
To make them
flexible, scalable, and
useable, e-commerce
applications require
systematic
development,
including data
integration.
Traditionally, the
integration proceeds
in a bottom-up way.
This article discusses
the problems and
proposes a top-down
approach to
overcome some of
the problems. A
combined yo-yo
approach aims to
exploit both
strategies’ benefits.

E-commerce is an application domain in
which integrating Web data from dif-
ferent information systems is a central
problem.1 For e-commerce applica-

tions, often interorganizational processes must be
supported, whereby the individual information
systems are highly autonomous, making the inte-
gration process an even more challenging task.
For a scalable integration of autonomous, hetero-
geneous information systems’ data, engineers
need a systematic process.

Traditionally, heterogeneous information sys-
tem integrations proceed in a bottom-up way—we
analyze the information models of existing (lega-
cy) systems and subsequently integrate them. One
result of the traditional bottom-up approach is
that the overlaps among the component system’s
models—not the global applications’ require-
ments—determine the (merged) integrated data
models’ structure. The maintenance of such inte-
grated models is a problem, because the merged
models rapidly become very complex; usually
more complex than required for the actual inte-
gration goals. This situation can lead to severe
scalability problems with respect to execution per-
formance, usability, and maintenance.

Another way to approach heterogeneous infor-
mation systems’ integration is a top-down
process. Starting with common models based on
the requirements of new (global) applications and
on domain-specific standards, we can integrate
the individual component models into these com-

mon models. Still yet, another approach—called
the yo-yo approach—combines bottom-up and
top-down strategies in a way that exploits their
benefits and serves as a migration path from the
traditional bottom-up approach toward an ideal
top-down approach.

Traditional bottom-up integration
One characteristic result of the bottom-up con-

struction is that the component models’ overlap-
pings greatly determine the integrated model
structure. For instance, many object-oriented inte-
gration approaches resolve semantic overlappings
by introducing generalized classes so that the origi-
nal inheritance hierarchies are subhierarchies of the
resulting merged hierarchy (upward-inheritance
principle2). These approaches take over the inheri-
tance hierarchies from the component models to
the integrated model and adapt them to each other.
Consequently, the resulting merged hierarchies
may become needlessly complex.

I illustrate these problems by examining two
sample national banks using bottom-up database
integration. These imagined banks aim at a joint
venture to create an international virtual bank
that offers banking services on the Internet mar-
ketplace based on their local services and systems.
The first local component system stores account
information for a Dutch bank, in which Dutch
terms are used in the model (see Figure 1b). The
second component system stores account infor-
mation for a German bank and uses German
terms (see Figure 1c). For simplicity, I only mod-
eled basic account information in this small
example; I omitted information on account hold-
ers and other related business objects.

The Dutch bank offers checking and savings
accounts (Privérekening and Sparrekening, respec-
tively). The structure of the German bank’s model
is similar, but it offers two kinds of savings
accounts (bank books and fixed time deposits). In
Germany, each bank has an identification num-
ber (Bankleitzahl), which is absent in the Dutch
system where the bank is identified via the
account number. The German bank uses a legacy
system that only supports one currency (Deutsche
mark), whereas the Dutch bank has a currency
attribute (Valuta) to distinguish between curren-
cies (Dutch florin and Euro). (Throughout this arti-
cle, for an English translation of any German or
Dutch terms, please refer to the “Banking
Terminology” sidebar on p. 18.)

To integrate these local database systems as the
basis for an international virtual bank, we need to

16 1070-986X/02/$17.00 © 2002 IEEE

Web Data
Integration for
E-Commerce
Applications

Wilhelm Hasselbring
University of Oldenburg, Germany

Feature Article

17

Nummer
Saldo
Valuta

Rekening

Rente

Sparrekening

Courantkrediet
Kredietrente

Privérekening
Sparbuch Festgeld

Laufzeit

Sparkonto

Zinssatz Dispositionskredit
Kreditzins

Girokonto

Nummer
Kontostand
Banleitzahl

Konto

Sparkonto

Zinssatz
 rename Interest rate

Sparbuch

Rente
 rename Interest rate

Sparrekening

(a)

(c)(b)

Rekening

Nummer
Saldo
Valuta
remove Bank-Id

rename Number
rename Balance
rename Currency

Konto

Nummer
Kontostand
Bankleitzahl
remove Currency

rename Number
rename Balance
rename Bank-Id

Fixed time deposit

Time period

Festgeld

Laufzeit
 rename Time period

Girokonto

Dispositionskredit
 rename Disposal credit
Kreditzins
 rename Credit interest rate

Courantkrediet
 rename Disposal credit
Kredietrente
 rename Credit interest rate

Privérekening

Disposal credit
Credit interest rate

Checking accountSavings account

Interest rate

Savings bank book

Account

Number
Balance
Currency
Bank-Id

Figure 1. Component models of the local (b) Dutch and (c) German bank databases as well as the integrated model of the virtual bank
as a result of (a) merging. I added the dashed elements in (a) to the component models to obtain an integrated model for the virtual
bank. For this example, I assume that the Rekening and Konto extensions of both databases overlap so that the corresponding merged
class Account represents the union of the component classes. Remove specifies global elements that aren’t available locally. The Unified
Markup Language notation specifies the models for class diagrams.3

analyze the overlaps among the classes we’re inte-
grating.

By applying the upward-inheritance principle,2

we can construct an integrated model with 13
classes (Figure 1a), whereas the German database
contains only five classes. The three classes for the
Dutch database are almost identical to a subset of

the German classes. Because of the upward-
inheritance principle, the integrated model con-
tains more classes than we need. To reduce this
complexity within the integrated model, we may
merge classes in the following ways:4

❚ Vertical merging involves merging a class with
its direct superclass. In Figure 1a, for instance,
we can merge the classes Account and Rekening
vertically. Then we must record the renaming
of attributes and classes somehow. This vertical
merging changes Bank-Id into an optional
attribute within the merged class (while in the
local databases all attributes are mandatory—
for example, Null values aren’t allowed).

❚ Horizontal merging involves merging classes
that have a direct specialization relation to the
same superclass. In Figure 1a, the classes
Rekening and Konto could be merged hori-
zontally into a class that inherits from the class
Account. This horizontal merging would
change both Bank-Id and Currency into
optional attributes within the merged class.
Furthermore, we must introduce an additional
integrity constraint, which requires at least one
of the attributes Bank-Id and Currency in the
merged class to hold a valid value.

We can combine the horizontal and vertical
merging. Figure 2 shows the optimized model of
the virtual bank with six classes. In this example,
the high amount of class merging is possible

18

IE
EE

 M
ul

ti
M

ed
ia

Banking Terminology
Dutch English
Privérekening Checking account
Sparrekening Plain savings account
Valuta Currency
Nummer Number
Saldo Balance
Rente Interest rate
Courantkrediet Disposal credit
Kredietrente Credit interest rate

German English
Bankleitzahl Bank identification number
Festgeld Fixed time deposit
Sparbuch Savings bank book
Sparkonto Generic savings account
Zinssatz Interest rate
Girokonto Checking account
Dispositionskredit Disposal credit
Kreditzins Credit interest rate
Nummer Number
Kontostand Balance
Laufzeit Time period

Plain savings account =
(Sparrekening)

Interest rate = (Rente)

Account = (Rekening, Konto)

Number = (Nummer, Nummer)
Balance = (Saldo, Kontostand)

Currency = (Valuta, Null)
Bank-Id = (Null, Bankleitzahl)

Generic savings account = (Sparkonto)

Interest rate = (Zinssatz)

Checking account =
(Privérekening, Girokonto)

Disposal credit =
(Courantkrediet, Dispositionskredit)

Credit interest rate =
(Kredietrente, Kreditzins)

Fixed time deposit = (Festgeld)

Time period = (Laufzeit)Savings bank book = (Sparbuch)

Figure 2. The optimized
integrated model for the
virtual bank. In Figure
1, we can’t merge
Sparrekening with
Savings account,
because the Savings
bank book isn’t a
specialization of the
Dutch savings account.

because the two integrated models cover almost
the same information in a similar structure, which
is unlikely in scenarios with large numbers of sys-
tems to integrate. Also, the component models’
structure determine the integrated model’s struc-
ture and, because of the merging, this imposes
peculiar constraints on the integrated model.

Under those traditional bottom-up integration
paradigms, the integrated model depends direct-
ly on the source models. An integration engineer
defines the desired integrated models by examin-
ing all the existing systems to be merged. In the
bottom-up approach, the system accumulates the
capacity of existing information systems in one
global model. As a result, the merged model’s
usability and maintainability can become a seri-
ous problem.

Domain-specific top-down integration
To approach a more ideal top-down integration

process, let’s start with a look at domain-specific
software development. Domain engineering is an
activity for building reusable components, address-
ing the systematic creation of domain models and
architectures. Domain engineering supports appli-
cation engineering, which uses the domain models
and architectures to build concrete systems. The
emphasis is on reuse and product lines. The
Domain-Specific Software Architecture (DSSA)
engineering process promotes a clear distinction
between domain and application requirements.5 A
DSSA consists of a domain model and reference
architecture, as Figure 3 shows. The DSSA process

consists of domain analysis, architecture model-
ing, and design and implementation stages, as
Figure 4 illustrates.

Domain models represent the set of require-
ments common to systems within a specific
domain. Usually, we can group those systems
into product lines such as the insurance or bank-
ing domain. There may be many domains, or

19

Application
engineer

Reference
architecture

Domain
expert

Domain-Specific Software Architecture

Domain
model

Mapping
Problem Solution

Domain analyst

Exemplar
systems

 Interview Analyze

Reuse

Specify

Figure 3. Relations between some roles and artifacts in the DSSA engineering
process. Hollow diamonds indicate part-of relations. We use the UML notation
for actors to model the roles.3 For instance, Domain Analysts specify the DSSA,
based on interviewing Domain Experts and analyzing exemplar systems in the
domain. Application Engineers then reuse the DSSA, which consists of the
Domain Model and the Reference Architecture.

Domain
knowledge

Application
requirements

Requirements
analysis

Requirements
analysis

Architecture
modeling

Application
architecture

Design and
implementation

Application
implementation

Domain
analysis

Domain
model

Architecture
modeling

Reference
architecture

Design and
implementation

Reusable
components

Domain
engineering

Application
engineering

Figure 4. The DSSA engineering process. In application engineering (bottom), we develop software systems from reusable components
created by a domain engineering process. Essentially, this is a classical waterfall process for software development with feedback cycles.
The domain engineering process (upper part) supports the application engineering process. As indicated by the dashed arrows, various
forms of feedback are possible. However, this figure doesn’t address real-time dependencies. Typically, the two tracks aren’t parallel but
interleaved.

areas of expertise, represented in a single product
line and a single domain may span multiple prod-
uct lines. Domain analysis is the process of iden-
tifying, collecting, organizing, and representing
the relevant information in a domain, based on
the study of existing systems and their develop-
ment histories, and knowledge captured from
domain experts. Figure 3 illustrates the relations
between some roles (domain experts, domain
analysts, and application engineers) and the arti-

facts in the DSSA engineering process.
A software system’s architecture defines that

system in terms of components and interactions
or connections among those components. The
architecture isn’t the detail design, which specifies
smaller items (such as program classes). The archi-
tecture shows the correspondence between the
requirements and the constructed system, thereby
providing some rationale for the design decisions.
Reference architectures build systems in a product
line. As Figure 3 illustrates, the domain model
characterizes the problem space, while the refer-
ence architecture addresses the solution space.

In application engineering, developers use the
domain models within the product line to under-
stand the capabilities offered by the reference
architecture and specify a system for development.
They then use the reusable components to build
the system. Once developers build the architec-
tural model, they can use the model for detailed
design and implementation. Application engineers
use the domain models to elicit the requirements
for the planned software systems with users. The
models cover users’ needs in terms of existing
models. Any needs not covered by a domain
model are new requirements. The domain analysts
may choose to update a domain model with the
new requirements. As the dashed arrows in Figure
4 indicate, various forms of feedback are possible.

Despite the fact that engineering of (new) glob-
al applications will usually require integrating
existing information sources, I would argue that
the integration process should proceed in a top-
down fashion, starting with models common to
all involved component systems—for example,
with domain models in the context of a DSSA
engineering process. For such top-down integra-
tion of heterogeneous information systems, I rec-
ommend using domain-specific standards as the
basis for the common data models.6 Please see the
“Standardization Initiatives” sidebar for more
resources regarding e-commerce standards.

I illustrate the top-down approach with the
small banking example employing the latter of
these new standards, namely the Interactive
Financial Exchange (IFX), standard which defines
the electronic exchange of financial data between
financial institutions, business, and consumers via
the Internet. Figure 5a displays a small extract of
the virtual bank’s data model. I based the model
on the IFX standard, which uses aggregation as its
main structuring mechanism. I used the class
IntRateInfo to store both saving and credit interest
rates, then distinguish by means of the AcctType

20

IE
EE

 M
ul

ti
M

ed
ia

Standardization Initiatives
Several standardization initiatives for e-commerce exist. Electronic data

interchange (EDI) provides a way to conduct structured electronic exchange
of information between trading partners. Approved standards for EDI are the
ANSI X.12 and UN/Edifact. One of the difficulties of the approved EDI stan-
dards is the fact that they’re somewhat abstract. This led to a proliferation
of custom implementations making the actual deployment expensive.
Industry-specific variations emerged. For instance, EDI purchase order trans-
actions differed between the manufacturing, pharmaceutical, and grocery
industries. Meanwhile Extensible Markup Language (XML)1 emerged as the
standard for defining the syntax of data structures transferred over the
Internet; thus, substantiating the concrete syntax of EDI messages. To pro-
vide interoperability across implementations, we must define the concrete
syntax and semantics of standardized messages. This is the goal of some
standardization initiatives for e-commerce—institutions often reexamine tra-
ditional EDI to define the meaning of transferred data (semantics) and
employ XML as the practical foundation for structuring this information (syn-
tax). Standardization initiatives for combining EDI with XML include, for
instance, the XML/EDI Group (http://www.XMLEDI.org) and e-business XML
defined by The United Nations Center for Trade Facilitation and Electronic
Business (UN/CEFACT, http://www.EbXML.org). Here are some domain-
specific standards for the financial domain:

❚ FinXML. This standard (see http://www.FinXML.org) defines XML mes-
sages for capital markets.

❚ Open Financial Exchange. This standard (see http://www.OFX.net) defines
Standard Generalized Markup Language (SGML) messages for the elec-
tronic exchange of financial data. SGML is a predecessor to XML.
Essentially, XML is a subset of SGML, whereby various complex features of
SGML have been removed. Conversely, Hyper Text Markup Language
(HTML) is an application of SGML.

❚ Interactive Financial Exchange Forum. This standard (see http://www.
IFXForum.org) defines XML messages for banking services. IFX is a suc-
cessor to the Open Financial Exchange (OFX).

Reference
1. S. McGrath, XML by Example: Building E-Commerce Applications, Prentice Hall,

Upper Saddle River, N.J., 1998.

attribute of the associated Account object.
The mapping from the local German bank’s

model in Figure 5b to the IFX model, as indicated
by the arrows, is more complex than the mapping
to the previous model of the virtual bank in Figure
2. On the global level, the bank requires the
account type (AcctType), the currency code
(CurCode), and the rate code (RateCode)—and we
must extract them somehow from the German
component system. The mapping to the Dutch

bank’s model (Figure 1c) is similar. An advantage
of the bottom-up approach is that the mapping
from local components to the common model is
straightforward, but at the price of a complex
common model. On the other hand, integrating
some modern banks with IFX-compliant inter-
faces into the common IFX model with the top-
down approach is also straightforward.

To hook a component information system’s
model into a common (domain-specific) model

21

Jan
uary–M

arch
 2002

Currency amount

Amount
CurCode

IntRateInfo

RateCode
Rate

Term

Count
TermUnits

Account

AcctId
BankId
AcctType

(a)

(b)

Sparbuch Festgeld

Laufzeit

Sparkonto

Zinssatz Dispositionskredit
Kreditzins

Girokonto

Nummer
Kontostand
Bankleitzahl

Konto

Interest rate

Figure 5. A small
extract of the
(a) IFX-based data
model for the virtual
bank together with the
mapping to (b) the local
German bank’s model.
In UML, composition is
specified by a filled
diamond at the
aggregating class:1

Accounts contains
Currency Amounts and
Terms.

with the top-down approach, responsive integra-
tion engineers have to understand their compo-
nent information system and the corresponding
domain model, but they don’t have to understand
other component information systems and con-
straints that could be introduced by them into the
common model using a bottom-up process. The
top-down approach defines a common model
based on the information we want in it. Then we
map to and from the relevant bits of data in the
component information systems. This approach
will result in a more workable approach for Web-
based e-commerce applications with a large num-
ber of involved information sources.

A combined yo-yo approach
In practice, we can also expect a yo-yo

approach—that is, the integration process alter-
nates with bottom-up and top-down steps. For
instance, the bottom-up process may provide
input for extending the domain models. It then
requires a method for new information that
resides in a local information system, but wasn’t
originally intended in the common model. The
requirements of global applications may impose

new requirements on the local component sys-
tems to achieve a usable integration. The DSSA
process takes feedback on the domain artifacts
into consideration. Regardless, it’s important to
start at the top (with the common models).

To illustrate the yo-yo approach, let’s return to
our banking example after the first top-down iter-
ation: for both local banks, the disposal credit limit
on checking accounts is important (Kredietrente
in Figure 1a and Kreditzins in Figures 1c and 5b).
The IFX standard only considers credit limits on
credit cards, not on checking accounts. Thus, we
don’t consider disposal credit limits in the model
for the virtual bank in Figure 5a. In a following
bottom-up iteration, the obvious requirement for
managing disposal credit limits by the virtual bank
implies the corresponding extension of the virtual
bank’s model, as Figure 6a illustrates. Here, we add
the new attribute DispCredit to the class Account.
Figure 6 displays the mappings from the virtual
bank’s extended data model (Figure 6a), to both
the local Dutch bank’s model (Figure 6b) and the
local German bank’s model (Figure 6c).

If many applications in this domain require
these extensions, it may even lead to eventually

22

IE
EE

 M
ul

ti
M

ed
ia

Currency Amount

Amount
CurCode

IntRateInfo

RateCode
Rate

Term

Count
TermUnits

Account

AcctId
BankId
AcctType
DispCredit

(a)

(b)

(c)

Nummer
Saldo
Valuta

Rekening

Rente

Sparrekening

Courantkrediet
Kredietrente

Privérekening

Sparbuch Festgeld

Laufzeit

Sparkonto

Zinssatz
Dispositionskredit
Kreditzins

Girokonto

Nummer
Kontostand
Bankleitzahl

Konto

Interest
rate

Figure 6. The yo-yo
effect after one bottom-
up iteration: mappings
from (a) the virtual
bank’s extended data
model to (b) the local
Dutch bank’s model
and (c) the local
German bank’s model.
I added the attribute
DispCredit to the class
Account, based on the
requirements of the
local Dutch and
German models.

extending the IFX standard, not just extending
this specific virtual bank’s data model. Such bot-
tom-up iterations in a yo-yo process result in
feedback from application engineering to
domain engineering, as Figure 4 illustrates.

As engineers, we should support updating the
common model with a yo-yo approach. Others
have used the yo-yo approach with success. Fong
et al.,7 for instance, propose a joint bottom-up and
top-down methodology for schema integration in
the context of federated database systems. They
took the bottom-up approach to integrate exist-
ing information systems using traditional schema
integration techniques and the top-down
approach to develop a data model for the new
applications. This methodology aims to facilitate
an evolutionary approach to integrate existing
information sources supporting new applications.
Mutual completeness checks of the common
models against the component models determine
the model modification steps to be performed on
the common models to meet the requirements of
the new applications. The idea behind this com-
bined methodology of conducting integration is
that top-down and bottom-up approaches can
complement each other by taking into account
the requirements of new applications. Thus, the
integrated model can readily support new appli-
cations while continuing to serve existing ones.

Software architecture issues
Researchers have proposed various approaches

for integrating heterogeneous information sys-
tems—for example, federated database systems or
mediator and agent architectures. I discuss the
integration process diversity in the context of fed-
erated database systems elsewhere.8 We can use
the federated schema architecture to illustrate the
differences of diverse integration processes.
However, these issues don’t only apply to federat-
ed database systems.

The yo-yo approach in particular requires a
more flexible software architecture as compared
to the schema architecture’s somewhat static
structure in federated database systems. Mediator-
based architectures, for instance, offer such flexi-
ble and dynamic software architectures.9 A
mediator is a component that exploits encoded
knowledge about certain sets or subsets of data to
create information for a higher layer of applica-
tions. Figure 7 illustrates a mediator-based inte-
gration architecture. The software components
managing the domain-specific models are specific
mediators, which we call domain facilitators. A
facilitator is a component that provides coordina-
tion services.9 Component mediators accomplish
integration into standards-based domain-specific
models. This approach increases scalability as it
achieves a separation of concerns between the

23

Jan
uary–M

arch
 2002

Global application Global application

Local system
Local system

Wrapper

Global application

Local system

Wrapper
Wrapper

Component mediator

Local application

Application mediator

Component mediator
Component mediator

Domain model A

Domain model B

Domain facilitator

Domain facilitator

Figure 7. A mediator-
based integration
architecture for Web
engineering providing
separation of concerns
between domain
facilitators, component
mediators, application
mediators, and
wrappers.

management of the global models and the inte-
gration of component models into the domain-
specific models. A wrapper is a component that
provides data access into legacy systems to con-
form with access standards and conventions used
by mediators and facilitators. Optional applica-
tion mediators mediate between domain facilita-
tors and global applications.

Shifting the responsibility for integration from
the multidatabase level toward the local level
with the top-down and yo-yo approaches should
result in more scalable and usable system archi-
tectures. Each component mediator must hook a
view of its associated local information systems
into the common domain models, which the
domain facilitators provide. Each local compo-
nent mediator also maintains the local view on
the common domain models. We obtain a decen-
tralized responsibility for maintaining the inte-
gration. In the presence of a large amount of
heterogeneous information, it’s beneficial to
reduce the central coordination and distribute the
maintenance cost.

The domain facilitator dictates the conditions
that the component mediators must satisfy if they
wish to participate in some integrated system.
Under this approach the domain facilitator can
maintain itself in the presence of new mediators
joining or dropping out of the overall system. A
centralized definition of a collection of common
domain models based on standards, far from hin-
dering local autonomy, simply provides a facilita-
tion layer that represents some guarantee to global
applications and to component mediators.

Conclusions
The combined yo-yo approach aims to exploit

the benefits of both bottom-up and top-down
strategies and to serve as a migration path from
the traditional bottom-up approach toward a
more ideal top-down approach.

Particularly, using domain-specific standards as
the basis for the common domain models will sim-
plify the integration of commercial components
that offer standards-compliant interfaces, because
the structures of local and global data models are
identical or at least similar. Using such standards
within the integration layer also encourages a
(smooth) migration towards modern standards-
compliant systems. The common domain models
serve as the starting point in the integration process
with the top-down and yo-yo approaches. The over-
all integrated system will be more scalable than
with the bottom-up approach, because the com-

mon models shouldn’t grow linearly with the
number of component systems. The common mod-
els don’t grow linearly with the number of compo-
nent systems, as it would be the case with the
bottom-up approach, since we don’t extend the
common models with each added component sys-
tem. Instead, we specify an additional mapping.
The decentralized responsibility for maintaining the
integration mappings reduces the central coordi-
nation needs and distributes the maintenance cost.

Starting with the common models and basing
them on standards-based domain models avoids
changes to the fundamental structure of these
models, making integration more usable and scal-
able. For integrations with a small number of com-
ponent systems, the top-down approach may not
offer the optimal solutions, but for integrations
with many connected systems, as we could imag-
ine on the Internet, we’ll obtain a more usable and
maintainable overall system architecture.

To ensure correct Web data integration, we
need semantic interoperability and the provider
and requester of information must have a com-
mon understanding of the meaning of the request-
ed services and data. Particularly, we emphasize
the role of domain-specific standards for manag-
ing semantic heterogeneity among dissimilar
information sources. Appropriate standards won’t
always be available, but when available, it’s advis-
able to use them. In any case, starting with the
common representation of information to be inte-
grated for Web-based e-commerce—and not with
legacy systems’ data structures—is the preferable
starting point for integration.

However, correspondences in top-down ap-
proaches are usually more complex than in
bottom-up strategies because we design the domain
model and the component models independently.
We specify correspondences separately for each
individual component, emphasizing the compo-
nents’ autonomy. In general, top-down approach-
es result in a more flexible integration than
bottom-up approaches. The bottom-up strategy has
disadvantages with respect to autonomy and evo-
lution in the component systems; thus, it should
be applied only in those scenarios where the con-
figuration of the component systems is somewhat
stable (which is unlikely on the Web), or when no
model to start top-down exists. MM

References
1. G. Goth, “E-Commerce Gets Ready for the

Mainstream,” IT Pro, vol. 1, no. 2, Mar./Apr. 1999,
pp. 12-14.

24

IE
EE

 M
ul

ti
M

ed
ia

2. M. Schrefl and E.J. Neuhold, “Object Class Definition
by Generalization Using Upward Inheritance,” Proc.

4th Int’l Conf. Data Eng. (ICDE 98), IEEE CS Press, Los
Alamitos, Calif., 1998, pp. 4-13,

3. G. Booch, J. Rumbaugh, and I. Jacobson, Unified

Modeling Language User Guide, Addison-Wesley,
Reading, Mass., 1999.

4. I. Schmitt and G. Saake, “Merging Inheritance Hier-
archies for Database Integration,” Proc. 3rd Int’l Conf.

Cooperative Information Systems (CoopIS 98), IEEE CS
Press, Los Alamitos, Calif., 1998, pp. 322-331.

5. R.N. Taylor, W.J. Tracz, and L. Coglianese, “Software
Development Using Domain-Specific Software Archi-
tectures,” ACM SIGSOFT Software Eng. Notes, vol. 20,
no. 5, Dec. 1995, pp. 27-38.

6. W. Hasselbring, “The Role of Standards for Interop-
erating Information Systems,” Information Technolo-

gy Standards and Standardization: A Global

Perspective, K. Jakobs, ed., Idea Group Publishing,
Hershey, Pa., 2000, pp. 116-130.

7. J. Fong et al., “Methodology of Schema Integration
for New Database Applications: A Practitioner’s
Approach,” J. Database Management, vol. 10, no. 1,
Jan.–Mar. 1999, pp. 3-18.

8. W. Hasselbring, “Top-Down vs. Bottom-Up
Engineering of Federated Information Systems,”
Proc. Engineering Federated Information Systems (EFIS
99), Infix-Verlag, Sankt Augustin, Germany, 1999,
pp. 131-138.

9. G. Wiederhold, ed., Intelligent Integration of Informa-

tion, Kluwer Academic Publishers, Boston, 1996.

Wilhelm Hasselbring is an associ-
ate professor and head of the
Software Engineering Group in the
Department of Computer Science,
University of Oldenburg, Germany.
His current research interests

include software engineering for cooperative information
systems in various application domains. He received his
diploma in computer science from the Technical
University of Braunschweig and his PhD in computer sci-
ence from the University of Dortmund. He is a member of
ACM and the IEEE Computer Society.

Readers may contact Wilhelm Hasselbring at the
Software Engineering Group, FB 10, Univ. of Oldenburg,
PO Box 2503, D-26111 Oldenburg, Germany, email
hasselbring@informatik.uni-oldenburg.de. Also visit his
site at http://se.informatik.uni-oldenburg.de/.

For further information on this or any other computing

topic, please visit our Digital Library at http://computer.

org/publications/dlib.

25

This supplemental CD will contain peer-reviewed multimedia
content such as 2D and 3D simulations and animations, standalone
interactive tutorials, and demonstrations of application examples.
The CD won’t duplicate any current electronic or print content.

Attention interested contributors:
Visit CG&A’s Web site (http://computer.org/cga) for details on
submitting your multimedia content for this special CD-ROM.

Coming in 2002…
A Free CD-ROM

with Your
CG&A Subscription

IEEE

AND A PPLICAT IONS

