Team Dynamo-Pavlov Uppsala

Paul Pettersson, Olle Gallmo,
Pahram Azimi, Rani Khalil, Martin Tillenius,
Arsenij Vodjanov, and Samuel Waxin

Department of Information Technology, Uppsala University
P.O. Box 337, S-751 05 Uppsala, Sweden.
Email: {paul.pettersson,olle.gallmo}@it.uu.se

Abstract. Team Dynamo-Pavlov of Uppsala is an effort at the Depart-
ment of Information Technology at Uppsala University in Sweden, to
establish a soccer team in the four legged league of Robocup. The core
develoment team of the project is a group of 4th year computer science
students taking a project course in the fall of 2002. In 2003 a smaller
group of students have been working with the code to compete in Ger-
man Open and Robocup 2003.

1 Introduction

Team Dynamo-Pavlov of Uppsala was founded in the fall of 2002, when a group
of 25 undergraduate computer science students started their fourth-year pro-
gramming project at the Department of Information Technology at Uppsala
university. Their task was to complete a large programming assignments with
the Sony AIBO model 210A as the hardware target platform. As one of the
assignments, 13 students started the development of a Sony AIBO soccer team
to compete in the legged league at German Open and Robocup 2003.

From the university’s point of view, the aim of the project is give the students
deeper knowledge in project management and methodology, and in the area of
distributed system. A goal is to let the students take part of a large program
development project from the early stages of planning, through the development
phases of a software project, to application and systems maintenance. In the area
of distributed systems, the students should get an opportunity to enter deeply
into some aspect of a complicated distributed computer systems.

The main part of the project was conducted in the fall of 2002, when the
students completed the original 15 credit point (75% of full time) project course.
During the spring of 2003, the development continued in a smaller group of
students, in two phases. First, to complete a version of the system to compete in
German Open 2003 in Paderborn. Secondly, to improve the system to compete
at Robocup 2003 in Padova. The team finished on 4th place in German Open,
but did not qualify from group play in Robocup 2003.

To a large extent, this team description is based on documentation produced
by students during the project. The rest of the paper is organised as follows: in
the next section we describe the original system produced in the fall of 2002.



In section 3 we describe the improvements made during the spring of 2003 in
preparation for German Open and Robocup.

2 System Overview

The system is divided into six modules. Each module run as a single OObject
with message passing communication. In the following we give a brief description
of each module. For a more detailed description, we refer the reader to [3].

2.1 Module Vision

The vision module is responsible for analysing the images taken by the camera in
the AIBO’s nose. Once a picture is taken, the AIBO will try to find key objects
on the field, such as the ball, a goal or other players. When the image has been
analysed, the gathered data is sent to the strategy module which will work out
what to do with the information.

It also tries to determine distance to these objects as well as assertain its
own position on the field. Localisation is done by triangulating its position with
the six uniquely colored beacons around the field.

From AIBO’s camera we get an image in YCrCb—color-space. This image is
then run through a BitMask Classifier that gives us a new image with a more
convenient color-space. The classifier strips off uninteresting colors, other colors
are classified in the sense that we are told what kind of object this color can be
associated to.

The new image is then given to an edge—detection function that returns a
bitmap containing the edges of the given image. The image and the edge—bitmap
are the base for the next step in our object detection, the flood-filling. The
flood-fill-function is not only a flood-fill-algorithm though, it has evolved to an
object—detector and as it fills an object in the image it gathers information about
the object’s height, width, color, position, area and perimeter. Very small objects
are thrown away, as they contain too much uncertain information. Objects that
seem to form a beacon are combined.

Distance. The distance from the robot to objects are all approximated based on
the size of different properties of these objects. The size is expressed in number
of pixels of each object in the picture. The approximation uses a mathematical
function which is calculated from the relationship between object size and real
distance.

— Ball - The size of the ball is based on its width. This is because it is common
that the top of the ball is to bright to be recognized as the ballcolor, which
is partly due to our lighting conditions. So the height of the ball will most of
the time be non accurate, and hence the width is better suited to represent
the size of the ball.



— Beacon - The size of each beacon is based on the distance between the center
of the two beacon parts. We first used the height and width of each beacon
part, but the distance d seems to give better distance approximations.

— Goal - The goal size is equal to its height, because the AIBO is more likely
to see the whole height than the whole width, when there are other robots
obstructing the view.

The distance approximation to objects is quite good at close range. But due to
the poor resolution of the camera, the approximation doesn’t give us distances
that are accurate enough when object are far away from the robot. This inac-
curacy sometimes makes the localization of the robot unsatisfactory, since it is
based on the distances to visible beacons. The solution is to use triangulation.
When the robot sees three landmarks, either beacons or goalposts, we use trian-
gulation to recalibrate the distances to these landmarks. This will enhance the
accuracy of the localization.

2.2 Module Strategy

The strategy module receives data continuously, evaluates the data and deter-
mines the behaviour to perform. This behaviour is then sent on to the motion
coordinator module.

Behaviours. The strategy module has a set of commands that it can send to
the motioncoordinator:

— GoToBall, the AIBO goes to the position of the ball

— GoToXY, requires a point to be given

— Aim, requires an angle that the AIBO should spin

— KickBall, the AIBO kicks the ball

— LockBall, the AIBO lowers its frontlegs and head to lock the ball

— PushBall, the AIBO pushes the ball lightly

— ScanField, the AIBO scans the field without moving its body

— SpinBody, requires an angle that the AIBO should spin

— MakeSave, the AIBO makes a save

— ContinuePrevious, if the new calculated action is the same as the previous
one, we don’t send the command again, but send a ContinuePrevious instead.

— Stop, stops the current command

Decision trees. The behaviour is determined using a decision tree that con-
sists of a hardcoded binary tree. This tree looks slightly different depending on
wheather the AIBO is a goalkeeper or an ordinary player.



2.3 Module Worldstate

The worlstate module is a map module that handles and stores the data received
from the vision- and the communication module. The data received from the
vision module is a message containing data collected by the vision module. The
message is first converted into a so-called worldstruct. The worldstruct contains
all objects allowed on the field. We then send a copy of the message to the
strategy module.

The worldstate module does not only receive data from the vision module.
Since the AIBOs cooperate and have a boss they also send messages, i.e their own
worldstruct, to the boss. The messages are sent via the communication module.
When the boss receives messages from the AIBOs it combines the data from the
different players and broadcasts the new combined data to all the AIBOs. The
idea with this is that each AIBO should have the same view of the gamestate.

2.4 Module Motion Coordinator

The motion coordinator module acts as an abstraction layer between the strategy
module and the two motion modules (head— and leg— motion). A finite set of
commands (with parameters) can be sent in sequence from module strategy to
motion coordinator. The motion coordinator’s task is to convert these abstract
strategic actions into lower—level commands understood by the motion modules,
and deliver these commands in sequence to the appropriate motion module.

2.5 Module Motion

The motion module is responsible for translating commands from the Motion-
Coordinator module into movements. This includes walking, rotating, moving
the head, kicking, saving etc.

Walking style. We have chosen to use a walking style known as trot. In this
walking style two legs move simultaneously which makes the walking style quite
fast.

The basic idea is that we specify a rectangle in the 3D-room in which each
paw should move. We could then choose points in the rectangle and transfer the
coordinates of those points into joint angles by using inverse kinematics.

The coordinate system is individual for each leg and origo is placed in the
shoulder. This method can be used both for walking forward, backward, sideways
(strafing) and rotating. We choose to divide the rectangle into six positions, one
in each corner and another two at the bottom. This will ensure that the time in
which the paw is lifted, is equal to the time in which the paw is dragged along
the floor. All positions are relative to the AIBO’s starting position.



2.6 Module Communication

The communication module handles network connections for the AIBO. It uses
the ANT (abr. for OPEN-R Network Stack) for TCP/IP communication with
other team members and our debug tool.

3 System Improvments

In this section, we describe how the system was improved for the competion at
Robocup. For more a detailed description, we refer the readers to the reports [1,
2.

3.1 Vision

Color classification. The classification was done using limits in Y, U and V
space. To be able to classify colors more precisely, we changed this into a color
lookup table. Colors was downsampled to 18 bits, 6 bits per channel, and we
introduced a table covering the entire color space. Colors was allowed to belong
to more than one class.

We also added the possibility to our controller program to take a frame and
mark which colors belonged to which class.

Object detection. The Sobel filter marked unwanted lines between an object
and highlights on that object from the lights. We removed this and used floodfill
to detect objects. Every second pixel on the screen was looked up in the color
classification table. If the pixel belonged to exactly one class, a floodfill was
performed staring in that pixel.

Localization. The vision system used to remember and report everything it
has seen since the last time the Aibo walked, and if an object already seen was
seen again in the next frame, the one with the largest area was used and the
other thrown away.

We implemented a Kalman filter to get a mean of all the observations of an
object, and also we introduced a limit so that an observed land mark only can
be used for localization once, then it has to be observed again. This was because
when three land marks are spotted, the localization would triangulate a position,
and even if no new information is seen, these three land marks will be reported
and used for triangulation each frame.

The position from localization was also filtered, and we allowed positioning
using only two beacons again. When only one beacon is seen, we assume that
our position is correct and use the position and this beacon to update our angle.



3.2 Communication

According to the project plan, communication module was to be degugged, and
afterwards adapted for use with Sony’s GameManager.

Existing communication code has been debugged and works, and some effort
went into making it useful in actual game play. However, in the last few days
before departure, we realized that the whole Communication module was un-
necessary and, in fact, not even allowed to be used in RoboCup. The so called
TCP Gateway that was mentioned in RoboCup rules was a misleading name of
a Open—R module that allows TCP communication between robots via a host
PC with a WLAN card.

Future work must therefore focus on making use of the TCPGateway library.
Communication module currently acts as a sort of marshaller and encoder for all
outgoing data. Current communication module may therefore still be employed
for simplicity, i.e. used as a wrapper for TCPGateway—specific code.

A tip for improving execution stability is to employ full functionality of Open—
R subject—observer architecture, that is, make full use of IsReady() function (and
likes) to prevent internal buffer overflow and uncontrolled loss of data.

3.3 Motion

Kicks. After taking part in the German Open we decided that we could need
some changes in our way to play so that we could be more effective. One of these
changes was to develop some extra kicks so that the AIBO would not have to
rotate itself and face the goal for it to shoot the ball towards the goal. Using the
kicks that we had before the AIBO could only manage to shoot the ball straight
ahead. We had two different kinds of kicks that did that, the NORMAL-KICK
where the AIBO sat down to shoot the ball and the CHEST-KICK where the
ATBO moved backward and then forward in a fast way hitting the ball with its
chest.

After seeing some of the other team’s kicks we decided to develop new kicks.
We decided that we needed kicks that could shoot the ball in a 45 degree direction
and 90 degree direction. We also decided to change the NORMAL-KICK since
we had a slight problem with it during one of our games in Germany where the
goalie was about to shoot the ball when it accidentally pushed the ball back
with itself over the line allowing an own goal to be scored. The normal kick was
modified so that the rear legs of the AIBO are pushed back allowing the AIBO
to lie on its stomach before shooting the ball. This adjustment will not allow the
AIBO to move its position before shooting.

We also developed a HEAD-KICK that shoots the ball in an interval between
75 and 90 degrees. The AIBO leans forward moving its head towards the other
side from where the goal is. It then proceeds by swinging its head in the direction
of the ball and simultaneously removing the front leg back causing the ball to
be hit with power.

Another kick that was developed was the BSLAP-KICK. This kick was sup-
posed to allow the AIBO to shoot the ball in a 45 degree direction. The interval



for this kick was more between 45 degrees and 60 degrees. This kick goes as
follows, the AIBO starts by lifting one of its front legs (depending on which
direction the ball should be kicked), it then lifts the opposite rear leg, it then
pushes with its other rear leg so that it gets a forward force, it then finishes by
moving the front leg down causing a slap to the ball.

A similar kick to the BSLAP was developed, the WIDE-KICK. The AIBO
leans its body backward lifting one of it front legs (depending on which direction
the ball should be kicked). This movement causes the AIBO to nearly sit on its
behind with one of its front legs in the air. It then proceeds by straightening
up and continuing the movement forward while simultaneously moving the lift
front leg towards the body. This causes the AIBO to hit the ball with power.
The interval for this kick was between 45 degrees and 65 degrees.

Problems. Time-decreasing performance of kicks designed for angle ranges
between 0 and 90 degrees. As time passes, some kicks begin to miss the ball
completely without any changes being made to the code..

Possible reason: forward legs joints begin to loosen up after some time.
Other teams (German Team in particular) reports similar problems.

Fixed by regressing to use forward or head kicks, limiting kick angle range
to approximately 0 and 90 degrees, respectively. This caused large portions of
Strategy code become obsolete and unused.

Proposed improvement: implement parametrized kicks that use the in-
verse kinematics (IK) engine, as opposed to the current implementation whith
hard coded joint angles. This way, a few constants can be used to account for
loose joints, and the kicks can become an integrated part of robot’s motion, as
well as become more precise, making overall gameplay more adaptive.

3.4 Strategy

Player Strategy. The main area of improvement lied in adapting the player
strategy to the new types of kicks that were introduced. This involved some
major changes to the way the decision tree looked, but no big changes to the
core implementation of it.

Some time was spent to optimize scanning behaviour in an attempt to mini-
mize the number of head—scans required to maintain knowledge of own absoute
position. Steps were taken towards “remembering” previously seen landmarks,
and roughly approximating own absolute position and direction based on seeing
at most one landmark.

Additional code was written to make use of communicated boss orders. The
players can perform a defensive, supporting or offensive action, depending on
the command from the boss. It was noted that due to current implementation
limitations, the resulting scheme deviated from the originally proposed. Rather
than having independent agents make own decision based on a common set of
data, we ended up with the boss analysing the data and sending out simple
orders: Ignore Ball, Defend, Attack.



It turned out that the functions that were to merge sets of data from different
robots into a common set were not used or not working as intended, and the
only reliable thing left that the Strategy eventually received from the merged
information was a simple boss order.

Goalie Strategy. The procedure behind the goalie strategy is based upon the
system of a regular player. We did very little to change this process. The main
modifications here were merely the behavior of the goalie.

Since we don’t have absolute positioning at the moment, we had to divide
the strategy tree into two branches. One in which the AIBO is in position, and
the other one when it is not. We decide this based upon the actions taken, e.g. if
a gotoBall() action is taken, the position mode is switched to NOT_IN_POS. This
mode is the re-switched to IN_POS whenever the AIBO has found the goal and
moved towards it. This happens when the mode is set to NOT_IN_POS and the
ball is not visible, i.e. AIBO tries to locate goal.

If the goalie sees the ball it stops scanning, and tries to track the ball with
its head. Whenever the ball moves sideways the goalie tries to strafe towards the
ball location. This way it maintains a good position in the goal relative to the
ball position in field. In every cycle, the ball position and ball relative distance
is calculated. If the distance is less than a previous decided value, the goalie
moves towards it to shoot it away from the goal. Since the task of the goalie is
to defend goal, it just moves towards the ball and shoots it away without aiming
towards a specific target.

If the ball is towards goal and the velocity is larger than a pre—decided value,
the goalie makes a save. This is done by stretching out the arms sideways to
protect as large area of the goal as possible.

The major problem we had with the goalie was basically the same as with the
regular players. Since it didn’t have an absolute position, it could never be sure
of were in the field it was. Hence, most of the code is based upon calculations
relatively to the camera. This caused in worst cases that the goalie was standing
in an erroneous position, believing it was in front of the goal. Although the code
for how to behave when absolute position is found exists in the behavior, it has
never been used, nor tested.

Problems On—Sight. The following problems were found on—sight at Robocup
in Padova:

— High rate of kicks towards own goal.

Main reason: bugs in WorldState and PlayerStrategy code that attempted
to minimize the number of head scans, by using previously seen data. Ap-
parently too old data was being incorrectly classified as up to date.

A problem that makes the above bugs particularly severe is the fact that
there are other robots on the field that may obstruct vision. This is hap-
pening very often at exactly the worst time, since many robots tend to try
getting the ball at the same time, obstructing each others line of sight.



Returned to the old scheme when the robot scans around after reaching the
ball. Began working on a method that would allow determining the correct
kick direction from seeing only one beacon, and remembering which beacons
have been seen recently, and where, using a vector-weighting algorithm to
determine optimal kick direction. This should prove a good solution if it was
combined with the Kalman filtering on object positions (also implemented
only partially). Complete Kalman filter implementation would likely involve
rewriting the entire WorldState module.
One must remember however that any solution involving beacons will even-
tually have to go, since it is likely that beacons will be removed from the
field in future tournaments.

— Delays between different types of movement
Assumed at first that the poorly optimized implementation of the IK engine
(in LegMotionInterface) was the reason behind the delays. Rewrote parts of
leg motion code to only calculate the immediate movement step ahead, not
the entire sequence of steps for the whole command. The speed of motion
increased, but the switching delay was still substantial.
Upon further analysis arrived at the conclusion that the real source of the
problem is a design flaw in the decision hierarchy split—up between Strat-
egy and Motion Coordinator. The entire idea of moving functionality from
Motion Coordinator to Strategy turned out to be the reason for the delays.
The Strategy module has become much less generic than it was before Ger-
man Open. Complex MC commands such as GoToBall were reimplemented
inside Strategy as sequences of simple walk, strafe and rotate commands.
In a perfect world this wouldn’t matter, but the CPU speed limitation and
message passing delays presented a huge degradation of performance. The
Strategy module’s backbone is either too slow in general, or not optimized
towards Open—R, i.e. too busy handling messages to and from the multiple
subjects and observers that are connected to it.
This idea was tested by writing a simple version of a go to ball command
completely within Motion Coordinator. As expected, no delays occured be-
tween different types of motion during the execution of this one Motion
Coordinator command. Delays remained between execution of different MC
commands, i.e. whenever Strategy was required both to produce — and issue
— a new decision.
This may seem strange, since Strategy is currently traversing its decision
tree about 25 times each second, without this causing any slowdowns to
currently ongoing MC actions. Therefore, the slowdowns can be attributed
to the bursts of Open—R messages to several modules at once, which occur
each time a new decision is being made and has to be issued by the Strategy
module.

References

1. Jens Alén, Rikard Hansson, Rani Khalil, Maria Olsson, Arsenij Vodjanov, Samuel
Waxin, and Joakim Ortbrant. Improvements upon Dynamo Pavlov’s code



for robotic soccer with Sony Four-legged in order to participate in German
Open 2003. Technical report, Department of information technology, Uppsala
university, 2003. Available as http://user.it.uu.se/ paupet/gu/projdv02/-
downloads/technical-report-go03.pdf.

. Pahram Azimi, Rani Khalil, Martin Tillenius, and Samuel Waxin. Dynamo pavlov
robocup 2003 report. Technical report, Department of information technology, Upp-
sala university, 2003. Available as http://user.it.uu.se/ paupet/gu/projdv02/-
downloads/technical-report-rc03.pdf.

. Mikael Gransell, Rikard Hansson, Parham Azimi, Jens Alén, Frank Bjennmyr,
Rikard Bjorklind, Arsenij Vodjanov, Rani Khalil, Alexander Simeonidis, Samuel
Waxin, Jesper Bengtsson, and Maria Olsson. Main report dynamo pavolov.
Technical report, Department of information technology, Uppsala university,
2003. Available as http://user.it.uu.se/ paupet/gu/projdv02/downloads/-
report-proj-fallO2.pdf.



