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Abstract—The overall number of nearest neighbors in bounded
distance decoding (BDD) algorithms is given byNo;e� = No +

NBDD; where NBDD denotes the number of additional, non-
codeword, neighbors that are generated during the (subopti-
mal) decoding process. We identify and enumerate the nearest
neighbors associated with the original Generalized Minimum
Distance (GMD) and Chase decoding algorithms. After careful
examination of the decision regions of these algorithms, we derive
an approximated probability ratio between the error contribution
of a noncodeword neighbor (one ofNBDD points) and a codeword
nearest neighbor. For Chase Algorithm 1 it is shown that the
contribution to error probability of a noncodeword nearest neigh-
bor is a factor of 2d�1 less than the contribution of a codeword,
while for Chase Algorithm 2 the factor is 2dd=2e�1, d being the
minimum Hamming distance of the code. For Chase Algorithm
3 and GMD, a recursive procedure for calculating this ratio,
which turns out to be nonexponential in d, is presented. This
procedure can also be used for specifically identifying the error
patterns associated with Chase Algorithm 3 and GMD. Utilizing
the probability ratio, we propose an improved approximated
upper bound on the probability of error based on the union
bound approach. Simulation results are given to demonstrate and
support the analytical derivations.

Index Terms— Bounded-distance decoding, decision region,
nearest neighbors, pseudo neighbors, volume ratio.

I. INTRODUCTION

T HE computational burden involved in optimal soft-
decision decoding of good linear block codes is often

prohibitive. As an alternative, various suboptimal soft-decision
algorithms, which trade performance for computational
complexity, have been devised along the years. While
measuring the decoding complexity is an interesting problem
in its own right, finding a unified yet feasible method with
which to evaluate performance of decoding algorithms is a
much more complicated task (be it a computer simulation
or an analytic approach). For the additive white Gaussian
noise (AWGN) channel with variance the performance
of a specific decoding algorithm is determined by the
decision regions of the codewords. When all these regions are
congruent, one must first determine the shape of a region (see,
e.g., [1]), and then integrate the noise density function within
this region to obtain the probability for correct decoding.
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Except for some trivial cases, this problem is analytically
intractable.

Alternatively, a computationally simple, yet often loose,
upper bound is commonly employed—theunion bound. For
optimal decoding, the decision region of a specific codeword
is the Voronoi region, which is determined by certain “face
defining” neighboring codewords also known as theVoronoi
neighbors. In general, the union bound requires precisely that
knowledge about the (linear) code, namely, its spectrum of
distances:

where is the set of Euclidean distances between some code-
word and its Voronoi neighbors and denotes the number
of codewords at Euclidean distance Let denote the
minimum Euclidean distance of a code. For high signal-
to-noise ratios (SNR) the number of the nearest neighbors

usually suffices, as the contribution of the other
neighbors (located further away) to performance degradation
is relatively negligible.

A suboptimal decoding algorithm which decodes correctly
at least within the spheres of radius centered on the
codewords is known as abounded distancedecoding (BDD)
algorithm. The shape of the decision regions for bounded
distance algorithms is much more complex than that of optimal
algorithms as recently shown in [2]. More specifically, the
number of nearest neighbors is increased due to the suboptimal
decoding process, and hence the overall number of nearest
neighbors, is usually plugged into
the union bound in order to evaluate the performance of the
algorithm. This, however, yields a loose bound because the
error contribution of a nearest neighbor that is generated during
the suboptimal decoding process is smaller than that of nearest
neighbor which is a codeword [2]. Note that bounded distance
decoding algorithms do not necessarily increase the number
of nearest neighbors [7], [12]. In this case, performance
degradation is mainly due to additional shells of neighboring
points, located close to the first shell (the shell of nearest
neighbors) [2], [9].

Suppose that we can somehow obtain the ratio between
the error contributions of the two types of nearest neighbors,
i.e., a nearest neighbor that is generated during the bounded
distance decoding process (noncodeword nearest neighbor),
and a codeword nearest neighbor. Denote this ratio byThen,
we may write a modified approximated upper bound in the
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form

(1)

In the sequel, such bounds are derived for the prominent
Generalized Minimum Distance (GMD) and Chase decoding
algorithms [6], [3]. The bounds are obtained after a care-
ful examination of the decision regions of these algorithms.
Surprisingly, the dominant parameter influencing the decision
region of the algorithms, and hence the error ratio, is the
minimum Hamming distance of the code,

While this paper focuses on the nearest neighbors, we note
that the error ratio can be defined more generally as a
function of the Euclidean distance corresponding to the error
regions caused by neighbors at various distances. In this case,
the union bound will have the form

where is the set of Euclidean distances of the neighbors
that are generated in the decoding process. Obviously, in
(1), For algorithms with no additional nearest
neighbors, i.e., , it would be of practical importance
to evaluate for the second shell of neighbors (e.g.,
for the modified GMD [9]) as their contribution to performance
loss may be significant. This, however, is not discussed in the
paper.

In the next section we establish notations and briefly review
the Chase and GMD decoding algorithms. For clarity of
exposition we start our treatment with the Chase rather than
the GMD algorithm. Also in Section II, theunion bound
and nearest neighborsare revisited. In particular, a refined
definition is given to the termnearest neighbor. The Chase and
GMD decoding algorithms are analyzed in detail in Sections
III and IV, respectively. Conclusions and simulation results are
presented in Section V. Finally, the Appendix contains some
proofs and a supplementary example.

II. PRELIMINARIES

Let denote an binary linear block code, with
codewords. Each codeword is a vector in

GF A one-to-one mapping between each codeword
and , being the Euclidean -space, is obtained
using the transformation

(2)

The resultant set contains distinct
points, one for each binary codeword. Henceforth, we also
refer to these points as codewords. The minimum squared
Euclidean distance of the codeis given by

where denotes Euclidean distance. The codewordsare
assumed to be transmitted over an AWGN channel, wherethe

received vector , is a transmitted codeword
perturbed by a noise vector and is given
by

A complete decoding scheme is a mapping rule
such that for every vector it assigns a codeword,

Denote by the estimated codeword given the
received vector is via (2). A decoding scheme that
achieves minimum mean probability of error is called optimal.
For an AWGN channel with equal probability for transmitting
a particular codeword, the task of optimal decoding is equiv-
alent to finding the closest codeword to the received vector,
namely,

Several methods have been proposed for performing this
task without explicitly computing the Euclidean distances
between and all possible codewords. One such method
employs channel measurement and error vectors. We briefly
describe this method below as it will become handy in
following sections. Denote by the bitwise hard-decision
vector whose elements are given by for , and

otherwise. Also, let denote the error vector
satisfying , where is a codeword and
denotes modulo- addition. Then, the estimated transmitted
codeword is the one with minimum “analog weight”

where

We shell henceforth refer to as theconfidence levelof the
th symbol, and to as thesoft valueof that symbol. Note that

is actually a signed likelihood measure of theth symbol.

A. Description of Chase and GMD Decoding Algorithms

Chase algorithms [3] are suboptimal decoding algorithms,
that is, the algorithms do not achieve minimum mean proba-
bility of error. In general, each of these algorithms generates
a set of error vectors, where each vector has’s in the
coordinates suspected as errors andelsewhere. By summing
each error vector with the original hard-decision vector, a new
set of vectors is generated with the symbols inverted wherever
an error was suspected to have occurred. All the newly
generated vectors are then decoded with a binary decoder. This
binary decoder guarantees finding a codewordiff the Hamming
distance between the candidate vector and some codeword is
less than or equal to ; otherwise, the decoder will declare
a decoding failure. Following the decoding stage, a set of
codewords is obtained and the “analog weight” of all these
codewords is computed. The estimated transmitted codeword
is the one with the minimum “analog weight.” If no codeword
was generated in the decoding stage, the hard-decision vector
is assumed to have been transmitted. Chase algorithms differ
in the manner in which they generate error patterns and in the
number of the error patterns they produce.

• Chase Algorithm 1(CA1): CA1 generates a large set of
error patterns. The error patterns generated are all the
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vectors which have ’s in them. There are
such error patterns to be considered. A sufficient condition
for an error in the decoding process is that ,
where is the transmitted codeword.

• Chase Algorithm 2(CA2): CA2 generates a smaller set
of error patterns. The set of error patterns consists of
all vectors having any combination of’s in the
coordinates with the lowest confidence levels. There are

such error patterns to be considered.

• Chase Algorithm 3(CA3): CA3 generates the smallest set
of error patterns. Each error pattern is a vector containing
’s in the symbols with the lowest confidence levels.

For a code with even, takes the values
When is odd, takes the values,

The number of patterns is only
An upper bound on the probability of error for CA1–CA3

was derived in [3]. The error exponent of that bound is the
same for all three algorithms, as well as for optimal decoding.

An even more prominent suboptimal algorithm is the GMD
algorithm proposed in [6]. A brief description of the algorithm
follows. Initially, the symbols of the hard-decision vector are
ordered according to their confidence levels. Assume that there
exists a binaryerrors and erasures(EE) decoder. Such a
decoder is capable of decoding correctlyiff the number of
erasures and twice the number of errors, in the decoded vector,
is less than . Then, a sequence of EE decoding trials is
performed, where in each trial a different number of least
reliable symbols are erased: least reliable
symbols. Finally, the generated codeword, with the minimum
distance from the received vectoris the estimated transmitted
codeword. If no codeword was generated in the decoding trails,
decoding failure is declared and is treated as a decoding error.

B. The Union Bound and Nearest Neighbors

The Voronoi region of , , is the portion of such
that for the points belonging to this portion, is the closest
codeword. When the received vector belongs to the Voronoi
region, , optimal decoding will decode to
The Voronoi region is a convex polytope whose faces
lie in the hyperplane, midway between and as many as

other codewords.
Probably the best known method for estimating the proba-

bility of error for optimal decoding is the union bound. The
union bound is an upper bound on the probability of error
given that was transmitted

(3)

where is the Euclidean distance between and
For moderate to high SNR’s, the union bound can be

approximated using only the terms for which
Denoting by the number of codewords at distance
from , (3) may be approximated by

(4)

When suboptimal decoding is employed, the decision region
is no more Let denote the decision region of an

under suboptimal decoding. That is, is the set of all
the points in , where for each , will be decoded
to . Clearly, determines the exact probability of error
given that was transmitted

When optimal decoding is employed, there exists a
hyper-sphere of radius centered on , denoted by

, such that every received vector satisfying
is decoded to A decoding algorithm

that guarantees correct decoding whenever the received vector
is within a hyper-sphere of radius centered on some

codeword, is a bounded distance algorithm.
The approximation of the union bound (4) takes into account

only the terms corresponding to the codewords at distance
from All other terms are exponentially smaller and

thus can be neglected for moderate to high SNR’s. Each of
the terms considered corresponds to half-space error region
whose closest point is at distance from in the
direction of a neighboring point. In other words, the hyper-
planes that serve as the border of the half-space error regions
are tangent to the hyper-sphere at one point.
Consequently, the approximation for the union bound can be
described as follows: the number of tangent points between

and multiplied by the probability
that the noise in the direction of the tangent point is greater
than

This approach can be adapted for BDD algorithms. The
probability of error in this case is approximately upper-
bounded by the number of tangent points between and

multiplied by the probability that the noise
in the direction of the tangent point is greater than The
number of tangent points is traditionally denoted by

where is the number of codewords
at distance from , and is the number of points at
distance from generated by the suboptimal decoding
process. Thus an approximated bound on the probability of
error when using a BDD algorithm is

(5)

The above approximation has two main deficiencies. The
first arises when is very big. Note that in [2] it is
shown that some algorithms may have an infinite number
of tangent points between and In
those cases, and also when the SNR is not sufficiently high,
this bound is useless as it may produce values greater than
one. It is, however, the following deficiency that we address
in the sequel. The aforementioned bounds assume that every
tangent point between and causes a
decoding failure whenever the magnitude of the noise (along
the axis between and the tangent point) is greater than
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Additionally, the bound assumes that the border of
the decision region is, at least locally, a hyper-plane that is
tangent to It was recently discovered [2] that
in several cases, locally, the decision region has the shape of
hyper-polygon rather than a hyper-plane. The aforementioned
bounds do not take this into consideration.

We now focus on the conventional nearest neighbors of a
BDD algorithm. The “common definition” states that a nearest
neighbor in a BDD algorithm is a point at distance
from such that there exists a corresponding tangent point

between and This definition of
nearest neighbors may in certain instances lead to incorrect
performance estimation, as will be shown for CA3. Hence, we
propose an alternative definition for nearest neighbors.

Definition 1: (Conventional nearest neighbor of a codeword
.) Every point at distance from , such that
can be obtained by the transformation (2) of a GF

vector, shall be called a conventional nearest neighbor if for
every greater than zero, there is an error region (for) with
nonzero volume within the hyper-sphere

As expected, according to this definition, any codeword
at distance from is a conventional nearest neighbor of

, since one hemisphere of will not be decoded
to The motivation for Definition 1 is the following.
Let and be defined as in Definition 1, except that

is not a codeword. For on the axis connecting
and the transmitted codeword , CA3 can decode correctly
even when , where is small. We
prove, however, that there is a region within
where CA3 fails to decode, even for infinitely smallThus
the contribution of any such point should be taken into
consideration when estimating the error probability. Indeed,
Definition 1 also accounts for this type of points.

Finally, following the definition ofpseudo neighborsgiven
in [2], pseudo nearest neighborsare defined as follows. Let

be the transmitted codeword. Denote bythe set of all
the points satisfying , where is
not a conventional nearest neighbor. Then, a pseudo nearest
neighbor is a point such that, for every , there is
a nonzero volume within in which decoding error
occurs.

III. PERFORMANCE ANALYSIS OF CHASE ALGORITHMS

To employ the union bound (5) for estimating the perfor-
mance of Chase algorithms, one must first prove that they are
indeed BDD algorithms. Our proof employs a result derived
in [3, Appendix I] and is stated as follows. Assume without
loss of generality (w.l.o.g.) that the (all-zero binary)
codeword was transmitted and letdenote the received vector.
A necessary condition for error in decodingis the existence
of a set of indices , where , such that

(6)

Theorem 1: Chase algorithms are BDD algorithms.

Proof: Assume that the codewordwas transmitted and
that decoding error has occurred. Recall that It
will be proved that the distance between the received vector

and is no smaller than
First, assume that there are more than errors in the

hard-decision vector. This means that at leastsymbols satisfy
and thus

The second possible event is when there are errors in
the hard-decision vector, Let denote the set
of indices, such that Also, let and be the
confidence levels of the symbols with indices belonging to
and , respectively. The received vectorwill be inside the
hyper-sphere if

(7)

Let be the set of all indices belonging to both
and , Assume that where

Let be the set of all symbols belonging to
and , , According

to (7)

(8)

From (6)

(9)

thus the left-hand side of (8) is a sum of nonnegative compo-
nents and hence greater or equal to, thereby encountering a
contradiction. Concluding, if (6), which is an error condition,
holds, then

It can be seen from the proof of Theorem 1, that the received
vector , at distance from the transmitted word, might
cause a decoding erroriff there are symbols with confidence
level , and symbols with confidence level. Otherwise,
the left-hand side of (8) will be greater than zero and a
contradiction will be encountered. Every vectorthat satisfies
the above condition corresponds to one of theconventional
nearest neighbors. It also follows from the proof of Theorem 1,
that the received vector at distance , where is
small, that will cause a decoding error, must be in the “area”
of the midpoint between a conventional nearest neighbor and
the transmitted codeword; if not, we will get contradiction in
(8). This leads us to the corollary
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Fig. 1. Chase Algorithm 1, borders of decision regions for codewordc1: c2 noncodeword;c3 codeword.

Corollary 1: Chase algorithms do not have pseudo nearest
neighbors.

Additionally, as proved in the Appendix for the new defi-
nition of a conventional neighbor, we have

Proposition 1: Chase algorithms have conventional
nearest neighbors.

It follows that, for Chase algorithms, the approximation of
the union bound as described by (5), is

(10)

From here and throughout this section, the term nearest
neighbor refers to a conventional nearest neighbor. Later, an
improvement to this bound will be presented. This improve-
ment will be achieved by virtue of the fact that a noncodeword
nearest neighbor induces, locally, a different decision region
than a codeword nearest neighbor.

A. Chase Algorithm 1

CA1 is a rather inefficient decoding process requiring
binary algebraic decoding trials and producing at most

that number of candidate codewords. Note that this number
can be even greater than the overall number of codewords
According to (5), a large increase in the number of nearest
neighbors should cause a large degradation in the performance;
surprisingly, CA1 performs practically optimal [3] (see also

Section V) in spite of its large number of nearest neighbors.
This contradiction can be easily resolved by recalling that there
are various types of nearest neighbors differently affecting the
decision region [2]. The bound (5) does not take this fact into
consideration.

Fig. 1 demonstrates this phenomenon for the ex-
tended Hamming code. A two-dimensional cross section of
is presented. The plane shown is defined by the three points

, , , where , is a noncodeword nearest neighbor
to , and is a nearest neighbor which is a codeword. Fig. 1
shows fragments from the boundaries of the decision regions

, and , as well as the hyper-sphere
They are denoted by CA1, ML, and BDD, respectively. The
codeword induces, locally, a straight boundary line that is
tangent to midway between and The
noncodeword nearest neighbor induces a tipped shape bound-
ary line that touches the hyper-sphere. This figure suggests
that a noncodeword nearest neighbor has lesser probability of
causing decoding error than a codeword nearest neighbor.

In order to tighten the approximation for the union bound
(5), we will quantify the difference in the probabilities for
causing a decoding error, between a codeword and a noncode-
word nearest neighbors. Assume w.l.o.g. that thecodeword
was transmitted. Denote by a codeword nearest neighbor
and by a noncodeword nearest neighbor. Denote by

the midpoint between and , and by
the midpoint between and . For clarity of

exposition, let and denote the hyper-spheres with
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Fig. 2. Chase Algorithm 1,[8; 4; 4] code: volume ratio versus empirical probability ratio.

a small radius , centered on and , respectively.
Denote by and by the regions in and ,
where decoding error occurs:

. Note that and
are the same for all , , and for any “transmitted”
codeword. This is evident for , while for it follows
from the fact that for a binary linear code with the mapping (2),
the analyzed algorithms [3], [6], do not make any distinction
between codewords or symbol values Since and

are close to the transmitted codeword (relative to the
complete error region ), the probability
ratio

provides significant information on the relation between a
codeword and a noncodeword nearest neighbor in terms of
their contribution to the error probability. Using as a
multiplying factor of yields a better approximation for
the upper bound (5). In general, is defined as the ratio
between corresponding to the error region whose
closest point is at distance from and corresponding
to the hemisphere-shaped error region at distancefrom

In this work, our attention is restricted to the particular
case since the first term of the union bound,
corresponding to the nearest neighbors, usually (and the an-
alyzed algorithms [3], [6], are no exception) dominates the
error performance.

Computing involves integrating the term over a vol-
ume whose boundaries are rather complex. This is a difficult
problem, for which no explicit expression is known. One
way of approximating the probability ratio is by using
the ratio, , between the volumes of
and For small, alternatively for high enough SNR, all
the points contained in the hyper-spheresand have
approximately the same probability. In light of the above, we
can write

The region is simply a hemisphere, its volume is thus given
by [4] where
The volume of the region is given by the next theorem.

Theorem 2: For Chase Algorithm 1

Proof: Let be the set of indices such that
Note that is one of the sets

defined from (6). , whose volume is ,
can be partitioned into equal and disjoint portions as
follows. Each portion is composed of all the vectors ,
such that for every index , has a constant sign.
For instance, one such portion is obtained by letting all the
symbols with indices belonging to to have a positive
soft value. It is clear that all portions have the same volume,
and the union of all the portions is When is small
enough, the transmitted codeword is the closest codeword to
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Fig. 3. Chase Algorithm 2, borders of decision regions for codewordc1: c2 noncodeword;c3 codeword.

every point in Hence, decoding error will occur (within
) only if the transmitted codeword is not one of the

generated candidates. It follows from [3, proof of Theorem
1] that this occurs only in the portions where all symbols
with indices belonging to have negative soft value.
In all other portions, no decoding error will occur as there
will be fewer than hard-decision errors and the transmitted
codeword will be one of the candidates. This leads us to the
conclusion that decoding error occurs in only of the
volume . Clearly now, is the same for all

Consequently, for Chase Algorithm 1, we obtain

(11)

and, therefore,

(12)

In fact, the volume ratio is an upper bound on the probability
ratio [5]. The proof is rather lengthy and therefore only
sketched in the following. Partition as into disjoint
portions. Clearly, there exists one portion , obtained via
isometric mapping of , such that . All
the portions of are isometrically equivalent (to each other)
by construction; however, it can be shown thatis the portion
furthest away from and hence satisfying for

Then clearly

It should be emphasized that the proof is independent of the
SNR, and holds for a wide range ofThis is demonstrated in
Fig. 2 for the code by means of computer simulation
The trace representing the volume ratio is uniformly
higher than the probability ratio traces corresponding to several
values of , ranging from to , and for the entire SNR
range. Similar behavior has also been observed for the rest of
the algorithms discussed in this work.

B. Chase Algorithm 2

CA2 trades performance for computational complexity. It is
more efficient than CA1, as it considers just a subset of the
error patterns used by the latter. As in Fig. 1, Figs. 3–5 present
two-dimensional cross sections of for the extended
Hamming code. In Fig. 3, , is a noncodeword
nearest neighbor to , and is a nearest neighbor which
is a codeword. Clearly, the noncodeword nearest neighbor
affects the probability of decoding error less than a nearest
neighbor which is a codeword. In Fig. 4, and , are
noncodeword nearest neighbors to. Here, a nearest neighbor
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Fig. 4. Chase Algorithm 2,c2 and c3 are noncodeword neighbors.

which is not a codeword seems to behave as if it were a code-
word. Note that in Figs. 3 and 4 the same nearest neighbor,

, behaves differently since the figures present different cross
sections. The points , , and in Fig. 5 are the same as in
Fig. 3. The figure presents a fragment from the border of the
decision regions of Chase Algorithms 1 and 2, on the same
plot. Note that the same noncodeword neighbor,, contributes
to the decision error of CA2 more than to CA1. This difference
in the decision regions of demonstrates where CA1 gains (in
performance) over CA2. We now turn to compute
for CA2. But first, the following conclusion is drawn from
[3, proof of Theorem 1].

Conclusion 1: Let , , and be the transmitted, received,
and hard-decision vectors, respectively. If there are at least

errors in outside the set of symbols with the
smallest level of confidence, the transmitted codeword will not
be a candidate, and an error will occur while decoding

Without loss of generality, assume that the codewordwas
transmitted. , , , , , , and are
defined as before. The next lemma gives the the volume of
the region

Theorem 3: for Chase Algorithm 2

Proof: Assume w.l.o.g. that the set of indices, satis-
fying , is can be partitioned
into equal and disjoint portions. Each portion comprises all

the points (vectors) in for which the confidence levels
of the first symbols are ordered similarly. Denote by
the portion satisfying

Clearly, The portion can be
further partitioned into subportions, where each subportion
is comprised of all the vectors, such that the soft values of
the first symbols have constant signs. Note that sinceis
small, hard-decision errors can occur only within the first
symbols. From Conclusion 1, decoding error will occur only in
those subportions of , for which the symbols with
indices have negative soft values. There
are altogether such subportions in , corresponding
to all combinations of signs in the first symbols. (In all
other subportions the transmitted codewordwill be one of
the generated candidates, and hence selected as the decoder
output.) We thus have

Finally, since the above derivation is exactly the same for any
of the portions of , we get

Consequently, for Chase Algorithm 2

(13)
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Fig. 5. Chase Algorithm 1 and 2, different decision borders for the same pointc2:

and, therefore,

(14)

Equations (11) and (13), reveal an interesting property of
Chase Algorithms 1 and 2, respectively. The contribution to
error probability of a noncodeword nearest neighbor drops
exponentially with and , for CA1 and CA2, respectively
As in the case of CA1, the volume ratio is an upper bound on
the probability ratio. The proof is not much different than for
CA1 and is supported by simulation results (not presented in
this paper). Recently, an upper bound has been derived on the
bit-error rate (BER) performance of CA2 [8]. This bound is
based on a probabilistic rather than a geometrical method and
is more complex to evaluate than the proposed bound.

C. Chase Algorithm 3

CA3 is the most efficient of the Chase algorithms, the price
is further degradation in performance. The decision region
of CA3 has quite an interesting shape. In Fig. 6 , ,

, and are noncodeword nearest neighbors to In the
depicted cross section, the decision region is not at all tangent
to the bounded distance hyper-sphere at the midpoints
and as is usually expected. Referring to and , the
magnitude of the noise can be greater than , on the
imaginary line connecting and , so that there are symbol
errors in the hard-decision vector, yet CA3 decodes correctly.

We refer to this phenomenon as a “tunnel effect.” This figure,
however, is misleading. It seems to contradict Proposition 1,
for it appears that there exists a hyper-sphere centered on

, in which no decoding error occurs. Fig. 7 presents a
shifted and rotated cross section about the midpoint
( , , and were chosen such that ), there
is no tunnel here. In fact, the decision region in this cross
section appears just as if were a codeword.

Figs. 6 and 7 also indicate that computing the volume ratio
for CA3 is not an easy task. While for the previous algorithms
a necessary and sufficient condition for decoding error was
derived, for CA3 we develop recursive formulas for computing
the volume ratio and thus eliminating the need for such a
condition.

Assume w.l.o.g. that the codewordwas transmitted. Let
, , , and be defined as before. Let
be the portion of where decoding error occurs.

Recall that , and that is in the
first symbols and in the next symbols. can
be further partitioned into equal and disjoint subportions,
each of volume Clearly, within , CA3 will
fail to decode correctlyiff the transmitted codeword is not one
of the generated candidates. Henceforth, we shall also assume
that the symbols are arranged according to their confidence
values in a nondecreasing order.

Let us define the -order Chase Algorithm 3as the original
CA3, only considering a smaller set of error patterns. This set
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Fig. 6. Chase Algorithm 3,tunnel effect: c2 and c3 are noncodeword neighbors.

is comprised of the all-zero error pattern, and the error patterns
with ’s in the symbols with the lowest
confidence levels. Finally, we denote by the number of
combinations (error patterns) of exactlyerrors among the
symbols with indices —assuming errors
among the first symbols and no errors among the last

symbols—such that the-order CA3 fails to generate
the transmitted codeword. Note thatis an odd integer, where
for odd, can range between and , and for even,
can range between and

Example 1: For If and only if there are
errors in the symbols with indices or , and assuming
that there is only one error in the symbols with indices
than the transmitted codeword will not be generated by the
-order CA3.

will be employed in a recursive manner to com-
pute The general notion is demonstrated by the
following. For, say, odd, represents the number of
(equal) subportions of , each subportion corresponding
to errors, such that CA3 fails to generate the transmitted
codeword. Thus compute

and then

Not all values of need be computed (clearly,
). The following proposition, proved in the Appendix,

summarizes all the cases for which

Proposition 2: if any of the following conditions
holds:

i) or ;

ii) or ;

iii) ;

iv)

The next lemma establishes the recursive relation between
and

Lemma 1: If and do not satisfy any of the condi-
tions of Proposition 2, then

(15)

Proof: Let us denote the set of error patterns by
The proof consists of four parts as follows. I) It is first proved
that for every error pattern , there exists at least one
pattern Let represent the sameerrors as does
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Fig. 7. Chase Algorithm 3, a shifted and rotated version of Fig. 6, no tunnel here.

among the symbols with indices , and no errors
in the indices , . For the error pattern , the

-order CA3 will fail to generate the transmitted codeword
in any of the decoding trials:
guarantees failure in the trial where the lowest confidence
symbols are complemented; guarantees failure in
all the remaining trials. Thus evidently, . II) It is
shown that for every error pattern , there exist
at least two patterns that belong to Simply, let

, respectively, , represent the same errors as does
, among the symbols with indices and

one error in the symbol with index , respectively,
Using the above arguments, it is straightforward

to verify that III) Finally, for every pattern
, there exists at least one pattern The

pattern represents the same errors in the symbols with
indices and two errors in the symbols with
indices Thus far, we have shown that

IV) The opposite inequality

is easily derived using similar arguments. For every pattern
as described in Part I above, there exists at least

one pattern , for instance the pattern described
in Part I. For every pair of error patterns as
described in Part II above, there exists at least one error pattern

, for instance the pattern described in part II
For every pattern as described in Part III above,
there exists at least one pattern, , for instance the

pattern described in Part III. This concludes the proof of the
opposite inequality and the Lemma.

Computing the number of subportions of in which
decoding error occurs is rather simple using Proposition 2
and Lemma 1. For odd, respectively, even, compute ,
respectively, , for Let denote the result of
the summation of all the relevant terms, i.e., forodd

and for even

Then It is now left only to
establish the initial conditions for the recursive relations. When

is even (using Proposition 2), the nonzero initial terms are
When is odd, the only nonzero

initial term is
In the table at the bottom of the following page, is

listed for some values of It is noteworthy that has the
same order of magnitude as , for the presented values.
Thus is close to one, as can be seen in Table II of
Section V. In the Appendix we give the complete derivation
of for , as an illustrating example. Also for CA3,
simulation results show that the volume ratio is an upper bound
on the probability ratio.

In conclusion, since the derivation of is the same
for any other , then clearly
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Consequently, for CA3, , and, therefore,

(16)

IV. PERFORMANCEANALYSIS FOR THE GMD ALGORITHM

The GMD algorithm [6] is one of the first suboptimal
decoding algorithms. It is noteworthy that the results recently
presented in [12] and [7] suggest a modified GMD algorithm
which has the same number of nearest neighbors as maximum-
likelihood decoding, i.e., In [12] it is proved
that the GMD decoding algorithm is BDD. Moreover, from
[12, proof of Theorem 1] it follows that the GMD algorithm
does not have pseudo nearest neighbors. Thus by a nearest
neighbor we shall henceforth be referring to a conventional
nearest neighbor. The above properties allow us to evaluate
the performance of the GMD algorithm by using (5). This
bound, however, can be tightened by taking into consideration
the different effect of the nearest neighbors on the decision
region.

Assuming the same geometrical scenario (for ) and
notations as with CA3, we next describe a method for calcu-
lating the number of subportions of in which decoding
error occurs. Let us define the-order GMD algorithm as
the original GMD algorithm, only considering a smaller set
of erasure patterns. This subset is comprised of the erasure
patterns of the symbols with
the lowest confidence levels. Denote by the number of
combinations (error patterns) of exactlyhard-decision errors,
among the symbols with indices such that
the -order GMD algorithm fails to generate the transmitted
codeword . The following examples are given to clarify this
definition.

Example 2: represents the number of combinations
of errors among the symbols with the lowest confidence
levels, such that the GMD algorithm fails to generate the
transmitted codeword. Note that each combination corresponds
to one of the portions of

Example 3: For Since the received
vector will undergo erasers but it contains no hard-
decision errors—the EE decoder will generate the transmitted
codeword.

Example 4: For The received vector
undergoes two erasure trials: the first five, and then first
seven symbols are erased. When the symbols with indices

are in error, the EE decoder will fail to generate the
transmitted codeword in both erasure trials. The same holds
for the symbols with indices .

will be employed for calculating the number of
subportions of in which decoding error occurs. The
terms needed for this task can be computed recursively

based on the following two lemmas. Lemma 2 is readily
applicable for odd values of

Lemma 2: For odd, and

for
otherwise.

Proof: Clearly, is irrelevant because the number
of errors cannot be greater than the number of symbols. Also,
if , when erasing the symbols with the lowest
confidence levels the transmitted codeword will always be
generated by the EE decoder. The remainder of the proof
closely follows the proof of Lemma 1, with the exception that
GMD decoding uses erasures rather then bit completion.

For even values of the next lemma is employed along with
Lemma 2 in a complimentary fashion, as will be described
below.

Lemma 3: For even, and

Proof: Let us denote the set of error patterns by
First, it is shown that for every pattern

there exists at least one pattern . is the pattern
representing errors in the same positions as inFor , the
order- GMD algorithm, which is simply the original GMD
algorithm, will fail to generate the transmitted codeword in
any of the decoding trials: the decoding trial with no erasures
(conventional algebraic decoder) will fail since ;
failure is guaranteed in all remaining decoding trials due to the
fact that . Next, it is shown that for every pattern

there exists at least one pattern Let
represent the same errors as does, and one additional

error in the symbol with the lowest confidence level. Using the
above arguments, it is straightforward to verify that
In conclusion, we have shown that

The opposite inequality, i.e.,

is derived using similar arguments.
The initial conditions, given below, are easy to derive

for
otherwise.

The number of subportions of , in which decoding error
occurs, is obtained in the following manner.

• For odd: use Lemma 2 to determine for all
satisfying . Calculate the sum
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Fig. 8. Chase Algorithm 1, simulation results and bounds.

Out of the possible subportions of , repre-
sents the number of subportions in which decoding error
occurs.

• For even: use Lemma 2 to determine for all
satisfying Calculate the sum

From Lemma 3 it follows that

hence let . As in the previous case,
represents the number of subportions in which decoding
error occurs.

In the table at the bottom of this page is listed for
some values of Similar to , has the same order
of magnitude as , thus is close to one, see
Table II of Section V.

Given , we may write
. Since the derivation of

is exactly the same for any other portion of ,

then clearly . Simulation results,
not presented in this paper, show that the volume ratio is
an upper bound on the probability ratio also for the GMD
algorithm. Finally, for the GMD decoding algorithm, the
approximated bound given by (5) can be tightened as follows:

(17)

V. CONCLUSIONS AND COMPUTER SIMULATIONS

A refined definition of the termnearest neighborsis sug-
gested. Using this definition we identify and enumerate the
nearest neighbors associated with the Chase decoding algo-
rithms, not before proving that these algorithms are indeed
bounded distance. Then, an improved approximated upper
bound on the probability of codeword error for the Chase
and GMD decoding algorithms is presented. This bound
is based on the union bound approach while taking into
consideration the different influence of the different types of
nearest neighbors on the decision region.

In order to quantify this difference, we introduce theprob-
ability ratio, represents the ratio between the error
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Fig. 9. Chase Algorithm 2, simulation results and bounds.

TABLE I
THE VOLUME RATIO

contribution of a noncodeword nearest neighbor and a nearest
neighbor which is a codeword. Since the probability ratio is too
difficult to calculate directly, we approximateby using the
ratio between the corresponding error volumes. The improved
bound is of the form

Table I summarizes the obtained volume ratios for the
aforementioned decoding algorithms. Specific values of
and should be calculated according to the procedure in the
corresponding sections. In Table II we list the approximated

associated with the decoding algorithm for several values
of the minimum Hamming distance Note that the volume
ratio is exponential in for CA1 and CA2, but not for CA3
or GMD. This accounts for the different performance of the
algorithms as obtained from simulations.

Finally, we present some simulation results. A simple ex-
ample, the extended Hamming code, has been chosen
to demonstrate the gain of the improved bound over the
union bound. For each of the bounded distance decoding
algorithms treated in this work, we plot the simulation results
of: maximum-likelihood decoding (MLD); the bounded dis-

tance algorithm; and a modified union bound (e-MUB) based
on the empirical computation of the ratio
Additionally, we plot the error probability as given by the
union bound (UB); and the modified union bound based on
the volume ratio (MUB).

The results for CA1 are depicted in Fig. 8. As can be seen in
this figure, CA1 is practically optimal. This may be explained
as follows. Although the number of noncodeword nearest
neighbors is much higher than , the contribution (to
error probability) of a noncodeword neighbor is considerably
smaller than that of a codeword neighbor. Note that at word-
error rate (WER) of the modified bound, MUB,
is only 0.25 dB from the actual simulation results, while the
union bound is 0.8 dB away. The modified bound is much
tighter than the union bound also for low SNR. The empirical
bound, e-MUB, is even tighter, only 0.15 dB from the actual
results. The 0.1-dB difference between MUB and e-MUB
suggests that, in the case of CA1, the volume ratio is a very
close approximation for the probability ratio.

CA2 is much more efficient than CA1. It involves only
four algebraic decoding trials as compared to 28 trials
required by CA1. Nevertheless, its performance, presented
in Fig. 9, are only 0.125 dB worse than the optimal. For
this algorithm, at WER of , the empirical modified
bound, the modified bound, and the original union bound,
respectively, are 0.35, 0.45, and 0.7 dB away from the
simulation results. Again, the 0.1-dB difference between
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Fig. 10. Chase Algorithm 3, simulation results and bounds.

TABLE II
SOME SPECIFIC VALUES OF THE VOLUME RATIO

MUB and e-MUB suggests that the volume ratio is a very
close approximation for the probability ratio.

CA3 is the most efficient among the Chase Algorithms,
indeed, for the price of performance. At WER of ,
it is 0.2 dB worse than the optimal, as can be seen in
Fig. 10. The empirical modified bound and the modified bound
almost coincide, 0.35 dB from the ML simulation results.
The original union bound is 0.6 dB away from the ML
simulation results. For this algorithm, the volume ratio is
evidently closer to the probability ratio, even more than in the
previous algorithms. Unfortunately, this may imply, certainly
for the presented SNR range, that the probability ratio is

not a tight enough approximation. Note that since all three
algorithms have the same nearest neighbors , the original
union bound cannot distinguish between them, and is thus the
same for all. As noted in [2], however, in different decoding
algorithms, the same neighbors may differently influence the
decision region. This is evident from the presented simulation
results, and indeed taken into consideration by the modified
union bound.

The results for the GMD decoding algorithm are depicted
in Fig. 11. The simulation range has been extended here up to
SNR 9 dB. At WER of , the GMD algorithm loses
0.25 dB as compared to the ML algorithm. That is 0.05 dB
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Fig. 11. GMD, simulation results and bounds.

more than CA3, while their decoding complexity and nearest
neighbors are identical. The empirical modified bound, the
modified bound, and the original union bound, respectively,
are 0.3, 0.4, and 0.55 dB, away from the ML simulation results.

APPENDIX

Proof of Proposition 1

Assume (w.l.o.g.) that the codeword was transmit-
ted. Let GF be a vector at Hamming distancefrom
the all-zero binary codeword There are exactly

such vectors. Denote by the Euclidean version of
via the transformation (2). has symbols equal to , and

symbols equal to Let be the midpoint between
and , that is, has symbols equal to , and

symbols equal to . Let be the hyper-sphere with a
small radius centered on

Chase Algorithm 1:Let be the portion of , such that
According to [3], decoding

failure will occur for every vector This proves that
is a conventional nearest neighbor, as there is a region with
nonzero volume, centered on the midpoint, where decoding
error occurs.

Chase Algorithm 2:The error patterns considered by this
algorithm are a subset of the patterns considered by CA1.
This fact, along with the arguments used for CA1, concludes
the proof.

Chase Algorithm 3:Although it has the same nearest
neighbors as do CA1 and CA2, the proof is different in
this case. Assume w.l.o.g. that for For

sufficiently small, such that

can be partitioned into equal and disjoint portions.
Each portion corresponds to one combination of ordering of
the symbols according to their confidence levels. Let

can be further partitioned into equal and disjoint
subportions, where each subportion is comprised of all the
vectors , such that the soft values of the firstsymbols
have constant sign. Now, consider the subportion ofwhere
the first symbols have positive soft values (correct
symbols) and the following symbols have negative soft
values (errors). Evidently, the volume of this subportion is
nonzero, and CA3 will fail here. In conclusion, we have shown
that every vector as defined above, satisfies Definition 1, and
is thus a conventional nearest neighbor for CA3.

Proof of Proposition 2

Proposition 2 has several conditions, we separately consider
each one. Condition i): clearly, there cannot be a negative
number of hard-decision errors, or more thanerrors, among
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symbols. Condition ii): similarly, there cannot be a negative
number of hard-decision errors, or more than error,
among symbols. Condition iii): since the overall number
of errors satisfies , the algebraic decoder will
certainly generate the transmitted codeword in the decoding
trial corresponding to the all-zero error pattern. Condition
iv): represents the number of errors in the first

symbols when those are complimented, i.e., when the
pattern is added to the received hard-decision
vector. Since the overall number of errors in this case satisfies

, the algebraic decoder will generate
the transmitted codeword in the decoding trial corresponding
to the pattern It is one of the decoding trials of the-order
CA3.

Illustrating Example: Derivation of for Chase Algorithm 3

Clearly, Hence, we compute the five
terms , where the initial condition in this case is

First, each term is tested for satisfying the conditions of
Proposition 2. If does not satisfy any of these conditions
(or the initial condition), it is computed recursively using
Lemma 1. Thus from Proposition 2 iii) it follows that the
first two terms of satisfy For each of
the other two terms Lemma 1 is used recursively as follows:

where

due to Proposition 2 i), and

due to Proposition 2 iv). Therefore,
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