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Abstract— This paper provides a novel approach for optimal
route planning making efficient use of the underlying geometrical
structure. It combines classical Al exploration with computa-
tional geometry.

Given a set of global positioning system (GPS) trajectories, the
input is refined by geometric filtering and rounding algorithms.
For constructing the graph and the according point localization
structure, fast scan-line and divide-and-conquer algorithms are
applied.

For speeding up the optimal on-line search algorithms, the
geometrical structure of the inferred weighted graph is exploited
in two ways. The graph is compressed while retaining the original
information for unfolding resulting shortest paths. It is then
annotated by lower bounds and refined topographic information;
for example by the bounding boxes of all shortest paths that start
with a given edge.

Traffic disturbances can result in an increase in travel time
for the affected area, which in turn, can affect the pre-computed
information. This paper discusses two models of introducing
dynamics in a navigation system.

The on-line planning system GPS-ROUTE implements the
above techniques and provides a client-server web interface to
answer series of shortest-path or shortest-time queries.

I. INTRODUCTION

sources or inference procedures. It is costly to keep map infor-
mation up-to-date, since road geometry continuously changes
over time. Most available maps provide no information for
bikers and pedestrians. In some regions of the world, digital
maps are not available at all. Maps contain information on road
classes and travel distances only, which is often not sufficient
to infer travel time. Moreover, it is not possible to pose timed-
queries to those maps i.e., to request a shortest path from a
source to a destination during a specific period of time or day.
The need for timed-queries arises from the observation that
the travel time can vary drastically during different types of
days: workdays and holidays.

The algorithmic issues to pre-process and answer queries
for short and timely paths with respect to the current po-
sition have not been settled yet. Consequently, in this text
we present the design and implementation of a flexible on-
line information system that features different enhancements
to the route planning problem based on GPS data. It is
application domain independent, since all pre-processing and
path planning algorithms merely refer to GPS trajectories. The
off-line input is a set of traces and the on-line input is a set
of path queries. These routes can be visualized on top of a

Improved navigation is an ubiquitous need to satisfy now&pographic map or transferred to an end-user GPS device for

days mobility requirements. With the industrial emergence

obute tracking. The incoming (possibly differential) GPS data

low-cost positioning systems and by the accelerated develag+efined by filters that take additional inertial input sources
ment of hand-held devices and mobile telephones, integratetb account.
data gathering and processing to assist personal navigatiolVe refer to the portfolio of algorithms ageometric since

becomes feasible at a very large scale.

all computations from trace manipulation to plan visualization

Most available digital maps are expensive, since exhibitirexploit the underlying (Euclidean) geometry. For example we

and processing road information e.g. by surveying methodsudilize the layout of the graph to speed-up shortest path search.
by digitizing satellite images is very costly. Maps are likelAs the graph is large, one cannot afford to use more than linear
to be inaccurate and to contain systematic errors in the inmtace. In a preprocessing step, for each edge geometric objects
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Fig. 1. The architecture of the GPS route-planning system.

are determined representing all nodes to which a shortest patin Figure 2, you see a moderately equipped bike to perform
using this edge exists. The object representation needs constalvenced mobile data gathering. At the handlebars we installed
space per edge. a GPS receivérand an advance cycling computteThe GPS
Figure 1 depicts the flow of data in our approach. Raw GRf&vice features a small base map, waypoint and route follow-
data is fed into the system, filtered and refined. Then the traog options, as well as up- and downloading of data. Raw GPS
graph is built and the compressed graph is computed on toprbrmation is sent by the receiver in a frequency of one signal
it. Geometric speed-up information is computed to produce ther second to its serial port. This data is stored in a palm-
annotated graph. The route planning engine takes this extentiza device with a free-ware progrdnthat was developed to
layered graph and the provided query to compute a plan, whictemorize flight data. The memorized traces are transfered to a
can be uploaded back to a GPS device for navigation. In ca®€ by a simple terminal progrdmA gender changer attaches
the provided query points do not correspond to graph nod#se two serial cables of GPS and palm-top. Since the frequency
we suggest to use the nearest neighboring nodes instead. @hdata storage in the cycling computer is low (one data point
visualization step applying vertex detection, data reductioper 20s), we additionally experimented with a simple wheel
spline fitting, etc. is optional. magnet directly linked to a palm-top to be processed in a
This architecture also structures the rest of the papshareware progranthat memorizes ticks each second. Besides
First we address the data refinement and geometric roundititg recording of current velocity through incoming wheel-
Then we turn to the graph construction process by applyitigrn ticks, a cycling computer can trace altimeter and a heart
efficient geometric algorithms to the set of GPS traces. Thelse data. To have accurate GPS independent orientation, an
graph is further annotated to accelerate shortest path quegketronic (gyro)compass is needed.
in form of Euclidean distance heuristics possibly aided by Bike navigation is only one of the vehicle routing aspects
geometric shortest path pruning information. All route-findingve look at. For proper car navigation inertial information can
algorithms preserve optimal routes. In the experimental sectibg accessed on the internal electronic bus. For the design of
we evaluate our implementation on a few sets of collecteditonomous mobile systems, efficient outdoor GPS path (re-)
GPS data. An overview of models for navigation in a dynamisianning and path following is of growing importance. In fact
environment is presented next. Related, current and futuhe algorithms we develop are generic in the sense that they
work is presented in Section Xl followed by the conclusiorapply to any kind of motion in the physical world that can
access GPS information, including but not limited to drivers,
Il. DATA GATHERING bikers, hikers, and robots. In near future we expect all different

. I ) devices to be merged into one.
According to the navigational task, there are different op- ¢

portunities to track and process data. Although the algorithmsi _ _
we present are independent from the application area, WgGarm'” venture,ww.garmin.com

. . . . Ciclosport HAC-4 Pluswww.ciclosport.de
b_nefly dls_c_uss the_ case of (_:ycllng to impose low cost ands;pq Ioggerswww.palmflying.com/glogger.html
high mobility requirements like small size and low battery 4seriajterm www.comp.lancs.ac.uk/albrecht/sw

consumption. 5Bikini, home.swipnet.se/"w-51358/pilot
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Fig. 2. A bike equipped to gather GPS data.

I1l. GEOMETRICFILTERING AND ROUNDING to O(nlog™ n), wherelog™ n = min{k|loglog- - -logn = 1}.
N——

Geometric filters are used to detect outliers in the GPS data. k times

Specifying a mobility model for the moving object further
helps to eliminate false signals. Inertial information like alti- . '
tude, distance and angle can best be included in the actual dathn€ travel graph is the embedded overlaid set of traces
through the process of Kalman filtering [1], maintaining twécgether with the according intersections. To compute the
statistical moments: the process state and the error covariaf¢Berimposed graph, the sweep-line segment intersection al-
matrix. Suppose that the GPS position=(z,y,6) with gorithm of [4] has been adapted. In difference to the original
orientationd is updated by distance and angular change vec@@orithm, the generated graph is weighted and directed. At
a=(5a)to F(l,a) = (x+5cosf,y+dsinf,0 +a)T. The the intersections the newly generated edges inherit direction,
change may lead to errors in the assumed position. Ka|m§iﬁtan<_3€ and time from the original data points. The algorithm
filtering now assumes that distance and rotation satisfies@MPrises two data structures. In the Event Queue the active
Gaussian distribution, i.€.~ N(u;,%;) anda ~ N(ue,¥,) Points are maintained, ordered with respect to their first

with meansy;, = (#,7,0) and u, = (5,&) and co-variance coordinate. In the Status Structure, the set of active segments

matricesy; andy,. It updates the valueg; by F(u, 11,) and with respect to the sweep line is stored. At each intersection

Y, by VF - ¥ - VFT, whereVF is the derivative ofF and the ordering of segments in the status structure changes.
Y the combined covariance matrix & and¥,. After new neighboring segments are found, their intersections

For further data reduction, we apply the Douglas-PeukBf® computed and inserted into the Event Queue. Using a
geometric roundingalgorithm [2]. The method was developedPtandard heap for the Event Queue and a balanced tree for the
to reduce the number of points to represent a digitized curvétus Structure yields a@((n + k)logn) time algorithm,
from maps and photographs. It considers a simple trage With n being the number of data points arid being the
n+ 1 points {po, ..., p,} in the plane that form a polygonalnumber of |ntersect|on2s. A step towards improvement of time
chain and asks for an approximating chain with fewer lin@erformance ta(nlog™n/loglogn + k) has been proposed

segments. It is best described recursively: to approximate ¢ [5]- The firstO(nlogn + k) algorithm due to [6] used

chain from pointp; to p;, the algorithm starts with segmentO(n + k) storage. TheD(nlogn + k) algorithm with O(n)
ace is due to [7].

pip;. If the farthest vertex from this segment has a distan® .
smaller than a given thresholtj then the algorithm accepts [N typical travel networks, the number of edges are pro-

this approximation. Otherwise, it splits the chain at this vertdiertional to the number of nodes, because the node degree is
and recursively approximate the two pieces. Ther log n) _bounded by a _small constant. If one can assert tha_t th_e graph
algorithm takes advantage of the fact that splitting vertices dfePlanar — as in our case — the number of edges is linear in

to be located on the convex hull. It has latter been improv&d€ number of nodes by Eulers formula.
Once the travel graph is built, many nodes of degree two

6 : . remain. For shortest path computations these nodes can be
www.mpi-sb.mpg.de/  ~mehlhorn/SelectedTopics02/Geo- .. . . .
metricRounding/GeometricRounding.html e“mm?-m‘d by merging the adjacent edges through adding
"The original algorithm [3] can handle certain forms of self-intersectiondheir distance and travel time values. Actually, only start, end

IV. GRAPH CONSTRUCTION ANDCOMPRESSION
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Fig. 3. Decompression of an established path.

and segment intersections points remain, reducing the spaaea arise. Ifuy,...,u; was the the solution path in the
complexity of the graph fron®(n + k) to O(l+k), wherel is  contracted graph theprefix(s, ), decompressi, us), ...,
the number of traces ariék< n. Given the original graph, the decompres@:,_1,u), suffiux,t) would be the according
compressed graph is computed in tifén + k). The graph (s,t) shortest path in the original graph.

may loose its physical layout which for different reasons is

important to retain. First of all, it would only be possible to V. NODE LOCALIZATION

start and end a trip on an existing compressed graph nodegefore a query on the trace graph based on given start and
Moreover, to display the established route to the user agdy| |ocations can be processed, their corresponding entry
for GPS-guidance, it has to be re-embedded into the originglges have to be found. For a set of queries, this is best
context. Therefore, our solution is to maintain a layered graglcomplished by an assisting point localization structure that
G = Gy, U G., where the node$/, in the bottom level ontains nearest neighbor information. The apparently suited
porrespond to the original (filtered) GPS data and the nodgsia structure is the Voronoi diagram [8], which ferpoints
in the top level span the compressed gréph can be constructed i®(nlogn) time. The structure consists
More precisely, a compression is surjective mapping of Voronoi regionsV (p) for each pointp, which in turn are
Vy — Ve, so thate. = (uc,v.) € E. if there exists a path fixed by the intersections of alt — 1 half-planes according
p = Up,T1,..., Tk, vp aNdindeg(x;) = outdeg(x;) = 1 to the bisectors to the other points. All points in the interior
with ¢(up) = u. and ¢(vy) = v.. In practice,¢ is computed of V/(p) are nearer tg than to any other point in the point
through a linear time algorithm that goes through all the nodest. There are two main algorithms that meet the given running
of the graph and creates an edge= (u,w) if there exists time: the sweep- (or beach-) line algorithm [9] and the divide-
the edgese; = (u,v) ande; = (v,w) with indeg(v) = and-conquer strategy of separating paths [10]. Building a
outdeg(v) = 1. If e, or e; are themselves results of somejuery structure on top of the Voronoi diagram is available
merging process, they are deleted, else they are made hidge® (logn) time by hierarchical subdivision [11].
in order to be restored later. Probably the best practical option to generate the Voronoi
If e = (u,w) is an edge in the compressed graph then bo@liagram is via its geometric dual - the Delaunay triangulation
v andw have degree- 2 (except when they are the start or since it yields a simple randomized strategy in expected time
end point of a trace). In order to decompresswve need a O(nlogn) with expected optimal storage requirements [12].
handle to the correct hidden edge framthan can take us We use a sweep-line algorithm to compute a initial trian-
to w. For this purpose, during compression, we maintain gulation which is improved to a Delaunay triangulation by
mapping®) : E. — E, that when givere, = (u,w) returns flipping illegal edges. The construction time @(n?) worst
the first hidden edge in the path fromto w. case, buO(n logn) with high probability. In point localization
To extract the established route for user guidance, it h%§ temporarily insert nodes into the Delaunay diagram, so that
to be re-embedded into the original context. Figure 3 depidfi nearest neighbor is found on an adjacent edge.
an example for decompression, wheret) is the query in
the decompressed an@.,t.) is the query in the decom- VI. SEARCHMODELS
pressed graph. Therefix and suffix of the solution path are In the basic model the environment is modeled by a graph
established by following each located start and goal nodé = (V,, E.,w.,T.) whereV, is the set of vertices anfl,
forward resp. backward in the original graph until the firds the set of edges. The function. : E. — RT assigns
compressed node is reached. These are the query nodes fomtkight information with every edge. The functidi : £, —
compressed graph. Since there is only one path no ambiguiti@sne x Time gives the temporal information about an edge,



precisely - the start time and the end time when the edge wgraph is embedded in the Euclidean plane, so that refined geo-
traveled along. For notational simplicity, let us assume That metric information on the set of all possible shortest paths can
itself consists of two sub-functiond,;,,; : £ — Time and be associated to nodes or edges.

Tenq : E — Time that when given an edge return the start

time and the end time of that edge, respectively. A query 0 Geometric Heuristic Search

the system is a pair of nodés, ¢). It aims at the shortest path

with respect to weights.. he number of expansions for a shortest path ry in an im
The basic model can be extended by allowing the graﬁhe. Umber of expansions for a snortest path query in a i
licitly given graph. This technique of goal direction includes

o .be queried not only for the shortgst path but -alsq for ﬂg% additional node evaluation functidgninto the search. For
quickest path froms to ¢ or for a weighted combination of

: ; the goal node we haveh(t) = 0. The lower bound estimate
both distance and time. The queyy= (s,t,7) can be posed . - .
. h, also called admissible heuristic, approximates the shortest
to the system where; € [0,1] is the preferenceparameter

. . X ath distance from the current node to one of the goal nodes.
and is used to give the preference of travel time over the o . :
heuristic isconsistentif w(u,v) 4+ h(v) — h(u) > 0 for all

distance. Based on, the new weightu,,, of an edger can (u,v) € E, wherew is the weight function in the graph.

be calculated as Consistent estimates are admissible. het (v, ..., vx)
Whew(€) = T - [Tena(€) — Tstart(€)] + (1 — 7) - we(e) be any patp 1fromu = vy to t]C = Up. Then we have
. L owp) = Xisg wi,vigr) = 3oy (h(vi) — h(vit1)) =
The shortest path algorithm returns the shortest path, if ORE) — h(t) = h(u). This is especially true if is an optimal
exists, based on new weight informatian,.., . ath fromu to ¢.

It's a general observation that the travel time on a specific o* with admissible estimates may result in the reopening
path can vary based on the time of the day - the travel tig¢ the nodes already visited and deleted from the priority
during rush hours is not same as during the night. Sevegrleye. If the heuristic is consistent, the combined merit of
traffic models have been proposed that model this variaticgbnerating path length and estimate monotonic increasing
Using this observation we now allow our graph to be querigfliring exploration, so that no reopening can occur [13].
for the quickest path to be traveled at a particular time. The Jower bound that is applied to accelerate route planning
Formally, a query is a quadruples, ¢, times, €), wheretimes  js the Euclidean distance, i.eh(u) = ||t — u||2, which
is the desired start travel time. It is posed to the system fg{easures théight distanceto the goal node. The heuristic is
a quickest path that islso feasible with respect to time atconsistent by the triangle inequality in Euclidean space, that
every edge in the path up totime unit. We say that an edgejg |l — ||z + |[v = t]|2 > ||u — t||, for all nodesu, v.

e = (u,v) is feasibleif the difference between the minimum |p, the following, we will prove that in the compressed graph

time to reachu and the starting time stamp atis bounded ¢ the new edge costs result in a consistent heuristic.
from above and below by.

In the search algorithm, feasibility can be insured by check- Theorem (Consistency of:) In the compressed grapfi.,
ing for the following condition before the expansion of a nod IS consistent, i.e., for alfu,v) € V. we havew.(u,v) +
u along the edge: |times + timin[u] — Tstart(€)| < €, where h(v) = h(u) = 0.

Heuristic search [13] is a well-known technique to reduce

tmin[u] is the minimum time required to reaehfrom s. Proof: Let us assume that the condition does not hold
i.e., we(u,v) + h(v) — h(u) < 0 or we(u,v) < h(u) — h(v).
VIl. GEOMETRIC GRAPH SEARCH From to the definition ofi, h(u) = ||u — t||2, we can rewrite

Searching for one single-pair shortest route in the inferrélae above inequality as:
lower level travel graph can sufficiently good be achieved with we(u,v) < Ju—t2— v —t]2, (1)

a single run of the algorithm of Dijkstra. Faf = n+k nodes, . , ) i i )
the choice of Fibonacci heaps yields@fn’ log n') algorithm since a straight line distance is a lower bound on the distance
' value w, of an edge. We can safely replage by |lu — |-

which, given a small value o, is about as efficient as graph| s - .

construction. Moreover, the search is terminated, once the g%inequahty 1 and obtain the following:

node has been found. Note that prior to the search, the nearest lu—ol2 < |lu—tls—[v—=t]2
trace nodes of start and goal can be found with a scan through
the data. Fixing only the compressed graph structure, the graph
search complexity decreases¥9(I+k) log (I+k)). However, in contradiction to the triangular property in Euclidean space.
one-shot queries are not realistic. Modern navigation systems ]
provide their services through Internet portals, so that portableA* for consistent estimates with respect to Dijkstra’s algo-
devices access large databases through communication witthm simply changes an edge weigh{(u,v) to w(u,v) +

a running server. Therefore, we assume that the set of GR®) — h(u) given an initial offseth(s). On every path from
trace data is kept, updated and queried in a large-scale sether initial state to a goal node the accumulated heuristic
system, which is required to answer many shortest path \@ues telescope, and since goal nodes have estimate 0, in
time queries in a very short time. In the following we addredsoth algorithms the priority values at termination time are the
efficient algorithms and data structures to reply frequent ogame. Hence, at least for consistent estimates, A* (without any
line queries. Most of the algorithms exhibit the fact that thee-opening strategy) is complete and optimal.

lu = vllz +flv=tllz < flu—t2,



If one does not search the shortest path in terms of travel i
distance, but the shortest path in terms of time, ghickest A* With Geometric Speed-Up:
path the lower bound has to be modified. This can be donePriority QueueQ «— {(s, h(s))}
by dividing it by an upper bound for speed. while (Q #0)

If the graph is queried for the quickest path, we observe U« — DeleteMinQ)
that by a simple extension to the model and by assuming a If v =t retum u
maximum speeg: of the mobile object, a heuristic estimate  for all neighborsv of u
can be given for the time required to travel a path between two ~ If ¢ IS insideBBoX(u, v)]

nodes. The heuristic estimaté for a nodeu can be defined f/("’) — f(u) + wlu,v) + h(v) = h(u)
as: if (SearchiQ,v))
X it (/'(v) < F(v)
B (u) = o | — ¢t DecreaseKe(v, f/(v))

elselnser(Q, (v, f'(v))

Admissibility of 1’ follows from choosing the most optimistic

option both in terms of speed and distance. Fig. 4. Implementation of bounding box pruning in A*,
If a weighted combination of both the quickest and shortest

paths is required, a heuristic estimate consisting of a linear

combination of bothh and /' can be used. edges to these neighbors — that can be ignored safely are those
We defineh’” as the heuristic estimate for a noden the that are not on a shortest path to the target. So the two stages
time model as: for geometric speed-ups are as follows:
1 .
W) = 7= fu—tls+ (1 —7)-|u—t 1) In a preprocessing step, for each edge, store the set of

nodes that can be reached on a shortest path that starts
with this particular edge.
2) While running Dijkstra’s algorithm or A*, do not insert

Sincer and . are constant for the entire graph ajd — ¢ edges into the priority queue that are not part of a
never overestimates the actual edge ch&tnever overesti- shortest path to the target.
mates the actual path cost - implyig’ as an admissible The problem that arises is that far nodes in the graph
heuristic. one would need)(n?) space to store this information, which
As with the consistency of, we can prove the consistencyis not feasible even for contracted graphs. Hence, we do not
of A" by proving that the edge weights remain non-negativemember the set of nodes that can be reached on a shortest
during exploration. Recall that the weight of an edgim the path for an edge, but the bounding box in the layout of the
extended model is - T,.(e) + (1 — 7) - we(u, v). graph. The required storage will be ®(n) in total, but a
bounding box may contain nodes that do not belong to this
" : . set. Note that this does not hurt an exploration algorithm in the
?’1 7'559?5'?;6:3')'f'}’l,]:(();)aﬂu};,?()j L/COWG have(r - To(e) +  sense that it still returns the correct result, but increases only
e = the search space. Incorporating the above geometric pruning
Proof: Assume that the condition does not hold, i.efacilities into an exploration algorithm like Dijkstra or A* will
(t-Te(e) + (1 = 7) - we(u,v)) + A’ (v) — h'(u) < 0 or 7- retain its completeness and its optimality, since at least one
T.(e) + (1 = 7) - we(u,v) < h”’(u) — h”(v) According to shortest path from the start to the goal node will be preserved.
Equation 24" (u) = |\u—t||2(r-i+(1—r)). We can rewrite Since it refers to the layout of nodes only, it also applies to
the above inequality as- T.(e) + (1 — 7) - we(u,v) < [lu — the contracted graph that we have constructed.
t)|2(T - i +(1=7)) = |Jlv—t|a2(r- i +(1-1)). A pseudo-code implementation is given in Figure 4. For
Due to compression of straight line distances we know thsdke of clarity, we have omitted source fragments to memorize
we(u,v) > |lu—v||2. Also, since the time estimate to traversexpanded nodes and to prevent the algorithm of reopening.
an edge with maximum speed never overestimates the actualhe pruning is based on the computation of all shortest
time, we can say that.(e) > ,%HU—U”?- The above inequality paths that pass the edgesn E. Using Fibonacci heaps, for
can be rewritten asr - iHu —vlla+ (1 —7)-|Ju—v|2 < alledges this gives us an amortized worst case pre-compilation
llw— t]2(7 - i +(1=7)) = ||v—t|la(r- i + (1 —7)). Hence ftime of O(n? logn) in tota_l, _Wheren is _the number of nodes
lu—vlo(r- L+ 1 =7) < |Ju—t|a(r- 2 +1=7)) = |lv— in the graph. Smce the original graph is considerable large, we
apply the algorithm only for the contracted graphs. However,
in difference to theO(n3) all-pair shortest path algorithm of
Floyd and Warshall [14], the space requirements are linear,
since no adjacency matrix representation is needed.

or, h'(u) = ||u—tH2(7'~i+(1—T)) 2)

Theorem (Consistency of.”’) In the compressed gragh.,

tho(r -+ (1 =7)) and[lu — vl < |lu—t]2 = v~ t||2, S0
that |u — v||2 + ||v — t||l2 < ||[u — t]|2, In contradiction to the
triangular property in Euclidean space. ]

B. Geometric Pruning

Another possibility to make the search space of Dijkstra’s &t Processing Negative Edge Weights
the A* algorithm smaller is to ignore some neighbor points in Even in our application we can think of edges that are
the inner loop. The neighbors — or more precisely the incideassigned to a negative value, e.g. when ranking the benefits



Fig. 5. Topographic map and selected route.

of traversing edges. Johnson’s algorithm [14] shows that ptle client to choose from the list of available algorithms, to
computation in timeD(n? logn) can also enable us to handleretrieve information about the algorithm, to specify input data,
the case of negative edge weights. In some sense, the appraac$tart it and to receive output data. The server maintains a
is opposed to heuristic search, since a negatively weightést of installed algorithms. This list may be changed without
graph is transfered to a positively weighted one, in advanttiee need of stopping and restarting the server.

to the main computations. Here the re-weighting funcfios Calibrated maps can be down-loaded from the Internet,
obtained through an initial run of Bellman-Ford’s algorithmscanned from ordinary ones, or extracted from software map-
that ish(u) is the shortest path value from a fixed sousa® ping tools, e.g. by the ones that are used and distributed by
. If the graph contains negative-weight cycles, Bellman-Foslirveying authoriti€s Figure 5 displays some topographic
will detect that. Since storing consumes linear space on-linemap?.

queries based on geometric cuts can be made available evefraces (and maps) have to be provided before the route

in negatively weighted graphs through planning algorithm, on which on-line queries are executed.
In Figure 6 we depict the result of one shortest path query
VIIl. GPS-ROUTE on a sample uncompressed graph structure. The highlighted

¢ path is in fact the shortest possible, since the underlying graph

h WEEhSXe llauilt.tcr)]ur ?gneric ?S/StfhthPS'R?@T&' topt 0 enerated by the trail is directed. It further switches from one
e algorithm library [15] at supports accurate angartial trail to another through an intersection point.
efficient geometry and graph algorithms. To read GPS data,

we wrote a GPS trace parser that generates the set of LEDA
points and segments and that extends the existing structures
with according time values. This allows to query combined I the experiments we restrict to the basic search model. Our
shortest distance and time paths. results were preliminary in the sense that only sample GPS
The ASCII web-interface simply reads the GPS queries ffpjectory sets were considered. We chose the library LEDA,
form of GPS data point and displays the established rou¥ersion 3.6.1, since this was one of the last one that could be
A second user interface is base on VEGA [16], a clientised free of charge for research. All running times are given in
server architecture that runs executables on server side toSeonds and measured on a 248 MHz Sun Ultra workstation.
visualized on client side, written in Java. The client is use{ye experimented with four data sets: two were gathered on
both as the user front-end and the visualization engine. VE@Abicycle, one as a pedestrian, and one collected with a taxi.
allows different server and algorithm selections, input of datgven for this small and moderately sized data sets, we can
running and stopping algorithms, and customization of tixhibit some effects of the proposed acceleration features.
visualization. It can be used to display route information and to

IX. EXPERIMENTS

#points | 6 =10-7 | 10=% | 10=° | 10=* | 1073

apply algorithms to selected data in a view, to control the plan 1277 766 558 543 77 55

execution using a VCR-like panel or the execution browser, 1,706 1540 | 1162 433 | 117 25

to adjust view attributes directly or using the object browser, 2,365 2083 | 1394 376 28 7
) ) . . 50,000 48,432 | 42,218 | 17,853 | 4,385 | 1,185

to show several algorithms simultaneously in multiple scenes

and open different views for a single scene, to load and to TABLE |

save single scenes, complete runs, and attribute lists, and to REDUCTION OF TRACES WITHDOUGLAS-PEUKER.

export scenes in XFIG or GIF format.

The main purpose of the server is to made++ algo-
rithms accessible through TCP/IP. The server is able to receivdn Table | we show the effect of geometric rounding by
commands from multiple clients at the same time. It allowSouglas-Peuker with different threshold values on GPS traces.

8The Internet interface is available af.informatik.uni-frei- Swww.adv-online.de/produkte/top50
burg.de/ ~edelkamp/gpsroute 10ww.geodaten.bayern.de



Fig. 6. Result of a shortest path query for a small bicycle trace.
. . #points ty te ts #exp
The accuracy is drawn on tqp of the table .and is measured Dikstra | 1,277 | 0.42 [ 001 00T | 1,203
with respect to raw GPS latitude and longitude format. The A* 1,277 | 0.42 | 0.01 | 0.00 243
running times for all executions were within one CPU second. Diikslirf 11;82 8-3; 8-83 8-8(1) Liréi
The obtained reductlon ratio for c_ar_travellng traces is smaller Dijkstra | 2.365 | 0.37 | 0.00 | 0.01 | 1,667
than for the bicycle data set. This is due to the fact that the A* 2365| 0.37] 0.00]| 0.01| 1,600
speed of cars makes GPS data points sparse. Dijkstra | 50,000 [ 11.13 | 0.27 | 0.27 | 44,009
A* | 50,000 | 11.13 | 0.26 | 0.20 | 18,755
#points | #queries | te | ts | t TABLE IlI
1277 1277 0.10 0.30 12.60 EFFECT OF HEURISTIC SEARCH
1,706 1,706 | 0.24 | 0.54 24.29
2,365 2,365 | 0.33| 1.14 433
50,000 | 50,000 | 13.73 | 14.26 | > 10,000
TABLE II

EFFECT OF EFFICIENT POINT LOCALIZATION . . . . .
section algorithm is more time consuming than all further

computations. With about a second CPU time, preparing and
running a shortest path query is fast. In fact, initialization time
Table Il compares the performance for Delaunay diagrast the data structures can be avoided through hashing. This
construction {.) and searchingt() query points to the naive proves that pre-computation for an on-line query system pays
search scheme(). We posed as many queries as there wegdf. For heuristic search, we obtained a significant reduction in
points, by giving a small offset to the original point coorthe number of expanded nodes. However, the observed CPU
dinates. Localization queries have a very small accumulatggin in the example is small.
running time, showing that pre-computation is crucial.

In Table Il we depict the running time of the sweep-line

#points | #nodes| #comp | t. | #exp | ts

algorithm as well as the effect of heuristic search, whgre 1277 1473 199 | 0.01 28 1 0.00
is the time of the sweep-line algorithr, is the preparation 1,706 | 1,777 74 1 0.02 35 | 0.00
time of the search algorithm (initializing the data structures) 2365 24811 1301 0.03) - 72 0.00

. 2 ; 50,000 | 54,267 | 4,391 | 0.59 | 1,738 | 0.02
ts is the pure searching time for a single shortest path query, TABLE IV

and #exp is the corresponding number of expansions done in
computing the shortest path.
As in the case of point localization the sweep-line inter-

EFFECT OF COMPRESSION



#points | #queries| ¢ | tq

Next, all nodes of degree two were deleted by adding up

199 200 | 0.01 | 0.09
distance and time values. Table IV depicts the number of 74 200 | 0.02 | 0.15
original data points, the size of the overlaid and compressed 130 200 | 0.03 | 0.28
graph, the performance of compressiap),(the number of 4,391 200 | 0.59  0.65
expanded nodes in the A* algorithm and corresponding search TABLE VI
CPU time for one shortest path query,)( As expected, EFFECT OF DECOMPRESSIONON-LINE).
compression drastically reduces the graph complexity, and in
turn the subsequent search efforts.
/ .
Dijkstra #ni%%s 1.267 0.?4 6#,&;;2 o.é% 1@?;55 algorithms for freehand writings designed for data recording
A 199 | 1.87 | 0.26 3,135 | 0.19 7,912 and replay of pen-based inputs. Vertex recognition recognizes
Diiksg*a ;i g-gg g-gg g?gg g-gg ;%é changes in the orientation during the execution of a trace. A
Dijkstra 130 1141 0.49 144 05d | 12392 pomt is a verte>§, |f. the angle of the curve, at this point
A 130 | 1.14 | 0.49 3848 | 0.56| 10060 is below a certain fixed angle and the distance to the two
Dijks:\rg 3,391 1,299 9.36 | 101,064 | 17.18 | 458,156 neighboring points. The cosine of the angle -, is computed
;391 | 1,299 | 8.11 | 65,726 | 12.88 | 217,430 in the formula(py — p_1) - (o — prsr)/(Pk — i1 - |3 —
TABLE V pr+1]), thus saving cosine computations when thresholding

EFFECT OF GEOMETRIC PRUNINGON-LINE). with cos .

Another important aspect for the proper representation of
lines is spline fitting, so that the points are smoothly connected
We evaluate the effect of geometric pruning in on-line sethrough polynomials of low degree. To calculate an inter-
ting on the compressed graphs with the compression of gragitdating spline thepscurve command in the Al[EXmacro
and calculation of bounding-boxes done off-line. We ruRSTricks[17] is used. The formulae for pointg,...,p,
the combination of Dijkstra/A* with bounding box pruning.require to compute four control points, ..., s, of a cubic
Table V presents the effect of pruning on the total searchisgline fromp; to p; ., as follows:sg = p;, s1 = pi—1 + [pi —
time and the total expansions for 200 random on-line querigs._1| - d’ - m’, s3 = piy1 — [pi — Pit1|-d-m, andsy = p; 41,
These are the averages taken over 10 different episodebered’ andm' are the old values of andm with
As we see, the work for pre-computing all shortest pair¥ (

can be large. This is counter-balanced with a significant gain = (pi = pic0)lpivr = pil + (pigr = pi)lpi — pi-i
in the number of expanded nodes (primed variable denote m o= % cos (a(pi —pi—1) — a(pit1 pi)> ‘ﬁ
the original algorithm). For compressed graphs we observe 2|d| 2

a factor of 2-4, with better performance for larger graphsqa(p) = arctan(z/y) givenp = (z,y).

The time gain is much smaller burdened by the number of

additional comparisons and path extraction. Heuristic search! & parameters are = 0.690176 and 3 = 0.1, and at the

can successfully be combined with geometric pruning. TREJINNING,s1 = p1 as well as at the endy = p,.

smaller impact of heuristic search compared to Table Il can Data reduction with splines faces another problem. If we try

be attributed to the averaging effect of random queries, positgycalculate the exact distance between a curve with and with-

easier exploration problems compared to the selected extrefid. the point in question, we have to deal with polynomials of
We furthermore observed that geometric cuts perform wéifh degree, leading to an inefficient algorithm. The following

in two cases. First, if test data contains many paths to tHeduction schema approximates the distance to eliminate point

target, the exploration algorithm is slow, because it dods a@s follows: compute the parametric representation of the

not know which route to take, i.e. there are many possibi@line s* through the pointsp;_2, pi—1, pi+1, and pi1,

neighbors that it has to consider. When some of them gy@mpare it to spline that includes all five points, and omif

excluded, the search space is much smaller. If there is no phtfhe distances ands’ is within a threshold for some certain

at all to the target, bounding boxes can also help: For all edgiast set of intermediate points. First experiments confirm the

the target is then not in the set of nodes that can be reached/8#? in the context of handwriting that considerably savings

a shortest path starting with this edge. It is therefore (mayk@" be achieved with iterated point removal in long traces

not in the bounding box that belongs to this edge. In the ide#|thout removing the main characteristics of the trace.

case, for a query with no solution, restricted Dijkstra only Computing the travel graph according to a set of splines

looks at the source and the incident edges. can also be an option at all, but calls for refined algorithmic
Finally, in Table VI we measured the time of decompressidiplutions as e.g. addressed in the EXACUS projeat MPI,

of the compressed shortest path. As we can see, in the largaarbticken.

graph, decompressing 200 shortest paths is almost as fast as

compressing the entire graph once. XI. NAVIGATION IN DYNAMIC ENVIRONMENT

X. GEOMETRIC VISUALIZATION Consider the scenario when, while following a shortest path,

. L . the user detects that because of a road accident or some other
For visualization of traces and solution paths, we have

adapted arO(n) on-line vertex-detection and data reduction ‘www.mpi-sh.mpg.de/projects/EXACUS
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reason, there is a traffic jam. A traffic jam implies an increaset because one disturbance might lead to other disturbances

in travel time for the affected area. In this case a secotitht affect the edge weights differently. As an example, a car

shortest path from the current position to the destination aecident may lead to a blocked lane and a resulting traffic jam.

needed that also avoids the affected area. Removing the traffic jam might not result in the opening of
We analyze two models for introducing dynamics in théhat affected lane.

system. In the first model, due to a disturbance, we assumd-ormally we defineC' as a set of constraints : £ —

that some particular edges are directly affected. We mode{R x Time}, i.e., a constraint is a set of tuples representing

this situation as an increase in the weights of these edgi® changes in the weight of an edge due to disturbances and

Furthermore, we present an alternative approach whereha time when the change disappears.

disturbance is represented as a geometrical object affecting th&ometimes it is difficult to pinpoint the exact location of

edges covered by that object on the graph. In both of theme edge where the disturbance actually is. To accommodate

models we assume that the changes in the graph are tempothigy difficulty we extend our model to allow the definition of

in nature, i.e., they disappear after some time. constraints on the graph in the form of geometrical objects.
Increasing the weights of some edges implies the invalidity

of some of the bounding boxes, particularly the ones that pisturbances as Geometrical Objects

contain edges with increased edge weights. This restrlctsl:Or simplicity reasons we assume each geometrical object

the boundmg-_box Se"’.‘mh'”g algorithm to make use of trtlg be an iso-oriented rectangle. This rectangle is considered to
precomputed information.

be a separate entity from the graph and is situated in a layer
) ) on top of the graph.
A. Dynamic Queries All the edges underneath a rectangular object are assumed
A dynamic shortest path problem can be defined as at8-be affected by the disturbance. There can actually be three
tuple D = (G.,C,q). It aims at answering the shortest pattkinds of edges that are affected. One that are completely
queryq in the graphG,, in the presence of a set of constraintsontained inside the rectangle, one that intersect the boundary
C. The queryq is represented ag = (s, t,times) with s as of the rectangle at exactly one point, and one that intersect the
the start nodet as the target node andme, as the desired boundary of the rectangle at two points.
starting time when the path is to be traversed. These disturbances can be formalized in the form of con-
The set of constraint§' defines disturbances that may arisstraintsc : I' — R x Time wherel is the set of rectangles
in the road network in the course of time. At the basic levetorresponding to the affected areas. A rectangle T is
we define these constraints to be affecting a subset of edgesiapped to arincreasein the weight of the edges underneath
increasing their weights. Each constraint is also characterizednd aTimevalue after which that constraint is considered as
by the time after which the constraint is no longer valid. Koid. Note thatl’ can also be viewed as a function that maps
corresponds to the situation when the traffic flow has returnady to a setE, C F, i.e. the set of edges affected by
to normal after a disturbance.
The increase in weight can be accommodated in the grapgh pisturbances and Static Information

G by increasing the values.(e) of edgesc. This restricts Due to a change in the weights, the static information kept

us to. search the shortest path in the modified graph. in.the shortest path bounding boxes might become invalid.
This model can be extended to a more general one trﬁt

facilitates quickest path searching or a combination of bo ome of the bounding boxes may mislead the shortest path

also. The extension involves utilizing a separate weight funa_gorlthm and can result in a path other thanshertest path

. - ; L e-computing the bounding boxes for every change is too time
tion w and a priority parameter value to give priority to ; ; . )

) . . . consuming, since the disturbances are temporary and disappear
distance or time. The weight of an edgeis now w(e) = after a short time. Also, the exploration of a particular quer
7 % (Tona(€) — Turare(€)) + (1 — 7) x w.(e). Note that this - NSO, b P query

weight function remains constant during the computation. utilizes only a small subset of the problem graph. This gives

The constraints can now be defined in terms of an increz%,% the idea to characterize the bounding boxes that may

in the weightw of an edge. This leads to a re-formalization ave become invalid and that would be e_zncountered for a
of our problem as a 5-tupl® = (G, w, 7, C, ) particular query, at the start of the exploration. In case those

In the following we elaborate our problem from two differ-boundmg boxes are encountered during exploration, we can

ent perspectives. In the first one we represent disturbancesf]gjsf ilgti'g?:gf;;ﬁﬁ?ﬁ:ginpmed information and rely on other

affecting the edges directly and increasing their weights. Wh|leA bounding box can mislead a shortest path algorithm, if

in the second one we represent a disturbance to be aﬁectlpgontains at least one edge whose weight has been changed

a rectangular area on the graph and in turn affecting all téﬁ]ce the bounding boxes were computed. The bounding boxes
edges underneath it.

that contain no affected edges aralid and can be used for

. o ] the pruning of the search space in a shortest path algorithm.

B. Disturbances as Individual Edge Dynamics We observe that if the bounding boxes of the outgoing edges
In this model, we defin€’ to be a set of constraints whereof the start nodeS do not contain any of the affected edge

each constraint € C' maps an edge to aet of changes i.e., they are valid, the shortest pdthsearched in the pruned

due to disturbances on that edge. Note that we use the tes@arch space remains to be the shortest path.
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E. Searching in Dynamic Environment because bikers or hikers have much more freedom in choosing

We distinguish two approaches for searching for a shortd8¢ir route.

path in a dynamic environment. The first approach that we pytomated leveling the graph structure has been also ad-
called asraph-Updateor Off-line approach updates the graphyressed by [22] with different optimality preserving algorithms
with new edge information on the arrival of a disturbance. Thgy hierarchical structured graphs. In an application scenario
search is then performed on the updated graph. The prunifgm the field of timetable information in public transport, the
information is used only if the bounding boxes of the outgoingork gives a detailed analysis and experimental evaluation

edges ofs do not contain any of the affected edge. This test §; shortest path computations based on multi-level graph
performed by using a geometric data structure called Segm@BEomposition.

tree. Segment tree is a data structure for saving parallel line

segments and with certain enhancements can be used to answln experimental study of the impact of geometric pruning
window-queriedor arbitrary oriented segments, i.e., giving &uts for the setting of train graphs is presented in [23]. In the
rectangular window overlaid on a set of line segments, retudgorithm portfolio, bounding boxes appear to be superior to
the line segments that are intersected by the window. TAgnotations of angular sectors. Bounding-box pruning extends
fully dynamic variant of segment tree support insertion dfarly observations of [24], where angular sectors of all shortest
new segments i) (logn) time and deletions of segments inpaths that pass an considered edge were used.

O(logn - a(i,n)) time, wherea(i, n) is the extremely slowly Similar to pattern databases [25], shortest path bounding

growing functional inverse of the Ackermann’s function. Th%oxes are memory intense approximations of shortest path

. . . 2

window query operation can be carried outGtflog”» + k), information in the state space graph to be inferred before a

where k is the number of reported segments. Segment tree . . .
. guery is processed. Pattern databases improve the quality of
requires arO(nlogn) space [18]. In our case, the query rect: o . . : X .
; ; the heuristic estimate, while bounding boxes improve pruning
anges are the bounding boxes corresponding to the outgoin . . : .
capability, effectively reducing the branching factor. Moreover,

edges ofs and the segment tree is used to maintain the ed% ile pattern databases fix the goal state and construct the

\év:rz;it\évslght has been changed since the bounding boxesaegt%base with one shortest path backward exploration in ab-

. stract space, pruning with bounding boxes stores approximated
For the model when disturbances are represented by r { P P g g PP

L : ormation to be exploited for different start and goal state
anges, the initial test can be viewed as red-blue redan%i&eries P 9

intersection problem. It deals with computing the intersectio
points of two different types of rectangles. Using a sweep line We insertedO(n logn) as the worst-case run time of Dijk-
algorithm, this problem can be solved @hn logn + k) time, stra’s algorithm in the travel graph exploration, by referring to
wheren is the total number of rectangles of both types &nda Fibonacci heap implementation and bounded node degree.
is the number of intersections reported [19]. As in the current implementation the constructed graph is
The second approach that we called Egploration-time planar, using the graph separator algorithm of [26] would lead
Checkingor on-line approach utilizes the observation that ito a theoretically faster algorithm, with linear run time for non-
is possible that some of the constraints have terminated aveative edge cost. This reduces the pre-computation time to
no longer be there by the time the mobile object will reach(n?). However, to the best of the authors’ knowledge, this
the affected area. This observation suggest a search procedaiggrithm has not been implemented yet. Moreover, the single-
where we continute exploring using our search algorithm alosot run time would slow down significantly, if negative edges
with the pre-computed information until we reach an affectadere allowed. Planarity is affected, if we allow invalid inter-
edge. If we do not encounter any affected edge and reach leetion (due to bridges or tunnels). Linear time algorithms for
target, we declare the encountered path as the shortest patiroader graph classes have mostly be devised for restricted
based on the results of Section XI-D. In case we encounterwsight functions only [27]. Recent experimental results on
affected edge, we restart the search procedure without utilizisigortest path search [28] have also only limited impact on
the pre-computed information. our work, since the authors consider undirected graphs and
multiple queries to the same target only.

XIl. RELATED WORK For the case of search in a dynamic scenario [29] presented

This paper does not address the issue of statistical clusteramg approach where the authors have obtained a speed-up of
of GPS data to automatically infer a map by condensing tl to a factor of three in re-computing the bounding boxes
data set through road centerlines and clustering like [20]. In thre case of a change in the weight of an edge. The main
context of car navigation, lane-precise maps are inferred. Tidea behind their approach is to enlarge the bounding boxes
work provides a domain dependent system that automaticadlfy the affected edges. The authors extended the bounding
generates digital road maps that are significantly more preckszx pruning to bi-directional search algorithms by computing
and contain descriptions of lane structure, including numbadditional bounding boxes for the graph with reversed edges.
of lanes and their locations, and also detailed intersectidhe approach has shown good results in the case of train
structure. In [21] it is shown how existing electronic maps cagraphs. But for large graphs:(> 100,000) and where
be adapted to an electronic base map. For domain-independgstiurbances are frequent, the above mentioned approach is
trajectory planning however, such an approach is not feasibhat feasible.
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