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Abstract

We develop a probability forecasting model through a synthesis of Bayesian belief-

network models and classical time-series analysis. By casting Bayesian time-series analyses

as temporal belief-network problems, we introduce dependency models that capture richer

and more realistic models of dynamic dependencies. With richer models and associated

computational methods, we can move beyond the rigid classical assumptions of linearity in

the relationships among variables and of normality of their probability distributions.

We apply the methodology to the di�cult problem of predicting outcome in critically ill

patients. The nonlinear, dynamic behavior of the critical-care domain highlights the need

for a synthesis of probability forecasting and uncertain reasoning.
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1 Introduction

Classical time-series methodologies are restricted in their ability to represent the general prob-

abilistic dependencies and the nonlinearities of many real-world processes. With traditional

methods, investigators are often forced to wrestle complex problems into parametrized models

that may sacri�ce explicit knowledge of domain uncertainty for simplicity. In spite of proli�c

research in uncertain reasoning over the past decade, there has been relatively little interaction

between the statisticians interested in time-series analysis and the computer scientists studying

the representation of uncertain knowledge.

A Bayesian belief network is an expressive knowledge representation for uncertain reasoning

that employs a graphical structure to capture explicit dependencies among domain variables

[35, 36]. Belief networks are the basis of diagnostic systems for many real-world applications

[2, 3, 7, 26, 28, 29, 42]. Techniques for probabilistic inference in belief networks [8, 12, 16, 27,

34] and for speci�cation of belief networks [11, 37, 38, 43] have emerged in response to the

diversity of belief-network applications. More generally, applied statisticians have recognized

the importance of graphical structures and the fundamental notion of conditional independence

in the multivariate analysis of categorical data [45].

Forecasting has been addressed only intermittently over the last decade by the uncertain

reasoning community [19]. Early work on continuous-variable inuence diagrams by Kenley

[31] yielded an inuence-diagram representation of the Kalman �lter, a state-space forecasting

model. Since then, few techniques have been developed to address the forecasting problem

directly. Several approaches for probabilistic reasoning about change over time [18, 30] and for

temporal reasoning with belief networks and inuence diagrams [4, 44, 39] have been proposed.

Real-world applications of forecasting with belief networks include forecasting crude-oil prices

[1]. We have developed a probability forecasting model through a synthesis of belief-network

models and classical time-series analysis [14, 15]. The dynamic network model (DNM) is based
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on the integration of Bayesian time-series analysis with generalizations of belief-network repre-

sentation and inference techniques [13].

DNMs inherit the expressiveness of belief networks and are thus suited ideally for domains

with categorical variables. The graphical structure of dependencies in DNMs represents the

direct causal relationships between these variables. Thus, by casting Bayesian time-series anal-

yses as temporal belief-network problems, we can introduce explicit dependency models that

capture richer and more realistic models of dynamic dependencies.

Whereas linear models for time-series analysis suggest that observations are samples from a

normal distribution, direct use of the time-series data to quantify the probability distributions

over domain variables often suggests that uncertainty in the model and the causal mechanisms

leads to nonnormal distributions. Nonnormal and nonlinear dependencies arise naturally in

DNMs from the quanti�cation of the variable dependencies. Furthermore, we can exploit the

structure of these models to design inference algorithms that generate probability forecasts

e�ciently [13]. Thus, the richer models and associated computational methods allow us to

move beyond rigid classical assumptions of linearity in the relationships among variables and

of normality of their probability distributions without an inordinate increase in the complexity

of forecasting. The probability distributions over forecast variables summarize the uncertainty

in the model due to the exogenous disturbances and the implicit uncertainty in the causal

mechanisms. In contrast to point forecasts, with probabilities for the alternative outcomes, we

can now consider the risks of alternative decisions.

In this paper, we use DNMs to predict the outcome in critically ill patients. The problem

is of considerable interest due to the tremendous costs associated with prolonged hospital stays

for critically ill patients. The nonlinear, dynamic behavior of the critical-care domain highlights

the need for a synthesis of probability forecasting and uncertain reasoning.
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2 Overview

Belief networks are powerful graphical representations of probabilistic dependencies among

domain variables. E�ective diagnostic reasoning systems use belief networks to assign proba-

bilities to alternative hypotheses about a patient's health|for example, MUNIN [2], ALARM

[3], Path�nder [26], VPnet [40], and QMR-DT [42]|or about the source of failure in complex

machinery, including jet engines, electric power generators, and copy machines [28, 29]. These

applications of belief networks have focused almost exclusively on static domains. In many

applications, however, we seek to model the dynamic behavior of complex nonlinear system.

Belief networks cannot adequately model such domains because (1) we cannot update the be-

lief network speci�cation with new evidence to reect changes in the domain, (2) for complex

domains with multiple lagged dependencies among domain variables we must specify extremely

large contingency tables to construct the belief network, and (3) probabilistic inference, the

inferential mechanism of belief networks that computes the probability distribution of a do-

main variable conditioned on the current evidence, is intractable for belief networks with large

contingency tables.

The latter two problems are not unique to dynamic domains, and researchers have developed

models that overcome at least the problem of extremely large contingency tables. Additive

belief-network models is one such approach that reduces the speci�cation of an extremely large

contingency table into the speci�cation of a few very small tables [13]. These models belong

to the more general class of additive models [5, 24, 25] that approximate multivariate functions

by sums of univariate functions. Fortuitously, additive belief-network models also overcome the

intractability of probabilistic inference, and thus they provide a reasonable starting point to

design a knowledge representation for dynamic domains.

Additive belief-network models form the basis of DNMs. The additive decomposition not

only simpli�es the speci�cation of the model, but also provides DNMs with a method to update
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their forecasts based on new evidence. Probabilistic inference in DNMs generates probabil-

ity distributions of the forecast values of domain variables conditioned on the time-series of

current observations. The additive structure makes inference e�cient, and therefore, it makes

forecasting e�cient.

In Section 3 we present the forecast model. We begin with a formal de�nition of belief

networks and then introduce additive belief-network models. These models form the basis of

DNMs which we introduce following additive belief-networks.

In Section 4 we discuss the speci�cation of DNMs. We discuss the semantics of the DNM

graphical structure that it inherits from belief networks and we discuss algorithms to infer this

structure from time-series data. We show how changes in the parameters of the additive decom-

position lead to di�erent methods of pooling information about the domain. In DNMs, these

di�erent methods translate into methods for combining probability forecasts. We conclude this

section by showing how the additive decomposition can make probabilistic inference tractable

in complex DNMs.

Finally, in Section 5 we apply DNMs to generate probability forecasts of the deranged

physiology in a critically-ill patient.

3 The Forecast Model

We �rst discuss Bayesian belief networks, a knowledge representation for uncertain reasoning.

We next show how additive generalizations of these representations have desirable properties for

time-series analysis. From these additive generalizations we construct dynamic network models,

a probability forecasting model for domains with qualitative or categorical information.
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3.1 Belief Networks

Belief networks are graphical models of conditional independence in multivariate systems. A

belief network consists of a directed acyclic graph (DAG) and a set of conditional probability

functions. LetX1; :::;Xn represent the nodes of the DAG, and let �(Xi) denote the set of parents

of Xi in the DAG. The nodes of the DAG represent the variables of the belief network. The

directed arcs in the DAG represent explicit dependencies between the variables. To complete

the de�nition of a belief network, we specify for each variable Xi, an associated conditional

probability function (table) denoted Pr[Xij�(Xi)]. The full joint probability distribution is

given by [35, 36]

Pr[X1; ::::;Xn] =
nY

i=1

Pr[Xij�(Xi)]: (1)

Probabilistic inference in belief networks refers to the computation of an inference probability|

that is, Pr[X = xjE = e] for any given set of nodesX instantiated to value x and conditioned on

observation nodes E instantiated to value e. Probabilistic inference in large multiply-connected

belief networks is di�cult. Complexity analyses show that both exact and approximate algo-

rithms pose intractable problems in the worst case [10, 17]. Nevertheless, for many problems,

inference approximation procedures provide useful estimates of posterior probabilities in ac-

ceptable computation times.

3.2 Additive Belief-Network Models

There are several disadvantages to using a belief network to forecast: (1) if a node at time t has

multiple parent nodes at times t� 1; t� 2; :::, then the storage requirement for the conditional

probability table may be excessive; (2) if we have a multivariate time series, the belief-network

model may be complex with multiple, lagged dependencies, and consequently, probabilistic

inference to generate forecasts will be slow, or even intractable; and (3) apart from the storage

and computational demands, for large conditional probability tables, the available training
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set must be very large to obtain reliable maximum likelihood estimates of the conditional

probabilities.

These problems are not unique to belief network forecast models; real-world applications of

belief-network models also encounter these problems. These limitations prompted the devel-

opment of models of causal independence and disjunctive interactions [23, 32, 36] that reduce

substantially the storage requirements of conditional probability tables. These models, how-

ever, do not address the problem of intractable inference. Elsewhere, we develop additive

belief-network models that address the intractable-inference problems researchers encounter in

large belief network applications [13]. In this section, we discuss these models, and in Sec-

tion 4.3, we show that an exact inference algorithm can exploit the properties of the model to

reduce the complexity of inference.

Additive belief-network models, like causal independence models, inherit properties from a

more general class of separable models. In separable models, we can express the joint e�ect of

the set of causes X1; :::;Xp on the dependent variable Y in terms of the e�ects of each individual

cause. We assume that for each cause Xi, there exists an \o�" state|that is, a state in which

Xi has no bearing on the value of Y . We denote these distinguished states by x�i . Thus, the

conditional probabilities Pr[Y jXi;Xj 6=i = x�j ], for i = 1; :::; p, represent the isolated e�ects of

each Xi on Y . More generally, in separable models, we express the joint e�ect of the causes on

the dependent variable in terms of the e�ects of sets of causes Xi, i = 1; :::; k, that partition

the set fX1; :::;Xpg. We represent the isolated e�ect of each set Xi on Y by the conditional

probability Pr[Y jXi;Xj 6=i = x�j ].

Let y� denote the \o�" state of the variable Y . An additive belief-network model is a

separable model that satis�es

Pr[Y = yjX1; :::;Xp] =

8>><
>>:

Pk
i=1 �i Pr[Y = yjXi;Xj 6=i = x�j ] if y 6= y�

1�
P

y0 6=y� Pr[Y = y0jX1; :::;Xk] if y = y�
(2)
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The parameters �i � 0, for i = 1; :::; k, must satisfy
Pk

i=1 �i Pr[Y jXi;Xj 6=i = x�j ] � 1. More

speci�c restrictions on the parameters depend on the domain; we discuss these in Section 4.2.

Like other separable models, to specify the conditional probability Pr[Y jX1; :::;Xp] of an

additive belief-network model we need to specify only the conditional probabilities of the k

isolated e�ects. Thus, for a binary valued belief network, we reduce the size of the conditional

probability table from 2p+1 to
Pk

i=1 2
jXij+1. Unlike other separable models, however, we show

in Section 4.3 that additive decomposition of conditional probabilities allows us to improve the

e�ciency of belief-network inference algorithms.

We conclude this section with a brief discussion of the theory of nonparametric additive

models [5, 24, 25]. We show that the decomposition of the conditional probability Pr[Y =

yjX1; :::;Xp] into the additive terms Pr[Y = yjXi;Xj 6=i = x�j ] is a special case of such models.

Additive models maintain the properties that make linear regression models attractive|

they are additive in the predictor e�ects|yet, they are not constrained by assumptions of

linearity in the predictor e�ects. Let Xt�i = fx1t�i; :::; xmt�ig. An additive model is de�ned

by

E(ytjXt; :::;Xt�k) =
kX

i=0

fi(Xt�i); (3)

where the functions fi are arbitrary. Thus, Equation 3, which expresses the property of additive

models, follows directly from Equation 2:

E[Y jX1; :::;Xp] =
kX

i=1

fi(Xi);

where

fi(Xi) = �iE[Y jXi;Xj 6=i = x�j ]:

3.3 Dynamic Network Models

In this section we introduce DNMs to model dynamic domains. These models are additive

belief-network models with variables indexed by time. As in additive belief-network models we
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use an additive decomposition to express the conditional probabilities of the model; after each

new observation, however, we reestimate the parameters of the decomposition.

Similarly to belief networks, to construct a DNM we �rst identify the dependencies among

domain variables in the model. We use these dependencies to specify the directed acyclic graph

(DAG) of the model. For example, Figure 1 represents a DAG of dependencies of a single

variable Yt dependent on the sets of variables Xt�i = fX1t�i; :::;Xmt�ig. When we construct

the DAG of a domain, we specify only the explicit dependencies between domain variables. To

quantify the extent of these dependencies we must specify the conditional probability functions

of the model.

We next specify the conditional probability for the DAG of the node Yt shown in Figure 1.

We use the additive decomposition to specify the conditional probability,

Pr[Yt = yjXt; :::;Xt�k] =

8>><
>>:

Pk
i=1 �ti Pr[Yt = yjXt�i;Xt�j;j 6=i = x�t�j] if y 6= y�

1�
P

y0 6=y� Pr[Yt = y0jXt; :::;Xt�k] if y = y�
(4)

To estimate the conditional probabilities Pr[YtjXt�i;Xt�j;j 6=i = x�t�j], we can use either expert

assessment or maximum likelihood estimates computed from available time-series data.

Equation 4 is analogous to the additive decomposition of Equation 2. We discussed in

Section 3.2 the advantages of the additive decomposition to specify conditional probabilities

for belief networks. In addition, for DNMs this decomposition provides a means to update the

conditional probabilities with new evidence through reestimation of the parameters �t1; :::; �tk.

3.4 Forecasting

We show that forecasting in a DNM reduces to probabilistic inference in the forecast model. Let

DNMt denote the DNM with leading time slice at time t. The forecast model is the union of

DNMt over all times t. Consider for example the DNM shown in Figure 2a. This �gure shows

the dependencies between nodes at time t, Xt, Yt, and their causes at time t � 1, Xt�1, Yt�1.
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Figure 1: The dependency graph of a variable Yt. Nodes denote model variables, and directed

arcs between nodes denote dependencies.
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Figure 2: The DNM forecast model. (a) This structure represents a DNM with leading time

slice at time t. (b) The forecast model is obtained from the union of the structures in (a) over

all times t.

The forecast model for this DNM is the dependency structure shown in Figure 2b together

with the conditional probabilities and parameters. Probabilistic inference in the forecast model

yields the DNM forecasts.

Let Et denote all the observations up to time t. In general, we allow missing observations

in Et. To compute the forecasts for time t+ 1 given the evidence Et|that is, the probabilities

Pr[Xt+1jEt] and Pr[Yt+1jEt]|we instantiate the forecast model with the observations Et. Nodes

in the time slice t+ 1 represent the forecast nodes. We can truncate the forecast model at the
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forecast nodes, since the uninstantiated future nodes do not a�ect the inference probabilities

of the forecast nodes. Furthermore, if the observations Et includes both nodes Xt and Yt,

then observations of previous nodes do not a�ect the forecast probabilities. In this case, the

structure of the one-step-ahead forecast model reduces to the structure shown in Figure 2a.

Probabilistic inference in this forecast model yields probability distributions for the forecast

nodes. To compute the forecast probabilities for t+ k, we proceed similarly. We truncate the

forecast model at the t+ k forecast nodes. Probabilistic inference in this forecast model yields

the probability distributions for forecast nodes for times t+ 1 to t+ k.

4 Model Speci�cation

In Section 3 we discussed the DNM forecast model. We discuss in this section the speci�cation of

the model. In Section 4.1 we show that we can infer the DNM dependency structure from time-

series data. In Section 4.2 we discuss the e�ect of the additive-decomposition parameters on the

model's forecasts. Finally, in Section 4.3 we show how additive-decomposition of conditional

probabilities reduces the complexity of probabilistic inference.

4.1 Dependency Structure Speci�cation

Classical work in belief-network speci�cation algorithms has focused explicitly on the construc-

tion of models for static domains [11, 37, 38, 43]. These algorithms automate the speci�cation

of belief networks from large databases of domain information. We can apply these same al-

gorithms to specify models of dynamic domains. We decompose the task into two subtasks:

(1) identi�cation of the dependency structure of the model, (2) speci�cation of the conditional

probabilities. The second task is straightforward once we determine the dependency structure

of the domain; we compute the conditional probabilities from maximum-likelihood estimates.

The dependency structure of a DNM, or a belief network, represents the set of causal
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relationships between domain variables. These relationships di�er signi�cantly from the causal

relationships suggested by classical time-series models of the domain. The latter are assessed

from cross correlations between domain variables, whereas DNMs, or belief networks, use the

probability distributions of the domain variables to infer causality.

We begin with a discussion of the di�erent types of dependencies that can exist between

variables in a domain. We distinguish among three types of dependencies: (1) explicit de-

pendencies, (2) implicit dependencies, and (3) spurious correlations. Explicit dependencies

comprise, for example, the directed arcs in a belief network. Similarly, the dependencies of a

DNM represent explicit dependencies. These dependencies model a direct causal relationship

between nodes.

Implicit dependencies model indirect causal relationships; they occur between nodes con-

nected by a chain of explicit dependencies. Consider, for example, the belief network depicted

in Figure 3a with three nodes Xt�2;Xt�1; Yt. In this belief network, nodes Xt�2 and Yt are

implicitly dependent. For these nodes, we observe that Pr[YtjXt�2] 6= Pr[Yt], and therefore,

they are dependent. We can distinguish this dependency from an explicit dependency, however,

because if we observe node Xt�1, then Pr[YtjXt�1 = x;Xt�2] = Pr[YtjXt�1 = x]. Hence, a

direct causal relationship cannot exist between these nodes.

Spurious correlations do not represent any causal relationship; they occur between nodes

with a common parent. For example, in the belief network depicted in Figure 3b, nodes Xt�1

and Yt are correlated because of their common cause Xt�2. These nodes appear to be dependent

because Pr[YtjXt�1] 6= Pr[Yt]. If, however, we observe node Xt�2, then Pr[YtjXt�1;Xt�2 = x] =

Pr[YtjXt�2 = x], demonstrating that the nodes are not explicitly dependent.

The preceding discussion suggests that we can distinguish explicit dependencies from other

dependencies based on the conditional probabilities of the model. Two nodes are explicitly

dependent if we cannot �nd a node, or more generally, a set of nodes, such that when we
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YtXt-1Xt-2 YtXt-1Xt-2

(a) (b)

Figure 3: Dependency models. (a) This dependency structure exhibits an implicit dependency

between Xt�2 and Yt. (b) This structure exhibits a spurious correlation between Xt�1 and Yt.

instantiate these nodes, we break their dependency [37, 38]. Thus, two nodes X and Y are

explicitly dependent if and only if there does not exist a set of nodes S, such that

Pr[Y jS = s;X] = Pr[Y jS = s]: (5)

We can determine the dependency structure of a domain if we can compute the conditional

probabilities between domain variables. We use the time-series data to derive maximum like-

lihood estimates of these probabilities. An alternative approach is to search over all possible

dependency structures for the one that maximizes the likelihood of the observed data [11].

In contrast, classical approaches for specifying the domain dependencies, such as AR models,

dynamic linear models, or transfer-function models, use cross correlations between the variables

to construct the model. Thus, although the dependency structure of the dynamic linear model,

shown in Figure 1, suggests explicit dependencies between the variables, these dependencies

represent instead correlations between the variables. Consider, for example, the classical ap-

proach to constructing a single input-output transfer function model. Let xt denote the input

time series, and let yt denote the output time series. For simplicity, we assume that the xt time

series is an uncorrelated process; thus, for all i 6= j, the cross correlations xx(k) between xt

and xt�k are zero. To compute the transfer-function model for yt,

yt = v0xt + � � �+ vmxt�m;

we must estimate the impulse-response weights vj. The classical approach estimates these

weights from the cross correlations between yt and the xt�k. Because the xt time series is un-
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correlated, we get that vk = yx(k)=xx(k), where yx(k) denotes the cross correlation between

yt and xt�k. Thus, the presence or absence of an arc in the dependency structure for this model

depends on whether the response variable yt is correlated with the predictor variable xt�k.

We cannot, however, use cross correlations to distinguish explicit dependencies from implicit

dependencies or spurious correlations.

If the input time series xt is correlated, then, provided that it is generated by a Gaussian

stochastic process, a linear �lter transforms it into a white-noise process. If, however, the

stochastic process is not Gaussian, then a linear �lter cannot uncorrelate the series. Computing

the impulse-response weights for this process generally requires higher-order correlations. Like

second-order correlations, higher-order correlations also cannot distinguish between the di�erent

types of dependencies. Therefore, these approaches to model construction cannot distinguish

direct causality from indirect causality or spurious correlations.

4.2 Parameter Speci�cation

Equation 2, which expresses the additive decomposition of the conditional probability between

the outcome Y and the sets of causesX1; :::;Xk, represents a model for combining probabilities.

The theory of combining probability distributions has been extensively studied by the Bayesian

community (eg., [22]). These combination rules range from linear combinations to multiplicative

combinations, depending on the mutual dependence of the various alternative forecasts. This

mutual dependence reects the causal interactions among the causes of the common e�ect.

We can consider the set of causes Xi as the knowledge that an ith expert possesses about

the domain. We express this expert's belief in the outcome Y = y by the conditional probability

Pr[Y = yjXi;Xj 6=i = x�j ]:

We would like to aggregate each agent's belief in the outcome into an overall belief. This

aggregation depends on the degree of interdependency, or redundancy, between the various
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sets of causes. Often, however, there exists complex dependencies between the di�erent sets of

causes, and determining the scheme that is appropriate for the degree of interdependency is the

major di�culty encountered by aggregation schemes.

An additive decomposition expresses the composite belief in an outcome as the sum of each

agent's belief weighted by some parameter �i. We show that these parameters can express

diverse types of causal interactions between the di�erent sets of causes. These di�erent models

of causal interactions lead naturally to di�erent models for combining beliefs about the outcome

Y .

We say that a set of causes Xi is active if Xi 6= x�, and otherwise, the set is inactive.

4.2.1 Exclusive Causes

For exclusive causes, we show that if causes Xi are active, then the parameter �i = 1, and if

these causes are inactive, then �i = 0. This result follows because, for exclusive causes, the

contribution from causesXi to the belief in an outcome Y = y is independent of the contribution

from other causes. Since the contribution to the belief from Xi is �i Pr[Yt = yjXi;Xj;j 6=i = x�j ],

it follows that the parameter �i is independent of the other causes. But when all the other

causes are \o�", by de�nition, the belief in an outcome Y = y is Pr[Y = yjXi;Xj;j 6=i = x�j ];

that is, in this case the parameter �i = 1. Therefore, �i = 1 when other causes are active as

well.

4.2.2 Alternative Causes

Suppose that di�erent sets of causes of Y represent alternative explanations of the outcome of

Y . These explanations typically share common background knowledge, or a common inferential

mechanism, to arrive at some measure of support of the outcome of Y . Alternative explanations,

therefore, do not increase our overall belief in an outcome; instead, they allow us to update our
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belief by weighting the beliefs of each explanation according to its likelihood. Hence, we model

the belief of Y by a convex combination of the beliefs of the alternative causes. This model,

known as the linear-opinion pool [22], suggests that the parameters in Equation 4 must satisfy

Pk
i=0 �i = 1.

4.2.3 Disjunctive Causes

Whereas each additional alternative cause of Y provides only an alternative explanation for,

or degree of belief in Y , each additional disjunctive cause of Y increases monotonically our

belief in Y . Disjunctive causes generalize exclusive causes because they model the information

common to di�erent sets of causes. We use the principle of inclusion-exclusion [41] to compute

the parameters �i for disjunctive causes.

For disjunctive causes, if we further assume that the causes are mutually independent, then

we derive the well-known noisy-OR model of causal interactions [23, 32, 36]. Noisy-OR models

are models of exception independence; that is, the mechanism that may inhibit an outcome of

Y when causes Xi are active, is independent of the mechanism that may inhibit this outcome

when other causes Xj are active. Thus, noisy-OR is a product model of the inhibitors of an

outcome.

To facilitate the exposition of disjunctive causes, we denote that causes Xi are active by the

Boolean event ei. We let Pr[ei] denote this event's degree of support of the outcome Y = y; thus,

Pr[ei] = Pr[Y = yjXi;Xj;j 6=i = x�j ]. Thus, the belief in Y given the active disjunctive causes

X1; :::;Xk is the degree of belief in the union of the events e1; :::; ek; that is, Pr[e1 _ � � � _ ek].

We can use the principle of inclusion-exclusion [41] to write

Pr[e1 _ � � � _ ek] =
kX

i=1

(�1)i+1
X

j1;:::;ji

Pr[ej1 ^ � � � ^ eji];

where, for all i, the summation indices j1; :::; ji are distinct. The probabilities Pr[ej1 ^ � � � ^ eji]

denote the degree of support of the outcome Y that is common to all the events ej1; :::; eji.
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Thus, the principle of inclusion-exclusion compensates the combined belief of the outcome by

the degree of belief that is common to di�erent sets of causes.

To compute the belief of Y , we must specify the probabilities Pr[ej1 ^ � � � ^ eji ]. We explore

two distinct speci�cations: (1) exclusive causes and (2) causal independence. If the causes are

exclusive, then these probabilities are zero. In this case, �i = 1, which is consistent with the

previous analysis for exclusive causes.

The second speci�cation, causal independence, leads to the noisy-OR model of causal in-

teractions. Causal independence implies that Pr[ej1 ^ � � � ^ eji] = Pr[ej1 ] � � �Pr[eji]. Thus, in

this model, we quantify explicitly the degree of dependency between alternative causes. The

parameters for this model are

�i = 1 +
m�1X
l=1

(�1)l
X

j1;:::;jl2Sl

1

l
Pr[ej1 ] � � �Pr[ejl];

where Sl = f1; :::; i � 1; i + 1; :::; lg, and the indices j1; :::; jl in the summation are distinct.

Thus, in the noisy-OR model of causal interaction, the parameter for the degree of belief in the

proposition \Xi causes Y " depends on the degree of belief in the other causes.

More generally, the causal interactions between the domain variables may be intermediate

between the extreme interactions we discussed. As more observations about the domain become

available, Bayesian update of the parameters allows us to probe the range of causal interactions

that can be expressed through an additive decomposition. If the causal interactions of the

domain remain stable over time, and if they can be modeled by suitable choices of the parameters

in an additive decomposition, then sequential Bayesian update of the parameters with new

observations converges to these parameters.

4.3 Inference Algorithms

For complex applications, the size of belief-network models for dynamic domains prohibits

tractable computation of inference probabilities [10, 17]. Dynamic network models, however,
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inherit the properties of additive belief-network models [13]. As a result, dynamic network

models bene�t from an exact inference algorithm that exploits the additive decomposition to

improve the e�ciency of inference.

The inference algorithm for additive belief networks [13] is similar to Cooper's nested dis-

section algorithm for general probabilistic inference [9]. The algorithm decomposes the belief

network into subnetworks using the additive decompositions. The Lauritzen-Speiglehalter (L-S)

algorithm is used [34] to perform inference on the subnetworks. The decompositions render the

subnetworks amenable to fast inference with the L-S algorithm. We then combine the results

from each subnetwork inference to arrive at the desired inference probability. The run time of

the algorithm depends on the decompositions in the model.

The L-S algorithm identi�es subsets of related nodes called cliques. For each clique, the L-S

algorithm computes the joint probability distribution over the nodes in the clique. Thus, to

compute the joint distribution of a clique C, the L-S algorithm computes
Q

Xi2C
jXij probabil-

ities, where jXij denotes the number of values of the categorical variable Xi. The running time

of the L-S algorithm is exponential in the size of the largest clique. We show that in a dynamic

network model, if the largest clique contains a node that has an additive decomposition, the

running time to compute an inference can be reduced substantially.

Let Y be a node with parents X1; :::;Xp�1. If a clique contains the node Y , then it must

also contain the parents X1; :::;Xp�1. Let C be the clique containing Y and its parents. If

all the categorical variables have d values, then the size of the joint probability of the clique

containing Y and its parents is dp. However, if Y has an additive decomposition that partitions

its parents into k sets Xi, each of size mi, then the size of the joint probability of the clique is

Pk
i=1 d

mi+1. When Y can be partitioned into two parent sets of equal size, the size of the joint

probability for the clique can be reduced from dp to 2dp=2+1, a substantial reduction in running

time when p or d is large.
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In general, the additive belief-network inference algorithm selects a decomposable node

Y contained in the largest clique and then partitions the belief network at the chosen node

along its partitions Xi to generate multiple belief subnetworks and associated weights, �i. The

ith belief subnetwork is obtained by setting the nodes Xj 6=i in the belief network to their

distinguished values x�j 6=i. The algorithm is invoked recursively on each belief subnetwork until

the size of the largest clique of each subnetwork is smaller than some threshold size; this rule

ensures that we do not generate a large number of sparse subnetworks. The resulting tree of

belief subnetworks contains leaf subnetworks on which probabilistic inference can be performed.

When inference probabilities are required, we instantiate the leaf subnetworks and sum their

inference probabilities, each weighted by the appropriate �i.

5 Results

We apply the methods developed in Section 3 to generate a dynamic network model to predict

the course of a patient in a surgical intensive care unit (SICU). We construct the model from

patient-speci�c data acquired at the Veteran's Administration Medical Center (VAMC) in Palo

Alto, California. We begin with a brief discussion of the VAMC ICU and the pertinent medical

history of the patient.

5.1 Critical Care

Critical-care medicine is a multidisciplinary specialty based in the ICU, and concerned primarily

with the care of the patient with a critical illness. The essence of critical-care medicine is prompt

recognition of rapid alterations in physiologic status and early intervention.

Critical care is expensive and consumes many resources. Currently, ICUs consume 20%

of total hospital charges. Furthermore, ICU beds are growing at approximately 6% annually

while other hospital beds are diminishing. E�orts at ICU health-care cost containment have
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focused on methods to decrease ICU admissions and length of stay. Length of hospital stay is

the single most important variable that inuences the overall cost of patient care. Systems to

predict patient care would limit admission to the ICU to patients who would clearly bene�t from

critical care, and would withhold therapy from patients who would not bene�t [21]. One system,

the acute physiology and chronic health evaluation (APACHE) system, relates the severity of a

patient's illness to the degree of physiologic derangement of a set of physiologic measurements

[33]. Its successor, the APACHE III [20] system, is currently in use at many ICUs to aid in

cost-bene�t treatment decisions based on the mortality risk predictions of critically ill patients.

Other scoring schemes have been developed based on similar principles; many of these are for

speci�c critical illnesses|for example, the Glascow Coma Score.

None of the scoring systems, however, directly addresses acute management of the ICU

patient. Models that aid in ICU decision making are well established. These models, however,

neglect the temporal evolution of the domain and are too simplistic to be reliable. Models that

simulate the temporal evolution of the physiology can be used to predict short-term patient

outcome, as well as outcomes following interventions. However, current physiologic models

employ close-form equations derived from basic principles, and are di�cult to apply in real

time to real-world scenarios. Furthermore, because of their inexible structure, these models

neither have the capacity to deal with uncertainty in the domain, nor the ability to adapt

rapidly to changes in the environment. Physiologic models, therefore, are too restrictive to be

the only model used in critical-care settings.

We developed a dynamic network model, constructed from patient-speci�c data, for auto-

mated monitoring of ICU patients. The principles discussed in Section 3 allow the model to

handle uncertain information and to adapt to changes in the environment. For example, even

a sedated patient may be stimulated by frequent interventions, with ensuing increases in heart

rate, blood pressure, and oxygen consumption. In addition, interventions may disconnect or
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disrupt temporarily various sensor devices, thereby distorting data.

The model tracks the beat-to-beat ow of data generated from an array of devices that mon-

itor the patient continuously. The model is form-free, adapts quickly to changes, and makes

reliable short-term projections of the physiologic status. Model projections replace early recog-

nition of derangement with anticipation of derangement. Feed-forward and feedback systems

have the potential to provide control or recommendations of oxygenation through ventilatory

settings, uid status through intravenous infusion rates, or pharmacologic titration with end

points such as oxygen consumption, systemic and pulmonary pressures, venous pressures, and

heart rate.

5.2 Analysis

case report

A 69 year-old man with a long history of chronic obstructive pulmonary disease (COPD) was

admitted to the Palo Alto VAMC for surgical staging of a known pancreatic cancer. On April

3, 1992, the patient underwent an exploratory laparotomy that revealed tumor extension into

the porta hepatis with invasion into the portal vein. Based on these �ndings, the tumor was

considered unresectable. The following day, the patient was admitted to the VAMC SICU be-

cause of hemodynamic decompensation. Clinical evaluation with invasive monitoring suggested

sepsis, and appropriate measures were taken to stabilize the patient. In spite of these e�orts,

the patient expired two days later, on April 6.

While in the SICU, the patient was ventilated mechanically. Both arterial and venous

oxygen saturations|SaO2 and SvO2, respectively|were monitored. Ventilator settings were

constant and set to maintain the SaO2 in the 90s with a neutral pH. The SvO2, however,

quickly degenerated into an oscillatory behavior with an 11-minute periodicity. The patient's

hemodynamics were monitored invasively with a right, radial, arterial line, and a pulmonary
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artery catheter. Systolic, diastolic, and mean pressures for both the systemic and pulmonary

vasculatures were recorded. These pressure tracings also showed an oscillatory behavior with an

11-minute periodicity. A metabolic monitor recorded oxygen consumption (VO2) and carbon

dioxide production (VCO2). The VO2 periodicity was similar to the SvO2 and the systemic

and pulmonary pressures. Oscillations continued for 140 minutes and terminated when the

patient was given a rapid intravenous infusion of 500 cc of 6% albumin.

discussion

The oscillation of pressures, VO2, and SvO2 is an unusual occurrence, �rst noted by Carroll

[6]. Several other instances of this phenomenon have been discovered subsequently. The patho-

physiology of the process has not yet been elucidated. Recent work, however, suggests a link

between a sustained oxygen debt and a compensatory neuroendocrine response. Since this

phenomenon appears to be a harbinger of shock, its identi�cation and rapid termination are

essential.

We constructed a dynamic network model for this domain using the methods discussed

in Section 4.1. The additive decompositions used in this model reduce the joint probability

space of the largest clique from 1306368 probabilities to 330 probabilities. Figure 4 illustrates

the dependencies of the model generated from the multivariate time series. We focus on �ve

physiologic measures: SaO2, SvO2, VO2, mean-arterial pressure (MAP), and heart rate (HR).

In this case, all other physiologic measures are either static or can be derived from the �ve

chosen measures and values for the static variables.

The model structure helps elucidate the pathophysiology of the oscillations. It establishes

impulse-response relations between physiologic variables, and illuminates possible neuroen-

docrine e�erent pathways responsible for the oscillations.

Figure 5 displays the observed oscillations, and the �rst moment of the one-step-ahead
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Figure 4: The dependency graph for the dynamic network model of the oscillatory pathophys-

iology of a critically ill ICU patient. Node label X:-i denotes the variable Xt�i.

forecast distributions of SvO2, VO2, and MAP, over a period of 35 minutes. The mean-

prediction errors and the mean absolute prediction errors, shown in Table 5.2, suggest that the

�rst moment of the one-step-ahead forecasts made by the model are in good agreement with the

observed data, with the exception of the MAP predictions. In the case of MAP, the predictions

show systematic bias in the region of the cycle troughs. We chose to focus only on the �rst

moment of the predictions to allow comparisons with the observed time series. However, the

model generates probability distributions for the predictions, and these can be used to provide

con�dence bounds on point estimates, or they can be used to hedge alternative outcomes.
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Figure 5: The one-step-ahead forecasts for MAP, SvO2, and VO2. The lighter curve depicts the

time-series values; the darker curve depicts the forecasts made by the dynamic network model

described in the text. We used the �rst 575 observations to identify the model; we generated

forecasts for the subsequent 195 time steps.
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MAP SvO2 VO2 HR SaO2

MPE -2.533% 0.062% 0.003% 0.015% 0.043%

MAPE 4.700% 0.443% 0.566% 0.220% 0.222%

Table 1: Table of Mean Prediction Errors (MPE) and Mean Absolute Prediction Errors (MAPE)

for one-step-ahead forecasts between t = 575 and t = 770 of mean arterial pressure (MAP), ve-

nous O2 saturation (SvO2), O2 consumption (VO2), heart rate (HR), and arterial O2 saturation

(SaO2).

6 Conclusions

We introduced a probability forecast model that integrates fundamental methods of Bayesian

time-series analysis with additive generalizations of belief networks. The resultant nonnormal

and nonlinear forecast model captures the explicit dependencies in the domain and is amenable

to e�cient model speci�cation and inference.

We constructed a DNM for a multivariate time-series of physiologic measures taken from a

critically ill patient in an ICU. The variables of the domain comprised both discrete and contin-

uous variables that required quanti�cation into categorical variables. We used the �rst moment

of the probability forecasts to compute their mean-prediction errors and the mean absolute

prediction errors. Quanti�cation resulted in a small loss in the precision of the forecasts. This

loss was evident predominantly in the predictions of MAP which showed a systematic bias in

the region of the cycle troughs.

The main limitation of DNMs is quanti�cation. If the domain consists of categorical vari-

ables only, then DNMs provide a robust and expressive model for forecasting. The presence of

discrete or continuous variables, however, requires quanti�cation, and consequently, a possible

loss in precision, or an increase in the prediction bias. Thus, we bene�t most from DNMs when
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the domain is nonnormal and nonlinear, or when we require probability forecasts.
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