few for whichf is not 1. So we can include
x1x2� � �xk � fx x ���x in g1. Similarly, if the probability of the
fx x ���x is low (prob(fx x ���x) � 0), then over all combinations
of xk+1; � � � ; xn; there are only a few for whichf is not 0, so we
includex1x2� � �xk � fx x ���x in g2. Note that in thesubset input-
disabling architecture, we could only do this whenfx x ���x = 1
or fx x ���x = 0.

Since there is no limit on the number of inputs that the precom-
putation logic is a function of, we need to monitor its size in order
to ensure that it does not get very large. We estimate how large the
precomputation logic is by computing the size of its corresponding
ROBDD [5].

In the sequel, we describe a branching algorithm that selects the
“best” subset of inputs. The pseudocode is shown in Fig. 7.

The procedureSELECT LOGIC receives as arguments the func-
tion f , the desired number of inputsk to select, and the difference�
from 0 and 1 that the probability of an approximate cofactor can be in
order to be selected.SELECT LOGIC calls the recursive procedure
SELECT RECUR with four arguments. The first is the function to
precompute. The second argumentD corresponds to the set of input
variables currently selected. The third argumentQ corresponds to
the set of “active” variables, which may be selected or discarded.
Finally, the argumentk corresponds to the number of variables we
want to select.

If jDj+jQj < k; it means that we have dropped too many variables
in the earlier levels of recursion, and we will not be able to select
a subset ofk input variables.

At each recursion, we compute the cofactors off with respect to
all combinations over the input variables currently inD. We want
to keep those cofactors that have a high probability of being 0 or
1. Our cost function is the fraction of exact cofactors found (exact
meaning that the selected inputs determine the value off) plus a
factor (size(BDD1)/size(BDD2)) times the fraction of approximate
cofactors found (with these cofactors, we still need variablesnot in

D to be able to precomputef). The factor (size(BDD1)/size(BDD2))
tries to measure how much more complex the precomputation logic
will be by selecting these approximate factors. We can tune the value
of �; thus controlling how many approximate cofactors we select.
The more we select, the more input combinations will be in the
precomputation logic, therefore increasing the fraction of the time
that we will be disabling the input registers. On the other hand, the
logic will be more complex since we will need more input variables.
(Note that, in the extreme case of� = 0, the input selection will
be the same as in [1] as all the selected input combinations depend
only on the inputs that are in subsetD.) We save the selected set
corresponding to the maximum value of the cost function.

The worst case running time of the algorithm described above is
exponential in the number of input variables, thus limiting the size of
the circuits on which it can be applied. For large circuits, we resort
to the approximate algorithm initially proposed in [1]. This algorithm
looks at each input individually and chooses thek most promising
inputs. For each input, we calculate

pi = prob(Ux f) + prob(Ux �f)

where pi is the probability that we know the value off without
knowing the value ofxi. If pi is high, then most of the time we do not
needxi to computef . Therefore, we select thek inputs corresponding
to smaller values ofpi. We now run the cycle in lines 19–33 of the
pseudocode of Fig. 7, and add all of the cofactors that make the cost
function increase. Note that, although this loop is exponential ink;

k is always small, typically less than 10.
Implementing the Logic:The Boolean operations of OR and co-

factoring required in the input selection procedure can be car-
ried out efficiently using reduced, ordered binary decision diagrams
(ROBDD’s) [5]. In the pseudocode of Fig. 7, we show how to
obtain theg1 + g2 function. We also need to computeg1 and g2
independently. We do this in exactly the same way, by including in
g1 the cofactors corresponding to probabilities close to 1 and ing2
the cofactors corresponding to probabilities close to 0.

Once we have ROBDD’s forg1 and g2, these can be converted
into a multiplexor-based network (see [2]) or into a sum-of-products
cover. The network or cover can be optimized using standard com-

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998 283

TABLE I
POWER REDUCTIONS USING THE COMPLETE INPUT-DISABLING PRECOMPUTATION ARCHITECTURE

TABLE II
COMPARISON OF POWER REDUCTIONS BETWEEN COMPLETE AND SUBSET INPUT DISABLING

binational logic optimization methods that reduce area [4] or those
that target low-power dissipation [13].

Simplifying the Original Combinational Logic Block:Wheneverg1
or g2 evaluate to a 1, we will not be using the result produced by
the original combinational logic blockAAA since the value off will
be set by eitherg1 or g2. Therefore, all input combinations in the
precomputation logic are new don’t-care conditions for this circuit,
and we can use this information to simplify the logic in blockAAA,
thus leading to a reduction in area, and consequently to a further
reduction in power dissipation.

B. Multiple-Output Functions

In general, we have a multiple-output functionf1; � � � ; fm that
corresponds to the logic blockAAA in Fig. 1. The procedures described
above can be generalized for the multiple-output case. The functions
g1i andg2i are obtained by computing the cofactors offi separately.
The functiong whose complement drives the load enable signal is
obtained as

g =

m

i=1

(g1i + g2i): (4)

The functiong corresponds to the set of input conditions that control
the values of all the fi’s.

The probability thatg, as defined in (4), is 1 may be very low
since the number of input combinations that allow precomputation of
all outputs may be very small. Thus, we need to select a subset of
outputs to maximize a given cost function that is dependent on the

probability of the precomputation logic and the number of selected
outputs. The fewer outputs selected, the higher the probability that
g evaluates to 1 (therefore, the higher the percentage of the time
the circuit is being precomputed), but the smaller the fraction of the
circuit that is precomputed. We use the same algorithm as described
in [1] to select the optimal subset of outputs.

Since we are only precomputing a subset of outputs, we may
incorrectly evaluate the outputs that we arenot precomputing as we
disable certain inputs during particular clock cycles. If an output
that is not being precomputed depends on an input that is being
disabled, then the output will be incorrect. However, an appropriate
duplication of registers and logic will ensure that the outputs which
are not selected are still implemented correctly (as described in [1]).

V. EXPERIMENTAL RESULTS

We present in Table I some results using sequential precomputation
under thecomplete input-disablingarchitecture obtained from logic
circuits taken from the MCNC benchmark set. Although these are
combinational logic circuits, in our experiments, we assumed that
the inputs to the circuits are outputs of flip-flops, and we applied
sequential precomputation. All results were obtained using SIS [12],
after the original circuits have been optimized using theruggedscript
and mapped to the MSU library.

In the first columns of Table I, we present for each circuit the
circuit name, number of inputs, outputs, literals, the maximum delay
in nanoseconds, and power of the original circuit. The remaining

284 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 3, MARCH 1998

Fig. 7. Procedure to determine the precomputation logic.

columns present results obtained with the newcomplete input-
disabling architecture, respectively, the number of inputs in the
selected set, number of precomputed outputs, literals and delay of
the precomputation logic, the delay and power of the optimized
precomputed network, and the percent reduction in power. All power
estimates are in microwatts, and were computed using the techniques
described in [15]. A clock frequency of 20 MHz, a supply voltage
of 5 V, and uniform input probabilities were assumed. We used a
general delay model where the gate delays were obtained from the
MSU generic library. Theruggedscript of SIS was used to optimize
the precompute logic.

We should stress that the delay of the precomputation logic is added
to the delay of thepreviousstage in sequential precomputation. The
delay numbers in the third to last column correspond to the critical
delay of the optimized circuit which includes the output AND–OR
gate (Fig. 3). However, the use of don’t-care conditions to optimize
the circuit once the precomputation logic has been determined can
reduce the delay of the optimized circuit.

In Table II, we compare our method with thesubset input-disabling
method. The best results obtained with each method for each of the
examples is given. The precomputation logic in thecomplete input-

disablingmethod is typically larger than in thesubset input-disabling
method; however, it results in larger power reductions. The reason
for this is twofold. First, the probability of the precomputation logic
can be higher in thecomplete input-disablingarchitecture. Second,
the original circuit is simplified due to the don’t-care conditions in
the complete input-disablingarchitecture.

VI. CONCLUSIONS AND ONGOING WORK

We have proposed new synthesis algorithms that can be used to
optimize a given sequential logic circuit for low power dissipation by
adding “precomputation logic” which reduces unnecessary transitions
in large parts of the given circuit. As opposed to power-down
techniques applied at the system level, transition reduction is achieved
on a per-clock cycle basis. We are currently exploring techniques
to achieve data-dependent power-down at the register-transfer and
behavioral levels.

ACKNOWLEDGMENT

Thanks to M. Alidina and M. Papaefthymiou for valuable discus-
sions regarding precomputation architectures.

REFERENCES

[1] M. Alidina, J. Monteiro, S. Devadas, A. Ghosh, and M. Papaefthymiou,
“Precomputation-based sequential logic optimization for low power,”
IEEE Trans. VLSI Syst., vol. 2, pp. 426–436, Dec. 1994.

[2] P. Ashar, S. Devadas, and K. Keutzer, “Path-delay-fault testability
properties of multiplexor-based networks,”INTEGRATION, VLSI J., vol.
15, pp. 1–23, July 1993.

[3] L. Benini, P. Siegel, and G. De Micheli, “Automatic synthesis of low-
power gated-clock finite-state machines,”IEEE Trans. Computer-Aided
Design, vol. 15, pp. 630–643, June 1996.

[4] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang, “MIS:
A multiple-level logic optimization system,”IEEE Trans. Computer-
Aided Design, vol. 6, pp. 1062–1081, Nov. 1987.

[5] R. Bryant, “Graph-based algorithms for Boolean function manipulation,”
IEEE Trans. Comput., vol. C-35, pp. 677–691, Aug. 1986.

[6] A. Chandrakasan, T. Sheng, and R. Brodersen, “Low-power CMOS
digital design,”IEEE J. Solid-State Circuits, vol. 27, pp. 473–484, Apr.
1992.

[7] L. Glasser and D. Dobberpuhl,The Design and Analysis of VLSI Circuits.
Reading, MA: Addison-Wesley, 1985.

[8] J. Monteiro, S. Devadas, and A. Ghosh, “Retiming sequential circuits
for low power,” in Proc. Int. Conf. Computer-Aided Design, Nov. 1993,
pp. 398–402.

[9] J. Monteiro, S. Devadas, A. Ghosh, K. Keutzer, and J. White, “Es-
timation of average switching activity in combinational logic circuits
using symbolic simulation,”IEEE Trans. Computer-Aided Design, vol.
16, pp. 121–127, Jan. 1997.

[10] F. Najm, “Transition density: A new measure of activity in digital
circuits,” IEEE Trans. Computer-Aided Design, vol. 12, pp. 310–323,
Feb. 1993.

[11] K. Roy and S. Prasad, “SYCLOP: Synthesis of CMOS logic for low
power applications,” inProc. Int. Conf. Computer Design, Oct. 1992,
pp. 464–467.

[12] E. Sentovich, K. Singh, C. Moon, H. Savoj, R. Brayton, and A.
Sangiovanni-Vincentelli, “Sequential circuit design using synthesis and
optimization,” inProc. Int. Conf. Comput. Design: VLSI in Comput. and
Processors, Oct. 1992, pp. 328–333.

[13] A. Shen, S. Devadas, A. Ghosh, and K. Keutzer, “On average power dis-
sipation and random pattern testability of combinational logic circuits,”
in Proc. Int. Conf. Computer-Aided Design, Nov. 1992, pp. 402–407.

[14] V. Tiwari, P. Ashar, and S. Malik, “Guarded evaluation: Pushing power
management to logic synthesis/design,” inProc. Int. Symp. Low Power
Design, Apr. 1995, pp. 221–226.

[15] C.-Y. Tsui, J. Monteiro, M. Pedram, S. Devadas, A. Despain, and B. Lin,
“Power estimation methods for sequential logic circuits,”IEEE Trans.
VLSI Syst., vol. 3, pp. 404–416, Sept. 1995.

