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Abstract – Coordination graphs provide a tractable frame-
work for cooperative multiagent decision making by decom-
posing the global payoff function into a sum of local terms.
In this paper we review some distributed algorithms for ac-
tion selection in a coordination graph and discuss their pros
and cons. For real-time decision making we emphasize the
need for anytime algorithms for action selection: these are
algorithms that improve the quality of the solution over time.
We describe variable elimination, coordinate ascent, and the
max-plus algorithm, the latter being an instance of the be-
lief propagation algorithm in Bayesian networks. We discuss
some interesting open problems related to the use of the max-
plus algorithm in real-time multiagent decision making.
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1 Introduction
Multiagent Systems (MAS) is an exciting new field with

many theoretical and practical challenges [11, 8]. A MAS
consists of a group of rational agents that can potentially in-
teract with each other. These agents may have identical inter-
ests (like a team of soccer-playing robots, Fig. 1), conflicting
interests (like two poker playing programs), or more general
interests (like in e-commerce). A fundamental issue in MAS
is how to implement agent-centric behavior that brings about
desired system-wide behavior.

In this paper we are interested in team MAS, or fully co-
operative multiagent systems where all agents share a com-
mon goal. A key aspect in such a system is the problem of
coordination: how to ensure that the local (individual) deci-
sion making of each agent can produce globally good solu-
tions for the team. One could use a centralized agent to solve
the coordination problem: this agent could decide what ac-
tion each individual agent should take, and then communi-
cate these choices to each agent. However, such a system is
not robust since a malfunction of the centralized agent could
compromise the performance of the whole team.

Instead, in a team MAS we would like to have decentral-
ized coordination: the agents should decide what actions to
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Figure 1: A robot soccer team is an example of a real-time
cooperative multiagent system.

take by using a distributed protocol. In particular, when real-
time decision making is in order, we would like such a proto-
col to be fast, robust to communication failures, and anytime.
The latter suggests that we would like the quality of the so-
lution to improve over time, and the agents should be able to
report at any time the best solution (joint action) they have
found so far. After some finite time we would like our proto-
col to converge to the optimal solution.

In this paper we first review in Section 2 the framework
of coordination graphs (CG) for multiagent coordination,
which allows for tractable representations when the number
of agents is large [1]. Then we outline three classes of dis-
tributed algorithms for action selection in a CG, and focus on
their real-time performance. We first discuss variable elim-
ination, an exact method for action selection in CGs, and
argue that this method may be inappropriate for real-time
systems. In Section 3 we discuss two anytime algorithms
for multiagent coordination: a coordinate ascent algorithm
where the agents compute their individual actions in turn,
and a max-plus algorithm in which the agents exchange ap-
propriate payoff messages until a desired solution is com-
puted. In Section 4 we summarize all three methods and
discuss open issues for research.
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Figure 2: A coordination graph for a 4-agents problem.

2 Coordination graphs and variable
elimination

We adopt a decision-theoretic approach to the coordina-
tion problem of n agents. In each time step we assume
that each agent i chooses its individual action ai from a set
Ai, and the selected joint action a = (a1, . . . , an) induces
payoff to the team u(a). The coordination problem is to
find the optimal joint action a∗ that maximizes u(a), i.e.,
a∗ = argmaxa u(a). An obvious approach would involve
enumerating all possible joint actions and selecting the one
that maximizes u(a), but this is clearly impractical: the joint
action space ×iAi is exponentially large in the number of
agents n. A very large memory would be needed just to store
the payoffs, apart from the cost of actually computing the op-
timal action.

It turns out that in many practical problems a complete
enumeration of all joint actions is unnecessary: the payoff
matrix u(a) is sparse. This insight is exploited in the frame-
work of coordination graphs (CG) [1]. A CG is a graph
G = (V, E) where each node in V represents an agent, and
each edge in E defines a coordination dependency between
two agents. An example graph with n = 4 agents is shown
in Fig. 2.

The particular structure of a CG induces a decomposition
of the global payoff function u(a) into a linear combination
of local payoff functions, each involving only few agents.
For instance, in the graph of Fig. 2 the payoff function can
be written:

u(a) = f12(a1, a2) + f13(a1, a3) + f34(a3, a4). (1)

Here, f13 for instance involves only agents 1 and 3, and for
each pair of actions (a1, a3) contributes to the team local
payoff f13(a1, a3).

In [1] an exact algorithm was proposed for finding the op-
timal joint action a∗ = arg maxa u(a) in a CG. The algo-
rithm, called variable elimination (VE), is an iterative maxi-
mization procedure in which agents are eliminated one after
the other from the graph.

We will illustrate VE on the above example. We start by
eliminating agent 1 in (1). We collect all local payoff func-
tions that involve agent 1, these are f12 and f13. The maxi-

mum of u(a) can then be written

max
a

u(a) = max
a2,a3,a4

{

f34(a3, a4)+

max
a1

[

f12(a1, a2) + f13(a1, a3)
]

}

. (2)

Next we perform the inner maximization over the actions of
agent 1. For each combination of actions of agents 2 and
3, agent 1 must choose an action that maximizes f12 + f13.
This results in a best-response function (conditional strategy)
B1(a2, a3) for agent 1, given the actions of agents 2 and 3.
The above maximization and the computation of the best-
response function of agent 1 define a new payoff function
φ23(a2, a3) = maxa1

[f12(a1, a2) + f13(a1, a3)] that is in-
dependent of a1. Agent 1 has been eliminated. The maxi-
mum (2) becomes

max
a

u(a) = max
a2,a3,a4

[

f34(a3, a4) + φ23(a2, a3)
]

. (3)

We can now eliminate agent 2 as we did with agent 1. In (3),
only φ23 involves a2, and maximization of φ23 over a2 gives
the best-response function B2(a3) of agent 2 which is a func-
tion of a3 only. This in turn defines a new payoff function
φ3(a3), and agent 2 is eliminated. Now we can write

max
a

u(a) = max
a3,a4

[

f34(a3, a4) + φ3(a3)
]

. (4)

Agent 3 is eliminated next, resulting in B3(a4) and a
new payoff function φ4(a4). Finally, maxa u(a) =
maxa4

φ4(a4), and since all other agents have been elimi-
nated, agent 4 can simply choose an action a∗

4 that maximizes
φ4(a4).

The above procedure computes an optimal action only for
the last eliminated agent (assuming that the graph is con-
nected). For the other agents it computes only conditional
strategies. A second pass in the reverse elimination order
is needed so that all agents compute their optimal (uncondi-
tional) actions from their best-response functions. Thus, in
the above example, plugging a∗

4 into B3(a4) gives the opti-
mal action a∗

3 of agent 3. Similarly, we get a∗
2 from B2(a

∗
3)

and a∗
1 from B1(a

∗
2, a

∗
3), and thus we have computed the joint

optimal action a∗ = (a∗
1, a

∗
2, a

∗
3, a

∗
4). Note that one agent

may have more than one best-response actions, in which case
it can arbitrarily choose one of them (and then communicate
it to each agent that needs it).

There are two limitations of VE that we are addressing
here. First, the algorithm can be slow in certain cases, as
it is exponential in the induced width of the graph (the size
of the largest clique computed during node elimination). In
the worst case VE scales exponentially in n. Second, VE
may not always be appropriate for real-time multiagent sys-
tems where decision making must often be done under time
constraints: typically, there is a deadline after which the pay-
off of the agents becomes zero. One example is robot soccer,
where each agent has a relatively small amount of time avail-
able for deliberation. In these cases, an anytime algorithm
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Figure 3: CA vs. VE: 800 loosely connected agents.

would be more appropriate, one that improves the quality of
the solution over time and eventually (given sufficient time)
computes the optimal solution.

3 Anytime algorithms for action selec-
tion in coordination graphs

We describe here two classes of anytime algorithms for ac-
tion selection in CGs, as alternatives to variable elimination,
that are more appropriate for real-time systems.

3.1 Coordinate ascent
A simple anytime algorithm for action selection is a coor-

dinate ascent (CA) with random restarts. Initially, each agent
chooses its individual action, for instance randomly or using
some local heuristics, resulting in a joint action a(0). At time
step t, all agents fix their actions except for (a randomly se-
lected) agent i. Using (1), this agent computes its conditional
payoff function u(ai|a

(t)
−i), where a

(t)
−i refers to the vector of

fixed actions of all agents except agent i. Then agent i max-
imizes u(ai|a

(t)
−i) over its individual actions ai, producing

a
(t+1)
i . This action then replaces a

(t)
i in a(t) to give a(t+1),

another agent is selected, and so on, until u(a(t+τ)) does not
improve anymore. The latter is a local maximum of the pay-
off function u(a). If more time is available, another starting
configuration a(0) is randomly selected and the above proce-
dure is repeated. When the deadline expires, the joint action
with the highest payoff is reported.

Note that, by construction, the payoff function u(a) in-
creases in each step of the algorithm, and therefore the re-
sulting algorithm is anytime. Moreover, the graphical rep-
resentation of (1) suggests a message passing scheme for
action updating: after an agent computes a new individual
action, it communicates this information only to its immedi-
ate neighbors in the graph. This way, a global solution can
be computed by only local interactions. CA has been used
in [2], in a problem involving global payoff functions with
local constraints.
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Figure 4: CA vs. VE: 13 densely connected agents.

The CA algorithm constitutes an efficient, anytime algo-
rithm that admits a distributed implementation. In many
practical problems it can compute the optimal solution (or
get very close to it) in a fraction of the time that VE takes.
In Fig. 3-4 we show some results comparing CA with VE in
randomly generated graphs. In both plots we show the maxi-
mum payoff computed by CA (% fraction relative to VE) vs.
the total runtime of CA (% fraction relative to VE). In most
cases CA computes solutions close to optimal in a fraction
of the time that VE needs.

However, in general it is difficult to provide guarantees
on the behavior of CA. Depending on the shape of the func-
tion u(a), CA may need many random restarts to reach the
global maximum of u(a). A more sophisticated approach
would be to search for the optimal joint action using a popu-
lation of candidate configurations, properly selected in each
optimization step via evolutionary techniques [6].

3.2 The max-plus algorithm
The max-plus algorithm is analogous to the sum-product

or belief propagation algorithm used for inference in graphi-
cal models [7, 5, 9, 10]. It is easy to see that action selection
in a CG is equivalent to computing the maximum a posteriori
(MAP) configuration in an (unnormalized) undirected graph-
ical model defined through a set of potential functions as
in (1). In the max-plus algorithm—when viewed in the con-
text of multiagent coordination—the agents exchange mes-
sages with each other, where each message can be regarded
as a local payoff function. A nice property of max-plus is
that upon convergence, and depending on the structure of the
graph, the optimal joint action can be computed by only local
computations. In the sequel we follow [9], translating their
results into our multiagent decision making problem.

Suppose that we have n agents, and a coordination graph
G = (V, E) with V vertices and E edges that defines a pay-
off function as a sum of 2-agent local payoffs:

u(a) =
∑

(i,j)∈E

fij(ai, aj). (5)



Here (i, j) denotes a pair of neighboring agents (an edge in
G), and fij is a local payoff function that maps a pair of
actions (ai, aj) to a real number fij(ai, aj). In each time
step, each agent i (node in G) sends a message µij to each of
its neighbors j ∈ Γ(i), where µij is a (local) payoff function
that maps an action aj of agent j to a real number µij(aj).
We further define:

gi =
∑

j∈Γ(i)

µji,

gij = fij +
∑

k∈Γ(i)\j

µki +
∑

k∈Γ(j)\i

µkj ,

where the notation Γ(i) \ j means all neighbors of node i

except node j. Clearly, gi is a 1-agent payoff function and
gij is a 2-agent payoff function.

Then we can easily show (by direct substitution) that if we
have reached a ‘fixed point’ where the communicated mes-
sages among the agents do not change anymore, then the set
of local payoff functions gi, gij define a reparametrization of
the original payoff function:

u(a) =
∑

i∈V

gi +
∑

(i,j)∈E

(gij − gi − gj). (6)

Moreover, suppose that this fixed point has been reached by
messages defined as follows:

µij(aj) = max
ai

{

fij(ai, aj) +
∑

k∈Γ(i)\j

µki(ai)
}

. (7)

Then, we can easily verify that the following consistency
property holds:

gi(ai) = max
aj

gij(ai, aj) (8)

where j is an arbitrary neighbor of i.
From the above, the following important results follow [7,

9]. When the graph G is cycle-free (a tree), then max-plus
always converges after a finite number of steps to a fixed
point of the above message passing procedure. In this case,
for the local functions gi, gij holds:

gi(ai) = max
{a′|a′

i
=ai}

u(a′),

gij(ai, aj) = max
{a′|(a′

i
,a′

j
)=(ai,aj)}

u(a′).

Consequently, if each individually (per agent) optimal action
a∗

i = argmaxai
gi(ai) is unique for all i, then the globally

optimal action a∗ = arg maxa u(a) is also unique and has
elements a∗ = (a∗

i ) computed by only local optimizations
(each node maximizes gi(ai) separately). If the local max-
imizers are not unique, an optimal joint action can still be
computed by a straightforward dynamic programming tech-
nique [9, sec. 3.1].

The importance of the above result is that a difficult global
optimization problem is transformed to a set of easy local

optimization problems, one for each agent, using local mes-
sage passing. Under the conditions stated above, this auto-
matically defines an anytime algorithm: assuming that each
agent can evaluate u(a) for any a, the anytime solution is
formed by the best (in terms of u) vector of local maximiz-
ers a∗

i = argmaxai
gi(ai) found so far. According to the

above, after a finite number of steps we are guaranteed to
find the optimal joint action.

In graphs with cycles, the above result does not hold any-
more, and there are no guarantees that either max-plus will
converge or that the local maximizers a∗

i = argmaxai
gi(ai)

will correspond to the global optimum. In [9] it was shown
that a fixed point of message passing exists in graphs with
cycles, but there is no known algorithm yet that can prov-
ably converge to such a solution. Yet, bounds are available
that characterize the quality of the max-plus solution if the
algorithm converges [9].

4 Discussion and conclusions
We reviewed the framework of coordination graphs (CG)

for multiagent coordination, and described the three existing
algorithms for action selection in a CG, variable elimination,
coordinate ascent, and the max-plus algorithm.

Variable elimination (VE) computes a solution by two
passes over the graph. In the forward pass, agents are succes-
sively eliminated from the graph, until one agent is left for
which decision making is easy. A second pass in the reverse
elimination order is then employed to ensure that each agent
computes its component of the optimal joint action. VE can
be shown to always converge to the exact solution, indepen-
dently of the elimination order and the structure of the graph,
and it can be effective in loosely connected graphs. Its worst-
case time complexity, however, is exponential in the number
of agents involved in the graph, and therefore it can be slow
in densely connected graphs. Moreover, VE is not appro-
priate for real-time systems as it requires that both passes
terminate before a solution can be reported.

Coordinate ascent (CA) with random restarts is a very sim-
ple method in which each agent optimizes its own action
only, given that the actions of all other agents remain fixed.
This is repeated for all agents iteratively, until a local maxi-
mum of the global payoff function has been reached. A new
initial configuration is then chosen, and the process is re-
peated. The method is very effective in practice, and it can
be implemented in a distributed fashion [2]. CA will com-
pute the optimal joint action in the limit of an infinite number
of random restarts, but it is difficult to characterize its speed
of convergence on arbitrary graphs.

Finally, the max-plus algorithm is similar to the belief
propagation algorithm in Bayesian networks [7, 10]. It in-
volves repeated passing of messages over the graph, each
message being a local payoff function for the agent that re-
ceives the message. Due to its asynchronous nature, the al-
gorithm is particularly appropriate for real-time multiagent
systems. Moreover, strong theoretical results exist for the
original algorithm and its variants, like global optimality in



the case of cycle-free graphs and the existence of fixed points
in arbitrary graphs. However, there is no message passing
schedule yet that is provably convergent.

We see a few interesting open issues for further research,
in particular related to the use of the max-plus algorithm.
First, it would be useful to further characterize the anytime
behavior of the algorithm, even in graphs without cycles. For
instance, we would like to have a message passing sched-
ule that ensures a monotone (and fast) increase of the global
payoff value in each step. The results that we mentioned
above guarantee that in cycle-free CGs, under mild condi-
tions, max-plus will converge to the optimal joint action, but
we would like to ensure high speed of convergence on the
average.

A second issue is related to the convergence of max-plus
on arbitrary graphs, which is an open problem. In recent
work [10], a ‘reweighted’ version of max-plus has been pro-
posed, that exhibits better convergence behavior than the
original algorithm and for which stronger theoretical results
can be formulated. It would be interesting to further inves-
tigate the applicability of these algorithms in the context of
multiagent coordination.

Another line of research would be to use a message pass-
ing algorithm like max-plus for sequential decision making,
like in Markov decision processes or reinforcement learn-
ing [1, 4]. Finally, from an application point of view, it
would be interesting to test some of the above methods on
large-scale problems like robot soccer [3].
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