
An Architecture for Mobile, Distributed

Application Delivery with Soft Real-time

Constraints

Joel Jones, Susan Vrbsky, Jingyuan Zhang, Sibrabrata Ray

Department of Computer Science, University of Alabama
101 Houser Hall

Tuscaloosa, AL 35487 USA
(205) 348-6363

Abstract

The power of ubiquitous computing lies not just in constant access, but also in tai-
loring of information based upon location. In this paper we describe an architecture
that supports tailoring of information and applications for their environment. This
environment includes the mobile client device, its location, the available bandwidth,
and any soft real-time constraints.

1 Introduction

We present here an architecture for the delivery of applications in a dis-
tributed, mobile environment with soft real-time constraints. Such a system
has many practical uses, including emergency medical response, disaster relief
work, and construction. This proposal includes motivation for the addition
of quality of service (QoS) guarantees to the underlying system components
(computer languages, compilers, networks, and databases), and to integrate
these QoS guarantees throughout the overall system. As a result of this work,
we establish a foundation for determining the fundamental characteristics such
system components should have. This architecture provides a foundation for
implementing mobile application delivery systems.

Email addresses: jones@cs.ua.edu (Joel Jones,), vrbsky@cs.ua.edu (Susan
Vrbsky,), zhang@cs.ua.edu (Jingyuan Zhang,), sibu@cs.ua.edu (Sibrabrata
Ray).

Preprint submitted to Elsevier Science

1.1 System Use Scenario

To clarify our system functionality, we illustrate using a prosaic example,
consumer information. Imagine someone standing on a sidewalk in the North
Beach neighborhood of San Francisco, California. The North Beach area is
awash with Italian restaurants. A user with a mobile computing device (such
as a PDA) issues the query “What are the closest Italian restaurants?” Our
architecture defines the type of system needed to answer this query in a timely
fashion.

Initially, the PDA uses wireless networking to find a query server to handle
the query. The query server does not store applications, so it issues queries to
application servers which contain the requested information, then merges the
responses and transmits them to the PDA.

In our model, the ability to deliver both applications and information in a
timely manner drives the remainder of the research questions. In this scenario,
such programs might allow the user to make a reservation, view an animation
of steaming lasagna, or initiate a phone call to the restaurant. This represents
the “application delivery” portion of the system.

Since PDAs are heterogeneous, (i.e. the processor and other aspects of the
PDA may vary from user to user), processor variability is handled by express-
ing the delivered applications as code for some sort of virtual machine, such
as the Java Virtual Machine (JVM) [1]. This is the “mobile” portion of the
system.

Our system has soft-real constraints, since an individual will not wait an in-
definite amount of time to receive an answer to their query. As yet another
constraint, if the PDA is located in a moving vehicle, information must be de-
livered before the user has moved out of the area. This is the “soft real-time”
portion of the system.

Furthermore, businesses want to have control over the user-experience of their
customers. A business will establish linkages to its applications on the query
servers responsible for handling wireless networking in a given service area.
Therefore, query servers will not have a unified database of applications, and
must query multiple application servers to process a client’s query. The services
provided by a query server more closely align with those typically provided
by an internet service provider or wireless telecommunications vendor. The
services provided by an application server more closely align with those of an
application hosting provider or by an enterprise itself. This dichotomy is the
reason for splitting our infrastructure component into two pieces. These pieces
could of course be combined into a single server if so desired. This contributes
to the “distributed” portion of the system.

2

A S A S

Q S Q S

A P A P

M C M C

...

...

MC – Mobile Client
AP – Attachment Point

QS – Query Server

AS – Application Server

Fig. 1. System Architecture

1.2 Research Areas

Our proposed architecture is a framework in which interesting research with
commercial applicability can occur. Already, there is a rapidly expanding in-
frastructure of IEEE 802.11 wireless networks, as well as low speed telephony
networking [2–4]. The scenario outlined above exposes many interesting re-
search issues that have not been addressed in this kind of integrated ap-
plication. They include use of machine-independent performance profiles for
soft-real time scheduling, distributed real-time spatial databases, and network
bandwidth scheduling. Our architecture provides a framework for investigating
these issues via its construction of a mobile, distributed application delivery
system operating under soft real-time constraints.

1.3 Problem Scope

To provide a reasonable scope to build on, we limit the proposed system
architecture. We make the following assumptions regarding our system model.

• Every mobile client is attached to a single attachment point (AP) at a time.
• As mobile clients move, the AP they communicate with may change (hand-

off). This should not result in a complete loss of service.
• Each AP may service multiple mobile clients.
• An AP does not communicate with other APs.
• Each AP communicates with a single query server (QS).
• Each query server will communicate with one or more APs.
• A query server will communicate with one or more application servers (AS).
• A query server will not communicate with other query servers.
• An application server will communicate with one or more query servers.
• Application servers will not communicate with each other.

We see a diagram of the components of the system in Figure 1.

3

Mobile Client
M C

Attachment Point
A P

Query Server
Q S

<Bus, ST,
APID>*

<loc, ST, MCprof,DL>

<APID, APprof>*

<APID>*

<APID>*

<ap>*
Execute/
Display

<ap>*
<ap>*

ap ap ...

<APID,APprof>*

<reg, AS>*

AS - application server
reg - region, area
Bus - business
APID - application identifier
APprof - application performance
 profile
ap - application

Sp
Spatial
Database

R
Relational
Database

<loc, S
T,MCprof>

Sp

Scheduler

Demux/
Prescheduler

Schedule

Dispatcher

<AS>*
t

Application Server
A S

<reg, Bus>* <Bus, APID, ST,
APprof, ap>*

APP

Sp R APP

<Bus, APID, ST,
APprof, ap>*

<Bus, ST,
APID>*

Application
DatabaseAPP

loc - location, a point
ST - service type, e.g. Italian
 restaurant
MCprof- mobile client performance
 profile
DL - deadline

Fig. 2. Interaction Diagram for Simple Query

2 Example: Simple Query

In Figure 2 we see the interaction diagram for a simple location based query.
Across the top of the figure, we see the four components of the system: the
mobile client (MC), the network attachment point (AP), the query server
(QS), and the application server (AS). The diagram shows the flow of infor-
mation through the system to answer a query such as “Show me information
on the closest Italian restaurants.” In the rest of this section, we will present
an overview of the steps necessary in answering this query.

2.1 Setup

Before the mobile client can even issue a query, it must perform resource
discovery to find an attachment point and its associated query server. This is
an area of much research and there are many deployed architectures for finding
resources [5–8]. Once the attachment point has been found, then the additional
steps of authorization and location determination must be done. Authorization
is the determination of whether or not the mobile client (or equivalently, the
associated user) is allowed to use the network. Location determination is the

4

process of ascertaining the location of the mobile client. There is an ordering of
sources for location information, with earlier sources being more authoritative.
First, the user must be allowed to override any of the later sources. Second, a
GPS unit in the mobile client can give precise information on the location of
the mobile client. The third location source is the determination of the mobile
client’s location by triangulation of several in-range attachment points. The
location of the chosen attachment point is the fourth and last source of location
information.

2.2 Determining Application Availability

The first step in application delivery is to determine which applications are
available. A query is originated by the user with the mobile client. In this
example, the query consists of the 4-tuple <loc, ST, MCprof, DL>, which
communicates the location of the MC (loc), the type of service for which
information is being requested (ST), here “Italian Restaurants”, the perfor-
mance profile of the mobile client (MCprof), and the deadline for delivery of
the applications/documents (DL). 1 This query is sent to the query server
(QS), that has a spatial database (Sp), which maps geographic regions (reg)
to application servers (AS) that have information and applications for the
corresponding region. The location is queried against the regions, and a set of
application servers <AS>* is found. The query <loc, ST, MCprof> is sent to
each of the matching application servers by the query server’s dispatcher. The
query server then sets up a scheduler to gather the responses and send them
to the mobile client. The query sent from the QS to the AS is handled using
the databases on the AS. A spatial database mapping location to regions is
used to determine which businesses (Bus) serve the requested location. Then,
for each business, a relational database is queried to find the application iden-
tifiers (APID) available for the requested business and service type. The APID
is then used to query the application database to determine the applications
performance profile (APprof). The resulting list of application IDs and appli-
cation profiles <APID, APprof>* is sent back to the QS. The scheduler in the
QS determines which results to return to the MC.

Results are rejected if they arrive from the AS too late to meet the deadline.
Other results are rejected for being too lengthy to send or execute by exam-
ining the APprof and comparing it against the MCprof and information about
the network congestion at the AP for the MC. The remaining results are sent
to the MC: <APID,APprof>*.

To make this discussion more concrete, consider the earlier example. Assume
that the user has a Handspring Treo 180 and that they have indicated that

1 In general, queries are richer than just “find nearest service of type foo.”

5

they are on foot. The initial query would have its location (loc) as the latitude
and longitude of the street corner where the user is standing. The location
was chosen by the user, as the Treo has no GPS and its cell phone network
connection does not allow a fine-grained enough determination of location. The
service type (ST) is Italian restaurant. The mobile client performance profile
(MCprof) would state that its connection is at 9.6Kb, that there is voice phone,
and that the display is monochrome, 4-bit grey-scale and 160×160 pixels. As a
default setting, the deadline is set to be 30 seconds, based upon the indication
that the user is on foot.

The are five potential applications available, of three different types. Three of
them are phone reservation applications that require a mobile client equipped
with a phone. Each of these applications is 3KB in size. Two of the restaurants
with phone reservation applications, “The Stinking Rose” and “Il Fornaio”,
are located in North Beach. The third, “Frankie, Johnnie, and Luigi Too”, is
located in Mountain View. One application is a streaming, steaming lasagna
animation and requires a connection speed of ≥48kb and a color display. The
final application is an interactive menu and is 100KB in length.

There are three application servers. Application server #1 contains the phone
application for “Il Fornaio”, as well as the interactive menu. Application server
#2 contains the phone application for “The Stinking Rose” and the lasagna
video. Application server #3 contains the phone application for “Frankie,
Johnnie, and Luigi Too.”

The application query is sent from the mobile client to the query server.
The query server does a containment query with the loc against its spa-
tial database to determine which application servers cover the street corner.
A query is formed from the loc, ST, MCprof fields and sent to application
servers #1 and #2. Because application server #3 covers Mountain View and
not North Beach, the query is not forwarded to it.

Application server #1 examines its spatial database to find a business whose
region contains loc. It finds the businesses “Il Fornaio” and the one with the
interactive menu. It forms a response to the query consisting of the application
identifier APID and the application profile APprof for the two applications and
sends it to the query server. Application server #2 does a similar spatial query
and finds “The Stinking Rose” and the lasagna video. Examining the MCprof

it sees that the lasagna video is not viewable on the MC. It sends the APID and
APprof for “The Stinking Rose” to the query server.

The query server receives the responses from the application servers and ex-
amines their APprof fields. From the schedule of the bandwidth for the AP,
the 100KB interactive menu application will not finish downloading before
the deadline occurs. Therefore, it only forwards the query responses for phone

6

applications for “The Stinking Rose” and “Il Fornaio.”

The MC receives the query responses and extracts the name from the APprof

and displays them to the user. The user has eaten at “Il Fornaio,” and wanting
to try something new, chooses “The Stinking Rose.” The MC sends the APID to
the query server, which relays it to application server #2. Application server
#2 consults its application database and sends the application to the query
server. Again the query server consults its schedule, and determines that the
application will arrive in time to meet the deadline. It forwards the application
to the MC. The MC receives the application and executes it.

3 Spatial Queries

The query submitted by a mobile client to a query server contains both
location-based constraints and non-location-based constraints [9]. For exam-
ple, in the query “What is the closest Italian restaurant?”, “P(x): x is an
Italian restaurant” is a non-location-based constraint, whereas “Q(x): x is the
closest to the mobile client” belongs to location-based constraints. Along with
the query, the mobile client sends the deadline for the reply to the query, and
its location.

A query server is responsible for several attachment points or cells. Therefore,
a query sever is basically responsible for a local area, maintaining a spatial
database that lists all the organizations that are interested in the local area.
Specifically, for each organization, the database lists the part of the local area
in which the organization is interested, and the application server hosting
its applications. The interest area can be represented by a polygon, and the
application server can be represented by its URL address. After receiving the
query from a mobile client, the query server searches its spatial database to
determine the scope of the search. Specifically, the query server determines
which application servers are involved in the search based on the location of
the mobile client. Based on the deadline from the mobile client, the query
server establishes a new reply deadline for the application servers involved
in the search. This new deadline is also soft. The query server decides it
based upon experience, that is, the query server collect statistics, and uses the
statistics as the basis for deadline assignment.

The main research issue involved here is how to answer a location-dependent
query constrained by real-time deadlines. Although a significant amount of
research has been reported in the literature, no one has yet addressed the
real-time issue in processing spatial data queries[10,11]. We first define ex-
actly what kind of spatial data and queries the system will support. To do
this, we assume there are two kinds of mobile clients based on their moving

7

speeds; one is pedestrian and the other is vehicular. The spatial database we
define consists of three layers. The first layer describes the paths that can be
used by a pedestrian. The second layer specifies the roads that can be used by
a car. Finally, the third layer defines the positions of all participating organi-
zations. Organizations can be represented by point data or region data. The
basic queries involving the spatial data include spatial range queries, nearest
neighbor queries, and join queries [12–14].

This research issue can take two distinct approaches. One is to use an existing
commercial DBMS with a spatial data option to build a system which can
handle real-time constraints, as described in Section 3.1. The other is to have a
spatial database that has real-time constraints integrated into it, as presented
in Section 3.2.

3.1 Spatial Database with a Real-time Facade

Although some database management systems, such as the Oracle DBMS,
have included a spatial data option, no one has addressed how to meet the
deadline when querying spatial databases [15]. We can place a facade around
an existing spatial database to achieve a certain amount of real-time capability.
In this approach, a wrapper can be added at the application level that is able
to schedule the execution of queries, and to collect the statistics needed to
build the knowledge base that will be used to schedule the execution of later
queries. This knowledge base will store the statistics distinguished by the
different kinds of queries, as described above. The goal here is to maximize
the number of queries answered within their corresponding deadlines.

3.2 Integrated Real-time Spatial Database

The ultimate goal is to build a DBMS that handles both spatial data and real-
time constraints. To meet this goal, it may be necessary to modify existing
practices in how to represent spatial objects and indexing spatial data to meet
real-time constraints for query execution. Such a spatial database has four
kinds of basic objects: vertex, edge, loop, and face. It is assumed that a complex
object consists of a list of faces. Each face consists of one or more loops, one of
which is external while the remainder are internal. Each loop is a list of ordered
edges or vertices. Recently, old geometric algorithms have been used to solve
problems in spatial databases [16,17]. One such approach, is the winged edge
structure [18]. It has been used to successfully represent 3-D geometric models
[19–21]. In this structure, each edge points to two vertices, and to the two loops
to which it belongs: left and right. Each edge also lists its previous and next
edges in its left and right loops. A vertex points to any edge that has the

8

vertex as its endpoint, and a loop points to any edge in the loop. In addition
to the topological information represented by the winged edge structure, we
can add geometric information to vertices and edges. For example, vertices
can be associated with coordinates. There are at least two major advantages
in using the winged edge structure. First, the topological structure will not
change if the associated geometric information changes within certain limit.
Second, all information about an object, e. g. all edges in a loop, is readily
available.

With the winged edge structure, it is easy to answer the three kinds of basic
spatial data queries: spatial range queries, nearest neighbor queries, and join
queries. To answer a spatial range query, the vertices that fall within the range
can be easily found. From the winged edge structure, we find the related edges,
loops, and faces from those vertices. To answer a nearest neighbor query, a
the nearest vertex is to be found first, and the vertex can be used to obtain
the object. To answer a join query, the vertex, edge, or face set can be used to
reduce the search time. Research needs to be done on how to create indexes
on objects or their constituent elements such that the number of page IOs
related to each kind of queries is upper-bounded, preferably minimized. The
upper-bound of the number of page IOs will greatly help scheduling of the
execution of spatial data queries in a real-time environment.

Since any face can be triangulated [22], a special case of the winged structure
can be considered. In this special case, a face has only one loop with three
edges. Therefore no loop object is needed. A three edged face, or triangle, has
many properties such as simplicity and convexity. The performance differences
between the special and general cases needs to be studied.

4 Transaction Scheduling

In this mobile distributed application delivery system, scheduling strategies
are utilized by the query server, application server and client. The client must
schedule tasks from the network as well as local tasks such as an alarm for
appointments. The query server must schedule client requests that it sends
to the application servers, and it also schedules the results to be sent to the
clients. The query server receives requests from mobile clients for information,
with most of the requests being read requests. However, our strategies also
accommodate update requests to a database, such as a client wishing to make
a reservation at a restaurant. An application server must schedule access to the
database and manage its concurrency control. As a result, the requests in our
application delivery system are considered to be transactions that have timing
constraints and require concurrency control to maintain the consistency of the
database. The scheduling requirements for such real-time transactions needs

9

to be studied.

The scheduling of transactions has been an important area of research in real-
time systems. While a conservative estimate of the time it will take for a
transaction to execute can be made, in general, interference that will occur
among the transactions cannot be predicted. Concurrency control for real-time
transactions [23–26] combines time critical scheduling as well as the proper-
ties of traditional concurrency control algorithms. The concurrency control
techniques are based on 2-phase locking or optimistic concurrency control.
Scheduling decisions can be made based on deadline, such as scheduling the
transaction with the earliest deadline first (EDF) or scheduling the transaction
with the least slack time (the amount of time remaining before the deadline
after execution time is taken into account).

4.1 Deadline Classification

The deadlines in a real-time system can be soft, firm, or hard deadlines
[27]. Conventional transactions that have response time requirements can be
thought of as soft real-time transactions [28]. We assume that the majority
of deadlines for our delivery system are soft deadlines. A soft deadline may
be missed, yet the result produced still has some value that monotonically
decreases with time after the deadline. As stated earlier, users requesting in-
formation will typically not be willing to wait for an unlimited amount of time
before receiving a reply to a query.

There will also be requests that have firm deadlines in this system. While fail-
ure to produce a result by the deadline is not catastrophic for a firm deadline,
the results produced after the deadline are useless. An example of this is a
client requesting information related to exits on the interstate, while driving
past such exits. Once the driver has passed an exit, any information related
to the exit is useless. Lastly, it is also possible for our system to have hard
deadlines, where failure to respond to such a request by the deadline can
have catastrophic consequences. An example is a client requesting informa-
tion about nearby hospitals because of a medical emergency. It is therefore,
important for this delivery system to accommodate different types of dead-
lines.

4.2 Modeling Transactions

We assume each transaction Ti can be modeled as: (Ai, Di, Ei, Pi, Ri, Ci),
where Ai is the arrival time of the task, Di the deadline, Ei the execution
time, Pi the priority of the transactions, Ri indicates the request type (read

10

or update), and Ci describes the machine platform capability (MCprof). While
we assume that a transaction in our system may be an update, we assume
that the percentage of update transactions in our system will be very small.
Transactions will be assigned priorities based on criticality and deadline. The
priority can change dynamically as the task changes. For example, as a mobile
user drives closer to an interstate exit, the criticality of the location dependent
query increases. Scheduling the requests requires knowledge of the execution
time of the task and the system will provide a means of computing the ex-
ecution time Ei of each task based on the request type. Since the mobile
computing devices of each client will have different capabilities, Ei can also
be based on the platform on which a result will execute, when scheduling for
the query server.

4.3 Approximation for QoS

One possible way to meet deadlines is to provide multiple levels of quality of
service to the clients. The different levels of quality of service can be viewed as
providing an approximate answer or an imprecise answer to a query. The im-
precise computation approach [29,30] has been used in hard real-time schedul-
ing as a means to provide an answer to a real-time task when an exact answer
cannot be provided by the deadline. The strategy is to divide each task into
a mandatory and an optional part. As long as each task is able to execute its
mandatory part by the deadline, no deadline is missed. Any additional proces-
sor time is assigned the optional part. Approximate query processing [31,32] is
a strategy to provide approximate answers to real-time database queries. Ap-
proximate query processing is based on the imprecise computation approach,
which trades off the quality of the result for the time to produce the result.
The approximate answers converge to the exact answer, so if there is enough
time to retrieve and process all of the data, the exact answer is provided.
Otherwise, the best approximation produced is provided as the approximate
answer by the deadline [33–39].

In the delivery system providing approximate answers to queries is considered.
An exact answer E to a query in the delivery system consists of one or more
items, with one or more version of each item that varies in quality, such as
visual quality. Approximate answer A consists of one of more of the items in
the exact answer E and can vary in the number of items, as well as the visual
quality of each item, such that A ⊆ E. The approximate answers converge
to the exact answer if there is enough time to retrieve and process all of the
data. A strategy needs to be developed to measure the quality of an approxi-
mate answer based on the number of data items returned, the processing time
required and the visual quality of the result.

11

The system does not provide a guarantee to meet deadlines, but instead at-
tempts to minimize the number of deadlines missed and maximize the quality
of the answers. It is assumed that requests to the delivery system are aperi-
odic and will not be known beforehand. The static information, such as the
deadlines and performance profile of the task, are used to make scheduling
decisions. However, an adaptive policy [40,41] that considers dynamic infor-
mation, such as system load [28] can be considered. The quality of service
provided not only depends on the load of the system, but can also depend on
the capabilities of the client machines that receive the information. For exam-
ple, a user requesting restaurant information can receive an animation or a
simple HTML page providing knowledge of the food offered at the restaurant,
depending on the capability of the client.

Adaptive scheduling policies that consider dynamic information, such as sys-
tem load and the quality of the answers provided, for real-time transactions
should be developed and studied. Approximate answers are provided as one
strategy for satisfying the deadlines of the transactions. Strategies for mea-
suring the quality of approximate answers returned to the client are also de-
veloped. These policies can be evaluated using simulation studies, which can
determine which strategies to implement in a mobile delivery system.

5 Performance Profiles

In a system where only “dumb data” is being delivered, simple metrics, such
as the size of the data, is sufficient to determine where information should
be processed. This is a well-known technique in distributed databases, where
decisions regarding the processing of a query are based upon data size esti-
mates[42]. In this system, to effectively schedule applications, such a simple
approach will not suffice. In the most basic case, there must be an estimate
made of how long an application will take to execute on the intended mobile
client. The information needed to make this determination includes a machine
independent profile for both the application and the mobile client that can be
used to calculate the amount of time needed to execute the application. For
the application, this information is gathered off-line and stored along with
the application in its profile on the application server. The first approxima-
tion of a machine-independent application profile would be a simple count of
the number of CPU clock cycles needed to run the application to comple-
tion. Many such tools exist for gathering information about Java programs
[43]. Jones has developed an annotation-aware Java Virtual Machine which
does machine-code generation based upon optimization summaries added off-
line[44]. This system could be modified to gather performance information and
calculate performance estimates.

12

The mobile client calculates an estimate of the amount of time required to
execute the application by multiplying the application’s clock cycle count by
the clock rate of the mobile client’s processor. This provides a crude estimate
of the execution time. The execution time estimate matches exactly only if
the mobile client exactly matches the environment where the application was
profiled (i. e. same processor, same clock rate, same resident libraries.)

5.1 Enhanced Performance Model

Although exact estimates of execution time are not needed to do soft real-time
scheduling, the more accurate the estimates, the more applications that can be
scheduled and executed to completion. Therefore, experiments should be done
with a series of improvements to the time estimates. The first factor to exper-
iment with is RISC versus CISC. A reduced instruction set computer (RISC)
typically accomplishes more work per cycle, due to a lower cycles per instruc-
tion rate, than complex instruction set computers (CISC). Moving away from
measures of processor performance, other aspects of an applications resource
requirements should be examined. Mobile computing devices vary greatly in
their graphic display capabilities, ranging from 3 × 15 character cellphones to
monochrome 150 × 200 pixel devices in low-end PDAs to 24-bit color 1600 ×
1240 laptop displays. The decision of whether an application can be run on a
specific device is not as simple as deciding the largest/deepest image used by
the application, however. A device with a less capable display can remediate
by reducing the bit-depth and by scaling. However, this may require addi-
tional processing time, which must be recognized when determining how long
the application takes to execute.

The previous performance measures have only dealt with time to completion.
In a networked environment, the application may make dynamic demands
for information from an application server or some other information source.
If such information requests are periodic, such as streaming audio or video,
then the mobile client’s networking hardware must have the bandwidth to
handle these requests. The mobile client must also account for current network
congestion when determining if an application can be scheduled.

5.2 Performance Profile Consumers

Where is this performance profile information used? It is used by the query
server as a filter to determine which applications should be presented to the
user for choosing. Placing this decision process on the query server reduces the
amount of information transmitted on the wireless network between the mo-
bile client and the attachment point, the probable bottleneck of our system.

13

This information is also used by the mobile client to dynamically schedule
applications. For example, if the network is currently congested, then appli-
cations which do not use the network will be given preference over those that
do.

5.3 Application Tailoring

As mentioned above, applications can be tailored by altering graphics data by
“de-resing.” Another technique is to tailor the program for the specific client.
This can be done by following the typical design technique of separating pre-
sentation from domain models to an even greater extent than is currently
done. Current techniques for dealing with platform independence usually rely
on creating the GUI using some sort of Abstract Factory [45] to create widgets
for the specific environment. The underlying assumption is that any environ-
ment that the program will run on will have roughly the same amount of
screen real-estate and further, that it will have a graphic interface. There is
also the assumption that all platforms will have adequate memory to hold the
code for a rich GUI. This is not an adequate approach for a mobile application
environment.

The application stitcher is the component of the application server responsible
for tailoring applications for their environment. To do this tailoring (stitching),
it uses the performance profile. This information is used to select appropriate
applications and to produce an application tailored for the requesting device.
The selection of applications is done based upon the application’s performance
requirements. These requirements are stored as annotations to the .class

files, in a fashion similar to the “JIT-hints” used by annotation-aware JVMs
[44,46,47]. The next step is for the application server to produce an application
tailored for the requesting device. Program size can be manipulated to affect
a tradeoff between ease of use and resource consumption. Decreasing program
size decreases the amount of time to transfer the application and the amount of
memory used by the device. The stitcher can perform several transformations
to the most elaborate version of the program to reduce its memory size.

In addition to the image resolution reduction technique, another technique—
one that relies on a constrained program structure—is to omit edit checking
and guides from the user-interface component of the application. An example
transformation might be to change a GUI widget from a “select from a list” to
a simple text entry box. Of the possible transformations, such as “de-resing”
images, eliding edit checks, etc, the most difficult is for the stitcher to adjust
to the interface of the device. Superficially, there seems to be little similarity
between voice-mail systems with speech recognition and large display laptops
running a GUI-based application. However, all user-driven programs have an

14

underlying core concept—streams of events and the associated response to
them. The events are generated by user actions such as saying “Baltimore” in
response to the prompt “Destination city?” or by selecting “Baltimore” from
a drop-down box. We have identified two distinct user-interface modes that
exhibit the stream of events model. The first is the query-response model typ-
ically used for telephone systems or speech driven applications. The second is
the graphical user-interface model (GUI). The two are differentiated by the
number of possible events the user can generate at a given instant. A user of
a GUI typically has many choices of events to generate, such as pressing but-
tons, selecting from menus, moving scroll-bars, etc. Command-based speech
applications, as opposed to dictation systems, typically have a limited set of
spoken commands that are available at any point in time. Our system has two
special-purpose programming languages for specifying the user-interface, and
uses value-objects to communicate with the application’s domain model.

5.4 Query-Response Language

The query-response or conversational model accommodates a wide variety of
human-computer interaction modalities. In Figure 3 we see a program for
specifying the user-interface for querying a book database. The language uses
a state machine to model the flow of events and actions. The domain objects
are made available through the import statement. The verbs, such as say, are
translated into calls into a context object. Different context objects provide
services appropriate to the environment—speech, text strings, etc. The stitcher

chooses the appropriate context object based upon the performance profile.

5.5 GUI Language

One approach to fitting user interfaces to small displays is one taken by web
browsers for PDAs—scrolling. This works, but applications tailored for small
displays are much more user-friendly. Moreover, as display sizes shrink, pro-
grams written for “large” screens stop being viewable. Our GUI language
provides a mechanism for specifying that collections of widgets belong to-
gether because of their application semantics similarity. In particular, we use
the ValueModel[48] pattern to cleanly separate the application model from the
GUI. Further, the language specifies a set of widgets that are abstract enough
that they can be translated into a broad variety of concrete GUI toolkits. In
the Java arena, large display devices use the Swing framework, while hand-
helds use the javax.microedition.lcdui, which is much more limited. Our GUI
language, however, is not intended to allow for only a lowest common denom-
inator interface. Instead, it will shed features at application tailoring time to

15

import java.io.FileReader;

import search.Result;

...

BEGIN {

StringSearcher searcher = new StringSearcher();

searcher.load(new FileReader("test.dat"));

}

searchPrompt:

say "Please " inputVerbVocative

" an Author, Book, or Year";

searchValue:

searchValue = textEntry();

doSearch:

if (confirmAction("You " inputVerbPastTense

searchValue "."

"Is this correct?")) {

results = doQuery(searchValue);

continue;

} else

goto SearchPrompt;

searchResultsDisplay:

if (results.size() == 0)

say "No matching books found";

else

resultsLoop(results);

function resultsLoop(Result results) {

say results.size() " books found";

repeat with document in results {

say "Author " (author of document)

say " Book " (book of document)

if (!confirmAction("Continue? ")) end repeat;

}

}

function doQuery(String q) returns Result {

return searcher.find(new Query(q));

}

Fig. 3. Example Query-response program

16

match the target device. The feature shedding is guided by the programmer’s
explicit marking of features which may be omitted.

5.6 Profiling Research Goals

What additions to existing technology are needed to support performance
profiling? The first step is the off-line profiling of applications. Since the most
pervasive mobile code language is Java, existing tools for gathering processor
performance information can be used [49]. This work needs to be augmented
to produce information about images and streaming network usage. One pos-
sible way of obtaining this additional information is to take advantage of the
machine-independent nature of Java and augment existing class libraries to
record additional profile information. These modified class libraries can then
be used in any mobile computing device supporting Java.

The second step is the dynamic use of profile information by the mobile client.
Here, the JVM’s thread scheduler must be modified to accommodate real-time
scheduling and the use of the dynamic information about network congestion
and network resource use.

6 Scheduling Wireless Transmissions

Any object to be delivered to the mobile client (MC) will have to go through
an attachment point (AP). APs are mobile base stations each serving a geo-
graphical region. Typically wireless communication links are high error-rate,
low-bandwidth links and therefore easily saturated. In addition, any trans-
mission on such links is slotted, i.e., time is divided in frames and a frame is
divided into slots. To transmit data, one needs to reserve one or more slots
in one or more frames depending on the size and priority of the data. Fur-
ther, as the load will keep changing, to satisfy the real-time constraints, some
scheduling and other optimization at the network modules (in transport layer
and in DLC layer) without further intervention of the query server and other
database entities helps to adapt to varying loads not associated with applica-
tion delivery.

It is to be noted that the applications at hand are real-time applications.
Hence, in general, it is important to ensure that for hard real-time applications
all dead lines are met and for soft real-time applications the penalty function
for missing deadlines are minimized. In particular, the following optimization
problems need to be addressed.

17

(1) Scheduling hard real-time traffic within a cell. Hard real-time traf-
fic receives higher priority over soft real-time traffic. So far as the net-
work is concerned, a hard real-time application may be modeled as a set
of messages Mi = (Li, Ai, Di, Ti), i = 1, . . . , n, where Li is the length of
the message in bits, Ai is the arrival time (may be a function of Ai−1),
Di is the deadline and Ti is the message direction (AP to MC or MC to
AP). Given a set of such applications, it is necessary to use slot reser-
vation strategies (in the MAC layer) such that the deadlines of all hard
real-time applications are satisfied (if possible) and maximum amount of
bandwidth becomes available for soft real-time applications. Solutions to
the problem is known when the messages within an application are of
equal length, periodic, unidirectional and Ai = Di−1 ∀i [50]. However,
such restricted methods do not solve the more general problem.

(2) Scheduling soft real-time traffic within a cell. The soft real-time
traffic also involves similar scheduling problems as hard real-time traffic.
However, for soft real-time applications a penalty function is required that
is an increasing function of the tardiness of the messages. This penalty
function captures the probability that a user will find the system slow
enough to quit the system. While a linear function of tardiness is both
conceptually and algorithmically attractive, it is not appropriate for this
system. Generally there is a limit beyond which the penalty function
should grow quickly. A linear function does not have this property. An
appropriate penalty functions must be devised and schedules computed
to minimize the aggregate penalty. For soft real-time traffic scheduling in
a slotted environment, please see [51]

(3) Choice between alternative versions. As described earlier, the doc-
uments requested by the users may have multiple versions of varying size
with varying visual appeal and varying processing load. A user may quit
if the visual appeal decreases and/or the processing load increases. It is
reasonable to assume that the size of a document increases with visual
appeal and decreases with the processing load to the MC (otherwise some
of the alternate versions are not meaningful choices). There is a penalty
function attached to the quality of a presentation which is a function of
the visual appeals and processing loads of all messages in that presenta-
tion. Clearly, the network load and hence the tardiness penalty increases
with the size of documents while the quality penalty goes in opposite
direction. This observation presents the interesting problem of choos-
ing appropriate versions dynamically (or even off-line) to minimize the
aggregate tardiness and quality penalty. As the network load may con-
siderably vary unexpectedly in short notice (for example if some packet
in an hard-real time application needs to be retransmitted within a short
time interval), it is a good idea to cache a few different versions in the
AP and allow the transport layer to pick the appropriate version at the
time of transmission. In addition to the choice algorithm, this requires
a non-traditional application program interface. The sliding window type

18

protocol to be used will also have to be changed. The sliding window must
be modified so the unit of transmission will be an application/document
instead of bytes or packets—further, the sender will need feedback about
how much of the application has been lost in transmission. This infor-
mation is necessary to determine whether to retransmit the old version
or try another low-cost/high-cost version. To the best of our knowledge,
this is a novel approach which has not been tried previously.

Admission control is another open area. If the system has some idea
about the offered load by a new request and it finds that the new connec-
tion may lead to higher aggregate penalty, then the new request should
be denied admission.

(4) Consistent priority assignment to objects. It is conceivable that
some users will find some objects more important than other. For exam-
ple, a restaurant advertiser will find the picture of a bowl of steaming soup
more important than the picture of a flower arrangement even though he
will probably like both of them. If the system provides for multicasting,
then the system may decrease some load by multicasting objects (instead
of unicasting to each user) important to many users. However, the ob-
jects should be multicast in the order of their importance or priority. The
transport layer will then transport as many objects as early as possible
(given network load), beginning with the highest priority object and de-
laying (or choosing to drop) the remaining. This again requires a change
in the API as well as in the sliding window protocol. In addition, a pri-
ority assignment algorithm must be devised. This will require a novel
organization of the sliding window buffer. Instead of a linear ordering of
the buffer, we shall need a tree-like ordering to accommodate the priority
ordering of documents. For a survey of multicasting mechanisms as well
as effect of data loss please see [52].

The following example will show that assigning consistent priority is
not a trivial task. Let there be three objects a, b and c. Let three users
arrange them (in the order of decreasing priority) as a, b, c; b, c, a and
c, a, b. Here a should get more priority over b as two users find it more
important, and b should get higher priority over c for the same reason.
But if we do that, a will get higher priority over c which we can not do
as two users find c more important than a.

Allowing the users to assign a priority number is not a good solution as
the range of the priority numbers will always be questionable and a user
may not even know exactly by how much they prefers one object over
other. What we propose here is to algorithmically investigate priority
schemes that violate the fewest priority constraints and/or affects the
least number of users.

(5) Handoff As an MC moves from one AP to another, the new AP will have
to provide necessary services and will be responsible to keep the penalty
low. To facilitate this, mobility models must be developed to warn an AP
about expected changes in future load. This information will help an AP

19

not to over commit itself in terms of bandwidth while not unnecessarily
denying many admissions. It is to be noted that only the DLC layer of an
MC is aware of an imminent handoff. One solution is to modify the MAC
layer protocol to allow it to inform the current AP about an imminent
handoff so that the current AP may inform the prospective new AP
about the possible new MC entering its zone. However, the exact time of
the handoff is a statistically variable entity which may not be accurately
predicted. The prospective new AP needs to reserve resources using some
prediction algorithm such that bandwidth is not unnecessarily wasted
or too many connections are not denied admission due to the expected
handoff. Appropriate MAC protocols and prediction algorithms need to
be investigated.

7 Conclusions

We have outlined an architecture for achieving tighter integration of appli-
cation and information distribution that is spatially sensitive. The first step
was defining a division of labor between system components that more closely
follows the way that infrastructure, information, and application services are
currently deployed. Next, we showed how simple queries could result in de-
livery of applications that are tailored for the location and capabilities of the
mobile client. We then defined the details of how the existing underlying com-
munications, application serving, and database infrastructure must be modi-
fied to accommodate soft real-time constraints. This architecture provides a
guideline for the next step in mobile, ubiquitous computing—the provisioning
of applications and information that is highly adapted to its environment.

References

[1] T. Lindholm, F. Yellin, The Java Virtual Machine Specification, The Java
Series, Addison-Wesley, 1997.

[2] Hewlett Packard, Inc., coffee and
a hotspot, http://www.cooltown.com/mpulse/0902-starbucks.asp (September
2002).

[3] Handspring, Inc., Treo 180 overview,
http://www.handspring.com/products/treo/index.jhtml.

[4] J. Cai, D. J. Goodman, General packet radio service in GSM, IEEE
Communications Magazine 35 (10) (1997) 122–131.

20

[5] Sun Microsystems, Inc., JNDI: JavaTMnaming and directory interfaceTM,
ftp://ftp.javasoft.com/docs/j2se1.3/jndiexecsumm.pdf.

[6] Sun Microsystems, Inc., JiniTMtechnology architectural
overview, http://wwws.sun.com/software/jini/whitepapers/architecture.html
(January 1999).

[7] L. Gong, Project JXTA: A technology overview,
http://www.jxta.org/project/www/docs/jxtaview 01nov02.pdf (November
2002).

[8] E. Guttman, Autoconfiguration for ip
networking: Enabling local communication, IEEE Internet Ccomputing (2001)
81–86Http://www.zeroconf.org/w3onwire-zeroconf.pdf.

[9] T. Imielinski, B. R. Badrinath, Querying in highly mobile distributed
environments, Proc. 18th Int’l Conf Very Large Data Bases .

[10] D. Barbara, Mobile computing and databases - a survey, IEEE Transactions on
Knowledge and Data Engineering 11 (1) (1999) 108–117.

[11] S. Shekhar, S. Chawla, S. Ravada, A. Fetterer, X. Liu, C. Lu, Spatial databases
- accomplishments and research needs, IEEE Transactions on Knowledge and
Data Engineering 11 (1) (1999) 45–55.

[12] R. Ramakrishnan, J. Gehrke, Database Management Systems, McGraw-Hill,
2000.

[13] Y. Theodoridis, E. Stefanakis, T. Sellis, Efficient cost models for spatial queries
using R-trees, IEEE Transactions on Knowledge and Data Engineering 12 (1)
(2000) 19–32.

[14] G. Proietti, C. Faloutsos, Analysis of range queries and self-spatial join queries
on real region datasets stored using a R-tree, IEEE Transactions on Knowledge
and Data Engineering 12 (5) (2000) 751–762.

[15] O. Corporation, Oracle8i spatial user’s guide and reference,
http://technet.oracle.com/doc/inter.815/a67295/toc.htm.

[16] S. Berchtold, D. A. Keim, H. P. Kriegel, T. Seidl, Indexing the solution space:
A new technique for nearest neighbor search in high-dimensional space, IEEE
Transactions on Knowledge and Data Engineering 12 (1) (2000) 45–57.

[17] A. Corral, Y. Manolopoulos, Y. Theodoridis, M. Vassilakopoulos, Closest pair
queries in spatial databases, ACM SIGMOD on Management of Data (2000)
189–200.

[18] B. G. Baumgart, Geometric modeling for computer vision, Ph.D. thesis,
Stanford University (1974).

[19] M. Mantyla, A. Sulonen, Gwb: A solid modeler with euler operators, IEEE
Computer Graphics and Applications 2 (7) (1982) 17–31.

21

[20] H. Chiyokura, F. Kimura, A method of representing the solid design process,
IEEE Computer Graphics and Applications 5 (4) (1985) 32–41.

[21] J. Zhang, Torus: A basic-operator based solid modeling system, Master’s thesis,
Zhejiang University (1987).

[22] F. P. Preparata, M. I. Shamos, Computational Geometry: An Introduction,
Spring-Verlag, 1985.

[23] S. Abbott, H. Garcia-Molina, Scheduling real-time transactions: A performance
evaluation, ACM Transactions on Database Systems 17 (3) (1992) 513–550.

[24] A. Buchmann, D. R. McCarthy, M. Hsu, Time-critical database scheduline:
A framework for integrating real-time scheduling and concurrency control,
Proceedings 5th International Conference on Data Engineering (1989) 470–480.

[25] J. R. Haritsa, M. Livny, M. J. Carey, Earliest deadline scheduling for real-time
database systems, Proceedings of Real-Time Systems Symposium (1991) 232–
242.

[26] L. Sha, Concurrency control for distributed real-time databases, SIGMOD
Record 17 (1) (1988) 82–98.

[27] V. F. Wolfe, L. C. DePippo, Real-time database systems, in: P. J. Fortier (Ed.),
Database Systems Handbook, McGraw Hill Publishers, 1997.

[28] S. Chakravarthy, D. Hong, T. Johnson, Incorporating load factor into the
scheduling of soft real-time transactions, Tech. rep., University of Florida
(1994).

[29] J. Y. Chung, J. W. S. Liu, K. J. Lin, Scheduling periodic jobs that allow
imprecise results, IEEE Transactions on Computers 39 (9) (1990) 1156–1174.

[30] K. J. Lin, S. Natarajan, J. W. S. Liu, Imprecise results: Utilizing computations
in real-time systems, Proceedings IEEE Real-Time Systems Symposium (1987)
210–217.

[31] S. V. Vrbsky, A data model for approximate query processing of real-time
databases, Data and Knowledge Engineering 21 (1) (1996) 79–102.

[32] S. V. Vrbsky, J. W. S. Liu, Approximate: A query processor that produces
monotonically improving approximate answers, IEEE Trans. on Knowledge and
Data Engineering 5 (6) (1993) 1056–1068.

[33] N. Jukic, S. V. Vrbsky, Temporal aggregates for time-constrained queries,
Proceedings of IASTED Intelligent Information Management Systems (1996)
21–25.

[34] N. Jukic, S. V. Vrbsky, Approximate aggregates, Information Systems 21 (7)
(1996) 595–614.

[35] S. V. Vrbsky, S. Tomic, N. Jukic, Concurrency control for approximate query
processing of real-time databases, in: A. Bestavros, V. Fay-Wolfe (Eds.),
Real-Time Database and Information Systems: Research Advances, Kluwer
Academic Publishers, 1997, pp. 227–246.

22

[36] S. V. Vrbsky, N. Jukic, Approximate query processing of temporal data in
real-time databases, Proceedings of ISMM Intelligent Information Management
Systems (1994) 21–25.

[37] S. V. Vrbsky, N. Jukic, Analysis of approximate query processing overhead,
Proceedings of ISMM Intelligent Information Management Systems (1995) 21–
25.

[38] S. V. Vrbsky, S. Tomic, Satisfying timing constraints of real-time databases,
Journal of Systems and Software 41 (1) (1998) 63–73.

[39] S. V. Vrbsky, S. Tomic, Satisfying temporal consistency constraints of real-time
databases, Journal of Systems and Software 45 (1) (1999) 45–60.

[40] S. M. Tseng, Y. Chin, W.-P. Yang, An adaptive value-based scheduling policy
for multiprocessor real-time database systems, Proceeding 8th International
Workshop on Database and Expert Systems (1997) 254–259.

[41] H. R. Chen, Y. Chin, S. M. Tseng, Scheduling value-based transactions in
distributed real-time database systems, Proceeding 15th International Parallel
and Distributed Processing Symposium (2001) 978–984.

[42] R. Elmasri, S. Navathe, Fundamental of Database Systems, 3rd Edition,
Addison-Wesley, 2000.

[43] T. Newhall, B. P. Miller, Performance measurement of dynamically compiled
Java executions, Proceedings of the ACM Java Grande Conference (1999) 42–
50.

[44] J. Jones, S. Kamin, Annotating Java class files with virtual registers for
performance, Concurrency: Practice and Experience 12 (6) (2000) 389–406.
URL
http://www3.interscience.wiley.com/cgi-bin/abstract/72515727/START

[45] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns, Addison-Wesley
Publishing Company, Inc., Reading, Massachusetts, 1994, iSBN 0-201-63361-2.

[46] A. Azevedo, A. Nicolau, J. Hummel, Java annotation-aware just-in-time (AJIT)
compilation system, in: ACM 1999 Java Grande Conference, 1999.

[47] C. Krintz, B. Calder, Using annotations to reduce dynamic optimization
time, in: Proceedings of the ACM SIGPLAN ’01 Conference on Programming
Language Design and Implmenetation (PLDI), ACM Press, 2001, pp. 156–167.

[48] B. Woolf, Understanding and using the valuemodel framework in visualworks
smalltalk, in: J. O. Coplien, D. C. Schmidt (Eds.), Pattern Languages of
Program Design, Addison-Wesley, 1995, pp. 466–494.

[49] T. Newhall, B. P. Miller, Performance measurement of dynamically compiled
Java executions, Concurrency: Practice and Experience 12 (6).

[50] C.-C. Han, K. G. Shin, Message transmission with timing constraints in ring
networks, Proc. of 17th IEEE Real-Time Systems Symposium (1996) 165–174.

23

[51] R. Kannan, S. Ray, R. Bartos, An improved optical switch for group
communication, International Conference on Advanced Computing and
Communications (ADCOM) (2000) 205–211.

[52] R. Kannan, S. Ray, A modular scalable multicast atm packet switch with low
delay and hardware complexity, IEEE/ACM Transactions on Networking 8 (3)
(2000) 407–418.

24

