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Abstract— This paper provides a novel approach for optimal
route planning making efficient use of the underlying geometrical
structure. It combines classical AI exploration with computa-
tional geometry.

Given a set of global positioning system (GPS) trajectories, the
input is refined by geometric filtering and rounding algorithms.
For constructing the graph and the according point localization
structure, fast scan-line and divide-and-conquer algorithms are
applied.

For speeding up the optimal on-line search algorithms, the
geometrical structure of the inferred weighted graph is exploited
in two ways. The graph is compressed while retaining the original
information for unfolding resulting shortest paths. It is then
annotated by lower bounds and refined topographic information;
for example by the bounding boxes of all shortest paths that start
with a given edge.

Traffic disturbances can result in an increase in travel time
for the affected area, which in turn, can affect the pre-computed
information. This paper discusses two models of introducing
dynamics in a navigation system.

The on-line planning system GPS-ROUTE implements the
above techniques and provides a client-server web interface to
answer series of shortest-path or shortest-time queries.

I. I NTRODUCTION

Improved navigation is an ubiquitous need to satisfy nowa-
days mobility requirements. With the industrial emergence of
low-cost positioning systems and by the accelerated develop-
ment of hand-held devices and mobile telephones, integrated
data gathering and processing to assist personal navigation
becomes feasible at a very large scale.

Most available digital maps are expensive, since exhibiting
and processing road information e.g. by surveying methods or
by digitizing satellite images is very costly. Maps are likely
to be inaccurate and to contain systematic errors in the input

sources or inference procedures. It is costly to keep map infor-
mation up-to-date, since road geometry continuously changes
over time. Most available maps provide no information for
bikers and pedestrians. In some regions of the world, digital
maps are not available at all. Maps contain information on road
classes and travel distances only, which is often not sufficient
to infer travel time. Moreover, it is not possible to pose timed-
queries to those maps i.e., to request a shortest path from a
source to a destination during a specific period of time or day.
The need for timed-queries arises from the observation that
the travel time can vary drastically during different types of
days: workdays and holidays.

The algorithmic issues to pre-process and answer queries
for short and timely paths with respect to the current po-
sition have not been settled yet. Consequently, in this text
we present the design and implementation of a flexible on-
line information system that features different enhancements
to the route planning problem based on GPS data. It is
application domain independent, since all pre-processing and
path planning algorithms merely refer to GPS trajectories. The
off-line input is a set of traces and the on-line input is a set
of path queries. These routes can be visualized on top of a
topographic map or transferred to an end-user GPS device for
route tracking. The incoming (possibly differential) GPS data
is refined by filters that take additional inertial input sources
into account.

We refer to the portfolio of algorithms asgeometric, since
all computations from trace manipulation to plan visualization
exploit the underlying (Euclidean) geometry. For example we
utilize the layout of the graph to speed-up shortest path search.
As the graph is large, one cannot afford to use more than linear
space. In a preprocessing step, for each edge geometric objects



2

Geom. Point Localization

Geom. Speed-Up

(D)GPS

Query

Geom. Visualization

Geom. (Heuristic) Search

Top. Map

Top. Map+Plan

(D)GPS Inertial Inf.

Geom. Filtering

Geom. Rounding

Graph Construction

Compression

Fig. 1. The architecture of the GPS route-planning system.

are determined representing all nodes to which a shortest path
using this edge exists. The object representation needs constant
space per edge.

Figure 1 depicts the flow of data in our approach. Raw GPS
data is fed into the system, filtered and refined. Then the trace
graph is built and the compressed graph is computed on top of
it. Geometric speed-up information is computed to produce the
annotated graph. The route planning engine takes this extended
layered graph and the provided query to compute a plan, which
can be uploaded back to a GPS device for navigation. In case
the provided query points do not correspond to graph nodes,
we suggest to use the nearest neighboring nodes instead. The
visualization step applying vertex detection, data reduction,
spline fitting, etc. is optional.

This architecture also structures the rest of the paper:
First we address the data refinement and geometric rounding.
Then we turn to the graph construction process by applying
efficient geometric algorithms to the set of GPS traces. The
graph is further annotated to accelerate shortest path queries
in form of Euclidean distance heuristics possibly aided by
geometric shortest path pruning information. All route-finding
algorithms preserve optimal routes. In the experimental section
we evaluate our implementation on a few sets of collected
GPS data. An overview of models for navigation in a dynamic
environment is presented next. Related, current and future
work is presented in Section XII followed by the conclusion.

II. DATA GATHERING

According to the navigational task, there are different op-
portunities to track and process data. Although the algorithms
we present are independent from the application area, we
briefly discuss the case of cycling to impose low cost and
high mobility requirements like small size and low battery
consumption.

In Figure 2, you see a moderately equipped bike to perform
advanced mobile data gathering. At the handlebars we installed
a GPS receiver1 and an advance cycling computer2. The GPS
device features a small base map, waypoint and route follow-
ing options, as well as up- and downloading of data. Raw GPS
information is sent by the receiver in a frequency of one signal
per second to its serial port. This data is stored in a palm-
top device with a free-ware program3 that was developed to
memorize flight data. The memorized traces are transfered to a
PC by a simple terminal program4. A gender changer attaches
the two serial cables of GPS and palm-top. Since the frequency
of data storage in the cycling computer is low (one data point
per 20s), we additionally experimented with a simple wheel
magnet directly linked to a palm-top to be processed in a
shareware program5 that memorizes ticks each second. Besides
the recording of current velocity through incoming wheel-
turn ticks, a cycling computer can trace altimeter and a heart
pulse data. To have accurate GPS independent orientation, an
electronic (gyro)compass is needed.

Bike navigation is only one of the vehicle routing aspects
we look at. For proper car navigation inertial information can
be accessed on the internal electronic bus. For the design of
autonomous mobile systems, efficient outdoor GPS path (re-)
planning and path following is of growing importance. In fact
the algorithms we develop are generic in the sense that they
apply to any kind of motion in the physical world that can
access GPS information, including but not limited to drivers,
bikers, hikers, and robots. In near future we expect all different
devices to be merged into one.

1Garmin Venture,www.garmin.com
2Ciclosport HAC-4 Plus,www.ciclosport.de
3GPS logger,www.palmflying.com/glogger.html
4Serialterm,www.comp.lancs.ac.uk/˜albrecht/sw
5Bikini, home.swipnet.se/˜w-51358/pilot
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Fig. 2. A bike equipped to gather GPS data.

III. G EOMETRIC FILTERING AND ROUNDING

Geometric filters are used to detect outliers in the GPS data.
Specifying a mobility model for the moving object further
helps to eliminate false signals. Inertial information like alti-
tude, distance and angle can best be included in the actual data
through the process of Kalman filtering [1], maintaining two
statistical moments: the process state and the error covariance
matrix. Suppose that the GPS positionl = (x, y, θ) with
orientationθ is updated by distance and angular change vector
a = (δ, α) to F (l, a) = (x+ δ cos θ, y + δ sin θ, θ+ α)T . The
change may lead to errors in the assumed position. Kalman
filtering now assumes that distance and rotation satisfies a
Gaussian distribution, i.e.l ∼ N(µl,Σl) anda ∼ N(µa,Σa)
with meansµl = (x̄, ȳ, θ̄) and µa = (δ̄, ᾱ) and co-variance
matricesΣl andΣa. It updates the valuesµl by F (µl, µa) and
Σl by ∇F · Σ · ∇FT , where∇F is the derivative ofF and
Σ the combined covariance matrix ofΣl andΣa.

For further data reduction, we apply the Douglas-Peuker
geometric rounding6 algorithm [2]. The method was developed
to reduce the number of points to represent a digitized curve
from maps and photographs. It considers a simple trace7 of
n+ 1 points{p0, . . . , pn} in the plane that form a polygonal
chain and asks for an approximating chain with fewer line
segments. It is best described recursively: to approximate the
chain from pointpi to pj , the algorithm starts with segment
pipj . If the farthest vertex from this segment has a distance
smaller than a given thresholdθ, then the algorithm accepts
this approximation. Otherwise, it splits the chain at this vertex
and recursively approximate the two pieces. TheO(n log n)
algorithm takes advantage of the fact that splitting vertices are
to be located on the convex hull. It has latter been improved

6www.mpi-sb.mpg.de/ ∼mehlhorn/SelectedTopics02/Geo-
metricRounding/GeometricRounding.html

7The original algorithm [3] can handle certain forms of self-intersections.

to O(n log∗ n), wherelog∗ n = min{k| log log · · · log︸ ︷︷ ︸
k times

n = 1}.

IV. GRAPH CONSTRUCTION ANDCOMPRESSION

The travel graph is the embedded overlaid set of traces
together with the according intersections. To compute the
superimposed graph, the sweep-line segment intersection al-
gorithm of [4] has been adapted. In difference to the original
algorithm, the generated graph is weighted and directed. At
the intersections the newly generated edges inherit direction,
distance and time from the original data points. The algorithm
comprises two data structures. In the Event Queue the active
points are maintained, ordered with respect to their first
coordinate. In the Status Structure, the set of active segments
with respect to the sweep line is stored. At each intersection
the ordering of segments in the status structure changes.
After new neighboring segments are found, their intersections
are computed and inserted into the Event Queue. Using a
standard heap for the Event Queue and a balanced tree for the
Status Structure yields anO((n + k) log n) time algorithm,
with n being the number of data points andk being the
number of intersections. A step towards improvement of time
performance toO(n log2 n/ log log n+ k) has been proposed
by [5]. The firstO(n log n + k) algorithm due to [6] used
O(n + k) storage. TheO(n log n + k) algorithm withO(n)
space is due to [7].

In typical travel networks, the number of edges are pro-
portional to the number of nodes, because the node degree is
bounded by a small constant. If one can assert that the graph
is planar – as in our case – the number of edges is linear in
the number of nodes by Euler’s formula.

Once the travel graph is built, many nodes of degree two
remain. For shortest path computations these nodes can be
eliminated by merging the adjacent edges through adding
their distance and travel time values. Actually, only start, end
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Fig. 3. Decompression of an established path.

and segment intersections points remain, reducing the space
complexity of the graph fromO(n+ k) toO(l+k), wherel is
the number of traces andl<<n. Given the original graph, the
compressed graph is computed in timeO(n+ k). The graph
may loose its physical layout which for different reasons is
important to retain. First of all, it would only be possible to
start and end a trip on an existing compressed graph node.
Moreover, to display the established route to the user and
for GPS-guidance, it has to be re-embedded into the original
context. Therefore, our solution is to maintain a layered graph
G = Gb ∪ Gc, where the nodesVb in the bottom level
correspond to the original (filtered) GPS data and the nodes
in the top level span the compressed graphGc.

More precisely, a compression is surjective mappingφ :
Vb → Vc, so thatec = (uc, vc) ∈ Ec if there exists a path
p = ub, x1, . . . , xk, vb and indeg(xi) = outdeg(xi) = 1
with φ(ub) = uc andφ(vb) = vc. In practice,φ is computed
through a linear time algorithm that goes through all the nodes
of the graph and creates an edgee = (u,w) if there exists
the edgese1 = (u, v) and e2 = (v, w) with indeg(v) =
outdeg(v) = 1. If e1 or e2 are themselves results of some
merging process, they are deleted, else they are made hidden
in order to be restored later.

If e = (u,w) is an edge in the compressed graph then both
u andw have degree> 2 (except when they are the start or
end point of a trace). In order to decompresse, we need a
handle to the correct hidden edge fromu than can take us
to w. For this purpose, during compression, we maintain a
mappingψ : Ec → Eb that when givenec = (u,w) returns
the first hidden edge in the path fromu to w.

To extract the established route for user guidance, it has
to be re-embedded into the original context. Figure 3 depicts
an example for decompression, where(s, t) is the query in
the decompressed and(sc, tc) is the query in the decom-
pressed graph. Theprefix and suffix of the solution path are
established by following each located start and goal node
forward resp. backward in the original graph until the first
compressed node is reached. These are the query nodes for the
compressed graph. Since there is only one path no ambiguities

can arise. Ifu1, . . . , uk was the the solution path in the
contracted graph thenprefix(s, u1), decompress(u1, u2), . . .,
decompress(uk−1, uk), suffix(uk, t) would be the according
(s, t) shortest path in the original graph.

V. NODE LOCALIZATION

Before a query on the trace graph based on given start and
goal locations can be processed, their corresponding entry
nodes have to be found. For a set of queries, this is best
accomplished by an assisting point localization structure that
contains nearest neighbor information. The apparently suited
data structure is the Voronoi diagram [8], which forn points
can be constructed inO(n log n) time. The structure consists
of Voronoi regionsV (p) for each pointp, which in turn are
fixed by the intersections of alln − 1 half-planes according
to the bisectors to the other points. All points in the interior
of V (p) are nearer top than to any other point in the point
set. There are two main algorithms that meet the given running
time: the sweep- (or beach-) line algorithm [9] and the divide-
and-conquer strategy of separating paths [10]. Building a
query structure on top of the Voronoi diagram is available
in O(log n) time by hierarchical subdivision [11].

Probably the best practical option to generate the Voronoi
diagram is via its geometric dual - the Delaunay triangulation
- since it yields a simple randomized strategy in expected time
O(n log n) with expected optimal storage requirements [12].
We use a sweep-line algorithm to compute a initial trian-
gulation which is improved to a Delaunay triangulation by
flipping illegal edges. The construction time isO(n2) worst
case, butO(n log n) with high probability. In point localization
we temporarily insert nodes into the Delaunay diagram, so that
the nearest neighbor is found on an adjacent edge.

VI. SEARCH MODELS

In the basic model the environment is modeled by a graph
Gc = (Vc, Ec, wc, Tc) whereVc is the set of vertices andEc

is the set of edges. The functionwc : Ec → <+ assigns
weight information with every edge. The functionTc : Ec →
Time× Time gives the temporal information about an edge,
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precisely - the start time and the end time when the edge was
traveled along. For notational simplicity, let us assume thatTc

itself consists of two sub-functions:Tstart : E → Time and
Tend : E → Time that when given an edge return the start
time and the end time of that edge, respectively. A query to
the system is a pair of nodes(s, t). It aims at the shortest path
with respect to weightswc.

The basic model can be extended by allowing the graph
to be queried not only for the shortest path but also for the
quickest path froms to t or for a weighted combination of
both distance and time. The queryq = (s, t, τ) can be posed
to the system where,τ ∈ [0, 1] is the preferenceparameter
and is used to give the preference of travel time over the
distance. Based onτ , the new weightwnew of an edgee can
be calculated as

wnew(e) = τ · [Tend(e)− Tstart(e)] + (1− τ) · wc(e)

The shortest path algorithm returns the shortest path, if one
exists, based on new weight informationwnew.

It’s a general observation that the travel time on a specific
path can vary based on the time of the day - the travel time
during rush hours is not same as during the night. Several
traffic models have been proposed that model this variation.
Using this observation we now allow our graph to be queried
for the quickest path to be traveled at a particular time.
Formally, a query is a quadruple,(s, t, times, ε), wheretimes

is the desired start travel time. It is posed to the system for
a quickest path that isalso feasible with respect to time at
every edge in the path up toε time unit. We say that an edge
e = (u, v) is feasibleif the difference between the minimum
time to reachu and the starting time stamp ate is bounded
from above and below byε.

In the search algorithm, feasibility can be insured by check-
ing for the following condition before the expansion of a node
u along the edgee: |times + tmin[u]− Tstart(e)| ≤ ε, where
tmin[u] is the minimum time required to reachu from s.

VII. G EOMETRIC GRAPH SEARCH

Searching for one single-pair shortest route in the inferred
lower level travel graph can sufficiently good be achieved with
a single run of the algorithm of Dijkstra. Forn′ = n+k nodes,
the choice of Fibonacci heaps yields anO(n′ log n′) algorithm,
which, given a small value ofk, is about as efficient as graph
construction. Moreover, the search is terminated, once the goal
node has been found. Note that prior to the search, the nearest
trace nodes of start and goal can be found with a scan through
the data. Fixing only the compressed graph structure, the graph
search complexity decreases toO((l+k) log (l+k)). However,
one-shot queries are not realistic. Modern navigation systems
provide their services through Internet portals, so that portable
devices access large databases through communication with
a running server. Therefore, we assume that the set of GPS
trace data is kept, updated and queried in a large-scale server
system, which is required to answer many shortest path or
time queries in a very short time. In the following we address
efficient algorithms and data structures to reply frequent on-
line queries. Most of the algorithms exhibit the fact that the

graph is embedded in the Euclidean plane, so that refined geo-
metric information on the set of all possible shortest paths can
be associated to nodes or edges.

A. Geometric Heuristic Search

Heuristic search [13] is a well-known technique to reduce
the number of expansions for a shortest path query in an im-
plicitly given graph. This technique of goal direction includes
an additional node evaluation functionh into the search. For
the goal nodet we haveh(t) = 0. The lower bound estimate
h, also called admissible heuristic, approximates the shortest
path distance from the current node to one of the goal nodes.
A heuristic isconsistent, if w(u, v) + h(v)− h(u) ≥ 0 for all
(u, v) ∈ E, wherew is the weight function in the graph.

Consistent estimates are admissible. Letp = (v0, . . . , vk)
be any path fromu = v0 to t = vk. Then we have
w(p) =

∑k−1
i=0 w(vi, vi+1) ≥

∑k−1
i=0 (h(vi)− h(vi+1)) =

h(u)− h(t) = h(u). This is especially true ifp is an optimal
path fromu to t.

A* with admissible estimates may result in the reopening
of the nodes already visited and deleted from the priority
queue. If the heuristic is consistent, the combined merit of
generating path length and estimate monotonic increasing
during exploration, so that no reopening can occur [13].

The lower bound that is applied to accelerate route planning
is the Euclidean distance, i.e.,h(u) = ||t − u||2, which
measures theflight distanceto the goal node. The heuristic is
consistent by the triangle inequality in Euclidean space, that
is ||u− v||2 + ||v − t||2 ≥ ||u− t||2 for all nodesu, v.

In the following, we will prove that in the compressed graph
Gc, the new edge costs result in a consistent heuristic.

Theorem (Consistency ofh) In the compressed graphGc,
h is consistent, i.e., for all(u, v) ∈ Vc we havewc(u, v) +
h(v)− h(u) ≥ 0.

Proof: Let us assume that the condition does not hold
i.e., wc(u, v) + h(v) − h(u) < 0 or wc(u, v) < h(u) − h(v).
From to the definition ofh, h(u) = ‖u− t‖2, we can rewrite
the above inequality as:

wc(u, v) < ‖u− t‖2 − ‖v − t‖2, (1)

since a straight line distance is a lower bound on the distance
valuewc of an edge. We can safely replacewc by ‖u − v‖2
in Inequality 1 and obtain the following:

‖u− v‖2 < ‖u− t‖2 − ‖v − t‖2
‖u− v‖2 + ‖v − t‖2 < ‖u− t‖2,

in contradiction to the triangular property in Euclidean space.

A* for consistent estimates with respect to Dijkstra’s algo-
rithm simply changes an edge weightw(u, v) to w(u, v) +
h(v) − h(u) given an initial offseth(s). On every path from
the initial state to a goal node the accumulated heuristic
values telescope, and since goal nodes have estimate 0, in
both algorithms the priority values at termination time are the
same. Hence, at least for consistent estimates, A* (without any
re-opening strategy) is complete and optimal.
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If one does not search the shortest path in terms of travel
distance, but the shortest path in terms of time, thequickest
path, the lower bound has to be modified. This can be done
by dividing it by an upper bound for speed.

If the graph is queried for the quickest path, we observe
that by a simple extension to the model and by assuming a
maximum speedµ of the mobile object, a heuristic estimate
can be given for the time required to travel a path between two
nodes. The heuristic estimateh′ for a nodeu can be defined
as:

h′(u) =
1
µ
· ‖u− t‖2

Admissibility of h′ follows from choosing the most optimistic
option both in terms of speed and distance.

If a weighted combination of both the quickest and shortest
paths is required, a heuristic estimate consisting of a linear
combination of bothh andh′ can be used.

We defineh′′ as the heuristic estimate for a nodeu in the
time model as:

h′′(u) = τ · 1
µ
· ‖u− t‖2 + (1− τ) · ‖u− t‖2

or, h′′(u) = ‖u− t‖2(τ ·
1
µ

+ (1− τ)) (2)

Sinceτ andµ are constant for the entire graph and‖u− t‖2
never overestimates the actual edge cost,h′′ never overesti-
mates the actual path cost - implyingh′′ as an admissible
heuristic.

As with the consistency ofh, we can prove the consistency
of h′′ by proving that the edge weights remain non-negative
during exploration. Recall that the weight of an edgee in the
extended model isτ · Tc(e) + (1− τ) · wc(u, v).

Theorem (Consistency ofh′′) In the compressed graphGc,
h′′ is consistent, i.e., for all(u, v) ∈ Vc we have(τ · Tc(e) +
(1− τ) · wc(u, v)) + h′′(v)− h′′(u) ≥ 0.

Proof: Assume that the condition does not hold, i.e.,
(τ · Tc(e) + (1 − τ) · wc(u, v)) + h′′(v) − h′′(u) < 0 or τ ·
Tc(e) + (1 − τ) · wc(u, v) < h′′(u) − h′′(v) According to
Equation 2,h′′(u) = ‖u− t‖2(τ · 1µ +(1−τ)). We can rewrite
the above inequality asτ · Tc(e) + (1− τ) · wc(u, v) < ‖u−
t‖2(τ · 1

µ + (1− τ))− ‖v − t‖2(τ · 1
µ + (1− τ)).

Due to compression of straight line distances we know that
wc(u, v) ≥ ‖u−v‖2. Also, since the time estimate to traverse
an edge with maximum speed never overestimates the actual
time, we can say thatTc(e) ≥ 1

µ‖u−v‖2. The above inequality
can be rewritten as:τ · 1

µ‖u − v‖2 + (1 − τ) · ‖u − v‖2 <
‖u− t‖2(τ · 1

µ + (1− τ))− ‖v − t‖2(τ · 1
µ + (1− τ)). Hence

‖u− v‖2(τ · 1
µ + (1− τ)) < ‖u− t‖2(τ · 1

µ + (1− τ))−‖v−
t‖2(τ · 1

µ + (1− τ)) and‖u− v‖2 < ‖u− t‖2 − ‖v − t‖2, so
that ‖u− v‖2 + ‖v − t‖2 < ‖u− t‖2, in contradiction to the
triangular property in Euclidean space.

B. Geometric Pruning

Another possibility to make the search space of Dijkstra’s or
the A* algorithm smaller is to ignore some neighbor points in
the inner loop. The neighbors – or more precisely the incident

A* with Geometric Speed-Up:
Priority QueueQ← {(s, h(s))}
while (Q 6= ∅)
u← DeleteMin(Q)
if u = t return u
for all neighborsv of u

if t is insideBBox[(u, v)]
f ′(v)← f(u) + w(u, v) + h(v)− h(u)
if (Search(Q, v))

if (f ′(v) < f(v))
DecreaseKey(Q(v, f ′(v))

elseInsert(Q, (v, f ′(v))

Fig. 4. Implementation of bounding box pruning in A*.

edges to these neighbors – that can be ignored safely are those
that are not on a shortest path to the target. So the two stages
for geometric speed-ups are as follows:

1) In a preprocessing step, for each edge, store the set of
nodes that can be reached on a shortest path that starts
with this particular edge.

2) While running Dijkstra’s algorithm or A*, do not insert
edges into the priority queue that are not part of a
shortest path to the target.

The problem that arises is that forn nodes in the graph
one would needO(n2) space to store this information, which
is not feasible even for contracted graphs. Hence, we do not
remember the set of nodes that can be reached on a shortest
path for an edge, but the bounding box in the layout of the
graph. The required storage will be inO(n) in total, but a
bounding box may contain nodes that do not belong to this
set. Note that this does not hurt an exploration algorithm in the
sense that it still returns the correct result, but increases only
the search space. Incorporating the above geometric pruning
facilities into an exploration algorithm like Dijkstra or A* will
retain its completeness and its optimality, since at least one
shortest path from the start to the goal node will be preserved.
Since it refers to the layout of nodes only, it also applies to
the contracted graph that we have constructed.

A pseudo-code implementation is given in Figure 4. For
sake of clarity, we have omitted source fragments to memorize
expanded nodes and to prevent the algorithm of reopening.

The pruning is based on the computation of all shortest
paths that pass the edgese in E. Using Fibonacci heaps, for
all edges this gives us an amortized worst case pre-compilation
time of O(n2 log n) in total, wheren is the number of nodes
in the graph. Since the original graph is considerable large, we
apply the algorithm only for the contracted graphs. However,
in difference to theO(n3) all-pair shortest path algorithm of
Floyd and Warshall [14], the space requirements are linear,
since no adjacency matrix representation is needed.

C. Processing Negative Edge Weights

Even in our application we can think of edges that are
assigned to a negative value, e.g. when ranking the benefits
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Fig. 5. Topographic map and selected route.

of traversing edges. Johnson’s algorithm [14] shows that pre-
computation in timeO(n2 log n) can also enable us to handle
the case of negative edge weights. In some sense, the approach
is opposed to heuristic search, since a negatively weighted
graph is transfered to a positively weighted one, in advance
to the main computations. Here the re-weighting functionh is
obtained through an initial run of Bellman-Ford’s algorithm,
that ish(u) is the shortest path value from a fixed sources to
u. If the graph contains negative-weight cycles, Bellman-Ford
will detect that. Since storingh consumes linear space on-line
queries based on geometric cuts can be made available even
in negatively weighted graphs throughh.

VIII. GPS-ROUTE

We have built our generic system GPS-ROUTE8 on top of
the LEDA algorithm library [15] that supports accurate and
efficient geometry and graph algorithms. To read GPS data,
we wrote a GPS trace parser that generates the set of LEDA
points and segments and that extends the existing structures
with according time values. This allows to query combined
shortest distance and time paths.

The ASCII web-interface simply reads the GPS queries in
form of GPS data point and displays the established route.
A second user interface is base on VEGA [16], a client-
server architecture that runs executables on server side to be
visualized on client side, written in Java. The client is used
both as the user front-end and the visualization engine. VEGA
allows different server and algorithm selections, input of data,
running and stopping algorithms, and customization of the
visualization. It can be used to display route information and to
apply algorithms to selected data in a view, to control the plan
execution using a VCR-like panel or the execution browser,
to adjust view attributes directly or using the object browser,
to show several algorithms simultaneously in multiple scenes
and open different views for a single scene, to load and to
save single scenes, complete runs, and attribute lists, and to
export scenes in XFIG or GIF format.

The main purpose of the server is to makec/c++ algo-
rithms accessible through TCP/IP. The server is able to receive
commands from multiple clients at the same time. It allows

8The Internet interface is available atad.informatik.uni-frei-
burg.de/ ∼edelkamp/gpsroute

the client to choose from the list of available algorithms, to
retrieve information about the algorithm, to specify input data,
to start it and to receive output data. The server maintains a
list of installed algorithms. This list may be changed without
the need of stopping and restarting the server.

Calibrated maps can be down-loaded from the Internet,
scanned from ordinary ones, or extracted from software map-
ping tools, e.g. by the ones that are used and distributed by
surveying authorities9. Figure 5 displays some topographic
map10.

Traces (and maps) have to be provided before the route
planning algorithm, on which on-line queries are executed.
In Figure 6 we depict the result of one shortest path query
on a sample uncompressed graph structure. The highlighted
path is in fact the shortest possible, since the underlying graph
generated by the trail is directed. It further switches from one
partial trail to another through an intersection point.

IX. EXPERIMENTS

In the experiments we restrict to the basic search model. Our
results were preliminary in the sense that only sample GPS
trajectory sets were considered. We chose the library LEDA,
version 3.6.1, since this was one of the last one that could be
used free of charge for research. All running times are given in
seconds and measured on a 248 MHz Sun Ultra workstation.
We experimented with four data sets: two were gathered on
a bicycle, one as a pedestrian, and one collected with a taxi.
Even for this small and moderately sized data sets, we can
exhibit some effects of the proposed acceleration features.

#points θ = 10−7 10−6 10−5 10−4 10−3

1,277 766 558 243 77 22
1,706 1540 1162 433 117 25
2,365 2083 1394 376 28 7

50,000 48,432 42,218 17,853 4,385 1,185

TABLE I

REDUCTION OF TRACES WITHDOUGLAS-PEUKER.

In Table I we show the effect of geometric rounding by
Douglas-Peuker with different threshold values on GPS traces.

9www.adv-online.de/produkte/top50
10www.geodaten.bayern.de
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Fig. 6. Result of a shortest path query for a small bicycle trace.

The accuracyθ is drawn on top of the table and is measured
with respect to raw GPS latitude and longitude format. The
running times for all executions were within one CPU second.
The obtained reduction ratio for car traveling traces is smaller
than for the bicycle data set. This is due to the fact that the
speed of cars makes GPS data points sparse.

#points #queries tc ts t′s
1,277 1,277 0.10 0.30 12.60
1,706 1,706 0.24 0.54 24.29
2,365 2,365 0.33 1.14 43.3

50,000 50,000 13.73 14.26 > 10,000

TABLE II

EFFECT OF EFFICIENT POINT LOCALIZATION.

Table II compares the performance for Delaunay diagram
construction (tc) and searching (ts) query points to the naive
search scheme (t′s). We posed as many queries as there were
points, by giving a small offset to the original point coor-
dinates. Localization queries have a very small accumulated
running time, showing that pre-computation is crucial.

In Table III we depict the running time of the sweep-line
algorithm as well as the effect of heuristic search, wheretg
is the time of the sweep-line algorithm,tc is the preparation
time of the search algorithm (initializing the data structures)
ts is the pure searching time for a single shortest path query,
and #exp is the corresponding number of expansions done in
computing the shortest path.

As in the case of point localization the sweep-line inter-

#points tg tc ts #exp
Dijkstra 1,277 0.42 0.01 0.01 1,293

A* 1,277 0.42 0.01 0.00 243
Dijkstra 1,706 0.27 0.01 0.01 1,421

A* 1,706 0.27 0.00 0.00 451
Dijkstra 2,365 0.37 0.00 0.01 1,667

A* 2,365 0.37 0.00 0.01 1,600
Dijkstra 50,000 11.13 0.27 0.27 44,009

A* 50,000 11.13 0.26 0.20 18,755

TABLE III

EFFECT OF HEURISTIC SEARCH.

section algorithm is more time consuming than all further
computations. With about a second CPU time, preparing and
running a shortest path query is fast. In fact, initialization time
of the data structures can be avoided through hashing. This
proves that pre-computation for an on-line query system pays
off. For heuristic search, we obtained a significant reduction in
the number of expanded nodes. However, the observed CPU
gain in the example is small.

#points #nodes #comp tc #exp ts
1,277 1,473 199 0.01 48 0.00
1,706 1,777 74 0.02 35 0.00
2,365 2,481 130 0.03 72 0.00

50,000 54,267 4,391 0.59 1,738 0.02

TABLE IV

EFFECT OF COMPRESSION.
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Next, all nodes of degree two were deleted by adding up
distance and time values. Table IV depicts the number of
original data points, the size of the overlaid and compressed
graph, the performance of compression (tc), the number of
expanded nodes in the A* algorithm and corresponding search
CPU time for one shortest path query (ts). As expected,
compression drastically reduces the graph complexity, and in
turn the subsequent search efforts.

#nodes tc ts #exp t′s #exp’
Dijkstra 199 1.87 0.34 6,596 0.60 19,595

A* 199 1.87 0.26 3,135 0.19 7,912
Dijkstra 74 0.52 0.30 2896 0.29 7271

A* 74 0.52 0.28 2762 0.30 5169
Dijkstra 130 1.14 0.49 4144 0.54 12392

A* 130 1.14 0.49 3848 0.56 10060
Dijkstra 4,391 1,299 9.36 101,064 17.18 458,156

A* 4,391 1,299 8.11 65,726 12.88 217,430

TABLE V

EFFECT OF GEOMETRIC PRUNING(ON-LINE).

We evaluate the effect of geometric pruning in on-line set-
ting on the compressed graphs with the compression of graphs
and calculation of bounding-boxes done off-line. We run
the combination of Dijkstra/A* with bounding box pruning.
Table V presents the effect of pruning on the total searching
time and the total expansions for 200 random on-line queries.

These are the averages taken over 10 different episodes.
As we see, the work for pre-computing all shortest pairs (tc)
can be large. This is counter-balanced with a significant gain
in the number of expanded nodes (primed variable denote
the original algorithm). For compressed graphs we observe
a factor of 2-4, with better performance for larger graphs.
The time gain is much smaller burdened by the number of
additional comparisons and path extraction. Heuristic search
can successfully be combined with geometric pruning. The
smaller impact of heuristic search compared to Table III can
be attributed to the averaging effect of random queries, posing
easier exploration problems compared to the selected extreme.

We furthermore observed that geometric cuts perform well
in two cases. First, if test data contains many paths to the
target, the exploration algorithm is slow, because it does
not know which route to take, i.e. there are many possible
neighbors that it has to consider. When some of them are
excluded, the search space is much smaller. If there is no path
at all to the target, bounding boxes can also help: For all edges,
the target is then not in the set of nodes that can be reached on
a shortest path starting with this edge. It is therefore (maybe)
not in the bounding box that belongs to this edge. In the ideal
case, for a query with no solution, restricted Dijkstra only
looks at the source and the incident edges.

Finally, in Table VI we measured the time of decompression
of the compressed shortest path. As we can see, in the larger
graph, decompressing 200 shortest paths is almost as fast as
compressing the entire graph once.

X. GEOMETRIC V ISUALIZATION

For visualization of traces and solution paths, we have
adapted anO(n) on-line vertex-detection and data reduction

#points #queries tc td
199 200 0.01 0.09
74 200 0.02 0.15

130 200 0.03 0.28
4,391 200 0.59 0.65

TABLE VI

EFFECT OF DECOMPRESSION(ON-LINE).

algorithms for freehand writings designed for data recording
and replay of pen-based inputs. Vertex recognition recognizes
changes in the orientation during the execution of a trace. A
point is a vertex, if the angle of the curveγk at this point
is below a certain fixed angleγ and the distance to the two
neighboring points. The cosine of the anglecos γk is computed
in the formula(pk − pk−1) · (pk − pk+1)/(|pk − pk−1| · |pk −
pk+1|), thus saving cosine computations when thresholding
with cos γ.

Another important aspect for the proper representation of
lines is spline fitting, so that the points are smoothly connected
through polynomials of low degree. To calculate an inter-
polating spline thepscurve command in the LATEXmacro
PSTricks [17] is used. The formulae for pointsp1, . . . , pn

require to compute four control pointss1, . . . , s4 of a cubic
spline frompi to pi+1 as follows:s0 = pi, s1 = pi−1 + |pi −
pi−1| · d′ ·m′, s3 = pi+1 − |pi − pi+1| · d ·m, ands4 = pi+1,
whered′ andm′ are the old values ofd andm with

d = (pi − pi−1)|pi+1 − pi|+ (pi+1 − pi)|pi − pi−1|

m =
α

2|d|

∣∣∣∣ cos
(
a(pi − pi−1)− a(pi+1 − pi)

2

)∣∣∣∣β
a(p) = arctan(x/y) given p = (x, y).

The parameters areα = 0.690176 andβ = 0.1, and at the
beginning,s1 = p1 as well as at the end,s2 = pn.

Data reduction with splines faces another problem. If we try
to calculate the exact distance between a curve with and with-
out the point in question, we have to deal with polynomials of
6th degree, leading to an inefficient algorithm. The following
reduction schema approximates the distance to eliminate point
pi as follows: compute the parametric representation of the
spline s′ through the pointspi−2, pi−1, pi+1, and pi+1,
compare it to splines that includes all five points, and omitpi

if the distances ands′ is within a threshold for some certain
test set of intermediate points. First experiments confirm the
data in the context of handwriting that considerably savings
can be achieved with iterated point removal in long traces
without removing the main characteristics of the trace.

Computing the travel graph according to a set of splines
can also be an option at all, but calls for refined algorithmic
solutions as e.g. addressed in the EXACUS project11 at MPI,
Saarbr̈ucken.

XI. NAVIGATION IN DYNAMIC ENVIRONMENT

Consider the scenario when, while following a shortest path,
the user detects that because of a road accident or some other

11www.mpi-sb.mpg.de/projects/EXACUS
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reason, there is a traffic jam. A traffic jam implies an increase
in travel time for the affected area. In this case a second
shortest path from the current position to the destination is
needed that also avoids the affected area.

We analyze two models for introducing dynamics in the
system. In the first model, due to a disturbance, we assume
that some particular edges are directly affected. We model
this situation as an increase in the weights of these edges.
Furthermore, we present an alternative approach where a
disturbance is represented as a geometrical object affecting the
edges covered by that object on the graph. In both of these
models we assume that the changes in the graph are temporary
in nature, i.e., they disappear after some time.

Increasing the weights of some edges implies the invalidity
of some of the bounding boxes, particularly the ones that
contain edges with increased edge weights. This restricts
the bounding-box searching algorithm to make use of the
precomputed information.

A. Dynamic Queries

A dynamic shortest path problem can be defined as a 3-
tupleD = (Gc, C, q). It aims at answering the shortest path
queryq in the graphGc, in the presence of a set of constraints
C. The queryq is represented asq = (s, t, times) with s as
the start node,t as the target node andtimes as the desired
starting time when the path is to be traversed.

The set of constraintsC defines disturbances that may arise
in the road network in the course of time. At the basic level,
we define these constraints to be affecting a subset of edges by
increasing their weights. Each constraint is also characterized
by the time after which the constraint is no longer valid. It
corresponds to the situation when the traffic flow has returned
to normal after a disturbance.

The increase in weight can be accommodated in the graph
Gc by increasing the valueswc(e) of edgese. This restricts
us to search the shortest path in the modified graph.

This model can be extended to a more general one that
facilitates quickest path searching or a combination of both
also. The extension involves utilizing a separate weight func-
tion w and a priority parameterτ value to give priority to
distance or time. The weight of an edgee is now w(e) =
τ × (Tend(e) − Tstart(e)) + (1 − τ) × wc(e). Note that this
weight function remains constant during the computation.

The constraints can now be defined in terms of an increase
in the weightw of an edge. This leads to a re-formalization
of our problem as a 5-tupleD = (Gc, w, τ, C, q).

In the following we elaborate our problem from two differ-
ent perspectives. In the first one we represent disturbances as
affecting the edges directly and increasing their weights. While
in the second one we represent a disturbance to be affecting
a rectangular area on the graph and in turn affecting all the
edges underneath it.

B. Disturbances as Individual Edge Dynamics

In this model, we defineC to be a set of constraints where
each constraintc ∈ C maps an edge to aset of changes
due to disturbances on that edge. Note that we use the term

set because one disturbance might lead to other disturbances
that affect the edge weights differently. As an example, a car
accident may lead to a blocked lane and a resulting traffic jam.
Removing the traffic jam might not result in the opening of
that affected lane.

Formally we defineC as a set of constraintsc : E →
P{<×Time}, i.e., a constraint is a set of tuples representing
the changes in the weight of an edge due to disturbances and
the time when the change disappears.

Sometimes it is difficult to pinpoint the exact location of
an edge where the disturbance actually is. To accommodate
this difficulty we extend our model to allow the definition of
constraints on the graph in the form of geometrical objects.

C. Disturbances as Geometrical Objects

For simplicity reasons we assume each geometrical object
to be an iso-oriented rectangle. This rectangle is considered to
be a separate entity from the graph and is situated in a layer
on top of the graph.

All the edges underneath a rectangular object are assumed
to be affected by the disturbance. There can actually be three
kinds of edges that are affected. One that are completely
contained inside the rectangle, one that intersect the boundary
of the rectangle at exactly one point, and one that intersect the
boundary of the rectangle at two points.

These disturbances can be formalized in the form of con-
straintsc : Γ → < × Time whereΓ is the set of rectangles
corresponding to the affected areas. A rectangleγ ∈ Γ is
mapped to anincreasein the weight of the edges underneath
it and aTimevalue after which that constraint is considered as
void. Note thatΓ can also be viewed as a function that maps
a γ to a setEγ ⊆ E, i.e. the set of edges affected byγ.

D. Disturbances and Static Information

Due to a change in the weights, the static information kept
in the shortest path bounding boxes might become invalid.
Some of the bounding boxes may mislead the shortest path
algorithm and can result in a path other than theshortest path.
Re-computing the bounding boxes for every change is too time
consuming, since the disturbances are temporary and disappear
after a short time. Also, the exploration of a particular query
utilizes only a small subset of the problem graph. This gives
us the idea to characterize the bounding boxes that may
have become invalid and that would be encountered for a
particular query, at the start of the exploration. In case those
bounding boxes are encountered during exploration, we can
simply ignore the pre-computed information and rely on other
heuristic methods like A*.

A bounding box can mislead a shortest path algorithm, if
it contains at least one edge whose weight has been changed
since the bounding boxes were computed. The bounding boxes
that contain no affected edges arevalid and can be used for
the pruning of the search space in a shortest path algorithm.
We observe that if the bounding boxes of the outgoing edges
of the start nodeS do not contain any of the affected edge
i.e., they are valid, the shortest pathΠ searched in the pruned
search space remains to be the shortest path.
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E. Searching in Dynamic Environment

We distinguish two approaches for searching for a shortest
path in a dynamic environment. The first approach that we
called asGraph-Updateor Off-lineapproach updates the graph
with new edge information on the arrival of a disturbance. The
search is then performed on the updated graph. The pruning
information is used only if the bounding boxes of the outgoing
edges ofs do not contain any of the affected edge. This test is
performed by using a geometric data structure called Segment
tree. Segment tree is a data structure for saving parallel line
segments and with certain enhancements can be used to answer
window-queriesfor arbitrary oriented segments, i.e., giving a
rectangular window overlaid on a set of line segments, return
the line segments that are intersected by the window. The
fully dynamic variant of segment tree support insertion of
new segments inO(log n) time and deletions of segments in
O(log n ·α(i, n)) time, whereα(i, n) is the extremely slowly
growing functional inverse of the Ackermann’s function. The
window-query operation can be carried out inO(log2 n+ k),
where k is the number of reported segments. Segment tree
requires anO(n log n) space [18]. In our case, the query rect-
anges are the bounding boxes corresponding to the outgoing
edges ofs and the segment tree is used to maintain the edges
whose weight has been changed since the bounding boxes are
computed.

For the model when disturbances are represented by rect-
anges, the initial test can be viewed as red-blue rectangle
intersection problem. It deals with computing the intersection
points of two different types of rectangles. Using a sweep line
algorithm, this problem can be solved inO(n log n+k) time,
wheren is the total number of rectangles of both types andk
is the number of intersections reported [19].

The second approach that we called asExploration-time
Checkingor on-line approach utilizes the observation that it
is possible that some of the constraints have terminated and
no longer be there by the time the mobile object will reach
the affected area. This observation suggest a search procedure,
where we continute exploring using our search algorithm along
with the pre-computed information until we reach an affected
edge. If we do not encounter any affected edge and reach the
target, we declare the encountered path as the shortest path
based on the results of Section XI-D. In case we encounter an
affected edge, we restart the search procedure without utilizing
the pre-computed information.

XII. R ELATED WORK

This paper does not address the issue of statistical clustering
of GPS data to automatically infer a map by condensing the
data set through road centerlines and clustering like [20]. In the
context of car navigation, lane-precise maps are inferred. The
work provides a domain dependent system that automatically
generates digital road maps that are significantly more precise
and contain descriptions of lane structure, including number
of lanes and their locations, and also detailed intersection
structure. In [21] it is shown how existing electronic maps can
be adapted to an electronic base map. For domain-independent
trajectory planning however, such an approach is not feasible,

because bikers or hikers have much more freedom in choosing
their route.

Automated leveling the graph structure has been also ad-
dressed by [22] with different optimality preserving algorithms
for hierarchical structured graphs. In an application scenario
from the field of timetable information in public transport, the
work gives a detailed analysis and experimental evaluation
of shortest path computations based on multi-level graph
decomposition.

An experimental study of the impact of geometric pruning
cuts for the setting of train graphs is presented in [23]. In the
algorithm portfolio, bounding boxes appear to be superior to
annotations of angular sectors. Bounding-box pruning extends
early observations of [24], where angular sectors of all shortest
paths that pass an considered edge were used.

Similar to pattern databases [25], shortest path bounding
boxes are memory intense approximations of shortest path
information in the state space graph to be inferred before a
query is processed. Pattern databases improve the quality of
the heuristic estimate, while bounding boxes improve pruning
capability, effectively reducing the branching factor. Moreover,
while pattern databases fix the goal state and construct the
database with one shortest path backward exploration in ab-
stract space, pruning with bounding boxes stores approximated
information to be exploited for different start and goal state
queries.

We insertedO(n log n) as the worst-case run time of Dijk-
stra’s algorithm in the travel graph exploration, by referring to
a Fibonacci heap implementation and bounded node degree.
As in the current implementation the constructed graph is
planar, using the graph separator algorithm of [26] would lead
to a theoretically faster algorithm, with linear run time for non-
negative edge cost. This reduces the pre-computation time to
O(n2). However, to the best of the authors’ knowledge, this
algorithm has not been implemented yet. Moreover, the single-
shot run time would slow down significantly, if negative edges
were allowed. Planarity is affected, if we allow invalid inter-
section (due to bridges or tunnels). Linear time algorithms for
a broader graph classes have mostly be devised for restricted
weight functions only [27]. Recent experimental results on
shortest path search [28] have also only limited impact on
our work, since the authors consider undirected graphs and
multiple queries to the same target only.

For the case of search in a dynamic scenario [29] presented
an approach where the authors have obtained a speed-up of
up to a factor of three in re-computing the bounding boxes
in case of a change in the weight of an edge. The main
idea behind their approach is to enlarge the bounding boxes
of the affected edges. The authors extended the bounding
box pruning to bi-directional search algorithms by computing
additional bounding boxes for the graph with reversed edges.
The approach has shown good results in the case of train
graphs. But for large graphs (n > 100, 000) and where
disturbances are frequent, the above mentioned approach is
not feasible.
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XIII. C ONCLUSION

The area of GPS navigation proves to be a challenge for
current planning engines. It subsumes several algorithmic
issues from computational geometry in general and AI search
in particular, such as autonomous robotics to gather and
refine raw data by integrating different input sources e.g. by
applying Kalman filtering, vision and compression borrowed
from handwriting recognition as well as algorithms to build
and query the graph, and known and novel search techniques
to speed-up shortest path computations.

We combine GPS data from several sources, as opposed to
data obtained from dedicated surveying personnel. Automated
processing can be much less expensive. The same is true
for the price of GPS systems; within the next few years,
most new vehicles will likely have at least one GPS receiver,
and wireless technology is rapidly advancing to provide the
communication infrastructure. Our route planner is designed
to answer distributed shortest path queries in a very short time
by preprocessing the internal information and by exhibiting
the Euclidean layout of the superimposed trace graph. The
experiments highlight the applicability of our approach to cope
with growing GPS data sources. We expect that in combination
of larger inputs with several millions of raw GPS data points
can be dealt with our approach. For even larger sets, statisti-
cal clustering and external graph construction algorithms are
expected.

Dynamic aspects of GPS route planning are crucial if a
server maintains and processes timed geometric information
on trace availability, to quickly provide alternative routes to
front-end users. Efficient updates to the condensed shortest
path information according to environmental change is limited.
Static tables and dynamic updates appear to be ambivalent
issues. We observe that the increase in cost on one edge due
to some disturbance does not change shortest path information
of bounding boxesbehind but before the affected area. We
presented two models for incorporating dynamics in our sys-
tem. We observe that employing some efficient computational
geometry algorithms, the dynamic aspects of a navigation
system can be dealt with easily.

Subsequently, we are very much concerned on improving
the scaling behavior and the dynamics of our route planning
system. The former issue calls for external shortest path graph
search algorithms [30] that exploit the spatial structure to
minimize secondary memory accesses [31].
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