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Abstract—The overall number of nearest neighbors in bounded
distance decoding (BDD) algorithms is given byN, .+ = N, +
Nppp, Where Ngpp denotes the number of additional, non-
codeword, neighbors that are generated during the (subopti-

mal) decoding process. We identify and enumerate the nearest

neighbors associated with the original Generalized Minimum
Distance (GMD) and Chase decoding algorithms. After careful

Except for some trivial cases, this problem is analytically
intractable.

Alternatively, a computationally simple, yet often loose,
upper bound is commonly employed—th@ion bound For
optimal decoding, the decision region of a specific codeword
is the Voronoi region which is determined by certain “face

examination of the decision regions of these algorithms, we derive defining” neighboring codewords also known as ¥a@onoi

an approximated probability ratio between the error contribution
of a noncodeword neighbor (one ofVgpp points) and a codeword
nearest neighbor. For Chase Algorithm 1 it is shown that the
contribution to error probability of a noncodeword nearest neigh-
bor is a factor of 29~! less than the contribution of a codeword,
while for Chase Algorithm 2 the factor is 2/%/?1~! 4 being the
minimum Hamming distance of the code. For Chase Algorithm
3 and GMD, a recursive procedure for calculating this ratio,
which turns out to be nonexponential ind, is presented. This
procedure can also be used for specifically identifying the error
patterns associated with Chase Algorithm 3 and GMD. Utilizing
the probability ratio, we propose an improved approximated
upper bound on the probability of error based on the union
bound approach. Simulation results are given to demonstrate and
support the analytical derivations.

Index Terms— Bounded-distance decoding, decision region,
nearest neighbors, pseudo neighbors, volume ratio.

neighbors In general, the union bound requires precisely that
knowledge about the (linear) code, namely, its spectrum of
distances:

P <

Z A(d;)Q(d; /20)

d;cF

whereF is the set of Euclidean distances between some code-
word and its Voronoi neighbors and{d;) denotes the number

of codewords at Euclidean distande Let d,,;, denote the
minimum Euclidean distance of a code. For high signal-
to-noise ratios (SNR) the number of the nearest neighbors
N, = A(dnin) usually suffices, as the contribution of the other
neighbors (located further away) to performance degradation

is relatively negligible.
A suboptimal decoding algorithm which decodes correctly
at least within the spheres of radids,,/2 centered on the
HE computational burden involved in optimal softcodewords is known as laounded distancelecoding (BDD)
decision decoding of good linear block codes is oftealgorithm. The shape of the decision regions for bounded
prohibitive. As an alternative, various suboptimal soft-decisiatistance algorithms is much more complex than that of optimal
algorithms, which trade performance for computationalgorithms as recently shown in [2]. More specifically, the
complexity, have been devised along the years. Whilmimber of nearest neighbors is increased due to the suboptimal
measuring the decoding complexity is an interesting probletiecoding process, and hence the overall number of nearest
in its own right, finding a unified yet feasible method witmeighbors, N, .x = N, + Nppp, is usually plugged into
which to evaluate performance of decoding algorithms isthe union bound in order to evaluate the performance of the
much more complicated task (be it a computer simulaticaigorithm. This, however, yields a loose bound because the
or an analytic approach). For the additive white Gaussi&nror contribution of a nearest neighbor that is generated during
noise (AWGN) channel with variance?, the performance the suboptimal decoding process is smaller than that of nearest
of a specific decoding algorithm is determined by theeighbor which is a codeword [2]. Note that bounded distance
decision regions of the codewords. When all these regions deroding algorithms do not necessarily increase the number
congruent, one must first determine the shape of a region (sefe,nearest neighbors [7], [12]. In this case, performance
e.g., [1]), and then integrate the noise density function withategradation is mainly due to additional shells of neighboring
this region to obtain the probability for correct decodingpoints, located close to the first shell (the shell of nearest
neighbors) [2], [9].
. ) ) Suppose that we can somehow obtain the ratio between
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form received vector € R", is a transmitted codeword < C
d. perturbed by a noise vecter ~ N(0,021), andr is given

P, = (No+n- NBDD)Q<§—;n> (1) byr =X +n.
A complete decoding scheme is a mapping 8" —C,

In the SeC]UEL such bounds are derived for the prominejuch that for every vector € R"™ it assigns a codeword,
Generalized Minimum Distance (GMD) and Chase decoding, < ¢. Denote be the estimated codeword given the
algorithms [6], [3]. The bounds are obtained after a cargeceived vector is, X = f(r) via (2). A decoding scheme that
ful examination of the decision regions of these algorithmgchieves minimum mean probability of error is called optimal.
Surprisingly, the dominant parameter influencing the decisigdr an AWGN channel with equal probability for transmitting
region of the algorithms, and hence the error ratjds the a particular codeword, the task of optimal decoding is equiv-
minimum Hamming distance of the code, alent to finding the closest codeword to the received vestor

While this paper focuses on the nearest neighbors, we n@temely, X = argminx, cx | X; — 7.
that the error ratiop can be defined more generally as a Several methods have been proposed for performing this
function of the Euclidean distance corresponding to the errgisk without explicitly computing the Euclidean distances
regions caused by neighbors at various distances. In this casgweens and all possible codewords. One such method
the union bound will have the form employs channel measurement and error vectors. We briefly

‘ ‘ describe this method below as it will become handy in
Fes dZG; Aldi)Q(di/20) + Z p)Alp)Q(p/20) following sections. Denote by the bitwise hard-decision
i pcr vector whose elements are given py = 0 for r; >0, and
where F is the set of Euclidean distances of the neighbots = 1 otherwise. Also, letZ,, denote the error vector
that are generated in the decoding process. Obviously, satisfying 2, 2Y @ C,,, whereC,, is a codeword andp
(1), 7 = n(dmin). For algorithms with no additional nearestdenotes modul@- addition. Then, the estimated transmitted
neighbors, i.e.Ngpp = 0, it would be of practical importance codewordX is the one with minimum “analog weightV’
to evaluaten(p) for the second shell of neighbors (e.@.+§ . o
for the modified GMD [9]) as their contribution to performance X =arg min, W(Zm)
loss may be significant. This, however, is not discussed in t\r/]v%ere

paper.
In the next section we establish notations and briefly review ~ )
the Chase and GMD decoding algorithms. For clarity of W(Zm) :Z [7ilZim,
=1

exposition we start our treatment with the Chase rather than

the GMD algorithm. Also in Section Il, themnion bound We shell henceforth refer to;| as theconfidence levebf the
and nearest neighborsre revisited. In particular, a refinedith symbol, and te; as thesoft valueof that symbol. Note that
definition is given to the termearest neighborThe Chase and r; is actually a signed likelihood measure of tile symbol.
GMD decoding algorithms are analyzed in detail in Sections

llI'and 1V, respectively. Conclusions and simulation results ag Description of Chase and GMD Decoding Algorithms
presented in Section V. Finally, the Appendix contains some

proofs and a supplementary example. Chase algorithms [3] are suboptimal decoding algorithms,

that is, the algorithms do not achieve minimum mean proba-
bility of error. In general, each of these algorithms generates
a set of error vectors, where each vector Has in the

Let C denote an[n,k,d] binary linear block code, with coordinates suspected as errors @relsewhere. By summing
M = 2¥ codewords. Each codeword; € C is a vector in each error vector with the original hard-decision vector, a new
GF(2)". A one-to-one mapping between each codewotd set of vectors is generated with the symbols inverted wherever
and X; € R", R™ being the Euclideam-space, is obtained an error was suspected to have occurred. All the newly
using the transformation generated vectors are then decoded with a binary decoder. This
binary decoder guarantees finding a codewffrithe Hamming

Il. PRELIMINARIES

X = (-1 distance between the candidate vector and some codeword is
= {(zi1, Ti2, -+, Tin): less than or equal tp52 | ; otherwise, the decoder will declare
zi; = (1% (e, ¢y, cin) € CH (2) a decoding failure. Following the decoding stage, a set of
) o codewords is obtained and the “analog weight” of all these
The resultant set’ = {X;, X5, -+, X} containsM distinct  dewords is computed. The estimated transmitted codeword

points, one for each binary codeword. Henceforth, we al§othe one with the minimum “analog weight.” If no codeword
refer to these points as codewords. The minimum squangds generated in the decoding stage, the hard-decision vector
Euclidean distance of the codeis given by is assumed to have been transmitted. Chase algorithms differ
d2,(C) = min||X; — X;|? = 4d in the manner in which they generate error patterns and in the
i number of the error patterns they produce.

where|| - || denotes Euclidean distance. The codewoYdsire * Chase Algorithm J(CA1): CA1 generates a large set of
assumed to be transmitted over an AWGN channel, wherethe error patterns. The error patterns generated are all the
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vectors which haved/2] 1's in them. There are{L’_;J) When suboptimal decoding is employed, the decision region
such error patterns to be considered. A sufficient conditié®no moreV (X;). Let D(X;) denote the decision region of an
for an error in the decoding process is tHé€;,Y) > d, X, under suboptimal decoding. That i8(X;) is the set of all

where C; is the transmitted codeword. the points ink™, where for eaclr € D(X;), » will be decoded
« Chase Algorithm ZCA2): CA2 generates a smaller sef© X;. Clearly,D(X;) determines the exact probability of error
of error patterns. The set of error patterns consists 8{/€n thatX; was transmitted
all vectors having any combination dfs in the | 4] 1 oo
coordinates with the lowest confidence levels. There are Pe(Xi) =1 —/ e Il X200 g
D(X;) (271'0 ) /

2Ll%) such error patterns to be considered.

« Chase Algorithm JCA3): CA3 generates the smallest set When optimal decoding is employed, there exists a
of error patterns. Each error pattern is a vector containiftyPer-sphere of radiug,,;,/2 centered onX;, denoted by
1's in the j symbols with the lowest confidence levelsB(X:, (dmin/2)), such that every received vector satisfying
For a code withd even, j takes the valueg = 0, 7T € B(Xi,(dnin/2)) is decoded ta¥;. A decoding algorithm
1,3,---,d—1. Whend is odd,; takes the valueg, = 0,2, that guarantees correct decoding whenever the received vector
4,---,d—1. The number of patterns is onI|y§ +1]. 7 is within a hyper-sphere of radiuk,;,,/2 centered on some
An upper bound on the probability of error for CA1-CA3codeword, is a bounded distance algorithm.
was derived in [3]. The error exponent of that bound is the The approximation of the union bound (4) takes into account
same for all three algorithms, as well as for optimal decodingnly the terms corresponding to the codewords at distance
An even more prominent suboptimal algorithm is the GMBmin from X;. All other terms are exponentially smaller and
algorithm proposed in [6]. A brief description of the algorithnthus can be neglected for moderate to high SNR'’s. Each of
follows. Initially, the symbols of the hard-decision vector aréhe terms considered corresponds to half-space error region
ordered according to their confidence levels. Assume that th¥feose closest point is at distanek,i,/2 from X; in the
exists a binaryerrors and erasure§EE) decoder. Such adirection of a neighboring point. In other words, the hyper-
decoder is capable of decoding correciffy the number of Pplanes that serve as the border of the half-space error regions
erasures and twice the number of errors, in the decoded vec@g tangent to the hyper-sphef.X;, (d..in/2)) at one point.
is less thand. Then, a sequence of EE decoding trials i§onsequently, the approximation for the union bound can be
performed, where in each trial a different number of leagescribed as follows: the number of tangent points between
reliable symbols are erased:— 1,d — 3,--- least reliable B(Xi,(dmin/2)), and V(X;), multiplied by the probability
symbols. Finally, the generated codeword, with the minimufat the noise in the direction of the tangent point is greater
distance from the received vectois the estimated transmittedthan duin /2
codeword. If no codeword was generated in the decoding trails,This approach can be adapted for BDD algorithms. The
decoding failure is declared and is treated as a decoding er@g@bability of error in this case is approximately upper-
bounded by the number of tangent points betw£¥rX ;) and
B. The Union Bound and Nearest Neighbors _B(Xi, (_cl11lin/2)), multiplied by the probability that the noise
. ) ) in the direction of the tangent point is greater thiagn, /2. The
The Voronoi region ofY;, V(X;), is the portion of/?” such mner of tangent points is traditionally denoted Ny ..
that for the points belongln_g to this portio; is the closest Np.et = No + Nopp, where N is the number of codewords
cod_eword. When the rgcelved ve(_:tor b_elongs to the Vorongi distancel,,;, from X;, and Ngpp is the number of points at
region, r € V(X;), optimal decoding will decode t0 Xi.  jistanceq, ;. from X, generated by the suboptimal decoding

The Voronoi regionV’(.X;) is a convex polytope whose faceg, cess, Thus an approximated bound on the probability of
lie in the hyperplane, midway betweeX; and as many as error when using a BDD algorithm is

M — 1 other codewords.
Probably the best known method for estimating the proba-
bility of error for optimal decoding is the union bound. The

o0 1 2 2
Pe(X;) = Ny / ———e W /27 g
(%) Octl din/2 V2m0?2 Y

union bound is an upper bound on the probability of error Ao
given thatX; was transmitted = NO,eHQ<2—Ol>- (5)
A The ab imation has two main deficiencies. Th
P.AX;) < ~(v?/25") 4 3 e above approximation has two main deficiencies. The
() < j=§#i /dz-j/z V2ro? P v @ first arises whenVy ¢ is very big. Note that in [2] it is
’ shown that some algorithms may have an infinite number
whered;; is the Euclidean distance betwedh and X;. of tangent points betwee®(X;) and B(X;, (dmin/2))- In

For moderate to high SNR’s, the union bound can ltose cases, and also when the SNR is not sufficiently high,
approximated using only the terms for whieh); = dwmin. this bound is useless as it may produce values greater than
Denoting by N, the number of codewords at distanég;, one. It is, however, the following deficiency that we address

from X;, (3) may be approximated by in the sequel. The aforementioned bounds assume that every
0o 1 tangent point betwee®(X;) and B(X;, (din/2)) Causes a
No/ exp= /297 gy (4) decoding failure whenever the magnitude of the noise (along
dmin/2 V2702 the axis betweenX; and the tangent point) is greater than
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dmin/2. Additionally, the bound assumes that the border of Proof: Assume that the codewomdwas transmitted and
the decision region is, at least locally, a hyper-plane that tisat decoding error has occurred. Recall that, = 2v/d. It
tangent taB(X;, (dmin/2)). It was recently discovered [2] thatwill be proved that the distance between the received vector
in several cases, locally, the decision region has the shaperaind 1 is no smaller than(d,,in/2) = V.
hyper-polygon rather than a hyper-plane. The aforementioned-irst, assume that there are more than 1 errors in the
bounds do not take this into consideration. hard-decision vector. This means that at leesgmbols satisfy
We now focus on the conventional nearest neighbors ofra< 0 and thus|jr — 1]|> > d.
BDD algorithm. The “common definition” states that a nearest The second possible event is when theredarej errors in
neighbor in a BDD algorithm is a poifite R™ at distancel,,,;;, the hard-decision vectot, < j < d — 1. Let ¢ denote the set
from X, such that there exists a corresponding tangent powttindices, such that; < 0. Also, let {;} and {¢;} be the
% betweenD(X;) and B(X;, (dmin/2)). This definition of confidence levels of the symbols with indices belonging to
nearest neighbors may in certain instances lead to incorrand ¢, respectively. The received vecterwill be inside the
performance estimation, as will be shown for CA3. Hence, weyper-sphereB(1, (duin/2)) if
propose an alternative definition for nearest neighbors.

dmin 2
Definition 1: (Conventional nearest neighbor of a codewordz (1+8) + Z 1-a)=[r-17< < 5 ) =d.
X;.) Every pointX € R™ at distancel,,;, from X;, such that “c® ice
X can be obtained by the transformation (2) of a (G (7)
vector, shall be called a conventional nearest neighbor if fEEt S(2) be the set of all indices belonging to boff(d)
everye greater than zero, there is an error region (X} with ande, S(e) = {S(d) Ne}. Assume thatS(z)| = m, where
ithi Xi+X ' = : =
nonzero volume within the hyper-spheb ==, ). Jj <m < d. Let S(e) be the set of all symbols belonging to
As expected, according to this definition, any codewaird S(d) ande, S(e) = {S(d) Ne}, [S(e)| = d — m. According
at distancel,,.;, from X; is a conventional nearest neighbor ofo (7)
X;, since one hemisphere &( X124 ¢) will not be decoded 2 2
to X,. The motivation for Definition 1 is the following. Z (L+6:)" + Z (1-e)

Let X and X; be defined as in Definition 1, except that <> €5
X is not a codeword. For on the axis connecting¥ < Z (1+6)°+ Z (1-e)<d
and the transmitted codewordl;, CA3 can decode correctly i€e ice
even when||.X; — 7|| > (dmin/2) + ¢, Wheree is small. We d—m+2 Z 8 + Z &2 +m
prove, however, that there is a region withB(*+X ¢) e iese)
where CA3 fails to decode, even for infinitely smallThus 5
the contribution of any such poink should be taken into -2 Z €+ Z 6 <d
consideration when estimating the error probability. Indeed, i€sE) €S
Definition 1 also accounts for this type of points.
Finally, following the definition ofpseudo neighborgiven 2l > 6= > a|+ D&+ > <0 (8
in [2], pseudo nearest neighboese defined as follows. Let i€S(e) i€S(e) i€S(e) i€5(e)

X, be the transmitted codeword. Denote bythe set of all From (6)
the points! € R™ satisfying ||l — X;|| = duin, Wherel is

not a conventional nearest neighbor. Then, a pseudo nearest Z 5 — Z € >0 9)
neighbor is a poinf € L such that, for every > 0, there is ieS(e) i€S(e)
a nonzero volume withilB(“£*:  ¢) in which decoding error

thus the left-hand side of (8) is a sum of nonnegative compo-
nents and hence greater or equabtdhereby encountering a
contradiction. Concluding, if (6), which is an error condition,
I1l. PERFORMANCE ANALYSIS OF CHASE ALGORITHMS holds, thenr & B(1, (dwin/2)). O

To employ the union bound (5) for estimating the perfor- |t can be seen from the proof of Theorem 1, that the received
mance of Chase algorithms, one must first prove that they &torr, at distanced,,,;,, /2 from the transmitted word, might
indeed BDD algorithms. Our proof employs a result deriveghse a decoding errif there ared symbols with confidence
in [3, Appendix I] and is stated as follows. Assume withoUeye| o, andn —d symbols with confidence levél Otherwise,
loss of generality (w.l.0.g.) that the ¢ R* (all-zero binary) ihe |eft-hand side of (8) will be greater than zero and a
codeword was transmitted and fetlenote the received vector..oniradiction will be encountered. Every vectothat satisfies

A necessary condition for error in decodings the existence e apove condition corresponds to one of(tf;)aconventional

OCcCurs.

of a set of indicesS(d), where|S(d)| = d, such that nearest neighbors. It also follows from the proof of Theorem 1,
that the received vectar at distancd d.,i,, /2) + ¢, wheree is
Z i < 0. (6) small, that will cause a decoding error, must be in the “area”
i€S(d) of the midpoint between a conventional nearest neighbor and

the transmitted codeword; if not, we will get contradiction in
Theorem 1: Chase algorithms are BDD algorithms. (8). This leads us to the corollary
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.c, ——  CAl
ML
------ BDD

o C

Fig. 1. Chase Algorithm 1, borders of decision regions for codewgrdcs noncodewordiz codeword.

Corollary 1: Chase algorithms do not have pseudo neare8éction V) in spite of its large number of nearest neighbors.
neighbors. This contradiction can be easily resolved by recalling that there
Additionally, as proved in the Appendix for the new defid’® 'vgrious t.ypes of nearest neighbors differently affecting the
nition of a conventional neighbor, we have deC|§|on region [2]. The bound (5) does not take this fact into

consideration.

Proposition 1: Chase algorithms have'’;) conventional  Fig. 1 demonstrates this phenomenon for fRet, 4] ex-
nearest neighbors. tended Hamming code. A two-dimensional cross sectioR®f
dp presented. The plane shown is defined by the three points

c1, ¢2, ¢z, Wherec; = 1, ¢2 is a noncodeword nearest neighbor
to ¢1, andes is a nearest neighbor which is a codeword. Fig. 1
Pe(X:) ~ <n>Q<@> (10) shows fragments from the boundaries of the decision regions
‘ d 26 )’ D(1), andV (1), as well as the hyper-sphef®(1, (d.,in/2))
They are denoted by CA1, ML, and BDD, respectively. The

From here and throughout this section, the term nearggjdewordcs induces, locally, a straight boundary line that is
neighbor refers to a conventional nearest neighbor. Later, @Bgent toB(1, (duwin/2)) midway betweencs and c;. The
improvement to this bound will be presented. This improvesoncodeword nearest neighbor induces a tipped shape bound-
ment will b(_e achie\_/ed by virtue of the fa_lct that a no_npodewo_rfgry line that touches the hyper-sphere. This figure suggests
nearest neighbor induces, locally, a different decision regigfly; 4 noncodeword nearest neighbor has lesser probability of

It follows that, for Chase algorithms, the approximation
the union bound as described by (5), is

than a codeword nearest neighbor. causing decoding error than a codeword nearest neighbor.
_ In order to tighten the approximation for the union bound
A. Chase Algorithm 1 (5), we will quantify the difference in the probabilities for

CA1l is a rather inefficient decoding process requiringausing a decoding error, between a codeword and a noncode-
(I_d72J) binary algebraic decoding trials and producing at modtord nearest neighbors. Assume w.l.0.g. thatthemdeword
that number of candidate codewords. Note that this numbias transmitted. Denote by, a codeword nearest neighbor
can be even greater than the overall number of codewrds and by Xgpp a noncodeword nearest neighbor. Denote by
According to (5), a large increase in the number of nearest = 12 the midpoint betweetX, and1, and byygpp, =
neighbors should cause a large degradation in the performanle‘é?@ the midpoint betweenXgpp and 1. For clarity of
surprisingly, CA1 performs practically optimal [3] (see als@xposition, let7;, and Igpp denote the hyper-spheres with
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Fig. 2. Chase Algorithm 1[8,4,4] code: volume ratio versus empirical probability ratio.

a small radiuse, centered ony, and ygpp, respectively.  Computingn involves integrating the term®” over a vol-
Denote byeg and by egpp the regions inZ, and Igpp, ume whose boundaries are rather complex. This is a difficult
where decoding error occurgy = {p: p € Tp \ D(1)} problem, for which no explicit expression is known. One
espn = {p: p € Trpp \ D(1)}. Note thateg and egpp  way of approximating the probability ratig is by using
are the same for aly, Xppp, and for any “transmitted” the ratio, V(egpn)/V(ep), between the volumes ofgpp
codeword. This is evident foeg, while for egpp it follows and eq. For ¢ small, alternatively for high enough SNR, all
from the fact that for a binary linear code with the mapping (2)he points contained in the hyper-sphetigsand Ispp have
the analyzed algorithms [3], [6], do not make any distinctioapproximately the same probability. In light of the above, we
between codewords or symbol valu¢8,1}. Since ey and can write

egpp are close to the transmitted codeword (relative to the

complete error regiofp: p € R™ \ D(1)}), the probability (P(eppp)/P(eo)) = (V(erpp)/V(co))-

ratio The regioneg is simply a hemisphere, its volume is thus given

by [4] V(eg) = iV,.e, whereV,, = (7"/2/I((n/2) + 1)).

_ Plespp) a P(r € cppp) The volume of the regiorgpp is given by the next theorem.

P(Go) - P(’I" c 60)

Theorem 2: For Chase Algorithm 1

provides significant information on the relation between a V(espp) = (Vne”'/2d).

codeword and a noncodeword nearest neighbor in terms of

their contribution to the error probability. Using as a Proof: Let g(ygpp) be the set of indices such that
multiplying factor of Ngpp yields a better approximation for ygpp, = 0. Note thatg(ygpp) is one of the(%;) setsS(d)

the upper bound (5). In generaj(p) is defined as the ratio defined from (6)Zspp, whose volume i3/ (Tspp) = V,.€”,
betweenP(egpp) corresponding to the error region whose&an be partitioned int®? equal and disjoint portions as
closest point is at distancg from 1 and P(eo) corresponding follows. Each portion is composed of all the vectprs Tspp,

to the hemisphere-shaped error region at dista@pa‘rom such that for every indeke g(yspp), p; has a constant sign.
1. In this work, our attention is restricted to the particulaFor instance, one such portion is obtained by letting all the
casen = n(dmin) Since the first term of the union boundsymbols with indices belonging t9yzpp ) to have a positive
corresponding to the nearest neighbors, usually (and the aoft value. It is clear that all portions have the same volume,
alyzed algorithms [3], [6], are no exception) dominates thend the union of all the portions iBgpp. When ¢ is small
error performance. enough, the transmitted codeword is the closest codeword to
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°c, —— CA2
— ML
-—-- BDD
.CZ
Fig. 3. Chase Algorithm 2, borders of decision regions for codewgrdcas noncodewordiz codeword.
every point inlspp. Hence, decoding error will occur (withinj = 1,---,2¢. Then clearly
Tspp) only if the transmitted codeword is not one of the
generated candidates. It follows from [3, proof of Theorem P(ep) P(eo) T i
1] that this occurs only in the portions where all symbols P(e ) = Pl = P(ch) Z Pey) >2%
with indices belonging t@(yspp) have negative soft value. BbD 0 07 =1
In all other portions, no decoding error will occur as there _ V{eo)
will be fewer thand hard-decision errors and the transmitted ~ V(empp)

codeword will be one of the candidates. This leads us to the
conclusion that decoding error occurs in orilly2¢ of the It should be emphasized that the proof is independent of the

volume V (Tspp). Clearly now,V (egpp) is the same for all SNR, and holds for a wide range efThis is demonstrated in
O Fig. 2 for the[8,4,4] code by means of computer simulation
The trace representing the volume ratif2*=* is uniformly
higher than the probability ratio traces corresponding to several
P(espp) _ Viespp) 1 values ofe, ranging from0.01 to 0.2, and for the entire SNR
Plco) ~ V(eo) = 561D (11) range. Similar behavior has also been observed for the rest of
the algorithms discussed in this work.

XBDD-

Consequently, for Chase Algorithm 1, we obtain

and, therefore,
N do B. Chase Algorithm 2
= BDD min
Pe(X) = <N0 + W>Q< 2% ) (12) CA2 trades performance for computational complexity. It is
more efficient than CAL, as it considers just a subset of the

In fact, the volume ratio is an upper bound on the probabiligrror patterns used by the latter. As in Fig. 1, Figs. 3-5 present
ratio [5]. The proof is rather lengthy and therefore onlywo-dimensional cross sections Bf for the [8, 4, 4] extended
sketched in the following. Partitidf asZapp into 2¢ disjoint  Hamming code. In Fig. 3¢; = 1, ¢ is a noncodeword
portions. Clearly, there exists one portigne 75, obtained via nearest neighbor te;, and c; is a nearest neighbor which
isometric mapping oéppp, such thatP(el) = P(egpp)- All  is a codeword. Clearly, the noncodeword nearest neighpor
the portions ofl;, are isometrically equivalent (to each otheraffects the probability of decoding error less than a nearest
by construction; however, it can be shown thats the portion neighbor which is a codeword. In Fig. 4, = 1 andcs, c3 are
furthest away from and hence satisfying(¢}) < P(¢})) for noncodeword nearest neighbors:toHere, a nearest neighbor




FISHLER et al. GEOMETRICAL AND PERFORMANCE ANALYSIS OF GMD AND CHASE DECODING ALGORITHMS 1413

—_— CA2

ML

G BDD

.’./. \\'\
e N
! \
; :
! \
| °C1 oc2

Fig. 4. Chase Algorithm 2¢> and ¢3 are noncodeword neighbors.

which is not a codeword seems to behave as if it were a codlee points (vectors) ifspp for which the confidence levels
word. Note that in Figs. 3 and 4 the same nearest neighbof the firstd symbols are ordered similarly. Denote #%,,
c2, behaves differently since the figures present different cras® portion satisfying

sections. The points;, ¢2, andes in Fig. 5 are the same as in 1

Fig. 3. The figure presents a fragment from the border of the Tpp = {tlt € Topp &fts] < [t2] < -+ < [tal}-
decision regions of Chase Algorithms 1 and 2, on the sangearly, V(Tapp) = (Vae™/d!). The portion T, can be
plot. Note that the same noncodeword neighbgreontributes  fyrther partitioned int@¢ subportions, where each subportion
to the decision error of CA2 more than to CAL. This differencg comprised of all the vectors, such that the soft values of
in the decision regions af, demonstrates where CA1 gains (inhe firstd symbols have constant signs. Note that sinde
performance) over CA2. We now turn to compitéespp)  small, hard-decision errors can occur only within the fifst
for CA2. But first, the following conclusion is drawn fromsymbols. From Conclusion 1, decoding error will occur only in
[3, proof of Theorem 1]. those subportions 6fL ., for which the[d/2] symbols with

Conclusion 1: Let X, r, andY be the transmitted, received,ndices {|d/2] sz_/Qlj -, d} have pega_tivle soft values. There
and hard-decision vectors, respectively. If there are at le4&€ altogether'®=! such subportions iffy,,, corresponding
[d/2] errors inY outside the set ofd/2] symbols with the to all comblngtlons of signs in the firtl /2| symbols. (In all
smallest level of confidence, the transmitted codeword will n8fn€r subportions the transmitted codewdravill be one of
be a candidate, and an error will occur while decoding the generated candidates, and hence selected as the decoder

Without loss of generality, assume that the codewbmdas OUtPUt) We thus have

trarllsmitted.Xo, XBDD, Yo, YsDD: €O» CEDD, andIgpp are V(C%BDD) — V(TI}BDD) (2|.d/2J /2‘1) — V(TéDD) (1/2[‘1/21)
defined as before. The next lemma gives the the volume of
the regionerpp. Finally, since the above derivation is exactly the same for any

of the d! portions of T5pp, We get

Theorem 3:for Chase Algorithm 2
V(GBDD) = (Vnén’/2[d/21). O

V(@BDD) = ‘/;,,cn/2[d/21 .

Proof: Assume w.l.o.g. that the set of indices, satis- Consequently, for Chase Algorithm 2
fying ygpp, = 0, is {1,2,---,d}. Tgpp can be partitioned 1 (13)

into d! equal and disjoint portions. Each portion comprises all 17 Slaja—1
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Fig. 5. Chase Algorithm 1 and 2, different decision borders for the same pgint
and, therefore, We refer to this phenomenon as @rinel effect This figure,
N Ao however, is misleading. It seems to contradict Proposition 1,
Pe(X;) & <N0 + 2[(1]/%;])1)Q< ;““) (14) for it appears that there exists a hyper-sphere centered on
- [o)

%, in which no decoding error occurs. Fig. 7 presents a

Equations (11) and (13), reveal an interesting property 8fifted and rotated cross section about the midpéigi=
Chase Algorithms 1 and 2, respectively. The contribution @1, p2, andps were chosen such thdtirz = <dcz) there
error probability of a noncodeword nearest neighbor drofg no tunnel here. In fact, the decision region in this cross
exponentially withd andd/2, for CA1 and CA2, respectively section appears just asd were a codeword.

As in the case of CAL, the volume ratio is an upper bound onFigs. 6 and 7 also indicate that computing the volume ratio
the probability ratio. The proof is not much different than fofor CA3 is not an easy task. While for the previous algorithms

CA1 and is supported by simulation results (not presentedannecessary and sufficient condition for decoding error was
this paper). Recently, an upper bound has been derived on dleeived, for CA3 we develop recursive formulas for computing

bit-error rate (BER) performance of CA2 [8]. This bound ishe volume ratio and thus eliminating the need for such a
based on a probabilistic rather than a geometrical method aighdition.

is more complex to evaluate than the proposed bound. Assume w.l.0.g. that the codewoidwas transmitted. Let
Xupns ¥ron, Ieon, and T, be defined as before. Let
C. Chase Algorithm 3 ehpp be the portion off},, where decoding error occurs.

CA3 is the most efficient of the Chase algorithms, the priddecall thatV (Tipp) = (Ve /d!), and thatygpyp, is 0 in the
is further degradation in performance. The decision regidist d symbols andl in the nextn — d symbols. T3y, can
of CA3 has quite an interesting shape. In Fig. 6;,= 1, be further partitioned int@? equal and disjoint subportions,
¢2, and c; are noncodeword nearest neighborscto In the ~€ach of volumé/ (Tp,,)/2¢. Clearly, withinV(1), CA3 will
depicted cross section, the decision region is not at all tangégit to decode correctlyff the transmitted codeword is not one
to the bounded distance hyper-sphere at the midpsing&  of the generated candidates. Henceforth, we shall also assume
and 24 as is usually expected. Referring ¢p andc;, the that the symbols are arranged according to their confidence
magnitude of the noise can be greater th&p,/2, on the values in a nondecreasing order.
imaginary line connecting; andcz, so that there aré symbol Let us define thd.-order Chase Algorithm &s the original
errors in the hard-decision vector, yet CA3 decodes correctfyA3, only considering a smaller set of error patterns. This set
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Fig. 6. Chase Algorithm 3tunnel effect c2 and ¢3 are noncodeword neighbors.
is comprised of the all-zero error pattern, and the error pattersasd then
with I'sinthed—1,d—3,---,d— L symbols with the lowest L 4 L
confidence levels. Finally, we denote by, the number of V(eppp) = (a(d)/29)V (Tpp)-
combinations (error patterns) of exactlyerrors among the Not all values ofa’. need be computed (clearlyd,, =

7 s

symbols with indicesd — L + 1, --,d—assumingj errors at , = 0). The following proposition, proved in the Appendix,
among the firstt — L symbols and no errors among the Iaséujmmarizes all the cases for whigl, = 0

n — d symbols—such that thé-order CA3 fails to generate b
the transmitted codeword. Note thais an odd integer, where  Proposition 2: aﬁj = 0 if any of the following conditions
for d odd, L can range betweeh and d, and ford even,L holds:

can range betweeh andd — 1. i) i<0 or i>L;

Example 1:Ford = 6, ang =2 If and only if there are iy j<0 or j>d-—L;
errors in the symbols with indice$ 6 or 5,6, and assuming
that there is only one error in the symbols with indideg, 3, _ . 2 it
than the transmitted codeword will not be generated by theiV) i+ (d— L) —j < [95*].

3-orgler le‘% oved | _ t The next lemma establishes the recursive relation between
oF. will be employed in a recursive manner to comsy, 7, L2
J pioy {ai;tijez and{a;; "}tz

i) i+ < Gh

?

putejv(eBDD). The general notion is demonstrated by the o . .
following. For, say,d odd, a¢, represents the number of Lemma1:lf ¢, d, andL do not satisfy any of the condi-

(equal) subportions of},,, each subportion correspondingions of Proposition 2, then

to ¢ errors, such that CA3 fails to generate the transmitted L L—2 L2 L—-2
' a; . =a; "+ 20 A s . 15
codeword. Thus compute R L e (19)
Proof: Let us denote the set aﬁj error patterns byjfj.
d—1 The proof consists of four parts as follows. 1) It is first proved
a(d) = Z aty, that for every error patterp € pf:j_Q, there exists at least one

i=1 patterny’ € pfj. Let »’ represent the sameerrors as does
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Fig. 7. Chase Algorithm 3, a shifted and rotated version of Fig. 6, no tunnel here.

among the symbols with indices- .43, - - -, d, and no errors patternp described in Part Ill. This concludes the proof of the
in the indicesd — L.+ 1, d— L+ 2. For the error patterp’, the opposite inequality and the Lemma. O
L-order CA3 will fail to generate the transmitted codeword
in any of the decoding trialsi + (d — L) — j > |d — 1/2]
guarantees failure in the trial where tthe L lowest confidence
symbols are complementeg; € pff guarantees failure in
all the remaining trials. Thus evidently) &€ pfj. I It is

Computing the number of subportions ®f,;, in which
decoding error occurs is rather simple using Proposition 2
and Lemma 1. Fod odd, respectivelyd even, computez;{j,
respectively,afgl, for ¢,5 € Z. Let «(d) denote the result of
the summation of all the relevant terms, i.e., fbodd

shown that for every error pattep € p/ >, ,,, there exist

at least two patterngp’, p’} that belong top/;. Simply, let d-1 4

p’, respectively,p”, represent the same— 1 errors as does o(d) = ;0

p, among the symbols with indice¢ — L + 3,---,d, and =1

one error in the symbol with inded — L + 1, respectively, and for d even

d — L + 2. Using the above arguments, it is straightforward d_1

to verrlnythat {¢/,p'} € pf:j. [ll) Finally, for every pattern a(d) = Z (a;lal +a;1:111).
P € p;"5 ;42 there exists at least one patterne pﬁj. The = '

patternp’ represents the samie- 2 errors in the symbols with L 4 L i
indicesd — L + 3,-- -, d, and two errors in the symbols with 1€V (eapp) = ((d)/2)V (Tpp)- It is now left only to
indicesd — L+ 1, d — L + 2. Thus far, we have shown that es_tabllsh the |_n|t|al cond|t_|pns for the recursive _re_lgtlons. When
d is even (using Proposition 2), the nonzero initial terms are
af; zal7? 420770+ al T, Lo =al = 1. Whend is odd, the onl
i Z % i—1,j+1 T B2 j42 a1 (as2) = @1(a/2-1 = 1. Whend is odd, the only nonzero
IV) The opposite inequality initial term isaj ;, ;o) = 1.
Al < alm2 1 9q072 4 gl=2 In the table at the bottom of the following page(d) is
_ _ A listed for some values af. It is noteworthy thatv(d) has the
is easnry derived using .S|m|Iar arguments. For every pattefd e order of magnitude @&~ for the presented values.
v € pi;as descgbed in Part | above, there exists at leagf, g (4)/2(¢~1 is close to one, as can be seen in Table Il of
—2 . .
one patternp € p; ;= for instance the patterp desinbed Section V. In the Appendix we give the complete derivation
in Part 1. For every pair of error patterig’, p”} € p;; @ of «(d) for d = 5, as an illustrating example. Also for CA3,
described in Part Il above, there exists at least one error pattgfigulation results show that the volume ratio is an upper bound
pE pf_‘fjH, for instance the patterp described in part Il gn the probability ratio.

For every pattery’ € pf; as described in Part Ill above, |n conclusion, since the derivation &f(ckp,) is the same

there exists at least one pattepns pf_}?jﬁ, for instance the for any otherZ%p,, then clearlyV (eppn) = (a(d)/24)V,em.
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Consequently, for CA3y = (a(d)/2¢71), and, therefore, based on the following two lemmas. Lemma 2 is readily
o(d) doin applicable for odd values of.
Pe(X;) =~ <No + —d_lNBDD>Q< ) (16)
2 20 Lemma 2: For L odd, andl < L < d
, j -1 i=2 L] <
i a e t2a Ty, for [Z] << L
IV. PERFORMANCE ANALYSIS FOR THE GMD ALGORITHM Ty, { 0. otherwise.

The GMD algorithm [6] is one of the first suboptimal Proof: Clearly, j > L is irrelevant because the number

tgf errors cannot be greater than the number of symbols. Also,
"M i< [L/2], when erasing the — L symbols with the lowest

- . . o ‘Whidence levels the transmitted codeword will always be
likelihood decoding, i.e.Noz = No- In [12] it is proved generated by the EE decoder. The remainder of the proof

that the GMD decoding a_\lgorithm is BDD. Moreover, _fromclosely follows the proof of Lemma 1, with the exception that
[12, proof of Theorem 1] it follows that the GMD aIgonthmGMD decoding uses erasures rather then bit completidd.
t

does not have pseudo nearest neighbors. Thus by a neares
neighbor we shall henceforth be referring to a conventional For even values of the next lemma is employed along with
nearest neighbor. The above properties allow us to evalubgmma 2 in a complimentary fashion, as will be described
the performance of the GMD algorithm by using (5). Thidelow.

bound, however, can be tightened by taking into consideration ) .

the different effect of the nearest neighbors on the decisionLemma 3 For'd event and(d/2) S j=d

region. @y g = afi—(dfl) + afi:%dfl)'

Assuming the same geometrical scenario (\spp) and
notations as with CA3, we next describe a method for calcu- R ,
lating the number of subportions @8, in which decoding Pa—z- First, it is shown that for every pattem e py_,_;
error occurs. Let us define the-order GMD algorithmas there exists at least one patteshe p, ,. p’ is the pattern
the original GMD algorithm, only considering a smaller satepresenting errors in the same positions asgnFor p/, the
of erasure patternsThis subset is comprised of the erasurerder< GMD algorithm, which is simply the original GMD
patterns of thed — L,d — L + 2,---,d — 1, symbols with algorithm, will fail to generate the transmitted codeword in
the lowest confidence levels. Denote &Y , the number of any of the decoding trials: the decoding trial with no erasures
combinations (error patterns) of exacjlyard-decision errors, (conventional algebraic decoder) will fail singe> (d/2);
among the symbols with indices— L + 1,---,d, such that failure is guaranteed in all remaining decoding trials due to the
the L-order GMD algorithm fails to generate the transmittedact thatp pfl_(d_l). Next, it is shown that for every pattern
coo!ey\{ordl. The following examples are given to clarify this, ¢ pé:%dfl) there exists at least one pattgrhe p’_,. Let
definition. p’ represent the sanye-1 errors as doeg, and one additional

Examp|e 2: af{—d represents the number of combinationgfror in the Symbol with the lowest confidence level. Usmg the
of j errors among thel symbols with the lowest confidence@bove arguments, it is straightforward to verify tpat p; .
levels, such that the GMD algorithm fails to generate tH& conclusion, we have shown that
transmitted codeword. Note that each combination corresponds
to one of the2* portions of T3 p-

presented in [12] and [7] suggest a modified GMD algorith
which has the same number of nearest neighbors as maxim

Proof: Let us denote the set af,_, error patterns by

j j j-1
Uy g 2 Cq_(q—1) T Fg_(q_1)-

) ) The opposite inequality, i.e.,
Example 3:For d = 8,43 ; = 0. Since the received ;

: : ; o <ad + al !
vector will undergod — 1 erasers but it contains no hard- d—d = "d—(d—1) d—(d—1)
decision errors—the EE decoder will generate the transmittisdderived using similar arguments. O
codeword. The initial conditions, given below, are easy to derive
Example 4:For d = 8,42 , = 2. The received vector I {17 forj=1
undergoes two erasure trials: the first five, and then first -t 0,  otherwise.

seven symbols are erased. When the symbols with indicEse number of subportions @, in which decoding error
7,8 are in error, the EE decoder will fail to generate theccurs, is obtained in the following manner.
transmitted codeword in both erasure trials. The same holds For 4 odd use Lemma 2 to determine{?d for all j

for the symbols with indices, 8. _ satisfying | 452 | < j < d. Calculate the sum

a),_; will be employed for calculating the number of .
subportions of7zpp in which decoding error occurs. The p(d) = Z @y g
termsa’, ; needed for this task can be computed recursively i

ald | 2 | 5 | 5 | 14 | 14 | 42 | 42 | 132 | 132 | 429 | ~35-10° | ~130-10°
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Fig. 8. Chase Algorithm 1, simulation results and bounds.

Out of the2¢ possible subportions dfi,,, 3(d) repre- then clearlyV (egpp) = (3(d)/24)V,¢". Simulation results,
sents the number of subportions in which decoding erropt presented in this paper, show that the volume ratio is

occurs. an upper bound on the probability ratio also for the GMD
e For d even use Lemma 2 to determine; ., for all algorithm. Finally, for the GMD decoding algorithm, the
j satisfying|d — 1/2] < j < d. Calculate _ﬂ(]e_sum approximated bound given by (5) can be tightened as follows:
‘ ‘ J /j(d) dmin
v = zj: aflf(dfl)' PG(XZ) ~ <N0 + 2d_1NBDD Q 20 - (17)

From Lemma 3 it follows that
Jj o _ J V. CONCLUSIONS AND COMPUTER SIMULATIONS
Zad—d =2 Z Ty (a-1)
J J

A refined definition of the ternmearest neighborss sug-
hence let3(d) = 2v. As in the previous cased(d) 9ested. Usjng this definit.ion we.identify and enumerate the
represents the number of subportions in which decodif§arest neighbors associated with the Chase decoding algo-
error oceurs rithms, not before proving that these algorithms are indeed

' . L bounded distance. Then, an improved approximated upper
In the table at the.bottom of this pagd) is listed for bound on the probability of codeword error for the Chase
some values ofl. Similar to o(d), 3(d) has the same order 4 GMD decoding algorithms is presented. This bound
of magnitude aQ(d_l): thus 3(d)/2(*~") is close to one, seejs pased on the union bound approach while taking into
Table I of Section V. _ consideration the different influence of the different types of
Given p(d), we may writt V(eppp) = nearest neighbors on the decision region.
(B(d)/29)V(Tipp). Since the derivation of Vi(ekpp)  In order to quantify this difference, we introduce thb-
is exactly the same for any other portidf,, of Tspp, ability ratio, n. n represents the ratio between the error

B(d) 3 6 10 20 35 70 126 252 462 924 ~ 155 - 10° ~ 601 - 10°
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Fig. 9. Chase Algorithm 2, simulation results and bounds.
TABLE | tance algorithm; and a modified union bound (e-MUB) based
THE VOLUME RaTio on the empirical computation of the ratiB(cppp)/P(co).
ALGORITHM | CAL | CA2 | CA3 | GMD Ad_dmonally, we plot the error p.r(_)babmt.y as given by the
" i 1 a(d) B(d) union bound (UB); and the modified union bound based on
= 2D | o1 | A0 | 20D the volume ratio (MUB).

The results for CA1 are depicted in Fig. 8. As can be seenin
this figure, CA1 is practically optimal. This may be explained
contribution of a noncodeword nearest neighbor and a neargst follows. Although the number of noncodeword nearest
neighbor which is a codeword. Since the probability ratio is tageighborsNgpp is much higher thadVy, the contribution (to
difficult to calculate directly, we approximatgby using the error probability) of a noncodeword neighbor is considerably
ratio between the corresponding error volumes. The improvgghaller than that of a codeword neighbor. Note that at word-
bound is of the form(Ny + 7Nppp)Q(dmin/27). error rate (WER) ofx 4 - 10~* the modified bound, MUB,
Table | summarizes the obtained volume ratios for the only 0.25 dB from the actual simulation results, while the
aforementioned decoding algorithms. Specific values(@f) union bound is 0.8 dB away. The modified bound is much
andg(d) should be calculated according to the procedure in thighter than the union bound also for low SNR. The empirical
corresponding sections. In Table Il we list the approximatésbund, e-MUB, is even tighter, only 0.15 dB from the actual
7 associated with the decoding algorithm for several valuessults. The 0.1-dB difference between MUB and e-MUB
of the minimum Hamming distancé Note that the volume suggests that, in the case of CA1, the volume ratio is a very
ratio is exponential in{ for CA1 and CA2, but not for CA3 close approximation for the probability ratio.
or GMD. This accounts for the different performance of the CA2 is much more efficient than CAL. It involves only
algorithms as obtained from simulations. four algebraic decoding trials as compared to 28 trials
Finally, we present some simulation results. A simple exequired by CAl. Nevertheless, its performance, presented
ample, the[8, 4, 4] extended Hamming code, has been chosém Fig. 9, are only 0.125 dB worse than the optimal. For
to demonstrate the gain of the improved bound over tlikis algorithm, at WER ok 2 - 10~4, the empirical modified
union bound. For each of the bounded distance decodibgund, the modified bound, and the original union bound,
algorithms treated in this work, we plot the simulation resultgspectively, are 0.35, 0.45, and 0.7 dB away from the
of: maximume-likelihood decoding (MLD); the bounded dissimulation results. Again, the 0.1-dB difference between
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Fig. 10. Chase Algorithm 3, simulation results and bounds.
TABLE 1l
SOME SPECIFIC VALUES OF THE VOLUME RATIO
la [ 3 | 4 [ 5 [ 6 | 7 [ 8 9 | 10 |
CAl 0.2500 | 0.1250 | 0.0625 | 0.0312 | 1.562.1072 | 7.812-1073 | 3.9-1073 | 1.95-1073
CA2 0.5000 | 60.5000 | 0.2500 | 0.2500 0.1250 0.1250 0.0625 0.0625
CA3 0.5000 | 0.6250 | 0.3125 | 0.4375 0.2187 0.3281 0.1640 0.2570
GMD | 0.7500 | 0.7500 | 0.6250 | 0.6250 0.5496 0.5496 0.4922 0.4922
[d | 1 12 28 | 29 [ 30 [ 3 ]
CAl 9.765-107% | 4.88-107% | 3.72.107° | 1.862.107° | 9.31.10719 | 4.65.1071¢
CA2 0.0312 0.0312 6.1-107° 6.1-107° 3.05-107° | 3.05-107°
CA3 0.1280 0.2094 0.0361 0.0659 0.0329 0.0603
GMD 0.4512 0.4512 0.2989 0.2889 0.2889 0.2779

MUB and e-MUB suggests that the volume ratio is a vemot a tight enough approximation. Note that since all three

close approximation for the probability ratio. algorithms have the same nearest neighBaysg, the original
CA3 is the most efficient among the Chase Algorithmsinion bound cannot distinguish between them, and is thus the

indeed, for the price of performance. At WER®sf2-10~%, same for all. As noted in [2], however, in different decoding

it is 0.2 dB worse than the optimal, as can be seen algorithms, the same neighbors may differently influence the

Fig. 10. The empirical modified bound and the modified bourdkcision region. This is evident from the presented simulation

almost coincide, 0.35 dB from the ML simulation resultstesults, and indeed taken into consideration by the modified

The original union bound is 0.6 dB away from the MLunion bound.

simulation results. For this algorithm, the volume ratio is The results for the GMD decoding algorithm are depicted

evidently closer to the probability ratio, even more than in thia Fig. 11. The simulation range has been extended here up to

previous algorithms. Unfortunately, this may imply, certainflBNR= 9 dB. At WER of~ 10~*, the GMD algorithm loses

for the presented SNR range, that the probability ratio 625 dB as compared to the ML algorithm. That is 0.05 dB
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10

Fig. 11. GMD, simulation results and bounds.

more than CA3, while their decoding complexity and nearest Chase Algorithm 3:Although it has the same nearest
neighbors are identical. The empirical modified bound, theeighbors as do CA1l and CA2, the proof is different in
modified bound, and the original union bound, respectivelthis case. Assume w.l.0.g. that =0 for ¢ € {1,---,d}. For
are 0.3, 0.4, and 0.55 dB, away from the ML simulation results.sufficiently small, such that ¢ € T,

max t < min t;
APPENDIX oax |t:] joqdhn I;]

Proof of Proposition 1 T, can be partitioned intd!(n—d)! equal and disjoint portions.

Assume (w.l.0.g.) that th& € R™ codeword was transmit- Each portion corresponds to one combination of ordering of
ted. LetV € GF(2)" be a vector at Hamming distanddrom the symbols according to their confidence levels. Let
the all-zero binary codeword(V,0) = d.There are exactly L
(%) such vectors. Denote by the Euclidean version oV T, ={tt e L & |ta]| <, - < |tal}-

via the transformation (2)X hasd symbols equal te-1, and - . L
(@)X y g T} can be further partitioned int@¢ equal and disjoint

n—d symbols equal td. Lety € R"™ be the midpoint between yb " h h subportion i ised of all th
X and1, that is,y = X;A_ » hasd symbols equal t®, and subportions, where each subportion is comprised of all the

n — d symbols equal td. Let T, be the hyper-sphere with gVectorst € T, such that the soft values of the fizssymbols
small radiuse centered.ory Y have constant sign. Now, consider the subportioiflbf/vhere

the first |d/2] symbols have positive soft values (correct
Chase Algorithm 1:Let 7, be the portion off,,, such that symbols) and the followingd/2] symbols have negative soft
Tl} = {t|t € T}, t; <0,Vy, = 0}. According to [3], decoding values (errors). Evidently, the volume of this subportion is
failure will occur for every vectot € Tyl.This proves thatX nonzero, and CA3 will fail here. In conclusion, we have shown
is a conventional nearest neighbor, as there is a region wittat every vectol’ as defined above, satisfies Definition 1, and
nonzero volume, centered on the midpaimtwhere decoding is thus a conventional nearest neighbor for CA3. O
error occurs.

Chase Algorithm 2: The error patterns considered by thi&T00f of Proposition 2
algorithm are a subset of the patterns considered by CA1.Proposition 2 has several conditions, we separately consider
This fact, along with the arguments used for CA1l, concludesch one. Condition i): clearly, there cannot be a negative
the proof. number of hard-decision errors, or more thaerrors, among
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L symbols. Condition ii): similarly, there cannot be a negativéue to Proposition 2 iv). Therefore,

number of hard-decision errors, or more thén- L error,
amongd — L symbols. Condition iii): since the overall number
of errors satisfies + j < [4;1], the algebraic decoder will
certainly generate the transmitted codeword in the decoding

=N .5 3 3 _ &
a(o)—a370—a370+2a271—0.
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patternp = (1¢~L,0%) is added to the received hard-decision
vector. Since the overall number of errors in this case satisfies
i+ (d—L)—j < [951], the algebraic decoder will generate
the transmitted codeword in the decoding trial correspondinbl]
to the patterrp. It is one of the decoding trials of the-order  [2]
CA3. 0
(3]

lllustrating Example: Derivation of(5) for Chase Algorithm 3

Clearly, «(5) = ¥j_, a],. Hence, we compute the five [4]
termsa? ,, where the initial condition in this casedg , = 1. 5

First, each term is tested for satisfying the conditions of
Proposition 2. Ifafj does not satisfy any of these conditions[e]
(or the initial condition), it is computed recursively using
Lemma 1. Thus from Proposition 2 iii) it follows that the [7]
first two terms ofa(5) satisfy a} , = a3, = 0. For each of
the other two terms Lemma 1 is used recursively as followsjg)

5 _ 3 3 3 5 _ 3 3 3
a3 =a3,+2a;, +ay o ajo=a;o+2a3,+a;,

aio=a3o+2a3, +ai,=1 ai =0 o]
a3 =ab,+2aj ,+af ;=2 a3, =a3,+2a5,+a; ;=0
a3 ,=0 a3 ,=0 [20]
where
1 1 1 1 (11]
Qig=030=0Cy =0q3; =03, =0
[12]
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