
Adaptive Methods for Activity Monitoring of Streaming Data �

Vasundhara Puttagunta and Konstantinos Kalpakis
Computer Science & Electrical Engineering Department

University of Maryland Baltimore County
1000 Hilltop Circle, Baltimore, MD 21250�

vputta1,kalpakis � @csee.umbc.edu

Abstract
Activity monitoring deals with monitoring data (usually

streaming data) for interesting events. It has several appli-
cations such as building an alarm or an alert system that
triggers when outliers or change points are detected.

We discuss desiderata for such a system. Then, assuming
that the data can be modeled by linear models, we describe
an adaptive incremental method for detecting outliers and
change points in data streams. Our algorithm uses (a) in-
tuitive criteria for labeling a data point as an outlier or as
a change point, and (b) an adaptive incremental model es-
timation method. In this paper, we use a forgetting factor–
based Recursive Least Squares algorithm for adaptive in-
cremental model estimation. We also present experiment
results using both simulated and real data, which show that
our algorithms for change and outlier detection could ac-
curately detect these events.

Keywords: streaming data, recursive least squares regres-
sion, recursive computations, change detection, outlier de-
tection.

1 Introduction

Activity monitoring is a term that is loosely coupled
with monitoring data for interesting (including alarming or
strange) events or episodes. Depending on the application,
this data could be of different types coming from a vari-
ety of sources – for example, financial data sources (credit
card transactions, currency exchange rates, market trends),
medical and epidemiological data sources (electrocardio-
grams, disease surveillances), environmental and scientific
data sources (pollution and weather sensors, seismic and
volcanic activity sensors, solar activity sensors), industry
(temperature and pressure monitors, radio-active level mon-
itors, sensors in aircrafts), computer systems and web(click
streams, memory and resource usages, network load), tele-
phone calls.

1Supported in part by NASA under Contract NAS5–32337 and Cooperative
Agreement NCC5–315. Please send all correspondence to Dr. Kalpakis.

To give a flavor, we describe different kinds of activity
monitoring applications.

Outlier detection is a challenging problem in datamining.
A constant concern for a system administrator is intrusion
detection. One approach would be by monitoring the re-
source usage – for example memory usage, or cpu usage.
Pena et al [11] consider the problem of detecting abnormal
behavior in aerospace data. Such problems can be formu-
lated as outlier–detection problems. Intuitively an outlier is
a data point that differs significantly from what is expected
or predicted.

The dynamics of the data sources could be changing
over time. These changes could come about gradually or
abruptly. For example, in the case of machinery, the wear
and tear gradually affects the performance. The changes
could also be drastic, i.e. there could be significant changes
taking place within a short duration of time. Such changes
are not uncommon - external events could trigger a change
in the behavior. For e.g. during the World War II, the popu-
lation estimates [2] of the different states in the US changed
dramatically. We call points at which such changes take
place change points or events. Detecting change points has
a lot of applications. For example, Guralnik and Srivas-
tava [5] consider the problem of detecting events in high-
way traffic (for e.g. when there is a change from light to
heavy to congested traffic). Raghavan et al [12] use individ-
ual customer profiles consisting of features such as number
of sessions, length of sessions, timing of the sessions, etc
to detect which customers are more likely to defect. An-
other very similar problem in activity monitoring is that of
episode detection or time–series segmentation. The prob-
lem is to segment the time–series such that each segment
represents a particular phase in behavior of the process.

As systems become more complex and as the amount of
data that needs to be monitored increases, it becomes in-
creasingly important to automate activity monitoring. Au-
tomated activity monitoring systems should have the fol-
lowing characteristics.

1. Time and space complexity should be low. Data is
usually in the form of streams. In the case of sen-



sors, there could be severe limitations on the resources
(CPU, power and memory). Even otherwise, there
could be large amounts of data that could be streaming
at fast rates (eg surveillance image data). Therefore,
these computations should have a very small memory
(preferably constant)

2. Accuracy and timeliness. As Fawcett and Provost [3]
state, “the goal of activity monitoring is to issue alarms
accurately and in a timely fashion”. It may be critical
to detect interesting events and issue alarms as soon as
the interesting events occur. For e.g., one problem that
electricity companies face has to do with solar bursts.
Solar bursts occur for short durations of time during
which switching off the power grids is critical. In addi-
tion, the alarms raised should be accurate. By accuracy
we mean two things: (a) the number of false negatives
as well as false positives is low, and (b) the localiza-
tion of the outlier or change. In the above example,
switching off the power grid is an expensive operation.
Therefore, it is not a good idea to have a monitoring
system that gives too many false alarms. The above
two observations imply that activity monitoring should
be done online in a near real–time manner.

3. Adaptive. In many cases, the nature of the data–
source keeps changing over time. For example, the
performance of a machine (in a factory) may vary with
time due to the wear and tear or set up of the ma-
chine. Therefore, it is required that the computations
are adaptive to these changes over time.

There is vast statistics literature in model estimation
(see [9] and references therein) as well as outlier detec-
tion, change detection, and activity monitoring in several
different domains (statistics, machine learning, security, au-
tomation, user–profiling). Most approaches for event and
outlier detection in statistics (e.g. [13]) and data–mining
do not consider streaming data. They deal with the case,
where the entire data is presented in advance. For exam-
ple, Knorr and Ng [8] attempt to find distance–based out-
liers in large datasets. Guthery [6] considers the problem
of unconstrained piecewise regression which could be used
for episode detection or time–series segmentation and gives
a dynamic programming solution. Guralnik and Shrivas-
tava [5] consider the problem of change detection, and they
give a batch algorithm using a maximum likelihood crite-
rion for segmentation, and extend it to the incremental case.
Keogh et al [7] give an online algorithm for time–series seg-
mentation. Yamanishi et al [14] give an algorithm for out-
lier detection using online unsupervised learning of a prob-
abilistic model using a finite mixture model.

The approach we take is similar to that of Yi et al [15].
The data are assumed to be coming from a process that can
be modeled using a linear model. Linear models of data
streams can be estimated using least squares regression. We

discuss different ways of using least recursive squares re-
gression to perform change and outlier detection in an on-
line and adaptive manner, and report experimental results of
our approach.

The rest of this paper is organized as follows. Prelim-
inaries on least squares are given in section 2. In section
3 we discuss our approach to detect outliers and change
points given an online (and preferable adaptive) model esti-
mation algorithm. We describe algorithms for adaptive on-
line model estimation using least squares regression, and
using a moving window or a forgetting factor approach. In
section 4 we present experimental results. Conclusions are
given in section 5.

2 Preliminaries
Linear models and model estimation using least squares

regression (LSR), as well as recursive methods for model
identification/estimation, have been studied extensively [9,
10]. Our approach is to use extensions of LSR to model the
timeseries in an incremental and adaptive way while using
little memory and time. In this section, we provide few es-
sential preliminaries of LSR. We first describe the offline
computation of LSR, and then we describe the forward re-
cursion that enables one to estimate the regression coeffi-
cients in an incremental way.

Suppose the (scalar 2) output ������� at time � of a time-
series is a linear combination of � input measurements
at time � (or earlier, in case of auto–regression), � �����
	� �� ����� ��� ����������� ��� ��������� . Therefore we have

�������	�������� � � ���������������! (1)

where ������� is the vector of model parameters and ������� is a
random–variable (white noise). Given a sequence of ����"#�
and � ��"#� for "$	&%' )(* ����+�� �� (the offline case where all the
data points are available before hand), the LSR method esti-
mates a constant �,����� , given � ����� , so that the mean squared
error of the estimated output,

-�. ���'�	 %
�

.
/
021 �

� ���43*��56� � � �43*��� � (2)

is minimized. In the offline version of LSR, the estimated
model parameters are7�������8	:9; �����2< ��= �����2 (3)

where >?$@BA#CEDGF�HIKJ �ML @�N'C L�O @�N'C is the variance–covariance
matrix of the � inputs, and P @BA#CQDRF HIKJ � L @�N'C4S*@�NTC is the
cross-covariance between the inputs and output.

The LSR estimate
7������� can also be obtained recur-

sively [9]7�������8	 7�U���25V%W�)� %
� ; < � ����� � ����� � �������25

7� � ���25V%W� � ������� (4)

; �����	 ; ���25V%W�)� %
� � � ����� � � �����25 ; ���25V%W���U	

%
� 9; �����!� (5)

2Extensions to vector output XZY\[�] can be obtained easily.

2



Computing the inverse
; < � ����� , which is expensive and

sensitive to numerical errors, can be avoided by using the
matrix–inversion lemma [9]: given matrices

�
,
=

, � , and�
of compatible dimensions, so that the product

= � � and
the sum

� � = � � exist,� � � = � � �4< � 	 � < � 5 � < �2= � � � < ��= � � < � �4< � � � < �  (6)

provided all the required matrix inverses exist. Using the
matrix inversion lemma in equation 5, and letting � ����� 	9; < � ����� 	 � . ; < � ����� , one obtains the recursive least squares
(RLS) algorithm [9]7������� 	 7����� 5 %W� ���$����� � ��������5 7� � ����5 % � � ����� � (7)

�$�����	 � ����5 % � � �����% � � � ����� � ����5 %W� � ����� (8)

� �����	 � ��� 5 % ��5 � ��� 5 % � � ����� � � ����� � ����5 %W�
% � � � ����� � ��� 5 %W� � ����� (9)

� ���'� can be initialized to a diagonal matrix with large pos-
itive diagonal elements, or to the matrix that corresponds to
the first few input/output elements of the timeseries. Note
that if � �����	�
� , then the RLS algorithm stops learn-
ing/adapting; typically, when this happens, � ����� is reset ap-
propriately.

3 Outlier and Change Point Detection

In this section, we describe our method for detecting out-
liers and change points using estimated linear models of the
timeseries, in an online adaptive manner.

First, we describe the algorithm that we use to detect out-
liers and change points over a stream when an incremen-
tal model estimation algorithm is given. Then, we describe
different methods of estimating model parameters starting
with the simple RLS algorithm described in the previous
section. We discuss certain drawbacks of the RLS algo-
rithm with respect to the adaptivity of the estimated models
to changes in the data. We then describe ways of rectifying
this.

Intuitively, an outlier is a point that is not consistent with
points in its neighborhood. We say a point � is consistent
with a set of points � , if the probability that � is generated
by the model that generated � is high. If it is not consis-
tent, then � is an outlier. In the case of timeseries (streams),
the neighborhood of a point is its temporal neighborhood.
A similar definition of an outlier has been used often in
data mining literature (for e.g. see [8, 13]). Outliers have
also been defined in other ways as well (eg. [1]). A change
point is a point (in time) where the estimated models before
and after it differ significantly. Intuitively, the occurrence
of many outliers within a short span of time is suggestive of
a change in the model of a timeseries. The objective is to
detect outliers and change points accurately and timely.

High–level pseudocode for outlier and change detection.
Let ������� be the estimated parameters of a linear model for
the timeseries at hand at time � .

1. When � ����� 	 � �������! � ����� � arrives at time � , we update
the model �����5�% � to get �,����� using one of the incre-
mental update algorithms described later.

2. Using ������� we decide whether or not � ����� is a probable
outlier (see below). In this case, the model �,����� is reset
to ����� 5�%W� , eg. � ����� is ignored with respect to model
estimation.

3. If a certain number of recent points has been declared
as outliers, we declare that a change has occurred at
the first one of them (see below). Model estimation is
started afresh from that point onwards.

Deciding a potential outlier.
We now describe the details of when a point is declared an
“outlier” and when a point is declared as a “change point”.
Table 1 gives the definitions and description of the parame-
ters that are used in our method.

1. Before a point is detected as an outlier/change, we re-
quire that at least minDetectionWindow points have ar-
rived.

2. Upon the arrival of point � ����� 	 � �������! � ����� � , we com-
pute the estimated error, � ����� 	� ������� 5 ������� � � ������� for
� ����� using the updated model ������� .

3. If there was a change point after�25 minChangeDistance, then � ����� is not an out-
lier. If � ����� is � minErrorThreshold then � ����� is not an
outlier. If � ����� is � maxErrorThreshold then � ����� is an
outlier, and go to step 5. Otherwise, we continue with
the next step.

4. Compute the errorThreshold and the errorOvershoots
at time � . If errorOvershoots � maxErrorOvershoots,
then � ����� is declared as an outlier.

5. If � ����� is marked as an outlier, ������� is reset to ����� 5�%W� .
An point � ����� that is declared an outlier could indeed be a
change point. A change point is detected as follows.

1. If there was a change point detected after�25 minChangeDistance, then there is no change.

2. If one of the following conditions below is true, then
we declare a change: (a) the number of marked out-
liers in the interval [ � -changeOutlierWindow, � ] is �
changeOutlierCount, or (b) the coefficientGain at � is
� gainThreshold.

3



3. If a change is declared, then (a) the point � � at time� -changeResetWindow is marked as a change point,
(b) all points after it are unmarked (they are not out-
liers anymore), and (c) the model estimation is started
afresh from � � .

Table 1. Parameters for deciding outliers/changes. Pa-
rameters with

�
are user–provided.

Parameter Definition
minDetectionWindow

�
at least minDetectionWindow points must arrive in
the stream before a point is declared as an out-
lier/change point.

minErrorThreshold
�

the minimum error necessary to trigger outlier test-
ing.

maxErrorThreshold
�

the minimum error threshold above which a point is
declared as outlier right away.

minChangeDistance
�

the minimum distance between consecutive change
points. This parameter controls the granularity of
the changes with respect to time.

windowSize
�

the window size for outlier detection. It controls the
number of recent points used in deciding whether a
newly arrived point is an outlier.

errorThreshold is the median of the estimated errors of the points
within the interval [

.
-windowSize,

.
] that have not

been marked as outliers, and it depends on
.
.

outlierSensitivity
�

is an outlier sensitivity factor in comparing the er-
ror estimate for a point with the errorThreshold. It
controls the rate of false positives/negatives.

overshootSensitivity
�

is a sensitivity factor for claiming an error overshoot
with respect to the errorThreshold.

errorOvershoots is the number of points within the interval [
.
-

windowSize,
.
] that have estimated error larger than

overshootSensitivity � errorThreshold.
maxErrorOvershoots

�
the maximum number of error overshoots allowed
for an outlier (if there too many outliers in the win-
dowSize, then testing for a change point is done).

changeOutlierWindow
�

is the window size considered in testing for changes.
changeOutlierCount

�
is the minimum number of outliers in the among
the last changeOutlierWindow points in required for
declaring a change point.

coefficientGain is the maximum percentage change of the param-
eters of

��� .��
with respect to the parameters of.
	���.
 � . < � � .

gainThreshold
�

a threshold for the coefficentGain that forces change
detection.

changeResetWindow
�

the lag time in detecting a change. This controls the
localization of the change point.

3.1 The Naive Approach

In this approach the RLS algorithm is used to compute
the model parameters over all the data seen so far (unre-
stricted window).

Initially (for the first few points) this approach may be
successful in detecting outliers/change points. As more
points come in, RLS estimates the model parameters con-
sidering all the points seen so far, and thus it gives equal
weight to all the points in the unrestricted window. As a
result, the changes in the dynamics of the system may be
hidden by the dominance of the older points. Figure 3.1 il-
lustrates this phenomenon. As a result RLS by itself is not
adequate. The problem is due to the fact that RLS tries to

remember all the data points. Instead, if we can make the
system forget older points, we should be able to detect out-
liers/change points better.

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

3

4

5
Saw tooth Data   (noise 0.1 variance)

→ x

→
 y

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Expected slopes of the line segments in the sawtooth

→ x

→
 e

xp
e
ct

e
d
 s

lo
p
e

(a) (b)

0 10 20 30 40 50 60 70 80 90 100

0

0.2

0.4
Slope using least square regression in an incremental way (RLS)

→ x

→
 s

lo
pe

0 10 20 30 40 50 60 70 80 90 100
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Slope using least square regression over a moving window of size 5

→ x

→
 s

lo
p
e

(c) (d)

Figure 1. Effect of older points in RLS–based
outlier/change point detection. (a) saw–tooth
data stream. (b) slopes of the line segments
in the saw–tooth. (c) slope estimate using
RLS. (d) slope estimate using a moving win-
dow of size � .

3.2 Moving Window Approach

One approach to forget older points is to have a moving
window over the timeseries/ data stream and estimate the
model over this window. At the same time, we would like
to maintain the efficiency of the RLS algorithm.

3.2.1 Using Forward–Backward RLS

One method to achieve this would be to derive a backward
recursion and alternately use the forward and backward re-
cursions as follows. Suppose the current window spans� � �  ��+���  ��� � . When a new data point comes in at ����� � , we
use the forward recursion (equations 7–9) to derive a model
for the points in

� � �  ��+���� ���  ����� � � . Then, we use the back-
ward recursion to remove the effects of the point at � � , and
thus get a model for the points in

� � �  ��+���  � �  � ��� � � .
In what follows, we derive the backward recursion for

RLS. Suppose we have
7������� and � ����� over certain data � ,

where

� ����� 	 � /
0���� � �43*� � � � 3*�� < � (10)

4



7������� 	 � ��� � /0���� � � � 3*�#���43*��� (11)

We want to find
7� � � � and � � � � that correspond to the same

data with a given point � removed, i.e. � 5������ . By defini-
tion,

� < �� � � 	 � < ������ 5 � ��� � � � ��� � (12)

Premultiplying the above equation with � � � � and postmul-
tiplying with � ����� we get

� ����� 	 � � � � 5 � � � � � ��� � � � ���W� � ����� (13)

	 � ����� � ��� � � � ��� � � ������ %E5 � � ��� � � ��� � � ��� ��� 	 � � � � � ��� � � � ��� � � ��� �T (14)

which leads to

7� � � � 	 7� ��� � 5 � � � � � ������� 5 7� ������ � ��� ���� (15)

� � � � 	 � ����� � ��� �� %E5 � � ��� � � ����� � ��� ���  (16)

� � � � 	 � ����� � � ����� � ��� � � � ��� � � ��� �� %E5 � � ��� � � ����� � ��� ��� � (17)

Equations 15–17 form the Backward RLS (BRLS) algo-
rithm. However, BRLS has a serious drawback that has to
do with numerical instability.

3.2.2 Using GEMM

Ganti et al [4] describe the Generic Model Maintenance Al-
gorithm (GEMM) that takes any incremental model main-
tenance algorithm and transforms it into an algorithm that
allows restrictions on the data span dimension.

The GEMM algorithm uses the incremental model main-
tenance algorithm (for the unrestricted window) to perform
computations over moving window. It achieves this by
maintaining a set of models as follows. Say the current win-
dow spans over time [ � � ����� � � ]. This window is going to
overlap with the next 
 5�% time units. The GEMM algo-
rithm maintains 
 models at all times. One for the current
window, and the remaining 
 5 % for the future windows.
These are incrementally maintained as time progresses.

We can employ GEMM together with the RLS algorithm
to compute the parameters of a linear model of streaming
data over a moving window. However, the disadvantage
of this method is that it needs to maintain several models,
which means that it requires more space.

3.3 Forgetting Factor Approach

In the case of a moving window, the model remembers
(reflects) only data items within the current window span.
The system either remembers a data point or has forgotten
it (0/1). Instead, if the system can give different importance
to the data points depending on their age or their reliabil-
ity/importance, such a model could be a better representa-
tion of the data stream. The idea is to have a forgetting
factor for the data points.

Equations 19– 21 describe an online algorithm for com-
puting the parameters of a linear model for a timeseries
using a forgetting factor � ����� and weights � . for the data
points.

Equation 18 illustrates the role played by � . . � ����� is the
forgetting factor.

9; �����	 � ����� 9; ����5 %W� � � . � ����� � � �����2 (18)

7�������8	 7�U��� 5 % ��� � ����� � ������� 5 � � ����� 7�U����5 % ���� (19)

�$�����	 � ����5 %W� � ������ � ������ � . �M� � � ����� � ����5 % � � �����
 (20)

� �����	
%

� ������� �
. � ����5 % � 5 � ����� � � ����� � ����5 % ��� � (21)

An example forgetting factor would be the exponential de-
cay � �����8	 ��� . Note that in this case, the half–life of a data
point is 5V%����� � � .

4 Experimental Results

We report preliminary results of experiments with simu-
lated as well as real timeseries, using the forgetting factor
approach with � �����8	 ��� � � and � . 	 % , for all � .

For all these experiments, we use the same set of values
for the parameters of our outlier/change point detection tests
, which are given in Table 2. Note that the parameters of our
detection algorithm are inter–related and the most critical
ones are: the windowSize, the outlierSensitivity, and the
forgetting factor.

The results of the experiments are shown in Figure 4. 3

Figures 4(a)–(d) are results from data that are synthet-
ically generated. All the outliers and change points have
been correctly identified (as can be seen visually). Fig-
ures 4(e) and (f) are experimental results over the real (traf-
fic) datasets used in [5]. Evaluating the accuracy of an out-
lier/change detection algorithm in the case of synthetic data
is straightforward, since outliers/change points are known.
In the case of real data it is not as straightforward. We use
the approach used by [5], i.e. to compare the results with
visual change point detection.

3Due to space limitations, we few selected results are presented here.

5



The results indicate that in the synthetic datasets, the al-
gorithm detected all the outliers and change points accu-
rately (A change point within the � "�� � ��� ��� � � " ��� � �	� �
of the actual change point is considered accurate). In the
case of the real datasets, they are comparable to the results
produced in [5].

Table 2. Parameters used for the experiments
windowSize = 

minDetectionWindow = � � windowSize
minErrorThreshold = ��� ���!�
maxErrorThreshold = 
overshootSensitivity = ��� 
outlierSensitivity = � � overshootSensitivity
maxErrorOvershoots = windowSize/1.2
minChangeDistance = windowSize
changeOutlierWindow = 2 windowSize / 3
changeOutlierCount = windowSize/3-1
changeResetWindow = windowSize/3
gainThreshold = 1/3
forgetting factor � � .�� = ��� � 

5 Conclusion
In this paper we consider the problem of activity moni-

toring over streaming data. More specifically we consider
the problem of detecting outliers and change points. It has
several applications such as building alarms or alert systems
when outliers or change points are detected. We discuss
desiderata of such a system. Assuming that the data to be
modeled by a linear model, we describe an adaptive incre-
mental method for detecting outliers and change points in
data streams. Our algorithm uses (a) intuitive criteria for la-
beling a data point as an outlier or as a change point, and (b)
an adaptive incremental model estimation method. In this
paper, we use a forgetting factor–based RLS algorithm for
adaptive incremental model estimation (GEMM or BRLS
could be some other alternatives). We present few exper-
iment results using both simulated and real data, which
show that our algorithms for change and outlier detection
could accurately detect these events. Future work includes
methods for optimally choosing the parameters of our algo-
rithms, for accurate and timely detection of outliers/change
points (in the probabilistic sense), and further experimental
analysis with real datasets.

References

[1] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander.
OPTICS-OF: Identifying local outliers. In Principles of
Data Mining and Knowledge Discovery, pages 262–270,
1999.

[2] U. C. Bureau. www.census.gov/population/www/estimates/st stts.html.
[3] T. Fawcett and F. J. Provost. Activity monitoring: Noticing

interesting changes in behavior. In Knowledge Discovery
and Data Mining, pages 53–62, 1999.

[4] V. Ganti, J. Gehrke, and R. Ramakrishnan. DEMON: Min-
ing and monitoring evolving data. In ICDE, pages 439–448,
2000.

[5] V. Guralnik and J. Srivastava. Event detection from time se-
ries data. In Knowledge Discovery and Data Mining, pages
33–42, 1999.

[6] S. B. Guthery. Partition regression. Journal of American
Statistical Association, 69:945–947, 1994.

[7] E. Keogh, S. Chu, D. Hart, and M. Pazzani. An online al-
gorithm for segmenting time series. In IEEE International
Conference on Data Mining, ICDM, pages 289–296, 2001.

[8] E. M. Knorr and R. T. Ng. Algorithms for mining distance-
based outliers in large datasets. In Proc. 24th Int. Conf. Very
Large Data Bases, VLDB, pages 392–403, 1998.

[9] L. Ljung. System Identification: Theory for the User. Pren-
tice Hall, Upper Saddle River, NJ, 1999.

[10] L. Ljung and T. Soderstrom. Theory and Practice of Recur-
sive Identification. M.I.T. Press, Cambridge, MA, 1983.

[11] J. M. Pea, F. Famili, and S. Ltourneau. Data mining to detect
abnormal behavior in aerospace data. In KDD, pages 390–
397, 2000.

[12] N. Raghavan, R. M. Bell, and M. Schonlau. Defection de-
tection. In KDD, pages 506–515, 2000.

[13] P. J. Rousseeuw and A. M. Leroy. Robust regression and
outlier detection. John Wiley & Sons, Inc., 1987.

[14] K. Yamanishi, J. ichi Takeuchi, G. J. Williams, and P. Milne.
On-line unsupervised outlier detection using finite mixtures
with discounting learning algorithms. In Knowledge Discov-
ery and Data Mining, pages 320–324, 2000.

[15] B.-K. Yi, N. Sidiropoulos, T. Johnson, H. V. Jagadish,
C. Faloutsos, and A. Biliris. Online data mining for co-
evolving time sequences. In ICDE, pages 13–22, 2000.

6



0 20 40 60 80 100 120 140 160 180 200

0

500

1000

Time

In
de

pe
nd

en
t P

ar
am

et
er

 V
al

ue Outlier and Change Detection Analysis           

Change point        
Y                   

0 20 40 60 80 100 120 140 160 180 200
−2

0

2

4

6

8

Time

C
oe

ffi
ci

en
t V

al
ue

Change point        
Coefficient for X(1)
Coefficient for X(2)

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

Time

E
rr

or

Change point        
Residual   Error    
Prediction Error    

0 500 1000 1500 2000 2500 3000

1.05

1.1

1.15

Time

In
de

pe
nd

en
t P

ar
am

et
er

 V
al

ue Outlier and Change Detection Analysis           

Change point        
Y                   

0 500 1000 1500 2000 2500 3000

0.95

1

1.05

1.1

Time

C
oe

ffi
ci

en
t V

al
ue

Change point        
Coefficient for X(1)

0 500 1000 1500 2000 2500 3000
0

0.5

1

Time

E
rr

or

Change point        
Residual   Error    
Prediction Error    

(a) (b)

0 50 100 150 200 250 300 350 400

−50

0

50

100

150

Time

In
de

pe
nd

en
t P

ar
am

et
er

 V
al

ue Outlier and Change Detection Analysis           

Change point        
Outlier point       
Y                   

0 50 100 150 200 250 300 350 400

−5

0

5

Time

C
oe

ffi
ci

en
t V

al
ue

Change point        
Outlier point       
Coefficient for X(1)
Coefficient for X(2)

0 50 100 150 200 250 300 350 400
0

50

100

150

Time

E
rr

or

Change point        
Outlier point       
Residual   Error    
Prediction Error    

0 50 100 150 200 250 300 350 400 450 500

−20

0

20

Time

In
de

pe
nd

en
t P

ar
am

et
er

 V
al

ue Outlier and Change Detection Analysis           

Change point        
Outlier point       
Y                   

0 50 100 150 200 250 300 350 400 450 500

−20

0

20

Time

C
oe

ffi
ci

en
t V

al
ue

Change point        
Outlier point       
Coefficient for X(1)
Coefficient for X(2)

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

Time

E
rr

or

Change point        
Outlier point       
Residual   Error    
Prediction Error    

(c) (d)

0 50 100 150 200 250

50

100

150

200

Time

In
de

pe
nd

en
t P

ar
am

et
er

 V
al

ue Outlier and Change Detection Analysis            

Change point        
Y                   

0 50 100 150 200 250

0

100

200

Time

C
oe

ffi
ci

en
t V

al
ue

Change point        
Coefficient for X(1)
Coefficient for X(2)
Coefficient for X(3)

0 50 100 150 200 250
0

20

40

Time

E
rr

or

Change point        
Residual   Error    
Prediction Error    

0 50 100 150 200 250
0

50

100

150

200

Time

In
de

pe
nd

en
t P

ar
am

et
er

 V
al

ue Outlier and Change Detection Analysis            

Change point        
Outlier point       
Y                   

0 50 100 150 200 250
−80

−60

−40

−20

0

20

40

Time

C
oe

ffi
ci

en
t V

al
ue

Change point        
Outlier point       
Coefficient for X(1)
Coefficient for X(2)
Coefficient for X(3)

0 50 100 150 200 250
0

10

20

30

40

Time

E
rr

or

Change point        
Outlier point       
Residual   Error    
Prediction Error    

(e) (f)

Figure 2. Results from RLS with forgetting
factor

7


