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Abstract

This paper presents a machine learning method to predict polyadenylation signals (PASes) in
human DNA and mRNA sequences by analysing features around them. This method consists of
three sequential steps of feature manipulation: generation, selection and integration of features. In
the first step, new features are generated using k-gram nucleotide acid or amino acid patterns. In
the second step, a number of important features are selected by an entropy-based algorithm. In the
third step, support vector machines are employed to recognize true PASes from a large number of
candidates. Our study shows that true PASes in DNA and mRNA sequences can be characterized
by different features, and also shows that both upstream and downstream sequence elements are
important for recognizing PASes from DNA sequences. We tested our method on several public
data sets as well as our own extracted data sets. In most cases, we achieved better validation
results than those reported previously on the same data sets. The important motifs observed are
highly consistent with those reported in literature.
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1 Introduction

The general polyadenylation machinery of mammalian cells has been well studied for decades. The
polyadenylation (poly(A)) reaction of mammalian pre-mRNAs proceeds in two stages: the cleavage of
pre-mRNA and the addition of poly(A) tail to the newly formed 3’ end. The cleavage reaction requires
the cleavage/poly(A) specificity factor (CPSF), the cleavage stimulation factor (CStF), the cleavage
factors I and II (CF I and CF II), and poly(A) polymerase (PAP) in most cases. CPSF, PAP and
poly(A) binding protein 2 are involved in poly(A) [22]. The assembly of the cleavage/poly(A) complex,
which contains most or all of the processing factors and the substrate RNA, occurs cooperatively.
CPSF consists of four subunits and binds to the highly conserved AAUAAA hexamer upstream of
the cleavage site. CStF, which is necessary for cleavage but not for addition of poly(A) tail, interacts
with the U/GU rich element located downstream of the AAUAAA hexamer. Two additional factors,
the cleavage factor I and II (CF I and CF II) act only in the cleavage step. CF I has been purified to
homogeneity and shown to be an RNA-binding factor. CF II has been only partially purified so far,
and its function is not known.

After the formation of the cleavage/polyadenylation complex, the selection of poly(A) site is pri-
marily determined by the distance between a hexameric poly(A) signal (PAS) of sequence AAUAAA
(or a one-base variant) and the downstream element(denoted as DSE). The spacing requirements for
the PAS and DSE reflect the spatial requirements for a stable interaction between CPSF and CstF.
The DSE is poorly conserved and two main types have been described as a U-rich, or GU-rich element,
which locates 20 to 40 bases downstream of the cleavage site (for reviews, please refer to [5, 20, 22]).
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DSE is present in a large proportion of genes and can affect the efficiency of cleavage [11, 20]. Although
in few cases, an upstream element (denoted as USE) is required for the poly(A) signal to be fully acti-
vated [1, 2, 13], the position and sequence of the USE are undefined. In summary, the organization of
mammalian poly(A) sites may have an unexpected flexibility and their activity depends on not only
the hexameric signal but also the up/down elements. Figure 1 is a schematic representation of PAS
in human mRNA 3’end processing site [22].

AAUAAA CA G/U-richU-rich5’ 3’

PAS PolyA site

10-30
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Figure 1: Schematic representation of PAS in human mRNA 3’end processing site. Distances are as
described in [5].

There are several software programs that have been developed to detect PASes in human DNA
and mRNA sequences by analysing the characteristics of upstream and downstream sequence elements
around PASes. In one of early studies, Tabaska and Zhang [16] developed a program named Polyadq,
which finds PASes using a pair of quadratic discriminant functions. Besides, they also created a
database of known active poly(A) sites and trained their program on 280 mRNA sequences and 136
DNA sequences. In their tests of finding PASes, they claimed a correlation coefficient of 0.413 on whole
genes and 0.512 in the last two exons of genes. Polyadq is available at http://argon.cshl.org/

tabaska/polyadq_form.html. Recently, Legendre and Gautheret [8] used bioinformatics analysis of
EST and genomic sequences to characterize biases in the regions encompassing 600 nucleotides around
the cleavage site. The computer program they developed is called Erpin which uses 2-gram position-
specific nucleotide acid patterns to analyse 300 bases upstream and downstream region of a candidate
PAS. Being trained by 2327 terminal sequences, Erpin was reported to achieve a prediction specificity
of 69% to 85% for a sensitivity of 56% on several sets of validation data. The program can be found
at http://tagc.univ-mrs.fr/pub/erpin/.

In this paper, we present a machine learning methodology to characterize the features in the regions
encompassing 200 nucleotides around the PAS. Since we only consider the features of sequence around
putative PAS, our program can detect all NNUANA-types poly(A) signals. Our method has three
steps of feature manipulation: feature space generation from the original sequence data using k-gram
nucleotide acid patterns or amino acid patterns, feature selection via an entropy-based algorithm, and
feature integration with a classification algorithm — support vector machines — to build a model
that can correctly recognize true PASes. We train and test our model using public data as well as
our own extracted sequences. Due to the different features of DNA and mRNA sequences, we build
different classification models to fit them individually. When we apply our models to the data sets
that have been tested on Erpin, we obtain specificity of 73% to 93% at the same sensitivity (56%). In
most of cases, our models outperform other published programs on the same data sets. Besides, the
significant features captured by our method are highly consistent with those reported motifs.

2 Data

In this study, a large number of sequences are used to train and test our classification model. They
are from two sources.

(1) Training and testing sequences used by program Erpin [8]. The training set contains 2327
terminal sequences including 1632 “unique” and 695 “strong” polyA sites. The testing set
consists of 982 positive sequences containing annotated PASes from EMBL and four sets of
same sized negative sequences: 982 CDS sequences, 982 intronic sequences of the first intron,
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982 randomized UTR sequences of same 1st order Markov model as human 3’ UTRs, and 982
randomized UTR sequences of same mono nucleotide composition as human 3’ UTRs. The 2327
training sequences can be downloaded from http://tagc.univ-mrs.fr/pub/erpin/ and have
been trimmed in accordance to our window segments described in section 3, i.e. every sequence
contains 206 bases, having a PAS in the center. We obtained testing data sets from Dr Gautheret
via personal communication.

(2) Human RefSeq mRNA data set: we obtained 312 human mRNA sequences from RefSeq [15]
release 1. Each of these sequences contains a “polyA-signal” feature tag carrying an “evi-
dence=experimental” label. We use these sequences to build model for PAS prediction in mRNA
sequences. Besides, we also extracted a set of human mRNA sequences from RefSeq containing
a “polyA-site” feature tag carrying an “evidence=experimental” label. In this set, we removed
the sequences that have been included in the training set used in building our model. We use
these sequences for testing purpose and assume that the annotated PAS positions are correct.
Our negative data set was generated by scanning for the occurrences of AATAAA at coding
region and those AATAAA sites near the end of sequence were excluded purposely.

3 Method

We apply machine learning methodology to this PAS classification and prediction problem by analysing
features in upstream and downstream sequence elements around the PAS. Our method includes three
steps: feature space generation, feature selection and feature integration.

3.1 Feature Generation

We generate a feature space using k-gram (k = 1, 2, 3, ...) nucleotide acid patterns. A k-gram is simply
a pattern of k consecutive letters, which can be nucleotide symbols or amino acid symbols [21, 10].
At first, we use each k-gram nucleotide acid pattern as a new feature. For example, AT is a 2-gram
pattern and ATC is a 3-gram pattern. In order to separate upstream and downstream sequence
elements, same pattern but appears in the different side of a candidate PAS is treated as two different
features. Thus, there are 2 × 4k possible combinations of k-gram nucleotide acid patterns for each
k. Our aim is to characterize some important k-gram patterns (motifs) around a PAS so that these
motifs can be used to distinguish true PASes from false PASes.

The frequency of the k-gram nucleotide acid patterns are used as the values of the features. For
examples, (1) UP-T (DOWN-T) counts the number of times the nucleotide acid letter T appears in
the upstream (downstream) part of a candidate PAS. (2) UP-TG (DOWN-TG) counts the number of
times the two nucleotide acid letters TG appear as a substring in the upstream (downstream) part of
a candidate PAS. In this paper, we present our results based on 1-gram, 2-gram and 3-gram patterns.
Thus, there are 168 (= (4 +42 +43)× 2) possible nucleotide acid patterns, i.e. features. Our patterns
are non-position-specific patterns since their positions in the sequence are not considered when their
frequencies are counted.

In the framework of the new feature space, the initial nucleotide sequences need to be transformed.
The transformation is as follows. Given a DNA or mRNA nucleotide sequence containing candidate
PAS(es), a window is set for each candidate PAS with the candidate PAS in the center and 100 bases
upstream and 100 bases downstream (excluding the candidate PAS hexamer) aside. If a candidate PAS
does not have enough upstream or downstream context, that is, there are less than 100 nucleotides to its
left or to its right, we pad the missing context with the appropriate number of dont-care (“?”) symbols.
Thus, all the window segments have same size, i.e. containing 206 nucleotides. Next, nucleotide acid
window segments are further converted into frequency sequence data under the description of our
features. Later, the classification model will be applied to the frequency sequence data. Note that
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there are two classes of data, true PASes (the corresponding window segments have true PASes in the
center) and false PASes (the corresponding window segments have false PASes in the center), from
machine learning point of view.

3.2 Feature Selection

In order to find explicit features (motifs) that can distinguish true PASes from candidates, the second
step of our method is to conduct feature selection. There are various ways [9] to conduct feature
selection, for examples, by t-statistics, by signal-to-noise statistics or by entropy measure. Here, we
introduce a simple and efficient entropy-based algorithm to select important features. The basic idea
of this algorithm originates from [6] in which a discretization method was addressed. According to
the method, some numeric features can not be discretized since their values are randomly distributed
between the two-class data. Reasonably, these kind of features should be excluded from our classi-
fication and prediction task. For the remaining features, the algorithm can automatically find some
cut points in these features’ value ranges such that the resulting intervals of every feature can be
maximally distinguished. If every interval induced by the cut points of a feature contains only the
same class of data (such as true PAS), then this partitioning by the cut points of this feature has an
entropy value of zero. In contrast to this ideal case, no proper cut points can be found for randomly
distributed features and their entropy value is 1 in the two-class case.

This algorithm is outlined in the following. Let P (f, C, S) be the proportion of samples whose
feature f has value in the range S and are in class C. The entropy of a range S with respect to feature
f and a collection of classes U is defined as

Ent(f,U , S) ≡ −
∑

C∈U

P (f, C, S)log2(P (f, C, S))

Let T partition the values of f into two ranges S1 (of values less than T ) and S2 (of values at least
T ). We refer to T as a cutting point of the values of f . The entropy measure e(f,U) of a feature f is
then defined as min{E(f,U , S1, S2) | (S1, S2) is a partitioning of the values of f in

⋃U by some point
T}. Here, E(f,U , S1, S2) is the class entropy of partition (S1, S2). Its definition is given below, where
n(f,U , S) means the number of samples in classes in U whose feature f has value in the range S,

E(f,U , S1, S2) =
n(f,U , S1)

n(f,U , S1 ∪ S2)
Ent(f,U , S1) +

n(f,U , S2)

n(f,U , S1 ∪ S2)
Ent(f,U , S2)

A refinement of the entropy measure is to recursively partition the ranges S1 and S2 until some
stopping criteria is reached. A commonly used stopping criteria is the so-called minimal description
length principle given in [6].

In this study, we pick up all the features whose entropy value is less than 1, i.e. discard all the
features without cut points.

3.3 Feature Integration

To achieve the ultimate goal of predicting true PASes, our third step is to integrate the selected
features by a classification algorithm. In this paper, we consider support vector machines (SVMs)
as our classifier since it is known to have good classification performance in the biological domain,
such as gene expression profile analysis [3, 7, 19] and translation initiation site prediction in DNA
sequences [10, 23].

SVMs is a kind of blend of linear modeling and instance-based learning [18]. It originates from
research in statistical learning theory [17]. An SVM selects a small number of critical boundary
samples (called support vectors) from each class of training data and builds a linear discriminant
function that separates them as widely as possible. In the case that no linear separation is possible,
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the training data will be mapped into a higher-dimensional space H and an optimal hyperplane (also
called maximum margin hyperplane) will be constructed there. The mapping is performed by a kernel
function K(·, ·) which defines an inner product in H. The decision function given by an SVM is given
like:

f(x) =
∑

i

α0
i yiK(xi, x) + b

where xi are the training data points, yi are the class labels (which are assumed to have been mapped
to 1 or -1) of these data points, b and α0

i
are parameters to be determined. The training of a SVM is

a quadratic programming and here, we omit the detailed description about this. Please refer to the
tutorial [4] for a better understanding of SVMs.

There are several ways to train support vector machines. One of the fastest algorithms was
developed by Platt [14], which solves the above quadratic programming problem by sequential minimal
optimization (SMO) algorithm. In our experiments, we use the implementation of SMO in Weka

(version 3.2), a free machine learning software package written in Java and developed at University
of Waikato in New Zealand [24]. The kernel is a polynomial function and the transformation of the
output of SVMs into probabilities is conducted by a standard sigmoid function. We adopt the default
setting of Weka’s implementation where linear kernel functions are used.

4 Experiments and Results

To test the performance of our method, we first select features and build classification model (i.e.
training SVMs) on some training data, and then validate the well-trained model on testing data.
To evaluate the performance of model, we adopt standard performance measures defined as follows.
Sensitivity measures the proportion of true PASes that are correctly recognized as PASes. Specificity

measures the proportion of the claimed true PASes that are indeed PASes. Besides, we also plot
ROC (Receiver Operating Characteristic) curve for each validation so that the tradeoff between true
positive rate (i.e. sensitivity) and false positive rate can be illustrated clearly.

On the other hand, the training accuracy is indicated by 10-fold cross-validation results. In 10-fold
cross-validation, training data is divided randomly into 10 disjoint subsets of approximately equal size,
in each of which the class is represented in approximately the same proportions as in the full training
data set. Then the above process of training (including feature selection and model construction) and
validating will be repeated 10 times. In each iteration, (1) one of the subsets is held out in turn,
(2) feature selection and SVMs training are conducted on the remaining 9 subsets, (3) the model is
evaluated on the holdout set. After all subsets being tested, an overall performance is yielded.

4.1 Preliminary Results

In the first experiment, we use the 2327 sequences introduced in [8] (see data source (1) in Sec-
tion 2) as our true PAS training data. To obtain negative sequences, same sized false PAS data is
randomly selected from our own extracted negative data set (see data source (2) in Section 2). Using
entropy-based feature selection algorithm and SVM classifier, the sensitivity and specificity of 10-fold
cross-validation on training data are 89.3% and 80.5%, respectively. In order to compare with other
programs, we test our model on the same validation sets whose testing results on programs Erpin and
Polyadq were reported in [8]. As described in Section 2 data source (1) , these validation sets include
true PASes sequences came from 982 annotated UTRs and four same sized control sets known not to
contain PASes: coding sequences (CDS), introns and randomized UTRs (simply shuffled UTRs and
1st order Markov model UTRs). For a direct comparison, we also adjust the prediction sensitivity on
the 982 true PASes at around 56.0% so that evaluation can be made on prediction specificities using
those four control sets.
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Table 1 shows the validation results on true PASes and Table 2 illustrates the results on four control
sets. Figure 2 is the ROC curve for this series of tests. All the numbers regarding to the performance
of programs Erpin and Polyadq in Table 1 and Table 2 are copied or derived from [8]. The results in
Table 2 demonstrate that our model can give better performance than Erpin and Polyadq did on false
PASes prediction of CDS, intron and simple shuffling sequences, and almost same prediction accuracy
on sequences with 1st order Markov randomization.

Table 1: Validation results by different programs on a set of 982 annotated UTR sequences from the
EMBL database [8]. TP is the number of true positives. FN is the number of false negatives. SN is
sensitivity, and SN = TP/(TP + FN).

Program TP FN SN

Erpin 549 433 55.9%
Polyadq 547 435 55.7%
Ours 553 429 56.3%

Table 2: Validation results by different programs on different sequences not containing PASes: coding
sequences (CDS), introns, and two types of randomized UTR sequences (simple shuffling and 1st order
Markov simulation) [8]. TN is the number of true negatives. FP is the number of false positives. TNR
is the true negative rate that measures the proportion of false PASes that are correctly recognized
as false PASes, and TNR = TN/(TN + FP ). FPR is the false positive rate that measures the
proportion of false PASes that are misclassified as true PASes, and FPR = FP/(TN + FP ) =
1 − TNR. SP is specificity, and SP = TP/(TP + FP ). CC is correlation coefficient, and CC =

(TP∗TN−FP∗FN)√
(TP+FP )∗(TP+FN)∗(TN+FP )∗(TN+FN)

. Calculations of SP and CC use TP and FN from Table 1.

Data set Program TN FP TNR FPR SP CC

CDS Erpin 880 102 89.6% 10.4% 84.3% 0.483
Polyadq 862 120 87.8% 12.2% 82.0% 0.459
Ours 887 95 90.3% 9.7% 85.4% 0.497

Introns Erpin 741 241 75.5% 24.5% 69.5% 0.320
Polyadq 718 264 73.1% 26.9% 67.5% 0.293
Ours 775 207 78.9% 21.1% 72.8% 0.363

Simple shuffling Erpin 888 94 90.4% 9.6% 85.4% 0.494
Polyadq 826 156 84.1% 15.9% 77.8% 0.415
Ours 942 40 95.9% 4.1% 93.3% 0.570

Markov 1st order Erpin 772 210 78.6% 21.4% 72.3% 0.354
Polyadq 733 249 74.6% 25.4% 68.7% 0.309
Ours 765 217 77.9% 22.1% 71.9% 0.351

In this experiment, there are 113 features having their entropy values less than 1. They are selected
to integrate with SVMs to form the classification and prediction model. Table 3 lists the top 10 of
these features ranking by their entropy values (the less the entropy value is, the more important the
feature is). Some of these top features can be interpreted by those reported motifs, for example, it is
clearly to visualize both USE and DSE are well-characterized by G/U rich segments since UP-TGT,
UP-T, DOWN-TGT, DOWN-T, UP-TG and UP-TT are among top features.

When we apply our model to 312 true PASes that was extracted from mRNA sequences by ourselves
(see data source (2) in Section 2), the results obtained is not good — only around 20% of them can
be predicted correctly. Besides, the program Erpin performs even worse on these PASes — with
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Figure 2: ROC curve of our model on the val-
idation sets described in [8] (please see data
source (1) of Section 2).
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Figure 3: ROC curve of our model on PAS
prediction in mRNA sequences.

Table 3: The top 10 features selected by entropy-based feature selection method for PAS classification
and prediction in human DNA sequences.

Rank 1 2 3 4 5 6 7 8 9 10

Feature UP DOWN UP UP DOWN DOWN UP UP DOWN UP
-TGT -A -T -AG -TGT -T -TG -TT -AA -A

prediction accuracy at only 13%. It may indicate that the good features used in the model for PAS
prediction in DNA sequences are not efficient for mRNA. Therefore, we decide to build another model
for mRNA sequences without poly(A) tails. This model is also expected to provide a new way for
predicting the mRNA cleavage site/poly(A) addition site.

Since the new model is aimed to predict PASes from mRNA sequences, we only consider the
upstream elements around a candidate PAS. Therefore, there are only 84 features (instead of 168
features). To train the model, we use 312 experimental verified true PASes and same number of false
PASes that randomly selected from our prepared negative data set. The validation set comprises
767 annotated PASes and same number of false PASes also from our negative data set but different
from those used as training (data source (2) in Section 2). This time, we achieve reasonably good
results. Sensitivity and specificity for 10-fold cross-validation on training data are 79.5% and 81.8%,
respectively. Validation result is 79.0% sensitivity at 83.6% specificity. Besides, we observe that the
top ranked features selected via entropy-based feature selection method are different from those listed
in Table 3 (features not shown).

Since every 3 nucleotides code for an amino acid when DNA sequences translate to mRNA se-
quences, it is legitimate to investigate if an alternative approach that generating features based on
amino acids can produce more effective PASes prediction for mRNA sequence data. In fact, this idea
has been implemented to recognize translation initiation sites in human DNA sequences [10]. Next,
let’s explore more about this on PAS prediction.

4.2 A Refinement for PAS Prediction in mRNA Sequences

After getting a 206 bases nucleotide acid window segment for each candidate PAS, we code every
triplet nucleotides at upstream into an amino acid using the standard codon table. A triplet that
corresponds to a stop codon is translated into a special “stop” symbol. Thus, every nucleotide sequence
window is coded into another sequence consisting of amino acid symbols and “stop” symbol.

Instead of nucleotide acid patterns, we generate the new feature space using k-gram (k = 1, 2, 3, ...)
amino acid patterns. For example, AR is a 2-gram pattern constituted by an alanine followed by an
arginine. Apart from these k-gram amino acid patterns, we also present existing knowledge via an
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additional feature: denoting number of T residue in upstream as “UP-T-Number”. Since there are 20
standard amino acids plus 1 stop symbol, there are 21k possible combinations of k-gram patterns for
each k. If we choose k as 1 and 2, then there are total 463 (= 21+212 +1) features in the new feature
space.

Similarly, we use frequency of the k-gram amino acid patterns as the values of the features, and
the amino acid sequences are then converted into frequency sequence data under the description of
our new features. Figure 4 presents a diagram for the mRNA data transformation with respect to our
new feature space.

True PASFalse PAS

……ATCGCCAATAAACGAGGAG…… ATCTTTTATCAATAAAATGGTATATCTTTTTTAGTC……

 sequence window generation

mRNA

sequence

amino acid sequenceamino acid sequenceamino acid sequence

further transformation

codinga (false) PAS window 

……ATCGCC (False) CGAGGA……

        100bps      100bps

a (true) PAS window

……TTTATC ( True ) ATGGAT……

100bps      100bps

…… FL (True)

  33aa

New feature space (total of 463 features + class label)

21 1-gram amino

acid patterns

441 2-gram amino

acid patterns

1 bio-know-

ledge pattern

UP-A, UP-R,

….,UP-N

 (numeric type)

UP-AA, UP-AR, ….,

UP-NN,

(numeric type)

UP-T-number

(numeric type)

class

label

True,

False

True50,2, 0, 3, 10, 0, … 6, 5, 7, 9, 0, …

False10,6, 2, 7, 0, 5, …1, 3, 5, 0, 4, …

Frequency as values

…… LP (False)

  33aa

amino acid sequence

Figure 4: A diagram for mRNA data transformation aiming for the description of the new feature
space. In practice, we drop the left-most nucleotide so that 99 bases are used in the coding.

In the new feature space, we conduct feature selection and train SVMs on 312 true PASes and
same number of false PASes. The 10-fold cross-validation results on training data are 81.7% sensitivity
with 94.1% specificity. When apply the trained model to our validation set containing 767 true PASes
and 767 false PASes, we achieve 94.4% sensitivity with 92.2% specificity (correlation coefficient is as
high as 0.865). Figure 3 is the ROC curve of this validation. In this experiment, there are only 13
selected features and UP-T-Number is the top 1 feature. This indicates that upstream sequence of
PAS in mRNA sequence may also contain T-rich segments.

5 Conclusion
We have described a machine learning methodology for recognition of polyadenylation signals (PASes)
in human DNA and mRNA sequences. The method comprises three steps: (1) generating candidate
features from the original sequence data using k-gram nucleotide acid patterns or amino acid patterns;
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(2) selecting relevant features using an entropy-based algorithm; and (3) integrating the selected
features by SVMs to build a system to correctly recognize true PASes.

We train our classification models using some public data sets, including 2327 true PASes in DNA
sequences that were used to train program Erpin [8]. When applying our well-trained models to
the same validation data sets that have been tested on Erpin and Polyadq, in most of cases, our
models outperform other programs — with specificity of 73% to 93% at the sensitivity of 56%. Our
experimental results show that PASes in DNA and mRNA sequences may have different characteristics
in their upstream and downstream sequence elements so that different classification models should be
considered to fit them individually.

To predict PASes in mRNA sequences, we code each nucleotide acid sequence to amino acid se-
quence and use k-gram amino acid patterns as new features. To train such a model, we extract
experimental verified PASes from mRNA sequences as well as some negative data (RefSeq release 1).
The model built for PAS prediction in mRNA sequences also achieves very good validation perfor-
mance, with 94.4% sensitivity at 92.2% specificity for predicting PASes in a set of sequences containing
experimental verified poly(A) sites.

To obtain explicit important motifs around true PASes, we use entropy-based feature selection
method to filter out those unimportant features. A reduced feature dimensionality will not only greatly
shorten the running time of classification program, but also lead to a more accurate prediction. The
performances using all generated features are not as good as what we present in this paper (detailed
results not shown). The significant features output are highly consistent to those reported motifs in
literature.

Currently, we are considering to include patterns containing “dont care” symbols into our feature
space so that more general motifs might be found. Meanwhile, some other classification algorithms,
such as ensemble decision trees, are being tested to output comprehensive and interesting rules. To
further test the feasibility and robustness of our method, we will test our models on EST and genomic
sequences.

Acknowledgments
We wish to thank Dr. Daniel Gautheret and Dr. Matthieu Legendre for providing their data sets.

References
[1] Aissouni, Y., Perez, C., Calmels, B., and Benech, P.D., The cleavage/polyadenylation activity

triggered by a U-rich motif sequence is differently required depending on the poly(A) site location
at either the first or last 3’-terminal exon of the 2’-5’ oligo(A) synthetase gene, J. Biol. Chem.,
277:35808–35814, 2002.

[2] Brackenridge, S. and Proudfoot, N.J., Recruitment of a basal polyadenylation factor by the
upstream sequence element of the human lamin B2 polyadenylation signal, Mol. Cell. Biol.,
20:2660–2669, 2000.

[3] Brown, M.P., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T.S., Ares, M.Jr., and
Haussler D., Knowledge-based analysis of microarray gene expression data using support vector
machines, Proceedings of the National Academy of Science, 97(1):262–267, 2000.

[4] Burges, C.J.C., A tutorial on support vector machines for pattern recognition, Data Mining and

Knowledge Discovery , 2(2):121–167, 1998.

[5] Colgan, D.F. and Manley J.L., Mechanism and regulation of mRNA polyadenylation, Gens De-

velopment , 11:2755–2766, 1997.

[6] Fayyad, U. and Irani, K., Multi-interval discretization of continuous-valued attributes for classi-
fication learning, In Proceedings of the 13th International Joint Conference on Artificial Intelli-

gence, Morgan Kaufmann, pp. 1022–1029, 1993.



PASPrediction 93

[7] Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., and Haussler, D., Support
vector machine classification and validation of cancer tissue samples using microarray expression
data, Bioinformatics, 16:906–914, 2000.

[8] Legendre, M. and Gautheret, D., Sequence determinants in human polyadenylation site selection,
BMC Genomics, 4(1):7, 2003.

[9] Liu, H., Li, J., and Wong, L., A comparative study on feature selection and classification methods
using gene expression profiles and proteomic patterns, Genome Informatics, 13:51–60, 2002.

[10] Liu, H. and Wong, L., Data mining tools for biological sequences, Journal of Bioinformatics and

Computational Biology , 1(1):139–168, 2003.

[11] McDevitt, M.A., Hart, R.P., Wong, W.W., and Nevins, J.R., Sequence capable of restoring
poly(A) site function define two distinct downstream element, EMBO J., 1(5):2907–2931, 1986.

[12] Minvielle-Sebastia, L. and Keller, W., mRNA polyadenylation and its coupling to other RNA
processing reactions and to transcription, Current Opinion in Cell Biology, 11:352–357, 1999.

[13] Moreira, A., Takagaki, Y., Brackenridge, S., Wollerton, M., Manley, J.L., and Proudfoot, N.J.,
The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3’ end
formation by two distinct mechanisms, Genes Dev., 12:2522–2534, 1998.

[14] Platt, J., Fast training of support vector machines using sequential minimal optimization, In
Advances in Kernel Methods - Support Vector Learning , Edited by Schölkopf, B., Burges, C., and
Smola, A., MIT Press, 1998.

[15] Pruitt, K.D. et al., Introducing RefSeq and LocusLink: curated human genome resources at the
NCBI, Trends. Genet., 1(16):44–47, 2000.

[16] Tabaska, J.E. and Zhang, M.Q., Detection of polyadenylation signals in human DNA sequences,
Gene, 231:77–86, 1999.

[17] Vapnik, V.N., The Natural of Statistical Learning Theory , Springer, 1995.

[18] Witten, H. and Frank, E., Data Mining: Practical Machine Learning Tools and Techniques with

Java Implementation., Morgan Kaufmann, San Mateo, CA, 2000.

[19] Yeoh, E.-J., Ross, M.E., Shurtleff, S.A., Williams, W.K., Patel, D., Mahfouz, R., Behm, F.G.,
Raimondi, S.C., Relling, M.V., Patel, A., Cheng, C., Campana, D., Wilkins, D., Zhou, X., Li,
J., Liu, H., Pui, C.-H., Evans, W.E., Naeve, C., Wong, L., and Downing, J.R., Classification,
subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene
expression profiling, Cancer Cell , 1:133–143, 2002.

[20] Zarudnaya, M.I., Kolomiets, I.M., Potyahaylo, A.L., and Hovorun, D.M., Downstream elements of
mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures
Nucl. Acids Res., 1(31):1375–1386, 2003.

[21] Zhang, M.Q., Identification of human gene core promoter in silico, Genome Research, 8:319–326,
1998.

[22] Zhao, J., Hyman, L., and Moore, C., Formation of mRNA 3’ ends in eukaryotes: mechanism,
regulation, and interrelationships with othe steps in mRNA synthesis, Microbiology and Molecular

Biology Reviews, 63(2):405–445, 1999.
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