
Ordering Broken Unit Tests for Focused Debugging

Markus G̈alli, Michele Lanza, Oscar Nierstrasz
Software Composition Group

University of Bern, Switzerland

{gaelli,lanza,oscar}@iam.unibe.ch

Roel Wuyts
Lab for Software Composition and Decomposition

Universit́e Libre de Bruxelles

roel.wuyts@ulb.ac.be

Abstract

1 Current unit test frameworks present broken unit tests
in an arbitrary order, but developers want to focus on the
most specific ones first. We have therefore inferred a partial
order of unit tests corresponding to a coverage hierarchy of
their sets of covered method signatures: When several unit
tests in this coverage hierarchy break, we can guide the de-
veloper to the test calling the smallest number of methods.
Our experiments with four case studies indicate that this
partial order is semantically meaningful, since faults that
cause a unit test to break generally cause less specific unit
tests to break as well.

Keywords: Unit testing, debugging

1. Introduction

Unit testing has become increasingly popular in recent
years, partly due to the interest in agile development meth-
ods. [1]

Since one fault can cause several unit tests to break, the
developers do not know which of the broken unit tests gives
them the most specific debugging context and should be ex-
amined first.

We propose a partial order of unit tests by means ofcov-
erage sets— a unit test Acoversa unit test B, if the set of
method signatures invoked by A is a superset of the set of
method signatures invoked by B.

We explore the hypothesis that this order can provide de-
velopers with the focus needed during debugging phases.
By exposing this order, we gain insight into the correspon-
dence between unit tests and defects: if a number of related
unit tests break, there is a good chance that they are break-
ing because of a common defect; on the other hand, if un-
related unit tests break, we may suspect multiple defects.
The key to make the unit test suite run again is to identify
the central unit tests that failed and thus caused a “failure

1In Proceedings of ICSM 2004

avalanche” effect on many other tests in the suite.
The results of four case studies are promising: 85% to

95% of the unit tests were comparable to other test cases
by means of theircoverage sets– they either covered other
unit tests or were covered by them. Moreover, using method
mutations to artificially introduce errors in a test case, we
found that in the majority of cases the error propagated to
all test cases covering it.

Structure of the article. In Section 2 we describe the
problem of implicit dependencies between unit tests. In
Section 3 we then describe our solution to this problem. In
Section 4 we present the experiments we carried out with
four case studies. In Section 5 we discuss our findings. In
Section 6 we give a brief overview of related work. In Sec-
tion 7 we conclude and present a few remarks concerning
future work.

2. Implicit dependencies between unit tests

Example. Assume we have the following four unit tests
for a simplified university administration system:

• PersonTest�testBecomeProfessorIn tests if some per-
son, after having been added as a professor also has
this role.

• UniversityTest�testAddPerson tests if the university
knows a person after the person has been added to it.

• PersonTest�testNew tests if the roles of a person are
defined.

• PersonTest�testName tests if the name of a person
was assigned correctly.

For a detailed look at the run-time behavior of the test
cases see Figure 1 and Figure 2.

Furthermore assume that the implementation ofPerson
class�new is broken, so that no roles are initialized and the
role variable inPerson is undefined. When we run the four
tests, two of them will fail:



PersonTest
University class

Professor class

name(...)

Person class

becomeProfessorIn(...) new

Person University
testBecomeProfessorIn

addPerson(...)

name(...)
new

professors

persons

addRole()

UniversityTest

University class

name(...)

Person class

University
testAddPerson

addPerson(...)
name(...)

new

persons

assert(aUni professors includes(aPerson))

assert(aUni persons includes(aPerson))

Figure 1. The test for #becomeProfessorIn:
covers the test for #addPerson:. Intersecting
signatures are displayed gray.

1. The testPersonTest�testBecomeProfessorIn (see Fig-
ure 1) yields a null pointer exception:Undefined
object does not understand: add:occurring in
Person�addRole:.

2. In testPersonTest�testNew (see Figure 2) the asser-
tion person roles notNil fails, pointing directly to the
problem at hand.

As the latter failing test case provides the de-
veloper directly with the information needed to fix
the error, the latter one should be presented first.
We therefore order the unit tests according to their
sets of covered methods. All the methods which
are called in PersonTest�testNew are also called in
UniversityTest�testAddPerson (see Figure 1 and Figure 2).
Again all methods sent byUniversityTest�testAddPerson
are themselves included in the set of methods sent by
PersonTest�testBecomeProfessorIn (see Figure 1). Note
thatPersonTest�testName is neither covered by any other
test nor covering one.

Consider the unit tests in Figure 3. We draw an ar-
row from one unit test to another if the firstcovers the
second, as defined in Section 1. The test methodPerson-
Test�testNew (i.e., the methodtestNew of the classPer-

PersonTest Person class

testName name(...) new

assert(person name = aName) name

PersonTest Person class

testNew new

assert(person roles notNil) roles

Figure 2. Two small unit tests, which do not
cover each other.

sonTest) will invoke at run-time a set of methods of var-
ious classes.PersonTest�testBecomeProfessorIn will in-
voke at least those same methods, so its coverage set in-
cludes that ofPersonTest�testNew. Note that we do
not require thatPersonTest�testBecomeProfessorIn in-
vokePersonTest�testNew, or even that it test remotely the
same logical conditions; merely that at least the same meth-
ods be executed during the test run.

Figure 3. A sample test hierarchy based on
coverage sets.

Unfortunately, existing unit testing tools and frameworks
do not order unit tests in terms of method coverage, and do
not even collect this information. In this paper we investi-
gate the following hypothesis: When multiple unit tests fail,
the ones that cover one another fail due to the same defects.
We provide initial evidence that:

• Most unit tests of a typical application are compara-
ble by thecoversrelation, and can thus be partially
ordered.

• When a unit test fails, another test thatcoversit typi-
cally fails too.



If unit tests break in the same coverage chain of our
coverage hierarchy, we can infer that there is a sin-
gle defect that is causing all unit tests to break. Since
PersonTest�testNew is the “smallest” test (in the sense that
it covers the least methods), it provides us with better focus,
and helps us find the defect more quickly. In any case, the
fact that these unit tests are related makes us consider them
as a group in the debugging process.

3. Ordering broken unit tests

In this section we explain our approach of ordering in
detail, and discuss an implementation in a Smalltalk envi-
ronment. The problem we tackle is to infer coverage hierar-
chies, given a set of unit tests. We therefore need to generate
traces and then order them.

3.1. Approach

To order the tests we used dynamic analysis because we

• have runnable test cases

• could apply it to both dynamically and statically typed
languages

• and are only interested in the actual paths taken of our
unit tests

The examined unit tests are all written in SUnit, the
Smalltalk version of the XUnit series of unit test frame-
works that exist for many languages. Our approach is struc-
tured as follows:

1. We create an instance of atest sorter, into which we
will store the partially ordered test cases.

2. We iterate over all unit tests of a given application.
We instrument all methods of the application so that
we can obtain trace information on the messages be-
ing sent. The exact instrumentation mechanism to ob-
tain the information depends on the implementation
language. We used the concept ofmethod-wrappers
([4]), where the methods looked up in the method dic-
tionary are replaced by wrapped versions, which can
trigger some actions before or after a method is exe-
cuted. Here the method wrapper simply stores if its
wrapped method was executed.

3. We then

(a) execute each unit test, in our case via the XUnit-
API,

(b) obtain the set of method signatures which were
called by the test, in our case by iterating over all
wrapped methods and checking if they have been
executed,

(c) check if this set is empty, which for example
could be due to the fact that the test only called
methods of prerequisite packages,

(d) if the set is not empty, we create a new instance
of a covered test case, where we store this set of
method signatures together with the test,

(e) add thiscovered test caseto thetest sorter,

(f) reset the method wrappers, so that they are ready
to store if the next unit test executes them.

4. Some of thecovered test casesare equivalent to others
as their sets of covered method signatures are equal. To
obtain a partial order we have to subsume this equiv-
alentcovered test casesunder one node, that we call
anequivalent test case. For all equivalentcovered test
caseswe create an instance of anequivalent test case,
store the set of method signatures and the names of the
equivalent test cases in it, store it in thetest sorterand
then remove the equivalentcovered test casesout of
the test sorter. Note that bothcovered test casesand
equivalent test casesaretest nodes, a superclass where
we store the shared behavior of this two.

5. We then order the resultingtest nodesstored in ourtest
sorterusing the following relationship: Atest nodeA
is smaller than atest nodeB if the set of method sig-
natures of A is included in the set of method signa-
tures of B. We therefore pairwise compare the remain-
ing test nodesand thus build a partial order. We store
both the covering and the being covered relationship in
variables of thetest node.

6. Finally we compute the transitive reduction of this lat-
tice, thus eliminating all redundant covering relations
between the test nodes.

7. Finally we obtain an instance of atest sorterthat we
can ask which of some given tests we should attack
first. Note that we did the case studies with non break-
ing unit tests. In the real world scenario with broken
unit tests, we could either use atest sorter, which was
initialized with the tests while they were non breaking,
or reinitialize it with only the broken unit tests.

3.2. Implementation

In order to perform experiments to validate our claim, we
implemented our approach in VisualWorks Smalltalk2. We

2See www.cincomsmalltalk.com for more information.



chose to do the implementation in VisualWorks Smalltalk
because

• tools to wrap methods and assess coverage are freely
available,

• we have numerous case studies available,

• we can build on the frrely available tool CodeCrawler
[12] to visualize the information we obtained.

We obtain the trace information by using AspectS [9], a
flexible tool which builds upon John Brant’sMethodWrap-
pers [4]. Though AspectS obtains the traces in the same
way as method-wrappers described before, we used As-
pectS because it lets us obtain more detailed information
about the current state of the stack, when a method is en-
tered. In Java we could useAspectJ[11].

4. Case studies

We performed our experiments on the following four
systems, which were created by four different developers,
who were unaware of our attempts to structure their tests
while they were writing them.

1. MagicKeys3, an application that makes it easy to
graphically view, change and export/import keyboard
bindings in VisualWorks Smalltalk.

2. Van (Gı̂rbaet al. [8]), a version analysis tool built on
top of the Moose Reengineering Environment [6].

3. SmallWiki(Renggli [15]), a collaborative content man-
agement tool.

4. CodeCrawler(Lanza [12]), a language independent
reverse engineering tool which combines metrics and
software visualization.

4.1. Setup of the experiments

In a first phase, we ordered the unit tests for each case
study as described in Section 3 and measured if a rele-
vant portion of them were comparable by ourcoveragecri-
terium.

In a second phase, we introduced defects into the meth-
ods to validate that if a unit test breaks, its covering unit
tests are likely to break as well. We therefore

1. iterated over all test cases of the case study that were
covered by at least one other test case,

2. determined which methods were invoked by each of
those tests, but not by any other test it is covered by,

3http://homepages.ulb.ac.be/∼rowuyts/MagicKeys/index.html

3. mutated the methods according to some mutation strat-
egy,

4. and, for each each mutation, executed the unit tests and
all its covering unit tests and collected the results.

We used the following mutation strategies:

1. full body deletion, i.e., we removed the complete
method body.

2. code mutations ofJesTer[13]: JesTer is a mutation
testing extension to test JUnit tests by finding code that
is not covered by tests. JesTer makes some change to
the code, runs the tests, and if the tests pass, JesTer re-
ports what it changed. We applied the same mutations
as JesTer, which are

(a) change all occurrences of the number 0 to the
number 1

(b) flip true to false and vice versa

(c) change the conditions of ifTrue statements to true
and the conditions of ifFalse statements to false.

4.2. Results

The case studies are presented at more detail in Table 1
and Table 2.

Figure 4. The coverage hierarchy of the Code
Crawler tests visualized with Code Crawler.

As we see in Table 1 our experiment was performed with
applications which had 1600 to 5600 lines of code. The
ratio of LOC(Tests) to LOC reached from 13 % to 56%.
The maximum test coverage was 64%.

In Figure 4 an arrow from the top to bottom denotes that
the test nodeat the topcoversthe test nodeat the bottom.
We see a typical coverage hierarchy obtained in the first part
of our experiment: Most of the unit tests either covered or



System LOC LOC (Tests) Coverage #Unit Tests Equivalent tests Tests covered by Tests
Magic Keys 1683 224 37% 15 20% 53.3%

Van 3014 716 64% 67 9% 24.2%
CodeCrawler 4535 1071 24% 79 37.3% 40%
SmallWiki 5660 3096 64% 110 29.8% 47.4%

Table 1. The resulting coverage of unit tests in our case studies.

Figure 5. The distribution of comparable test nodes in our four case studies.

were covered by some other unit test and only 5% to 16%
of them were stand alones (Figure 5).

A considerable percentage of unit tests (9% to 37%, see
Table 1) called the same set of method signatures as at least
one other test. 25% to 53% of the unit tests were covered
by at least one other unit test. This means that for roughly
every third test of our case studies, the probability is high,
that if the test fails, it will not fail alone.

We carried out the second phase of our experiment, the
automatic method mutation, in all case studies except Code-
Crawler. As many mutations in CodeCrawler resulted in
endless loops we did not have time to complete it. We
merely did the full deletion mutation on every 10th method
and omitted the JesTer mutations. The results are displayed
in Table 2: 92% to 99.5% of the full deletion mutations of
a method broke the smallest test calling this method and all
its covering tests, as did 59% to 100% of the JesTer muta-
tions. Note that the number of mutated methods is larger
than the number of methods, as the same method could be

mutated in the context of different tests.
Let us have a detailed look at the effects of a full

method deletion on the coverage hierarchy of the Magic
Key tests in Figure 6. We are mutating a method which
is called from the testMagicKeysTest�testMasks, thus
from all of its covering tests. Here we picked a rare
example, where not all of the covering tests are fail-
ing. Both MagicKeysTest�testRegularCharCreating
and the node including the equivalent test cases
MagicKeysTest�testMetaDispatchWriting, testAltDis-
patchWriting and testShiftDispatchWriting do not fail
because of the deleted method. On the other hand the
two testsMagicKeysTest�testSpecialConstantKeyCreating
and MagicKeysTest�testKeyCopying also fail, though
they do not cover the testMagicKeysTest�testMasks,
they merely have a non-empty intersection set with
it, including the mutated method. Also note, that
MagicKeyTest�testKeyCopying, which is a standalone test,
has the lowest number of method signatures called, and not



System #Methods Strategy #Methods mutated Errors propagating to all covering tests
Magic Keys 277 Full Deletion 46 93.5%

JesTer 17 58.8%
VAN Full Deletion 357 97.8%

JesTer 59 100%
CodeCrawler 1104 Full Deletion 41 92.7%
SmallWiki 1565 Full Deletion 2415 99.5%

JesTer 318 100%

Table 2. Results of our automatic mutation experiments.

Figure 6. An avalanche effect in the coverage hierarchy of Magic Keys. One manually introduced bug
causes 10 test cases to fail.

MagicKeysTest�testMasks.

5. Discussion

The experiments we performed are rather simple, but
they are also remarkable for the consistency of their results:
In each case, a significant majority of the test cases was
comparable to other unit tests, using the rather stringent cri-
terion of inclusion of the sets of called methods. Further-
more, each case study consistently showed that if a defect
causes a particular unit test to break, unit tests that precede
it in the partial order also tend to break. The partial order
over tests is therefore not accidental, but exposes implicit
dependency relationships between the tests.

5.1. Semantic ordering of tests

In this paper we focused on bug tracking via partial or-
dering of unit tests. Providing the order of unit tests could
also help the developer to comprehend the structure of the
unit tests and the structure of the underlying system. It can
reassure the developer in his or her perceived layering of the
system if the order of the test cases reflects this layering.

The method names of the example in Table 3 indicate a
parallel structure of the tests, while the method names in the
list below suggest a hierarchical one:

• LoaderTest�testConvertXMIToCDIF
(LoaderTest�testLoadXMI)

• SystemHistoryTest�testAddVersionNamedCollection
(SystemHistoryTest�testAddVersionNamed)



System Signature of test case
Magic Keys MagicKeysTest�testAltDispatchWriting
Magic Keys MagicKeysTest�testMetaDispatchWriting
Magic Keys MagicKeysTest�testShiftDispatchWriting
CodeCrawler CCNodeTest�testRemovalOfEdgeRemovesChild
CodeCrawler CCNodeTest�testRemovalOfEdgeRemovesParent
CodeCrawler CCNodeTest�testRemovalOfSoleEdgeRemovesChildOrParent

Table 3. Examples for equivalent test cases.

• SystemHistoryTest�
testSelectClassHistoriesWithLifeSpan
(SystemHistoryTest�testSelectClassHistories)

5.2. Limitations

The lightweight nature of our approach has some draw-
backs and limitations:

• One unexpected result was that if the JesTer muta-
tions were applicable to some unit tests, in 100% of
the cases a broken inner test case meant that all its
covering tests were broken. Thus our first assumption
that the more specific JesTer mutations would let more
covering test cases survive, seems to be incorrect: The
JesTer method tweaks are even more fatal to the major-
ity of covering tests than full body deletions. We plan
to use more realistic mutations and manual introduc-
tion of errors in future experiments to overcome this
problem.

• Parallel tests seem to cover each other even if they dif-
fer only by one method signature. Sorting these basi-
cally equal unit tests does not add an advantage as any
exception of them will be as telling as the other.

• So far we have limited our case studies to Smalltalk
programs. Perhaps style and conventions used in
Smalltalk produce results which differ in other object-
oriented languages.

• The developers of the case studies are all members of
our research group thus also working in academia: We
plan to make case studies with programs developed in
industrial settings.

• We have not yet measured the implications of real
bugs. How many unit tests break because of just one
real bug and not because of one artificial mutation?

• We did not make any distinction between failures and
errors when we were evaluating the chain of failed tests
caused by one mutation.

6. Related Work

Unit testing has become a major issue in software de-
velopment during the last decade: Test-driven development
(TDD) [1] is a technique in which testing and development
occur in parallel, thereby providing developers with con-
stant feedback. The most popular unit testing framework
used in TDD named XUnit [2] does not currently prioritize
failed unit tests.

Parrishet al. [14] define a process for test-driven devel-
opment that starts with fine-grained tests and proceeds to
more coarse-grained tests. They state that“Once a set of
test cases is identified an attempt is made to order the test
case runs in a way that maximizes early testing. This means
that defects are potentially revealed in the context of as few
methods as possible, making those defects easier to local-
ize.” In their approach, tests are written beforehand with a
particular order in mind, while in our approach we investi-
gatea posterioriorderings of existing tests.

Rothermelet al. [16] introduce the term “granularity”
for software testing, but they focus on cost-effectiveness of
test suites rather than on debugging processes.

Selective regression testing is concerned with determin-
ing an optimal set of tests to run after a software change is
made [17] [3]. Although there are some similarities with
the work described in this paper, the emphasis is quite dif-
ferent: Instead of selecting which tests to run, we analyse
the set of tests that havefailed, and suggest which of these
should be examined first.

Test case prioritization [18] has been successfully used
in the past to increase the likelihood that failures will oc-
cur early in test runs.The tests are prioritized using different
criteria, the criterion which most closely matched our ap-
proach wastotal function coverage[7]. Here a program is
instrumented, and, for any test case, the number of func-
tions in that program that were exercised by that test case is
determined. The test cases are then prioritized according to
the total number of functions they cover by sorting them in
order of total function coverage achieved, starting with the
highest.

Wong et al. [19] compare different selection strategies
for regression testing and propose a hybrid approach to se-



lect a representative subset of tests combining modification
based selection, minimization and prioritization. Again,
they emphasize on which tests should be run and not on how
failing tests should be ordered. Modification based selec-
tion is their key to minimize the number of tests to run, thus
they are relying on having prior versions of the tested pro-
gram whereas our approach can in principle be used without
having prior versions, as we could also order the tests using
only the coverage of the failed tests.

Zelleret al. [20] [5] use delta debugging to simplify test
case input, reducing relevant execution states and finding
failure-inducing changes. We focus on reducing failing tests
from a set of semantically different tests to the most concise
but still failing tests. Thus the technique of Zelleret al.
could pay off more using this smaller tests as initial input.

7. Conclusion and future work

We have proposed a lightweight approach to partially or-
der unit tests in terms of the sets of methods they invoke.
Initial experiments with four case studies reveal that this
technique exposes important implicit ordering relationships
between otherwise independent tests. Furthermore, our ex-
periments show that the partial order corresponds to a se-
mantic relationship in which less specific unit tests tend to
fail if more specific unit tests also fail.

The reported experiments are only a first step. We plan
to explore much larger case studies, and see if these results
scale up. The correspondence between the partial order and
failure dependency between unit tests needs to be tested
with other kinds of defects. We plan to analyze historical
test failure results for their correspondence with the partial
order. Moreover, so far our experiments have been limited
to Smalltalk; we plan to extend the approach to other lan-
guages such as Java.

In the long term we are interested in exploring the im-
pact of the order and structure of unit tests in the develop-
ment process. The partial order that is detected automati-
cally may not only help to guide developers in the debug-
ging process, but it may also provide hints on how tests can
be better structured, refactored, and composed.

We believe that the research presented in this paper is
but a first step in using coverage information to get more
information from failing tests. The next section describes
some ideas we got for future experiments while validating
the claims from this paper.

7.1. Defect tracking

The coverage relationships could aid developers to track
down defects in the software when changes are introduced:
Whenever a change causes multiple unit tests to break, the
partial order over the unit test set can be used to identify the

mostspecificunit tests that have broken (i.e., those with the
smallest coverage sets). Identifying these unit tests gives
the developer the best focus when debugging. Less specific
unit tests are probably breaking for the same reason, and
may only introduce more noise into the debugging process.

Currently we order the unit tests based the sets of cov-
ered method signatures they produce while they run with-
out failure. Thus our sets might be unnecessarily big and
we need prior versions of the system under test. We want to
compare this approach with one where only the coverage of
thefailed test cases is taken into account.

7.2. Other lightweight metrics for sorting tests:
Testing time and size of coverage sets

Having given evidence that the situation of depending
unit tests occurs on a regular basis, we can seek more
lightweight variants to our approach: Can we for example
also use testing time as an equivalent mechanism to order
the tests? Unit tests which are covered by other unit tests
might not be faster executed than the covering ones:

• The methods of the inner test might occur in some loop
while the outer ones are only executed once.

• In languages with garbage collectors the testing time
can vary.

Using the size of the sets of covered method signatures
is more practical.To be sure to get the mostspecificunit test
first, it is sufficient to sort the test cases by the size of their
covered sets, starting with the lowest. There the program
has to be instrumented and the tests sorted also. But our
admittedly simple way of pairwise comparing the test cases
can be omitted which could lead to faster results. Using
this metric alone would have made it difficult on the other
hand, to show the semantic dependencies of unit tests we
have presented in this paper.

7.3. Using pre- and postcondition but keeping the
scenarios

Looking back to our small example from Figure 2, one
could gain the same prioritizing effect with a little code
refactoring: The assertion inPersonTest�testNew could
be used in the program as a postcondition and should be
moved intoPerson class�new. Then all covering tests
would also immediately fail at this very same position giv-
ing the developer the most specific information about the
problem at hand. This refactoring would even make the
PersonTest�testNew test superflous, as long as one knows
thatPerson class�new is executed by some test case.

The test code should be reduced to compose scenarios,
execute methods on this scenarios, and possibly deliver the



result of this executions for further scenario building. Iden-
tifying the high level scenarios necessary to run all sub sce-
narios would lead to a massive reduction of testing time,
massive reuse of assertions also in unexpected scenarios,
and would make our post mortem sorting approach unnec-
essary: The most specific assertions will always fail first,
directing the developer immediately to the problem at hand.
In the four case studies we analyze in this paper, none of
the software developers wrote any pre- or post-condition or
invariant, thus relying solely on the assertions in their unit
tests. This is a common behavior of Smalltalk developers
today: The open source Smalltalk environmentSqueak4

[10] in the version from February 2004 includes 1024 unit
tests but only 23 pre- or post-conditions.

Methods like XP suggest frequent testing and developing
in small increments, so that developers can identify their lat-
est changed code as a good starting point to know where an
error is. But to know why the error occurred, they want to
go to the most detailed test with the most focused assertion.
Our experiments and experience show, that one failed unit
test comes seldom alone, so unless they start putting asser-
tions in the code, they still need to find the most specific of
them.

This approach of combining design by contract and clas-
sical unit testing is facing several problems:

• It requires manual refactoring of the test cases and the
program.

• Unit tests without assertions seem like a self contradic-
tion and pose a mental barrier to developers.

• Missing explicit relationships between between unit
tests and methods under test make it hard to tell what
scenarios are covering a method containing a postcon-
dition.

• Moreover missing integration of coverage browsers in
current IDEs makes it hard to tell if some test scenario
even executes a method containing a postcondition.

Acknowledgments

We thank Orla Greevy and Tudor Gı̂rba for helpful com-
ments. We gratefully acknowledge the financial support
of the Swiss National Science Foundation for the projects
“Tools and Techniques for Decomposing and Composing
Software” (SNF Project No. 2000-067855.02, Oct. 2002 -
Sept. 2004) and “RECAST: Evolution of Object-Oriented
Applications” (SNF Project No. 620-066077, Sept. 2002 -
Aug. 2006).

4See http://www.squeak.org for more information.

References

[1] K. Beck. Test Driven Development: By Example. Addison-
Wesley, 2003.

[2] K. Beck and E. Gamma. Test infected: Programmers love
writing tests.Java Report, 3(7):51–56, 1998.

[3] J. Bible, G. Rothermel, and D. Rosenblum. A comparative
study of coarse- and fine-grained safe regression test selec-
tion. ACM TOSEM, 10(2):149–183, Apr. 2001.

[4] J. Brant, B. Foote, R. Johnson, and D. Roberts. Wrappers
to the Rescue. InProceedings ECOOP ’98, volume 1445 of
LNCS, pages 396–417. Springer-Verlag, 1998.

[5] H. Cleve and A. Zeller. Finding failure causes through au-
tomated testing. InProceedings of the Fourth International
Workshop on Automated Debugging, Aug. 2000.

[6] S. Ducasse, M. Lanza, and S. Tichelaar. The moose reengi-
neering environment.Smalltalk Chronicles, Aug. 2001.

[7] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel. Pri-
oritizing test cases for regression testing. InInternational
Symposium on Software Testing and Analysis, pages 102–
112. ACM Press, 2000.

[8] T. Gı̂rba, S. Ducasse, and M. Lanza. Yesterday’s weather:
Guiding early reverse engineering efforts by summarizing
the evolution of changes. In20th International Conference
on Software Maintenance (ICSM 2004), 2004.

[9] R. Hirschfeld. Aspects - aspect-oriented programming with
squeak. In M. Aksit, M. Mezini, and R. Unland, editors,
Objects, Components, Architectures, Services, and Applica-
tions for a Networked World, International Conference Ne-
tObjectDays 2002, pages 216–232, Erfurt, 2003. Springer.

[10] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay.
Back to the future: The story of Squeak, A practical
Smalltalk written in itself. InProceedings OOPSLA ’97,
pages 318–326. ACM Press, Nov. 1997.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. InProceeding
ECOOP 2001, 2001.

[12] M. Lanza. Codecrawler — lessons learned in building a
software visualization tool. InProceedings of CSMR 2003,
pages 409–418. IEEE Press, 2003.

[13] I. Moore. Jester – a junit test tester. In M. Marchesi, editor,
Proceedings of the 2nd International Conference on Extreme
Programming and Flexible Processes (XP2001). University
of Cagliari, 2001.

[14] A. Parrish, J. Jones, and B. Dixon. Extreme unit testing: Or-
dering test cases to maximize early testing. In M. Marchesi,
G. Succi, D. Wells, and L. Williams, editors,Extreme Pro-
gramming Perspectives, pages 123–140. Addison-Wesley,
2002.

[15] L. Renggli. Smallwiki: Collaborative content management.
Informatikprojekt, University of Bern, 2003.

[16] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri, and
B. Davia. The impact of test suite granularity on the cost-
effectiveness of regression testing. InProceedings ICSE-24,
pages 230–240, May 2002.

[17] G. Rothermel and M. J. Harrold. Analyzing regression test
selection techniques.IEEE Transactions on Software Engi-
neering, 22(8):529–551, 1996.



[18] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold.
Test case prioritization: An empirical study. InProceedings
ICSM 1999, pages 179–188, Sept. 1999.

[19] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A
study of effective regression testing in practice. InProceed-
ings of the Eighth International Symposium on Software Re-
liability Engineering, pages 230–238, Nov. 1997.

[20] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input.IEEE Transactions on Software En-
gineering, SE-28(2):183–200, Feb. 2002.


