
Maximizing Throughput for Optical Burst
Switching Networks

Jikai Li, Chunming Qiao, Jinhui Xu, Dahai Xu
Department of Computer Science and Engineering

State University of New York at Buffalo
201 Bell Hall

Buffalo, NY 14260, USA
{jikaili,qiao,jinhui,dahaixu}@cse.buffalo.edu

Abstract— A key problem in Optical Burst Switching (OBS) is
to schedule as many bursts as possible on wavelength channels so
that the throughput is maximized and the burst loss is minimized.
Currently, most of the research on OBS (e.g., burst scheduling and
assembly algorithms) has been concentrated on reducing burst loss
in an “average-case” sense. Little effort has been devoted to un-
derstanding the worst-case performance. Since OBS itself is an
open-loop control system, it may often exhibit a worst-case be-
havior when adversely synchronized, thus a poor worst-case per-
formance can lead to an unacceptable system-wide performance.
In this paper, we use competitive analysis to analyze the worst-
case performance of a large set of scheduling algorithms, called
best-effort online scheduling algorithms, for OBS networks, and
establish a number of interesting upper and lower bounds on the
performance of such algorithms. Our analysis shows that the per-
formance of any best-effort online algorithm is closely related to
a few factors, such as the range of offset time, burst length ratio,
scheduling algorithm, and number of data channels. A surpris-
ing discovery is that the worst-case performance of any best-effort
online scheduling algorithm is primarily determined by the max-
imum to minimum burst length ratio, followed by the range of
offset time. Furthermore, if all bursts have the same burst length
and offset time, all best-effort online scheduling algorithms gener-
ate the same optimal solution, regardless how different they may
look like. Our analysis can also be extended to some non-best-
effort online scheduling algorithms, such as the well-known Hori-
zon algorithm, and establish similar bounds. Based on the analytic
results, we give guidelines for several widely discussed OBS prob-
lems, including burst assembly, offset time setting and scheduling
algorithm design, and propose a new channel reservation protocol
called VFO to improve the worst-case performance. Our simula-
tion shows that it is quite often for an online scheduling algorithm
to exhibit its (near) worst-case performance. Thus improving the
worst-case performance is essential. Our simulation also suggests
that VFO reduces the average burst loss rate by as much as 35%.

I. INTRODUCTION

To meet the increasing bandwidth demands and reduce costs,
several optical network paradigms have been under intensive re-
search. Of all these paradigms, optical circuit switching is rel-
atively easy to implement but lacks flexibility to cope with the
fluctuating traffic and the changing link status; Optical Packet
Switching(OPS) is conceptually ideal, but the required optical
technologies such as optical buffer and optical logic are too im-
mature for it to happen anytime soon. An alternative approach
called Optical Burst Switching (OBS) that combines the best of

optical circuit switching and optical packet switching was pro-
posed in [1] [2], and has received increasing amount of attention
from both academia and industry worldwide [3]- [11].

In an OBS network, an ingress OBS node assembles client
data units (e.g. IP packets) into bursts and sends out a cor-
responding control packet for each data burst. This control
packet is delivered out-of-band and leads the data burst by an
offset time o. The control packet carries, among other informa-
tion, the offset time at the next hop, and the burst length l. At
each intermediate node along the way from the ingress node to
an egress node, the control packet reserves necessary resources
(e.g., bandwidth on a desired output channel) for the following
burst, which will be disassembled at the egress node.

A prevailing reservation protocol in OBS networks is called
Just-Enough-Time (JET) [1]. In JET a control packet reserves
an output wavelength channel for a period of time equal to
the burst length l, starting at the expected burst arrival time r,
which can be determined based on the offset time value and the
amount of processing time the control packet has encountered
at the node up to this point in time. If the reservation is success-
ful, the control packet adjusts the offset time for the next hop,
and is forwarded to the next hop; otherwise, the burst is blocked
and will be discarded if there is no Fiber Delay Lines (FDLs).

Given the fact that OBS uses one-way reservation protocols
such as JET, and that a burst can’t be buffered at any intermedi-
ate node due to the lack of optical RAM (a FDL, if available at
all, can only provide a limited delay and contention resolution
capability), burst loss could be a serious problem for OBS net-
works, especially when the system is adversely synchronized
and bursts repeatedly arrive in worst-case or near worst-case
pattern. Thus, if the worst-case performance is too poor, an
OBS network may not function well. An effective way to re-
solve this problem is to design scheduling systems with opti-
mized worst-case performance.

To make this approach feasible, in this paper, we first con-
sider the problem of determining the possible factors that could
affect the worst-case performance of an online scheduling al-
gorithm, and then use the obtained analytical results to design
a new channel reservation protocol, called Virtual Fixed Offset
time (VFO), to achieve the desired performance. We particu-
larly consider a large set of scheduling algorithms, called best-
effort online scheduling algorithms, which includes most of the
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well-known burst scheduling algorithms such as Latest Avail-
able Unused Channel with Void Filling (LAUC-VF), First Fit
with Void Filling and Round Robin with Void Filling described
in [3], Min-SV, Min-EV, Max-SV, Max-EV and Best-Fit de-
scribed in [12] and the algorithm in [13]. By using competi-
tive analysis, we establish a number of interesting upper and
lower bounds on the worst-case performance of an arbitrary
best-effort online scheduling algorithm. Our analysis reveals
a surprising result showing that the worst-case performance is
primarily determined by the burst length ratio and seconded by
the range of burst offset time. Thus, if all the bursts have the
same length and offset time, any best-effort online scheduling
algorithm will give the optimal solution. Our simulation re-
sults on the worst-case performance of LAUC-VF agree with
the phenomenon predicted by our theoretical analysis. The ex-
perimental comparison of our VFO protocol with JET suggests
that VFO could reduce the burst loss rate of JET by as much as
35%.

The rest of this paper is organized as follows. Section II
provides a more detailed description on how OBS networks
work and what factors might cause data loss. Section III re-
views some existing research on the scheduling problem in
OBS networks, including various best-effort online scheduling
algorithms and several theoretical results on a more general job
interval selection problem. Section IV presents our analysis on
the worst-case performance of best-effort online scheduling al-
gorithms. A new channel reservation protocol VFO is proposed
in Section V, and simulation results are presented in Section VI.
Section VII concludes our work.

II. PROBLEM DESCRIPTION

Given a data burst bi, we assume that the control packet ar-
rives oi units of time (which is called the offset time) before
the corresponding burst bi arrives. In such a case, the reser-
vation for the burst will not start at the current time (t), but at
ri = oi + t (i.e., when the burst actually arrives). If the burst’s
length is li, the reservation will be made until fi = ri + li. Be-
cause bursts may not arrive one after another continuously, each
channel is likely to be fragmented with several reservation peri-
ods, separated by idle intervals (also called void). More specifi-
cally, each data channel initially corresponds to an open interval
(considered to be a special case of a void interval) from time 0
to positive infinite. Let each void interval Ij be modelled as an
ordered pair (sj , ej), where sj and ej are the starting end and
ending time of the void interval Ij , respectively, with ej > sj .
We say a void interval Ij is feasible to a data burst bi = (ri, fi),
if and only if sj ≤ ri, and ej ≥ fi. Once the reservation is
made using a feasible interval Ij , up to two new void intervals
may be created, which are (sj , ri) and (fi, ej), respectively.

From the perspective of a scheduler in an OBS network, it
is presented with a list of the bursts and processes them in the
order of the arrival time of corresponding control packets. Let
B = (b1, b2 . . . bi . . . bn) be such an order. Generally speak-
ing, all OBS scheduling algorithms are online, that is, when
processing burst bi, scheduler has the information of all previ-
ous bursts b1, b2, . . . , bi−1, but no knowledge of the following
bursts bi+1, bi+2, . . . , bn. Scheduler uses such information to
check whether there is a void feasible to bi. If multiple voids

can accommodate bi, the scheduler assigns bi to one of them
according to certain criteria.

The research interest of this work is to analyze the worst-case
performance of current OBS scheduling algorithms and to find
out what factors affect the performance. Based on the analysis,
we provide guidelines on how to enhance performance, and de-
sign a new reservation algorithm to implement the guidelines.

To better understand the performance of an online scheduling
algorithm, we classify burst losses in OBS networks into two
categories. In the first category, burst losses occur when the to-
tal number of simultaneously arriving bursts exceeds the num-
ber of wavelengths. This kind of burst losses will be inevitable
(assume no FDL is available). To capture such a scenario, we
use overlapping degree to denote the number of bursts over-
lapped in one link. More specifically, given a link l and time t,
the overlapping degree dt

l of l at time t is the number of bursts
in l which contain t in their intervals (ri, fi). For a time period
T = [ti, tj ], we define the maximum overlapping degree of link
l as follows,

DT
l = maxt∈T {dt

l}.
The value of overlapping degree is directly related to burst loss.
The larger the overlapping degree is, the more likely an incom-
ing burst will be dropped.
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Fig. 1. an example of unavoidable burst losses

Fig.1 shows an example where LAUC-VF fails to schedule
all bursts successfully. In this example, an OBS node has two
incoming links and one outgoing link, and each link has two
wavelengths for transmitting data and one for transmitting con-
trol packets. Assume four data bursts, b1, b2, b3 and b4, arrive
from the incoming links and these four data bursts overlap with
each other from time t1 to time t2 (i.e., D

(t1,t2)
z = 4). Two out

of the four bursts will be dropped if no FDL is available at the
OBS node. Such kind of burst loss happens because the over-
lapping degree is larger than the number of wavelength chan-
nels. The problem of how to reduce the overlapping degree in
an OBS networks is out of the scope of this paper.

The second category of burst loss is caused by scheduling
algorithms. Due to its online feature, a scheduling algorithm
does not have the information on future incoming bursts, and
thus could unwisely drop a burst which might be avoided if
such information were available. Fig.2(a) shows an example,
where the network settings are the same as the one in Fig. 1.
Four bursts arrive in the order of b1, b4, b3 and b2, but their
control packets arrive in the order of h1, h2, h3 and h4.

Assume that LAUC-VF is used to schedule the four bursts.
The scheduler first reserves wavelength λ1 for bursts b1 and b2

upon receiving their corresponding control packets h1 and h2.
When control packet h3 arrives, the scheduler has to reserve
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Fig. 2. an example showing the deficiency of an online algorithm

wavelength λ2 for burst b3. When control packet h4 comes, all
wavelengths have already been reserved. Thus, burst b4 has to
be dropped. Fig. 2(b) shows the scheduling result.

The reason for dropping b4 is not due to lack of sufficient
bandwidth. In fact, if b1 and b3 were assigned to wavelength
λ1, and b2 and b4 were assigned to wavelength λ2, there would
be no burst loss in this example. The real reason for this kind of
burst losses is that when an online scheduling algorithm, such
as LAUC-VF, schedules an incoming burst, it does not know
about the following bursts, and thus might assign the burst to
the wavelength appears to be the ”best” for the time being, but
such a scheduling maybe undesirable for future bursts.

III. PREVIOUS WORK

So far, several scheduling algorithms have been proposed for
OBS networks. Horizon [14] does not utilize any “closed” in-
tervals, and thus is fast but not bandwidth efficient. On the other
hand, LAUC-VF can schedule a burst in a closed interval (i.e.,
as long as it is possible) but has a much slower running time. To
combine the advantages of these two algorithms, Xu et. al. [12]
recently proposed a new algorithm called Min-SV which orga-
nizes voids by augmenting a load-balanced binary search tree.
Similar idea was also extended to obtain a series of scheduling
algorithms, including Min-EV, Max-SV, Max-EV, and Best Fit.
Most of their algorithms have a loss rate as low as LAUC-VF,
and run as almost fast as Horizon. Other scheduling algorithms
include First Fit with Void Filling, Round Robin with Void Fill-
ing [3] and the algorithm presented in [13].

Although the above algorithms are very much different from
each other, they (except Horizon) share the following two com-
mon features. First, they schedule bursts in an online fashion,
that is, upon receiving a burst scheduling request, they either as-
sign the corresponding burst to a wavelength or reject it before

processing the next request. Second, they all use the best-effort
strategy to schedule bursts. A burst will not be dropped if there
exists a feasible void (which is not the case in Horizon). We call
algorithms with these two features as best-effort online schedul-
ing algorithms. We notice that although extensive simulation
results are available on the performance of many best-effort on-
line scheduling algorithms, there still lacks theoretical analysis
on their worst-case performance. In this paper, we consider all
best-effort online scheduling algorithms as a whole and analyze
their worst-case performance. We assume that no preemption is
allowed and bursts will not be broken up or segmented.

It is interesting to point out that although OBS is a new re-
search area, the burst scheduling problem can actually be mod-
elled as a special case of the Job Interval Selection Problem
(JISP) [15] that has a rich research history. In the JIST prob-
lem, a set of jobs are provided as input to one or more machines.
Each job includes a set of intervals on the time axis represent-
ing the possible time slots when the job can be executed. To
schedule a job, one of the associated intervals is selected and
assigned to the corresponding machine (no preemption or job
breakup is allowed). For a set of jobs, the intervals assigned to
each machine should not overlap. The objective is to schedule
as many jobs as possible.

In the context of OBS networks, each burst bi can be treated
as a job and each wavelength as a machine. For OBS with-
out FDLs, the scheduling problem is equivalent to the problem
of finding maximum independent set in an interval graph [16].
Golumbic [16] showed this problem is in class P . Akin and
Silverberg [17] gave an optimal offline algorithm, which runs
in time O(n2 log n), where n is the number of jobs. It was also
shown that the problem is NP-Complete if each job has to be ex-
ecuted on a subset of machines. For the case that each job can
only be executed on k machines, [17] gave an optimal offline al-
gorithm running in O(nk+1) time. Besides offline algorithms,
there are also a few online algorithms. Long [18] used exam-
ples to show that no deterministic online algorithm can achieve
good performance if there is no restrictions on jobs. Lipton
[19] proposed a randomized online algorithm that is strongly 2-
competitive for the case in which intervals must be one of two
possible lengths. The authors of [20] [21] [22] gave several pre-
emptive online scheduling algorithms. Despite all these efforts,
the questions as to what factors affect, and to what extent they
affect the worst-case performance of burst scheduling are still
open.

IV. WORST-CASE ANALYSIS

In this section, we present our results on the worst-case anal-
ysis of best-effort online scheduling algorithms for OBS net-
works without FDLs. We start our discussion with notations
and assumptions.

Let B be a burst set and bi and bj are two arbitrary bursts in
B. We define a binary relation between bi and bj as follows.

bi � bj if fi ≤ rj ,

where fi is the finishing time of bi and rj is the starting (or
ready) time of bj . The relation is an interval order [23]. If for
pair of bursts bi, bj ∈ B, we have either bi � bj or bj � bi,
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we say B is a linearly ordered set, or a chain [23]. It is easy to
see that if B is a chain, all bursts in B can be assigned to one
initially empty channel.

Given a burst set B, w data channels, and a scheduling
algorithm A, a feasible scheduling of B includes w subsets
BA

1 , BA
2 , · · · , BA

w of B, where each subset BA
i is a chain, and

for any pair of subsets BA
i and BA

j (i �= j), BA
i ∩ BA

j = ∅.
We call SA

B,w = {BA
1 , BA

2 , · · · , BA
w} an assignment of B by

algorithm A. SA
B,w is extendable (by burst b) if there exists a

unscheduled burst b ∈ B\⋃w
i=1 BA

i and a chain BA
i ∈ SA

B,w

such that BA
i ∪ {b} forms a new chain. For a given assign-

ment SA
B,w, if no b ∈ B\⋃w

i=1 BA
i can extend it, then SA

B,w is
maximal.

Clearly, for any best-effort online algorithm A and any burst
set B, the assignment SA

B,w must be maximal; otherwise, there
would exist at least one unscheduled burst b ∈ B\⋃w

i=1 BA
i

such that b extends SA
B,w, contradicting the definition of best-

effort online algorithm.
For a given sequence of bursts B and an online scheduling

algorithm A, let A(B) and OPT (B) be the number of bursts
successfully scheduled by A and an optimal offline algorithm
OPT , respectively. Notice that the optimal solution can be
achieved by running an offline algorithm [17], and represents
a performance upper bound for all online algorithms. To mea-
sure the quality of the scheduling by online algorithm A, we
consider the ratio RA(B) ≡ OPT (B)/A(B). The competitive
ratio RA of the online algorithm A is defined as follows.

RA ≡ inf{r ≥ 1 : RA(B) ≤ r for all sets B}.
This definition of competitive ratio is also called the absolute
worst-case performance ratio of A [24].

In the above definition, we assume each burst has the same
importance and this case will be referred to as the ”unweighted
case”. One way to represent the importance of bursts is to asso-
ciate with each burst a weight, such as the length of the burst.

In the above weighted case, we define the weight of an as-
signment SA

B,w of a burst set B as follows.

weight(SA
B,w) =

∑

b∈⋃w
i=1 BA

i

length(b)

=
∑

b∈⋃w
i=1 BA

i

‖b‖

Let R′
A(B) ≡ weight(SOPT

B,w )/weight(SA
B,w). The (weighted)

competitive ratio R′
A of algorithm A is defined as follows.

R′
A ≡ inf{r ≥ 1 : R′

A(B) ≤ r for all sets B}
To analyze the worst-case performance of a best-effort online

algorithm A, we consider two important parameters, the burst
length ratio and the range of offset time. Let [s, t] be the range
of burst lengths for an OBS node and [u, v] be the range of burst
offset time, where t ≥ s > 0, and v ≥ u > 0. We denote the
burst length ratio ∆ as the ratio of the longest burst length over
the shortest burst length, i.e., ∆ = t

s , and β as the difference
of v and u, i.e., β = v − u. Note that when β = 0, data bursts
arrive in the same order as their control packets.

For a burst set Bi and a burst b �∈ Bi, if b overlaps one or
more bursts of Bi, we say b overlaps Bi. The subset of bursts
in Bi overlapped by b is denoted by

Bi ⊕ b = {b′ ∈ Bi, b overlaps b’}.
For a pair of burst sets Bi and Bj , the set of bursts in Bi over-
lapped by bursts in Bj is denoted by

Bi � Bj =
⋃

b∈Bj

Bi ⊕ b,

and the set of bursts in Bi that are not overlapped by any burst
in Bj is

Bi � Bj = Bi\(Bi � Bj).

Since a burst in Bi can be overlapped by several bursts in Bj ,
we have the following inequalities

|Bi � Bj | =
⋃

b∈Bj

|Bi ⊕ b| ≤
∑

b∈Bj

|Bi ⊕ b|,

and

|Bi � Bj | = |Bi| − |Bi � Bj | ≥ |Bi| −
∑

b∈Bj

|Bi ⊕ b|.

Below we present our competitive analysis for best-effort on-
line scheduling algorithms.

A. Unweighted Case

To simplify our presentation, in the following discussion we
assume β = ∞ by default. The assumption β = ∞ implies
that bursts can be presented to the scheduling algorithm in an
arbitrary order. Our analysis can be easily applied to the cases
where β has a different value.

The following is a simple but useful observation.
Observation 1: Given a chain Bi, a burst b can overlap at

most �∆� + 1 bursts in Bi, i.e., |Bi ⊕ b| ≤ �∆� + 1.
Lemma 1: If w = 1, RA = �∆� + 1 for any best-effort

online scheduling algorithm A.
Proof: We first show that RA ≥ �∆� + 1 (Note that to

prove the lower bound of RA, it is sufficient to give an instance).
Consider the example in Fig. 3. In this instance, we have �∆�+
2 bursts. One of them is long, and the rest are all short. The
long burst overlaps all the short bursts and the set of short bursts
forms a chain. Obviously, the optimal assignment is to select all
short bursts. For a best-effort online algorithm A, if the longest
burst is presented to A first, A will schedule it to the wavelength
and discard all short bursts. Therefore, RA ≥ �∆� + 1 for all
A.

λ1
.....

Fig. 3. RA equals �∆� + 1

Next, we show RA ≤ �∆� + 1 by contradiction. For any
burst set B, let {BOPT

1 } be the optimal offline assignment, and
{BA

1 } be the assignment by algorithm A. Without loss of gen-
erality, we assume OPT (B) = n. Suppose RA > �∆� + 1.
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Then, A(B) ≤ � n
�∆�+1� − 1. Since each burst in BA

1 can over-

lap at most �∆� + 1 bursts in BOPT
1 , the number of bursts in

{BOPT
1 } that do not overlap {BA

1 } is

|BOPT
1 � BA

1 | = |BOPT
1 | − |BOPT

1 � BA
1 |

≥ |BOPT
1 | −

∑

b∈BA
1

|BOPT
1 ⊕ b|

≥ n − (� n

�∆� + 1
� − 1) × (�∆� + 1)

≥ 1

This implies that BOPT
1 � BA

1 contains at least one burst
which can extend {BA

1 }, contradicting the fact that {BA
1 } is

maximal.

Lemma 2: For any best-effort online scheduling algorithm
A and any integer w ≥ 1, RA ≥ �∆� + 1.

Proof: To prove this lower bound, we consider the ex-

....

.....

.....

.....

.....
.....

....

(a)

(b)

1
2

w

1
2

w

Fig. 4. RA larger than or equal to �∆� + 1

ample in Fig. 4. In this example, we have two types of bursts,
(a) w(�∆� + 1) short bursts, and (b) w long bursts. The short
bursts form w chains with each of �∆�+1 bursts, and each long
burst overlaps all the short bursts. The offline optimal solution
is to select all short bursts, i.e., OPT (B) = w(�∆�+1). If the
control packets of long bursts arrive earlier than those of short
bursts, the online algorithm will select the w long bursts as the
solution, thus making RA(B) = �∆� + 1.

Remark: Although the above lemma indicates that it is possi-
ble to have the competitive ratio larger than �∆�+1, according
to our studies, it is rather difficult to come up with a burst set
with RA(B) > �∆� + 1.

Lemma 3: For any best-effort online scheduling algorithm
A and any integer w ≥ 1, RA ≤ �∆� + 2.

Proof: For any burst set B, let SA
B,w = {BA

1 , · · · , BA
w}

and SOPT
B,w = {BOPT

1 , · · · , BOPT
w } be the assignments ob-

tained by A and an offline optimal algorithm, respectively.
Assume OPT (B) = n. Suppose RA > �∆� + 2. Then,
A(B) ≤ � n

�∆�+2� − 1.

For any 1 ≤ i ≤ w, the burst set scheduled to channel i by
the optimal algorithm but not by A is BOPT

i � BA
i . Note that

each burst b in BOPT
i � BA

i must belong to some BA
j , j �= i

and 1 ≤ j ≤ w, otherwise SA
B,w would not be maximal (since

BA
i ∪ {b} forms a new chain). Thus, we have

∣∣∣∣∣

i=w⋃

i=1

BOPT
i � BA

i

∣∣∣∣∣

=
i=w∑

i=1

∣∣∣BOPT
i � BA

i

∣∣∣

= n −
i=w∑

i=1

|BOPT
i � BA

i |

≥ n − (�∆� + 1) × (� n

�∆� + 2
� − 1)

≥ � n

�∆� + 2
�

Since
∣∣∣
⋃i=w

i=1 BOPT
i � BA

i

∣∣∣ > A(B), there exists at least one

burst b ∈ ⋃i=w
i=1 BOPT

i � BA
i but not in any BA

j , 1 ≤ j ≤
w. This means b can extend assignment SA

B,w. Since A is a
best-effort online algorithm, SA

B,w is maximal and cannot be
extended. Thus, a contradiction.

Combining the above lemmas, we have the following theo-
rem.

Theorem 1: For any best-effort online scheduling algorithm
A, �∆� + 1 ≤ RA ≤ �∆� + 2.

The above results hold for the case β = ∞. For different
β values, we can use similar argument to obtain the following
theorem. Details of the proof are omitted from this paper.

Theorem 2: For any best-effort online scheduling algorithm
A and any β value, we have �∆� ≤ RA ≤ �∆� + 2.

As an extension of our analysis, we also applied our tech-
nique to Horizon algorithm, which is not a best-effort online
algorithm, and obtained the following theorem. Details of the
proof are left for the full paper.

Theorem 3: For Horizon algorithm, �∆+ β
s� ≤ RA ≤ �∆+

β
s� + 2, where s is the shortest burst length.

B. Weighted Case

For any pair of bursts bi and bj , if ri < rj < fi, we say burst
bi leads burst bj ; if ri < fj < fi, we say burst bi tails burst bj ;
if ri ≤ rj < fj ≤ fi, we say burst bi contains burst bj .

Lemma 4: Given a chain B and a burst b, if ∆ > 1, then
weight(B ⊕ b) ≤ (2∆ + 1) × ‖b‖.

Proof: It is easy to see that there is at most one burst bl

in chain B leads b and at most one burst bt in chain B tails b.
There might be one or more bursts in B contained by b. Let
b1, b2, · · · , bc be the set of contained bursts. Clearly, their total
length is less than or equal to ‖b‖. Thus, we have the following
inequality.

weight(B ⊕ b) = ‖bl‖ +
i=c∑

i=1

‖bi‖ + ‖bt‖

≤ ∆‖b‖ + ‖b‖ + ∆‖b‖
= (2∆ + 1) × ‖b‖
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Lemma 5: For any best-effort online scheduling algorithm
A and any ∆ > 1 , R′

A ≥ 2∆ + 1 − ε, where ε is a positive
constant arbitrarily close to 0.

Proof: We prove this lower bound by giving an instance.
Consider Fig. 5. In this example, the burst set B contains two

.... .....

....

(a)

(b)

1
2

w

1
2

w

.....

s+δ

t s

Fig. 5. R′
A larger than or equal to 2∆ + 1 − ε

types of bursts, (a) 3w bursts of length either s or t (i.e., the
shortest or longest burst length), (b) w bursts of length s + δ,
where 0 < δ ≤ t − s. The type (a) bursts forms w chains with
each of three bursts. Each type (b) burst overlaps every type (a)
burst.

Obviously, the optimal assignment selects all type (a) bursts
and drops all type (b) bursts. However, for a best-effort online
algorithm A, if type (b) bursts are scheduled first, then all type
(b) bursts will be selected as the assignment which leaves no
room for selecting any type (a) burst. Thus we have

R′
A(B) =

w × (2t + s)
w × (s + δ)

=
2t
s + s

s
s
s + δ

s

=
2∆ + 1

1 +
δ

s

When δ approaches 0, the ratio approaches (2∆ + 1)−, i.e.,

lim
δ→0+

R′
A = (2∆ + 1)−

Lemma 6: For any best-effort online scheduling algorithm
A, R′

A ≤ 2∆ + 2.

Proof: For any burst set B, let SOPT
B,w =

{BOPT
1 , · · · , BOPT

w } and SA
B,w = {BA

1 , · · · , BA
w} be the as-

signments by an optimal online algorithm OPT and algo-
rithm A, respectively. Assume weight(SOPT

B,w ) = n. Suppose
R′

A > 2∆ + 2. Then weight(SA
B,w) < n

2∆+2 .

For each channel i, the set of bursts assigned to channel i by
OPT but not by A is BOPT

i � BA
i . If a burst b in BOPT

i � BA
i

were not in any BA
j , 1 ≤ j ≤ w, then SA

B,w would be extended
by b and thus could not be maximal, a contradiction. Thus each
burst in BOPT

i � BA
i must belong to some BA

j , j �= i. Sum-

ming over all channels, we have

weight(
i=w⋃

i=1

BOPT
i � BA

i )

=
i=w∑

i=1

weight(BOPT
i � BA

i )

= n −
i=w∑

i=1

weight(BOPT
i � BA

i )

> n − (2∆ + 1) × (
n

2∆ + 2
)

=
n

2∆ + 2

This means weight(
⋃i=w

i=1 BOPT
i � BA

i ) > weight(SA
B,w).

Thus there must be at least one burst, say b, in⋃i=w
i=1 BOPT

i � BA
i which extends SA

B,w. This contradicts the
fact that SA

B,w is maximal. Hence, R′
A ≤ 2∆ + 2

Based on the above discussion, we have the following theo-
rem.

Theorem 4: For any best-effort online scheduling algorithm
A and ∆ > 1, 2∆+1−ε ≤ R′

A ≤ 2∆+2, where ε is a positive
constant arbitrarily close to 0.

Our techniques can be easily applied to the case where ∆ =
1, and obtain the following theorem. Details are left for the full
paper.

Theorem 5: For any best-effort online scheduling algorithm
A and ∆ = 1, 2∆ ≤ R′

A ≤ 2∆ + 1.
For an arbitrary β value, we have the following theorems.
Theorem 6: For any best-effort online scheduling algorithm

A and any β value, if ∆ > 1, then ∆ + 1− ε ≤ R′
A ≤ 2∆ + 2,

where ε is a positive constant arbitrarily close to 0.
Theorem 7: For any best-effort online scheduling algorithm

A and any β value, if ∆ = 1, ∆ ≤ R′
A ≤ 2∆ + 1.

For Horizon algorithm, we have the following theorem.
Theorem 8: For Horizon algorithm, ∆ + β

s + 1 ≤ R′
A ≤

2∆ + β
s + 2, where s is the shortest burst length.

C. Worst-Case Analysis for ∆ = 1 and β = 0

The analytic results in the unweighted and weighted cases in-
dicate that burst length ratio ∆ is the most influential factor for
the worst-case performance of any best-effort online algorithm.
The larger ∆ is, the worse performance an online algorithm
may have. Thus, to achieve optimal worst-case performance
using best-effort online scheduling algorithm, all bursts should
have the same length, that is, ∆ = 1.

Another factor which affects the worst-case performance is
β. The larger the value of β, the more likely bursts will arrive
out of order. To better understand the influence of β, we con-
sider the case β = 0 and ∆ = 1. In this case, all bursts arrive
in the same order as their control packets.

For this special case, we first consider a known algorithm
GOL ((Greedy On-line Algorithm) proposed by Faigle and and
Nawijn [20]. GOL is an online preemptive algorithm, and
schedules the bursts in the order of their arrival time, i.e., in
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the order of ri. In general, it is not a best-effort online algo-
rithm since it may preempt bursts. When β = 0 and ∆ = 1,
GOL becomes a best-effort online algorithm.

GOL contains the following main steps. Assume data bursts
arrive in the order of b1, b2, · · · , bm.

1) Assign b1 to an arbitrary channel.
2) For burst bi, try to Assign it to any free channel. If no

channel can accommodate bi, find a scheduled burst b
with the largest finishing time f .

a) If fi ≥ f , then discard bi.
b) If fi < f , then replace b by bi.

For unweighted case, the following theorem have been
proved in [20].

Theorem 9: (Faigle and Nawijn) Algorithm GOL minimizes
the number of losses.

For the case β = 0 and ∆ = 1, we have the following lemma.
Lemma 7: When β = 0 and ∆ = 1, if any best-effort online

algorithms A drops a burst b, then all other best-effort online
algorithms drop b.

Proof: We prove this lemma by contradiction. Suppose
this lemma does not hold for burst set B = {b1, b2, · · · , bm}
with r1 ≤ r2 ≤ · · · ≤ rm. Then there must exist some bursts
which are dropped by A but not by some other best-effort online
algorithm, say A′. Let bi be such a burst with the smallest index.

Let Bi−1 = {b1, b2, · · · , bi−1} be the set of bursts that have
already been scheduled by A and A′, and SA

Bi−1,w and SA′
Bi−1,w

be their assignments, respectively. If A drops bi, then each BA
j ,

1 ≤ j ≤ w, has exactly one burst overlapping bi. Therefore, the
number of bursts in SA

Bi−1,w overlapped by bi is w. Since bi is

the first burst dropped by A but not by A′, SA
Bi−1,w and SA′

Bi−1,w

have the same set of bursts (although they may be scheduled to
different channels by A and A′). Thus after bi is scheduled by
A′, the overlapping degree becomes w+1, which is impossible
to form a feasible scheduling with only w channels.

The following theorem holds for both unweighted and
weighted cases. (Note that when ∆ = 1, the two cases are
equivalent.)

Theorem 10: If β = 0 and ∆ = 1, all best-effort online
algorithms have the same optimal scheduling.

V. NEW RESERVATION PROTOCOL

From previous discussion, we know that the worst perfor-
mance is strongly related to ∆ and β. Theorem 10 indicates
that to achieve the best worst-case performance, we should have
∆ = 1 and β = 0.

In general, it is relatively easy to make all bursts have the
same length. But it is not trivial to have all bursts with the same
offset time. In a network using the JET protocol, the offset
time of a burst changes all the way from the ingress node to the
egress node to take into account the processing delay encoun-
tered by its corresponding control packet . The JET protocol
itself cannot support a fixed offset time value for a given burst,
not to mention for all bursts.

In order to simplify signaling protocol design and system im-
plementation, Xu et al. [25] proposed a protocol called Only
Destination Delay (ODD), which associates with each burst a
constant offset time and uses FDLs at each intermediate node

to delay the burst by a time period equal to the exact processing
time. Two major difficulties make this scheme hard to imple-
ment. First, the exact processing time of an incoming burst is
in general not a constant, which depends on the status of the
scheduling algorithm and the traffic load. Therefore, it is dif-
ficult to obtain the precise delay time. Second, for a link with
w data channels, if w bursts arrive simultaneously, w control
channels are needed to make sure that each burst has the same
offset time. This means that in order to support a constant off-
set time, the number of control channels should be equal to the
number of data channels, which is an impractical requirement.

Instead of assigning a constant offset time to each burst,
we propose a new channel reservation protocol, called Virtual
Fixed Offset time (VFO), which still uses variable offset times
but mimics the behavior of having bursts with a constant offset
time. We first introduce the main idea of our protocol and then
give a detailed description.

The basic idea of VFO is from the following observation.
When bursts have a constant offset time, they will be processed
in the order of their arrival time. Therefore, unlike other exist-
ing OBS reservation algorithms, VFO does not process bursts
in the order of the arrival time of control packets. Instead, VFO
schedules bursts in the order of burst arrival time. Upon receiv-
ing a control packet, VFO does not schedule the corresponding
burst immediately. First, it sorts the arriving control packets ac-
cording to their burst arrival times. Then, it schedules the burst
with the earliest arrival time. Obviously, if VFO can schedule
bursts strictly according to their arrival times, the scheduling
will be the same as in the case where all bursts have a constant
offset time.

An immediate question about the above idea is how to sched-
ule bursts strictly according to their arrival times, or in other
words, how to ensure that no burst will arrive before the burst
currently being scheduled. The answer is that if a burst has the
smallest offset time u, clearly it need not be delayed and should
be processed immediately; if the burst has the largest offset time
v, it has to be delayed by a time period β = v − u to guaran-
tee that no other bursts will arrive before it. Thus, to make this
scheme feasible, we need to know β or equivalently the u and
v values.

However, it is practically difficult to determine the exact u
value. This difficulty is due to the fact that in practice, the
number of control channels is much smaller than the number of
data channels. Under such an assumption, when multiple bursts
(or more accurately multiple control packets) arrive at the same
time, some control packets have to be electronically buffered
before being processed. Each time when a control packet is
buffered, the offset time of the corresponding burst is decreased.
This means that the u value of a burst will keep decreasing. In
an extreme case, u may become 0 and β = v. This leaves the
scheduler no time to schedule the bursts arriving at the same
time as their control packets.

Thus in order to schedule bursts according to their arrival
times, sorting bursts by their arrival times and delaying their
scheduling are not sufficient. This is mainly due to the diffi-
culty in determining the exact delay of a control packet at a
node. To overcome this obstacle, we use FDL to delay bursts at
each node and intentionally increase their offset time. Note that
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FDLs are used here for the purpose of increasing burst offset
time rather than resolving burst contention. To avoid having a
very long delay time, it is necessary to keep the β value as small
as possible.

We notice that the idea of sorting bursts by their arrival time
and delaying their scheduling has previously been used by Chen
and Turner in their Horizon algorithm with reordering [26]. In
their algorithm, each burst bi is simply scheduled at time ri − ζ
for some fixed constant ζ to emulate the case where every burst
has a constant offset time. After scheduling, each burst has
the same offset time ζ, thus facing similar difficulties as ODD.
Furthermore, since bursts have different destinations, they need
different amount of offset times to complete the scheduling at
all intermediate nodes on the way to their destinations. Thus, it
is unlikely to find a fixed ζ satisfying all bursts.

O/E sorter scheduler buffer E/O

switch FDL

control packet

data burst

Fig. 6. core node architecture for VFO

Below we give a more detailed description to our approach.
Fig. 6 illustrates the architecture of VFO at each OBS node.

For each control packet hi, it takes five steps to finish the
scheduling. First, it goes through an O/E conversion, and then
is forwarded to a sorter where hi is sorted (along with other
accumulated control packets) by the arrival time of its corre-
sponding burst. At certain time point, the scheduler removes
a control packet from the sorter and assigns a feasible wave-
length to its corresponding burst, if any, and sets up the switch
accordingly. If the scheduling fails, the control packet as well
as the corresponding burst is destroyed; otherwise, it is sent to
an electronic buffer even if the control channel is immediately
available. Once certain timing constraint (to be discussed) is
satisfied, the control packet is re-activated from the electronic
buffer and sent to the E/O conversion. Each successfully sched-
uled data burst will be delayed by an FDL by a fixed amount of
time T .

The remaining difficulty of our scheme is to determine the
timing for each step. Since the offset time of a burst changes
during the whole process, to find the exact timing, we need to
keep tracking the offset time of each burst. For this purpose, we
stick a time stamp to each control packet hi once it is converted
from optical domain to electronic domain (assume the offset
time of hi at this moment is oi). The current offset time of hi

can then be computed by the following equation.

offset time = time stamp − current clock time + oi

Tb TTcToTp

CP 

Window 
ordering 

Window 
scheduling 

Window 
buffering 

Window 

Fig. 7. the phases a control packet will go through in VFO

Fig. 7 shows how the offset time of a control packet hi

changes in VFO as it goes through different phases. We de-

fine five particular values, Tb, Tp, To, Tc and T to divide the
life cycle of hi (in VFO) into four different phases with each
closely related to a step. The offset time of hi may reduce from
T to Tb, depending on the status of hi. When hi is in the opti-
cal domain, the offset time will always be in the range (Tc, T ),
where Tc and T are two constants. Setting a fixed offset time
range for all bursts provides us two kinds of benefits. First, it
provides more flexibility to deal with the contention caused by
simultaneously arriving control packets competing for the con-
trol channel. In such a scenario, the scheduler can still send
out the control packets by assigning them with different offset
time. Second, with fixed Tc and T , it enables us to determine
the exact delay for each control packet so that no burst will be
scheduled out of order. We call the range (Tc, T ) a CP Window
(or control packet window).

When hi is in the sorter, VFO requires that its offset time
be within the range (To, Tc), where Tc − To is larger than the
maximum amount of time needed for sorting a single control
packet (i.e., inserting hi to a sorted list of control packets). Thus
the sorting operation should be done before the offset time of
hi decreases to To. Once the sorting is finished, the control
packet will not be immediately moved to the scheduler. Instead,
it will stay in the sorter until its offset time becomes To. Since
the offset time of each control packet in the optical domain is
within the range (Tc, T ) and sorting is done before the offset
time decreases to To, the control packets will be scheduled by
the arrival time of their corresponding data bursts.

In the scheduling step, if burst bi is successfully scheduled
on some wavelength, the control packet hi will be buffered in
electronic RAM until the control channel is free and the offset
time of hi is within the range (Tb, 0), where Tb is a negative
value equal to Tc − T . Note that, although the offset time of
hi is negative, it does not mean that we should discard burst bi,
since bi is currently delayed by an FDL for time T . Once hi is
converted to optical domain, the offset time will again be in the
range (Tc, T ).

So far, we have showed how VFO works without giving the
values to the five parameters, Tb, Tp, To, Tc and T . In general,
these values depend on the implementation of future OBS net-
works, and thus it is unrealistic for us to give the exact values
at this moment. Instead, we provide some guidance below on
how to determine these values.

Tp is the offset time when the scheduling step ends. It should
be positive to allow the data bursts be switched to the assigned
channels. Since VFO dose not use Tp explicitly, the choice
for Tp is flexible. To is the longest time needed by the sched-
uler to schedule one burst, and can be obtained from the hard-
ware specification of the scheduler. Tc is the sum of To and the
longest time needed for sorting a control packet. Thus it can
also be obtained from the hardware specification of the sorter.
T depends on Tc and the requirement on the length of (Tc, T ).
The length of (Tc, T ) should be long enough to accommodate
all the control packets whose corresponding bursts arrive simul-
taneously. In an OBS network with w data channels, w bursts
may arrive at the same time. Thus the length should be at least
w×e

d , where e is the control packet duration and d is the number
of control channels. As for Tb, since Tb = Tc − T , once Tc and
T are determined, Tb can be easily computed.
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VI. EXPERIMENTAL RESULTS

In this section, we present our simulation results on our com-
petitive analysis and VFO protocol. The simulation includes
two parts. The first part simulates the competitive performance
of LAUC-VF, where LAUC-VF is selected as the representative
of best-effort online scheduling algorithms and AS algorithm
[17] is selected as the representative of optimal offline schedul-
ing algorithms. The second part of our simulation compares the
performance of VFO with that of JET.

A. Competitive Performance of LAUC-VF

In this simulation, we assume that the observed OBS node
has two incoming links injecting randomly generated bursts
and one outgoing link. Both burst length and burst interarrival
time follow Pareto distribution, and the offset time of bursts fol-
lows a uniform distribution in range [0.1ms, 1ms]. The average
burst duration is 1ms. There are 10 data channels on each link.
For each setting (e.g., a fixed ∆ value and offered link load),
we generate 10, 000 sets of bursts, each consisting of 150 data
bursts. For each burst set B, we count the number of success-
fully scheduled bursts by LAUC-VF and AS, and compute its
RA(B) value. Of the 10, 000 sets of bursts, we pick the set with
the largest RA(B) value. Then, we select the largest RA(B) in-
stead of the mean to observe the worst-case performance.
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Fig. 8. competitive performance of LAUC-VF

Fig.8 shows how RA(B) changes under different ∆ values
and offered link load. The result indicates that RA(B) tends to
increase with the offered link load. We attribute this to the fact
that when the link load is low, the bursts are widely distributed
and the overlapping degree is small. Thus most of the bursts
will be successfully scheduled by LAUC-VF, and consequently
makes RA(B) small. When the link load increases, the bursts
are more likely to overlap. Further, with a heavier link load,
LAUC-VF has a higher probability to schedule bursts to the
wrong channels, thus resulting in a larger RA(B) value.

Fig.8 also indicates that the RA(B) for ∆ = 2 is larger
than that for ∆ = 1. This is consistent with our theoretical
bounds on RA. Part of the reason is because when ∆ is larger,
a wrongly selected burst may block more bursts.

This simulation also suggests that a best-effort online
scheduling algorithm like LAUC-VF can indeed encounter
some bad (if not the worst) instances and produces very poor
scheduling results. For example, Fig.8 shows that the schedul-
ing results can be 80% worse than the optimal solution. Thus it
is important for OBS networks to provide a mechanism (such as
setting ∆ to be 1 and using better channel reservation protocol
like VFO) to eliminate bad or worst behavior.

B. VFO vs. JET

To compare the performance of VFO and JET, we design two
simulations. The first is based on the same single-node topol-
ogy used in previous simulation, and the second is based on
the NSFNET network. In both simulations, we assume that the
burst inter-arrival time follow Pareto distribution. We also as-
sume that there are 10 data channels on each link. For a given
offered link load, bursts are generated in the same order for
different protocols. All simulations use LAUC-VF to schedule
bursts. Our simulations focus on examining the burst loss rate
under different channel reservation algorithms.
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Fig. 9. average loss rate of JET and VFO

Fig.9 shows the loss rate of JET and VFO under the simpler
topology. In order to determine how burst length affects the
performance, we generate two types of bursts: (1) bursts with
a fixed length 1ms and (2) bursts with variable lengths (which
follows Pareto distribution), with the same average burst length
1ms. We use VFO-fix and JET-fix to denote the performance
of VFO and JET for type (1) bursts, and VFO and JET for type
(2) bursts. The figure shows that the loss rates of both VFO and
JET are rapidly increasing functions of the offered link load.
In both cases, VFO consistently outperforms JET. Particularly,
VFO reduces the loss rate of JET by as much as 35% for type
(1) bursts and 10% for type (2) bursts. As predicted by our
theoretical analysis, VFO-fix has the best performance among
all cases. This suggests that to achieve the best performance,
we should have all bursts with the same length (i.e., ∆ = 1)
and schedule bursts in the order of their arrival times.

To compare the performance of JET and VFO in a more com-
plicated network setting, we simulate JET, JET-fix, VFO and
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VFO-fix in the 14-node NSFNET shown in Fig.10. In this net-
work, each link has 10 data channels. We assume each node is
both an ingress node and a core node. There is one OBS path
from each node to every other node. The two OBS paths go-
ing opposite directions between a pair of nodes may be routed
asymmetrically when there are two or more shortest paths be-
tween that pair. The OBS paths used in our simulation are
computed by using a shortest path algorithm. The number of
OBS paths passing through each link (in opposite directions)
are shown in Fig.10. Each node generates the same average
amount of traffic which is a fraction of the link capacity. In
our simulation, this average amount varies from 0.3 to 0.9. The
traffic generated by each node is randomly distributed among
all other nodes.
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Fig. 11. average loss rate of VFO and JET in NSFNET network

Fig.11 shows the simulation results for VFO and JET. The
relative performances of VFO and JET observed here are al-
most the same as these in Fig.9. The only difference is that the
performance difference between VFO and VFO-fix or JET and
JET-fix is significant reduced. Part of the reason may lie in the
fact that each node in this network is an ingress node as well
as a core node. The locally generated bursts are injected into
the network whenever there is a feasible void in the outgoing
links, thus reducing the benefits of having fixed-length bursts
over having variable-length bursts.

VII. CONCLUSION

In this paper, we have given competitive analysis of a large
set of online scheduling algorithms, called best-effort online
scheduling algorithms, which include most of the existing

scheduling algorithms such as LAUC-VF, and established a
number of non-trivial lower and upper bounds on the com-
petitive performance of all best-effort online scheduling algo-
rithms. For OBS networks without FDLs, we have shown that
the worst-case performance of an arbitrary best-effort online
scheduling algorithm is closely related to a few factors, such as
the range of offset time, the burst length ratio, scheduling strat-
egy, and the number of data channels. Among all these factors,
the burst length ratio is the dominating factor and followed by
the range of burst offset time. Our analytic results suggest that
to achieve the best worst-case performance, all bursts should
have the same length and bursts should be scheduled strictly
according to their arrival time. Based on our analysis, we pro-
posed a new channel reservation protocol, called Virtual Fixed
Offset time (VFO), to improve the worst-case performance of
online scheduling algorithms. Our simulations have shown that
VFO reduces the loss rate of JET by as much as 35%.

As an extension, we have also applied our analysis to non-
best-effort online scheduling algorithms, such as Horizon, and
obtained similar analytic results.
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