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Abstract

Model-driven development (MDD) processes are increasingly
being used to develop component middleware and applica-
tions for distributed real-time and embedded (DRE) systems
in various domains. DRE applications are often mission-
critical and have stringent quality of service (QoS) require-
ments, such as timeliness, predictability and scalability. MDD
software techniques are well suited for validating the oper-
ation of DRE applications since they offer a higher-level of
abstraction than conventional third-generation programming
languages. The state-of-the-art in model-driven DRE appli-
cation development is still maturing, however. For example,
conventional MDD development environments for DRE appli-
cation do not yet provide seamless integration of development
capabilities and model checking capabilities.

This paper presents three contributions towards an inte-
grated MDD development and model checking environment
for DRE applications. First, we describe how our CoSMIC
MDD middleware development toolsuite has been combined
with the Cadena model checking toolsuite to provide an inte-
grated environment that accelerates the development and val-
idation of DRE applications. Second, we discuss the technical
difficulties encountered integrating these tools in the context of
a DRE application case study. Third, we discuss R&D issues
associated with implementing MDD algorithms for maintain-
ing lossless and semantics-preserving data transfer across the
tools. Our results show that interoperation between signifi-
cantly different tools for MDD is achievable with the proper
choice of communication format, semantics, and the develop-
ment of a reliable graph diff-merge algorithm.

Keywords: Distributed Real-time and Embedded Sys-
tems, Component Middleware, Model-driven Systems, Model
checking.
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1 Introduction

Emerging trends and challenges. Large-scale, distributed
real-time and embedded (DRE) software systems form the ba-
sis of mission- and safety-critical applications essential to na-
tional infrastructure, including air traffic and transportation
control, emergency response systems, and electrical power
grids. These DRE systems include many interdependent lev-
els, such as network/bus interconnects, many coordinated local
and remote endsystems, and multiple layers of software. As a
result, developers of DRE systems must address the following
challenges:

• As distributed systems, DRE systems require capabilities
to manage connections and message exchange between
(possibly heterogeneous) networked computing devices.

• As real-time systems, DRE systems require control over
end-to-end quality of service (QoS) properties (such as
predictability, low-latency, and reliability) and system re-
sources (such as memory, CPU, and network bandwidth).

• As embedded systems, DRE systems have weight, cost,
and power constraints that limit their computing and
memory resources.

DRE systems have historically been developed and vali-
dated using relatively static development and analysis tech-
niques (such as function-oriented design and rate monotonic
analysis) to implement, allocate, schedule, and manage their
resources and QoS. These static approaches have proven to
be acceptable forclosedDRE systems, such as avionics mis-
sion computing and automotive anti-lock braking systems. In
closed systems the set of application tasks that will run in
the system and the loads they will place on system resources
change infrequently and are known in advance.

Static approaches are not well-suited, however, for the next-
generation ofopen DRE systems, such as total shipboard
computing, multimedia teleconferencing on the Internet, and
sensor networks supporting emergency management systems.
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These open systems evolve more rapidly and must collabo-
rate with multiple remote sensors, provide on-demand brows-
ing and actuation capabilities for human operators, and re-
spond flexibly to unanticipated situational factors that arise at
run-time. Desirable QoS properties of open DRE systems in-
clude predictability, controllability, and adaptability of oper-
ating characteristics for applications with respect to such fea-
tures as time, quantity of information, accuracy, confidence,
and synchronization.

In large-scale open DRE systems, assuring QoS end-to-end
is much harder than in smaller-scale open systems due to the
dynamic interplay of the many interconnected parts, which are
often constructed from smaller parts. It is possible in the-
ory to develop complex open DRE systems from scratch. In
practice, however, contemporary economic and organizational
constraints – along with increasingly complex requirements
and competitive pressures – motivate the reusability of exist-
ing tools and platforms.

A key enabler in recent software successes with small- to
medium-scale DRE systems (such as avionics mission com-
puting systems) has beenmiddleware[1], which is software
that provides platform-independent execution semantics and
reusable services that coordinate how application components
are composed and interoperate. To address the many com-
peting design forces and run-time QoS demands of large-
scale DRE systems (such as air traffic and transportation
control), however, sustained R&D efforts on comprehensive
software methodologies, design-/run-time environments, and
hardware/software co-design are required to dependably com-
pose large, complex, interoperable DRE systems from QoS-
enabled reusable components. Moreover, the components
themselves must be sensitive to the environments in which
they are packaged.

Ultimately, what is required is to assemble components that
are built independently by different groups at different times
to create complete DRE systems that are customized for their
requirements and environmental conditions. Over time, these
systems become subsystems embedded in still larger opensys-
tems of systems. Given the complexity of this undertaking,
various tools and techniques are needed to configure and re-
configure these systems hierarchically so they can adapt to a
wider variety of situations than has historically been possible
with earlier generations of smaller-scale, closed DRE systems.
Solution approach→ Model-driven development of DRE
software. Model-driven development(MDD) software pro-
cesses and tools, such as the Object Management Group’s
Model Driven Architecture (MDA) [2] or Model Integrated
Computing (MIC) [3], are a promising technology infrastruc-
ture for addressing the challenges of developing and validating
the large-scale open DRE systems described above. MDD is
a development paradigm that systematically applies domain-
specific modeling languages to engineer computing systems,

ranging from small-scale real-time and embedded systems to
large-scale distributed enterprise applications. It ismodel-
driven because it uses models to direct the course of under-
standing, design, construction, deployment, operation, main-
tenance, and modification.

MDD is a key step forward in the long road of convert-
ing the art of programming into an engineering process that
will ultimately industrialize the production of software [4].
In particular, MDD technologies operationalize the principles
of “correct by construction,” which involve the use of higher-
level specifications early in the design process to express con-
straints that are successively transformed into running lower-
level code that preserves and enforces the semantics of speci-
fications downstream. MDD’s “correct by construction” tech-
niques are in contrast to the “construct by correction” tech-
niques commonly used by post-construction tools, such as
compilers, source-level debuggers, and script validators.

Due to the sheer magnitude and complexity of the problem
space, no single model-driven toolsuite yet offers solutions to
all the challenges of large-scale DRE system development. For
example:

• Our R&D on model-driven configuration and deploy-
ment of component-based DRE systems has resulted in
the CoSMIC toolsuite [5, 6], which is an open-source
MDD toolsuite with an integrated collection of model-
ing, analysis, and synthesis tools that address key life-
cycle challenges of DRE middleware and applications.
The CoSMIC toolsuite supports modeling of DRE sys-
tem deployment and configuration capabilities, their QoS
requirements, and QoS adaptation policies used for DRE
application QoS management. The initial set of model-
ing and synthesis tools in CoSMIC are targeted at the
CIAO [7] QoS-enabled component middleware. CoS-
MIC, however, does not provide tools for analyzing and
validating the functional correctness and QoS properties
of DRE systems.

• Conversely, various MDD tools exist that perform model
checking component-based systems (such as Cadena [8])
or real-time schedulability analysis (such as AIRES [9]
and VEST [10]). Model checking is useful for detecting
errors early in the development stage, instead of sporad-
ically and at runtime. In particular, if a component has
externally identifiable modes (or states), these analysis
should be applicable for each mode or set of modes of
component functionality. Existing model checking tools,
however, do not provide the mechanisms for end-to-end
DRE systems composition, assembly, configuration, and
deployment.

What is therefore required is anintegratedMDD tool chain
that developers of DRE systems can use to compose, con-
figure, and deploy their applications end-to-end and be able
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to validate these configurations and deployments via model
checking.

This paper presents three contributions towards providing
an integrated model-driven development and model check-
ing environment for DRE applications. First, we describe
how CoSMIC has been combined with the Cadena model
checking toolsuite using the Open Tool Integration Framework
(OTIF) [11] to provide an integrated environment that acceler-
ates the development of DRE applications by addressing key
production stages, such as powerful model checking capabili-
ties for tracking errors early in the development stage, reduc-
ing total development cost and time-to-market, and increas-
ing the reliability of DRE applications.1 Second, we discuss
the technical difficulties encountered integrating these tools in
the context of a case study of a DRE robot assembly appli-
cation, highlighting how the choice of an effective commu-
nication protocol, data interchange format, and development
environment for the semantic translators can enable smoother
tool integration. Third, we discuss R&D issues associated with
implementing algorithms, including coping with export import
cycles, storing and transferring supersets and subsets of cap-
tured information, merging and preserving information, and
addressing future extensibility of the integration.

Paper organization. The remainder of this paper is orga-
nized as follows: Section 2 gives an overview of the CoSMIC
and Cadena MDD environments; Section 3 presents a case
study of a robot assembly DRE application that we used to
guide our tool integration strategies; Section 4 describes key
R&D challenges associated with integrating CoSMIC and Ca-
dena and explains our solution approaches; Section 5 com-
pares our work with related research; and Section 6 presents
concluding remarks.

2 An Overview of the CoSMIC and Ca-
dena MDD Environments

MDD technologies have been used in a variety of contexts.
For example, the OMG Model Driven Architecture (MDA)
technologies initially focused on enterprise applications [12].
Other MDD techniques, such as Model-Integrated Computing
(MIC) [3], focused on smaller scale, tightly coupled embedded
systems. More recently, however, MDA and MIC technologies
are aligning [13] to add the QoS capabilities necessary to sup-
port DRE systems in domains ranging from aerospace [14] to
telecommunications [15] and industrial process control [16].

This section provides an overview of ourComponent Syn-
thesis using Model Integrated Computing(CoSMIC) toolsuite

1The CoSMIC toolsuite and the associated Cadena and OTIF integration
translators are available atwww.dre.vanderbilt.edu/cosmic .

that combines the MDD paradigm with QoS-enabled compo-
nent middleware [5]. We also provide an overview of the Ca-
dena model checking tool developed at Kansas State Univer-
sity [8].

2.1 The CoSMIC Deployment and Configura-
tion Modeling Environment

As shown in Figure 1, CoSMIC consists of an integrated col-
lection of modeling, analysis, and synthesis tools that address
key lifecycle challenges of DRE middleware and applications.
The CoSMIC toolsuite supports modeling of DRE system de-

Figure 1: CoSMIC Model Driven Middleware Develop-
ment Toolsuite

ployment and configuration capabilities, their QoS require-
ments, and QoS adaptation policies used for DRE applica-
tion QoS management. The initial set of modeling and syn-
thesis tools in CoSMIC are targeted at CIAO [7], which is
QoS-enabled component middleware that provides real-time
enhancements to the CORBA Component Model (CCM) [17].
CIAO abstracts component QoS requirements into metadata
that can be specified in a component assembly after a com-
ponent has been implemented [18]. Decoupling the specifi-
cation of QoS requirements from component implementations
greatly simplifies the conversion and validation of an applica-
tion model with multiple QoS requirements into CCM deploy-
ment of DRE applications.

CoSMIC provides principled methods needed to specify,
develop, compose, integrate, and validate the application and
middleware software used by DRE systems. These meth-
ods must both enforce the physical constraints of DRE sys-
tems (such as footprint and resource constraints) and satisfy
the system’s stringent functional and systemic QoS require-
ments. Achieving these goals requires an integrated MDD
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toolchain that allows developers to specify application and
middleware requirements at higher levels of abstraction than
that provided by low-level mechanisms, such as conventional
third-generation programming languages, operating systems,
and middleware platforms.

Figure 2 illustrates how CoSMIC tools can be applied in the
context of DRE middleware and applications to:

Figure 2:MDD Process using CoSMIC

• Model different functional and systemic properties of DRE
systems via separate middleware- and platform-independent
models [3]. Domain-specific aspect model weavers [19] can
integrate these different modeling aspects into composite mod-
els that can be further refined by incorporating middleware and
platform-specific properties.

• Analyze different—but interdependent—characteristics and
requirements of DRE system behavior (such as scalability,
predictability, safety, schedulability, and security) specified
via models. Modelinterpreters[20] translate the informa-
tion specified by models into the input format expected by
model checking [8] and analysis tools [21]. These tools can
check whether the requested behavior and properties are fea-
sible given the specified application and resource constraints.
Tool-specific model analyzers [22, 23] can also analyze the
models and predict [24] expected end-to-end QoS of the con-
strained models.

• Synthesizeplatform-specific code and metadata that is cus-
tomized for a particular QoS-enabled component middleware
and DRE application properties, such as end-to-end timing
deadlines, recovery strategies to handle various run-time fail-
ures in real-time, and authentication and authorization strate-
gies modeled at a higher level of abstraction [25, 26].

• Provision middleware and applications by assembling and
deploying the selected components end-to-end using the con-
figuration metadata synthesized by MDD tools. In the case of
legacy components developed without consideration of QoS,

the provisioning process may involve invasive changes to ex-
isting components to provide the hooks that will adapt to the
metadata. The changes can be implemented in a relatively un-
obtrusive manner using program transformation systems, such
as DMS [27].

• Assure run-time QoS properties are delivered to applica-
tions in DRE systems,e.g., via modeling dynamic adaptation
and resource management strategies that use hybrid control-
theoretic [28] techniques.

Our initial focus in the CoSMIC project has been the de-
ployment and configuration of DRE systems. In particular,
CoSMIC is tailored to comply with the OMG’s Deployment
and Configuration (DnC) specification [29] and provides the
following capabilities:

• Specification and implementation, which enables appli-
cation functionality specification, partitioning, and im-
plementation as components.

• Packaging, which allows bundling a suite of software
binary modules and metadata representing application
components.

• Installation, which involves populating a repository with
the packages required by the application.

• Configuration, which allows configuration of the pack-
ages with the appropriate parameters to satisfy the func-
tional and systemic requirements of application without
constraining to any physical resources.

• Planning, which makes appropriate deployment deci-
sions including identifying the entities, such as CPUs, of
the target environment where the packages will be de-
ployed.

• Preparation, which moves the binaries to the identified
entities of the target environment.

• Launching, which triggers the installed binaries and
bringing the application to a ready state.

• Adaptation, which enables run-time reconfiguration and
resource management to maintain end-to-end QoS.

The CoSMIC toolsuite also provides the capability to inter-
work with model checking tools, such as Cadena [8] (de-
scribed in Section 2.2), and aspect model weavers, such as
C-SAW [30]. The integration of CoSMIC with Cadena is the
focus of Section 4.

The CoSMIC toolsuite provides a number of modeling lan-
guages that are developed using the Generic Modeling Envi-
ronment (GME) [20]. GME is a metamodeling environment
that defines the modeling paradigms2 for each stage of the
CoSMIC tool chain. The CoSMIC tools leverage GME to pro-
duce domain-specific modeling languages and generative tools

2A modeling paradigmdefines the syntax and semantics of a modeling
language [3].
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for DRE applications. CoSMIC ensures that the rules of con-
struction – and the models constructed according to these rules
– can evolve together over time. Each CoSMIC tool synthe-
sizes metadata in XML for use in the underlying middleware.

ThePlatform Independent Component Modeling Language
(PICML) is the core modeling paradigm provided by CoS-
MIC. PICML allows modeling the packaging of components
into assemblies that can then be configured and deployed ap-
propriately. Deployment and configuration are concerns that
crosscut entire assemblies and entire systems. These crosscut-
ting concerns are captured by the different artifacts of PICML.
During the configuration and deployment process, multiple
concerns captured in the format of metadata in the component
development process are woven together by PICML, as shown
in Figure 3.

Figure 3: Platform Independent Component Modeling
Language Architecture

PICML allows the specification of all the above concerns of
component-based deployment and configuration by allowing
users to model them as elements in a GME paradigm. Ad-
ditional constraints are defined via the OCL-based constraint
definition facilities of GME to ensure that the models built us-
ing PICML are semantically valid. PICML’s constraints check
that the “static semantics” (i.e., the semantics that are required
to be present at design time) are not violated. For example, at
design-time, PICML can enforce the CCM constraint that only
ports with the same interface or event type can be connected
together.

After the static semantics are validated, PICML weaves to-
gether the separate crosscutting aspects via a “model inter-
preter,” which is responsible for ensuring the ”dynamic se-
mantics” of models built using PICML. Dynamic semantics
of a modeling language can range from performing analysis
of models to synthesizing run-time code for the component.
PICML contains multiple model interpreters, each performing
a particular function.

The model interpreters in the initial prototype of PICML

target the deployment and configuration of DRE components
for CIAO [7]. We chose CIAO as our initial focus since it
is designed to meet the QoS requirements of DRE systems.
As other component middleware platforms (such as J2EE and
.Net) mature and become suitable for DRE systems, we will
enhance CoSMIC so it supports platform-independent models
(PIMs) and then include the necessary patterns and policies to
map the PIMs to platform-specific models (PSMs) for various
component middleware platforms.

2.2 Cadena Model Checking Environment

The modeling tools in the CoSMIC toolsuite described in Sec-
tion 2.1 perform various forms of static type-checking based
on GME metamodels [31] and constraint checking based on
the OMG’s Object Constraint Language (OCL) [32]. CoSMIC
does not, however, contain sophisticated model checking capa-
bilities, nor static model checking capabilities, such as forward
splice, backward splice, chopping and cycle detection. These
types of analyses, respectively, detect the components that are
affected (forward) or affect (backward) a particular signal or
port, highlight all the ports and components in the path of a
signal, and detect signal feedbacks that can bring instability to
a DRE system. To augment CoSMIC with these model check-
ing capabilities, we integrated it with Cadena [8] shown in Fig-
ure 4, which is an open-source MDD environment for model-
ing and model checking CCM-based DRE systems. Cadena
provides analysis capabilities that enable developers to navi-
gate dependencies among components and detect signal loops
among components that can cause instability in DRE systems.

Figure 4:Cadena MDD Toolsuite for Model Checking and
Analysis

Cadena’s user interface is built using Eclipse [33] and it
also leverages Bogor [34], which is a highly customizable
and modular model checking framework designed to ease the
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development of robust and efficient domain-specific model
checkers for verification of dynamic and concurrent software.
Cadena and Bogor can be used together to find the global in-
consistencies in an application starting from the specification
of the behavior of the various components. In particular, Bo-
gor employs advanced reduction algorithms, such as collapse
compression, heap symmetry, thread symmetry, and novel
partial-order reductions that greatly decrease model checking
time. For example, checking several hundred components at
once is feasible with Bogor and hence with Cadena.

Cadena decouples various aspects of modeling by requiring
that these crosscutting concerns be captured in number of files
located in a common project space. The following types of
files are used by Cadena:
• IDL3 file , which are OMG’s standard interface descrip-

tion language metadata describing components and their
interfaces.

• Scenario file, which describes an assembly of intercon-
nected components, including the value of their configu-
ration properties. Cadena provides a graphical visualizer,
a text editor, and a form view editor for manipulating for
the .scenario file. The equivalent of the scenario file
in CoSMIC’s PICML is theassemblyview, which enables
graphical editing of properties using GME.

• Profile file, which acts as a scenario format definition and
validation system by defining the type of the properties
that can or must be associated with the different com-
ponents, the connections, or simply at the global level.
Cadena supports three types for properties:STRING,
INT, and BOOLEAN. There is no equivalent for the
.profile file on PICML, which is another motivation
for integrating CoSMIC and Cadena.

• Cps file, which is the most important file required for
Cadena’s advanced static and dynamic model checking
capabilities. The.cps file defines the modes of func-
tioning of a component and the internal interconnections
that exist within such components, depending on the
mode. Information that can be captured in this file in-
cludes conditional behavior, such as a set of inputs of
a component having an effect on a set of outputs only
when that component is in a particular state. The.cps
file also defines the modes of functioning of the compo-
nents and the mapping of input to output signal flows.
Cadena’s model checker can use this information to de-
tect and avoid distributed feedback leading to distributed
system crashes and distributed deadlocks during devel-
opment stage. There is no equivalent for the.cps file in
PICML nor in any CCM specification.

• Cor file, which is used for the channel correlation infor-
mation associated with specific connections in the sce-
nario (an identifier links them). In PICML the correlators
are not captured yet, although their support is planned for

the future, so there currently is no equivalent for these
files.

The first step when working with Cadena is loading and
compiling the .IDL3 into the CORBA Interface Repository,
which is a standard database for storing component interface
information. The graphical view and the form view within Ca-
dena can be enabled only after the .IDL3 is loaded in the Inter-
face Repository since such features query the IR for fetching
the information about the components. The graphical view of
the scenario also sports useful static analysis features, such as
cycle detection, forward/backward splicing, and signal chop-
ping described earlier.

3 Demonstrating Tool Integration Ca-
pabilities via the Robot Assembly
Case Study

This section presents a case study that illustrates the benefits of
applying the MDD techniques described in Section 2 to a robot
assembly application we have developed that is representative
of DRE systems in the process control domain. The model
represents an assembly line with robots creating various types
of goods, such as watches. The complete source code and
MDD tools for the robot assembly example are available in
the CIAO release fromhttp://www.dre.vanderbilt.
edu/CIAO . We present a subset of the overall application
below to focus the discussion on the use and integration of
CoSMIC and Cadena.

3.1 Structure and Functionality of the Robot
Assembly Application

Figure 5 illustrates the five core components in the robot
assembly application:ManagementWorkInstruction ,
WatchSettingManager , HumanMachineInterface ,
PalletConveyorManager , and RobotManager .
Figure 6 depicts a sequence diagram for the robot as-
sembly production process. TheManagementWork-
Instruction and HumanMachineInterface com-
ponents interface with humans, whereas thePallet-
ConveyorManager and RobotManager interface with
hardware devices. The normal operation of the robot assembly
application involves the following steps:

1. The ManagementWorkInstruction asks for a
good to be produced by sending an event to theWatch-
SettingManager .

2. The WatchSettingManager emits an event to the
HumanMachineInterface asking to validate the or-
der, theHumanMachineInterface accepts by in-
voking an operation on a CCM facet.
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Figure 5:Robot Assembly Model

Figure 6:Robot Assembly Production Sequence

3. The WatchSettingManager notifies the
ManagementWorkInstruction that the order
was accepted, through another event, and then displays
the work on theHumanMachineInterface .

4. The WatchSettingManager emits an event to the
PalletConveyorManager to move the pallet into
position, the PalletConveyorManager responds
with another event.

5. TheWatchSettingManager again asks theHuman-
MachineInterface for confirmation to perform a
production step, theHumanMachineInterface ac-
cepts by invoking an operation on a facet.

6. The WatchSettingManager asks the Robot-
Manager to process the pallet (event), theRobot-
Manager performs the job and then responds via an
event.

7. The WatchSettingManager sends an event asking
PalletConveyorManager to move the pallet out of

working area, thePalletConveyorManager noti-
fies back with an event.

8. TheWatchSettingManager displays the completed
work to HumanMachineInterface via an event, the
HumanMachineInterface validates the work via a
facet operation call (steps 2-7 can be repeated if there are
additional pallets to process).

9. The WatchSettingManager sends an event to the
ManagementWorkInstruction notifying it that the
requested job has been completed.

3.2 Applying MDD Techniques and Tools to the
Robot Assembly Application

Now that we have outlined the structure and functionality of
the robot assembly application, we illustrate how the applica-
tion and integration of the CoSMIC and Cadena MDD tool-
suites help to simplify various design decisions and validation
activities. The remainder of this section shows how the se-
mantic validation of models can help detect problems earlier
in the software lifecycle,e.g., immediately after the planning
of the interfaces and before beginning the implementation of
the business logic. Early detection of defects yields fewer code
revisions, lower development costs, and shorter time to mar-
ket. These semantic validations also ensure proper execution
in mission-critical contexts, where run-time debugging alone
is insufficient.

3.3 Choosing Appropriate Communication
Mechanisms

Developers of large-scale component-based DRE systems
must determine which communication mechanisms their com-
ponents should use to interact. A key design decision is
whether to usefacets/receptacles, which define interfaces that
initiate/process point-to-point synchronous operation invoca-
tions from other components vs.event sources/sinks, which
indicate a willingness to exchange typed messages asyn-
chronously with one or more components. Applying an MDD
tool like PICML (Section 2.1) can help developers reason
more effectively about which communication mechanism to
select.

Figure 7 shows how we use PICML to model the structure
and connections of the robot assembly scenario. By analyzing
the PICML model, we can quickly determine that the return
value of the facet invocation (point 2 above) is void and there
are no out or inout parameters, but the operation is not oneway.
Our analysis suggests that a more appropriate feature choice
for this use case might be an event rather than a facet. Note
that this analysis is much easier when using a graphical tool
like PICML, rather than reading hundreds of lines of CORBA
IDL3 code.
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Figure 7:Robot Assembly PICML Model

3.4 Detecting Type Mismatches at Design-time
vs. Run-time

As mentioned in Section 1, a key theme of MDD is achieving
“correct by construction” programs,i.e., MDD tools should
detect many errors at design-time rather than run-time. To
evaluate this in the context our robot assembly application and
integrated CoSMIC/Cadena tools, we first tried to introduce a
mistake in our assembly by connecting an additional port to a
destination port of the wrong type. This mistake is detected by
the GME constraint manager because two ends are not of the
same type and are thus disallowed by the PICML paradigm.

To evaluate whether this error gets caught after export
to another tool (which in this case is Cadena), we dis-
abled the GME constraint manager in PICML temporarily
and attempted to connect theanalysis receptacle of the
WatchSettingManager to thecontroller facet of the
PalletConveyorManager , as shown in Figure 8 with a
block arrow.

Figure 8: Robot Assembly PICML Model with Error In-
troduced

Now that our RobotAssembly is modeling using CoSMIC’s

PICML tools, we can export it to the Cadena environment to
perform additional analysis and model checking. Figure 9
shows how Cadena detected the wrong connection, removed
it upon import, and printed an error message

Figure 9: Robot Assembly PICML to Cadena Model with
Error Detected

3.5 Advanced Model Checking for Component
Assemblies

Another important capability provided by MDD tools is ad-
vanced model checking, such as the cycle check feature of
Cadena, which is useful to reason about the possible dead-
locks that may occur in a concurrent system. Since all com-
ponents interact only with theWatchSettingManager , a
possible cycle must pass through that component. Right click-
ing theWatchSettingManager component in the graph-
ical scenario view of Cadena and selecting ”cycle check”
highlights two components of the assembly: theHuman-
MachineInterface and theWatchSettingManager ,
which form a cycle, as shown in Figure 10.

The cycle detection stops after the first detection, which
is why only two components are highlighted in the figure.
If we disconnect those two components and repeat the cycle
check, however, other components will be highlighted. The
WatchSettingManager affects and is affected by every
other component, and this eventually means that every com-
ponent is in the downstream path of every other component of
the assembly.

Since we have at least one cycle we cannot be certain that
deadlocks do not occur. The deadlocks for such a model are
“implementation defined”, which means that they might or
might not be avoided with a wise implementation. In any
case the system cannot be validated from a model point of
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Figure 10: Robot Assembly Modeless Cycle Detection in
Cadena

view. Examining the production sequence diagram in Figure 6
above, however, clearly shows that no deadlock can occur.
This information clashes with the analysis from Cadena due
to the fact that we did not specify modal information in our
components,i.e., different operational modes that can cause
deadlocks are not captured in the models.

For the semantics shown in Figure 6’s production sequence
diagram, most components can remain stateless but at least
two need a state: theWatchSettingManager and the
HumanMachineInterface . The sequence diagram im-
plicitly defines the following seven states for theWatch-
SettingManager : (1) WaitingWorkOrder, (2) WaitingAc-
ceptWorkOrder, (3) WaitingPalletReady, (4) WaitingProceed,
(5) WaitingPalletComplete, (6) WaitingPalletMoved, and (7)
WaitingProcessingAccepted. In each of these states, no more
than one input port affects output ports, and not all the out-
put ports are affected (in facts never more than three for each
mode). The other input and output ports behave as if they
were disconnected. For theHumanMachineInterface ,
we need to specify that aDisplayWorkUpdatecannot trig-
ger anAcceptWorkOrderotherwise a feedback cycle with the
WatchSettingManager will evidently arise. So at least
two states are needed, but it’s better to specify all four se-
mantically detectable states: (1)WaitingNewWorkOrder, (2)
WaitingDisplayWorkUpdate, (3) WaitingReadyToProduce, (4)
WaitingDisplayProcessingComplete.

More precisely, this behavior can be captured in a Cadena
property specification (.cps ) file shown below:

module RobotAssembly {
component WatchSettingManager {

mode status of {
WaitingWorkOrder,
WaitingAcceptWorkOrder,
WaitingPalletReady,
WaitingProceed,
WaitingPalletComplete,
WaitingPalletMoved,
WaitingProcessingAccepted

}
init status.WaitingWorkOrder ;

dependencydefault: none;
dependencies {

case status of {
WaitingWorkOrder:

WorkOrder -> Display;
WaitingAcceptWorkOrder:

DisplayResponse.WorkOrderResponse ->
MovePallet, Display,
ProductionReport;

WaitingPalletReady:
PalletStatus -> ProductionReport;

WaitingProceed:
DisplayResponse.ProductionReport ->

MovePallet;
WaitingPalletComplete:

ProcessingStatus -> MovePallet;
WaitingPalletMoved:

PalletStatus -> Display;
WaitingProcessingAccepted:

DisplayResponse.ProductionReadyResponse ->
ProductionReport, MovePallet;

}
}

}
component HumanMachineInterface
{

mode status of
{

WaitingNewWorkOrder,
WaitingDisplayWorkUpdate,
WaitingReadyToProduce,
WaitingDisplayProcessingComplete

}
init status.WaitingNewWorkOrder;
dependencydefault: none;
dependencies {

case status of {
WaitingNewWorkOrder:

WorkDisplayUpdate ->
HumanResponse.WorkOrderResponse;

WaitingDisplayWorkUpdate:
WorkDisplayUpdate -> ;

WaitingReadyToProduce:
WorkDisplayUpdate ->

HumanResponse.ProductionReadyResponse;
WaitingDisplayProcessingComplete:

WorkDisplayUpdate ->
HumanResponse.PalletInspectionResponse;

}
}

}
}

Introducing the.cps file into Cadena sets our modal spec-
ifications for this project. The remaining description in this
section refers to the modal view of the scenario illustrated in
Figure 11. The two components for which we have defined the
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Figure 11:Robot Assembly: Modal View in Cadena

states must be set to a globally consistent state,i.e., we cannot
set theWatchSettingManager in theWaitingPalletCom-
pletestate while theHumanMachineInterface is in the
WaitingNewWorkOrderstate.3 We therefore set theWatch-
SettingManager in the WaitingAcceptWorkOrder
state and the HumanMachineInterface in the
WaitingDisplayWorkUpdate state. As a result,
only the connections that belong to the current mode will be
shown (see Figure 11). Since the cycle analysis will detect
any cycles in any of the modes, the current model can be
validated against deadlocks.

There are certain conditions that cannot be validated against
distributed deadlocks. To prove this, we connected the follow-
ing additional port: WatchSettingManger /Analysis
receptacle toRobotManager /Analysis facet. Note
that the following two ports were already connected:
(1) RobotManager /CircleAnalysis receptacle to
PalletConveyorManager /CircleAnalysis facet
and (2) PalletConveyorManager /AnalysisTwo
receptacle to WatchSettingManager /AnalysisTwo
facet.

We do not have any semantic or behavioral specifications
for these analysis ports, so we must assume that operation calls
on the facets can affect any analysis receptacle on the same
component, and can happen in any mode of the three compo-
nents. To reflect this scenario we add the following lines for
theWatchSettingManager into the.CPS file:

...
dependencies {

AnalysisOne.CallingBackTwo
-> Analysis.CicrleCallOne,

3A Bogor script could be used to to check the consistency of the assembly
across all the consistent states and state changes of the components, but this is
outside the scope of this book chapter.

Analysis.CallingBackOne;
AnalysisTwo.CircleCallThree

-> Analysis.CicrleCallOne,
Analysis.CallingBackOne;

case status of
...

}

The resulting scenario shows a cycle illustrated in Figure 12
in at least one mode (and in this particular case, in all the
modes). Thus, armed with the knowledge we have we can
only assume that if there is a deadlock avoidance it has to
be at the implementation level. This model cannot be vali-
dated against distributed deadlocks without further knowledge
on the semantics at the modal level.

Figure 12: Robot Assembly: Cadena Model After Circle
Analysis

4 Approaches to Integrating Modeling
Tools for DRE Systems

Section 3 highlighted the interoperability between CoSMIC
and Cadena in the context of a robot assembly application
case study. More generally, however, multiple model-driven
software development tools, each providing different capabil-
ities like configuration, deployment, schedulability analysis,
or model checking, are used by developers of mission-critical
DRE systems software. An integrated tool chain that seam-
lessly integrates these multiple tools is needed to significantly
enhance the development of DRE systems by addressing the
production, validation, and verification capabilities that help
to (1) identify bugs early in the development stage, (2) reduce
total development costs, (3) reduce time to market, and (4) sig-
nificantly increasing the reliability and safety-criticality of the
DRE systems.

10



This section describes key challenges that arise when pro-
viding an integrated modeling tool chain capability and dis-
cusses our solutions to resolve these challenges, which are in-
corporated within the CoSMIC MDD tool chain. The remain-
der of this section outlines the challenges faced while mak-
ing multiple tools interoperable. We focus on three important
challenges that are ordered by increasing complexity, where
a subsequent challenge can be solved only when the previous
challenge has been addressed.

Challenge 1: Identifying an Inter-Tool Commu-
nication Model

Context. Different modeling tools provide different capabil-
ities. For the development of safety-critical DRE systems,
however, it might be necessary to use the capabilities of a num-
ber of such modeling tools. What is required is a communica-
tion model for interoperability among various modeling tools
that will allow back and forth seamless interworking among
the tools. For example, in our case our prime goal was to be
able to transfer the project back and forth between CoSMIC
and Cadena, while keeping the user intervention to a mini-
mum.

Problem. Seamless interoperability among tools is key ul-
timately to the success of DRE systems. However, such an
interoperability may be hard to achieve. For example, CoS-
MIC and Cadena had nothing in common with regard to the
type of project files they used. Moreover, under many aspects
the two tools do not even capture the same type of informa-
tion. The.scenario and.IDL3 files of Cadena appear to
have equivalent representation in CoSMIC, but even for such
information there are subtle differences between the two tools.
The .profile , .cor and above all the.cps files do not
have any equivalent in CoSMIC. Conversely, 80% of the in-
formation in CoSMIC does not have an equivalent in Cadena.

Moreover, many of the standard interoperability solutions
available for tool interoperability cater to a specific concern.
For example, the Analysis Interchange Format (AIF) [35] de-
veloped by the DARPA MoBIES [36] program provides inter-
operability by promoting seamless exchange of only analysis
data among tools. Similarly, the Hybrid Systems Interchange
Format (HSIF) [36] (also developed in the MoBIES program)
provides model exchanges for those systems that are modeled
as hybrid systems but do not allow exchanging analysis infor-
mation. On many occasions, an interchange format might not
support a feature of a tool and thus a decision to avoid us-
ing that feature significantly decreases the value of the tool.
Moreover, it is also not desirable to create a one-to-one solu-
tion since this approach does not scale as the number of tools
with different capabilities increases. It is therefore necessary
to develop a framework that allows seamless interoperability

of all desired features among tools without creating point so-
lutions.

Solution. We used the OTIF (Open Tool Integration Frame-
work) [11], developed as part of the DARPA MoBIES pro-
gram. OTIF is aimed at integrating tools that were not pre-
viously intended to interoperate. It consists of application-
specific tool adapters, semantic translators, a backplane, and
a manager. The backplane provides a communication and
subscription/notification mechanism for other tools. The back-
plane also acts as a common repository for the data stored in
a canonical syntactical format, but which may have different
semantics.

The OTIF backplane supports standard CORBA [37] com-
munication capabilities, thereby allowing distributed interop-
erability in addition to platform-independent interoperability.
Custom tool-specific adapters must be developed by the DRE
developers who wish to export desired tool-specific data to the
backplane. Another tool wishing to interoperate with this tool
must provide an adapter that converts data on the backplane
to the format it desires. We have developed appropriate tool
adapters for CoSMIC and Cadena, along with semantic trans-
lators that help these two tools to interoperate via the common
OTIF backplane.

Challenge 2: Developing Mechanisms for Data
Transforms Across Tools

Context. Tool interoperability imposes certain challenges
when it comes to transfer of information from one tool to an-
other. An important concern here is that of making the con-
cerned tools understand each others data formats and their se-
mantics. What is needed is a mechanism that allows export-
ing and importing tool-specific data using the tool-interchange
framework, such as OTIF.

Problem. Since each modeling tool involved is catered to
solving different aspects of DRE systems, each tool has its
own format and semantics for data and their internal repre-
sentation. There is minimal overlap between tools other than
some common aspects pertaining to DRE systems. For ex-
ample, in CoSMIC and Cadena, the common information is
restricted to the fact that both tools are tailored to address
concerns of DRE systems that use the CORBA Component
Model (CCM) [17]. These commonalities are restricted to ar-
tifacts, such as the IDL descriptions and assembly information
of components.

Whatever the location of storage of the tool-specific data,
there is a need for at least one point during a round trip com-
munication in which the information from CoSMIC and the
information from Cadena has to be merged: the common sub-
set of information has to be found and merged from the two
tools, and in that point there is need for a translator which can
understand both semantics.
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Solution. The solution to resolve this problem should be
based on identifying an information model,e.g., based on
XML, for the data that is needed for both the tools. For exam-
ple, in CoSMIC this implies generating the information that
are captured by the.scenario file in the form of XML de-
scriptors; and then making a plugin for importing this XML
format into Cadena. The reverse direction for this format in-
corporates the changes suggested by the Cadena analysis tools
into the CoSMIC models. This approach therefore involves
writing a model interpreter for CoSMIC to generate the infor-
mation needed by Cadena for analysis. Cadena then reads this
format and performs the analysis. If this format is rich enough,
the analysis results can be put back into the same format. CoS-
MIC then imports this information back into the models. A
similar approach could be used for the other files used by Ca-
dena.

To achieve this behavior requires support by the communi-
cation model for seamless data interchange. OTIF accepts a
Unified Data Model (UDM) [38] interface to the data for the
backplane. UDM provides a development process and set of
supporting tools that generate C++ programmatic interfaces
from UML class diagrams of data structures. These interfaces
and the underlying libraries provide convenient programmatic
access and automatically configured persistence services for
data structures as described in the input UML diagram. We
leverage these capabilities for the data exchange between CoS-
MIC and Cadena.

A typical process of using the UDM is as follows:

1. A UML metamodel for the tool under consideration is
created in GME using GME’s UML modeling paradigm.

2. The information in the UML diagram is converted to an
XML file using the GME interpreter supplied with the
GME UML environment. The format of these XML files
is UDM’s representation of UML class diagram informa-
tion.

3. The UDM executable program in the UDM framework is
used to generate the paradigm-dependent API files.

4. The user includes these files, along with other, generic
UDM headers libraries into a C++ project.

Fortunately, the modeling paradigms, such as CoSMIC’s
PICML, built using GME environment already expose a UDM
interface without additional efforts. On the Cadena side, the
Eclipse framework does not provide one, so we created a UML
class diagram for the Cadena models. For this we leveraged
GME to create a UML model that reflects the Cadena internal
meta model and followed the process outlined above.

Challenge 3: Achieving Lossless Semantic Trans-
fers of Data

Context. For any successful tool interoperability compris-
ing data interchange, it is imperative that the exchanged data
be transferred without loss of any semantic value. Only then
can the full benefits of all involved tools be leveraged by DRE
systems developers.

Problem. Lossless semantic transfers of tool-specific data is
an arduous and complex task since many of the tools are tai-
lored to address different aspects of DRE systems and there-
fore deal with different types of data having their own se-
mantics and representation. Thus, there are a number of mis-
matches between data supported by individual tools and how
they are managed by the tool. For example, we outline the
differences between CoSMIC and Cadena formats below:

• Cadena scenario supports properties on connections (both
event sources/sinks and invoke connections) while CoS-
MIC’s PICML does not.

• PICML, being compliant to the CCM specification, sup-
ports all connection types, such asemit, publishand in-
voke, while Cadena does not distinguish between emit
and publish.

• PICML supports QoS requirements on connections to be
passed to the deployment run-time for validity checks and
potential optimizations at deployment stage, while Ca-
dena does not support this.

• PICML supports multiple senders and multiple receivers
for a publisher/subscriber connection, while Cadena does
not.

• Cadena supports only STRING, INT and BOOLEAN
attribute types while PICML supports Boolean, Byte,
ShortInteger, LongInteger, RealNumber, String, Gener-
icObject, GenericValueObject, GenericValue, TypeEn-
coding and TypeKind.

With these constraints, a simple lossy export and import
algorithm which would lose information not captured by the
other side was easy to realize, however, would force the user
to reenter information twice on either tool, thereby increas-
ing the effort and also increasing the chance of inconsistencies
in information maintained across the tools. What is desired,
therefore, is anenter-onceapproach whereby once an infor-
mation has been entered using either PICML or Cadena, the
data transfer algorithm must preserve the data and its seman-
tics in most but a few exceptional circumstances.

One approach to handle these issues is to merge the differ-
ent data handled by individual tools to form a superset that is
then maintained by the OTIF backplane. The issues that arise
have to deal with the data representation in individual tools.
For example, due to the monolithic nature of the GME project
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files, the whole project file in CoSMIC is needed for a merging
algorithm.

Solution. Transferring the complete set of information be-
tween the tools did not help to implement the merging algo-
rithm, so we had to drop the idea. Moreover, an algorithm
based on concentrating the information on a single tool at all
times was preventing a possible future use of a shared OTIF
backplane with simultaneous access by multiple developers.
We therefore decided to perform a transfer of the .scenario,
and implicitly the .profile files from Cadena. We also needed
to transfer the information regarding the IDL3, which is dis-
cussed later. The merging was then decided to be performed
at PICML side, generating the full .scenario and .profile files
which would overwrite their previous versions at Cadena side.

The PICML data export to Cadena involve the following
steps:

1. Every assembly makes a separate Scenario file. The full
path name of the assembly from the RootFolder is encap-
sulated in a property calledPICML pathname which
is stored by Cadena and eventually returned to PICML
unchanged. This is needed to match the same source as-
sembly on PICML side when reimporting. The assem-
blies which are in a folder named ”noexport” will not be
exported nor reimported (and hence will not participate
in the transfer).

2. Assembly-level properties are transfered to Cadena as
scenario-level properties if the type is supported by Ca-
dena, otherwise they are retained at PICML side.

3. All the PublishConnectors are checked and the newly cre-
ated ones are flagged with a unique ConnectorID. The
ConnectorID is put in a Requirement with a magic name
which is disregarded by the DnC runtime.

4. All the PublishConnector are checked for the pres-
ence of a Requirement with another magic name called
CadenaProperties . If found, all the properties
encapsulated inside such a requirement are outputted
as properties on the EventSource-to-Sink corresponding
connection in Cadena (this supplies for the lack of prop-
erties on connectors at the PICML side).

5. All the components which have an output emit or an in-
vocation connection are checked for a property with a
magic name: CadenaEIProperties (where EI stands for
Emit-Invoke). This property contains a string which is the
dump of an XML file which can describe multiple prop-
erties for each receptacle to facet or event source to event
sink emit connection being outputted in output from that
component. The embedded file is parsed and the con-
tained information is extracted and sent to Cadena. (This
supplies for the lack of properties on emit and invoke con-
nections at PICML side)

6. All the component instances are browsed and their name
and type are transfered to Cadena. The attached proper-
ties are transfered to Cadena only if they are of a type
which is supported by Cadena, otherwise they are re-
tained on PICML side. For all the components, each
connection to a remote port or to a PublishConnector is
passed to Cadena.

At this point the XML file containing the information about
the scenario (and implicitly about the profile) is sent to the
OTIF backplane. At Cadena side it is fetched, de-encapsulated
from XML and dumped to disk, possibly overwriting a preex-
isting version.

During Cadena export to PICML, the transfer over OTIF
acts in the reverse way. The key points of the merging at
PICML side are roughly as follows:

1. Using the PICMLpathname information, the same as-
sembly of the export is matched so that the modifications
can be performed in the correct place.

2. Based on the names of the component instance, the com-
ponents are matched.

3. Based on the ConnectorIDs, the PublishConnectors are
matched. At PICML side, the components and the Pub-
lishConnectors which have no match at Cadena side are
considered deleted by the Cadena user and thus get de-
stroyed at PICML side. The properties and requirement
which only refer to those, also get destroyed.

4. The components and PublishConnectors at Cadena side
which are unmatched at PICML side are considered
newly created, and get created into PICML.

5. All the emit and invoke connections at PICML side are
deleted, and are recreated new from the information at
Cadena side.

6. All the properties on PICML components and at
assembly-level get browsed. For those for which the type
could have been passed to Cadena side, a match to the
properties at Cadena side is attempted. If the match fails,
those PICML properties are considered to be deleted by
the Cadena user, so they are destroyed at PICML side.

7. On all the properties on components and scenario-level
at Cadena side, a match is attempted at PICML side. If
the match succeeds, the value is updated at PICML side,
otherwise this is considered a new property created by
the Cadena user so a new property gets created at PICML
side.

8. The last two steps are repeated again for the properties on
the PublishConnectors, with the difference that the match
is attempted inside the Requirement called CadenaProp-
erties if existing. The newly created properties also get
created in there (if a requirement with such a name does
not exist, it gets created and attached to the PublishCon-
nector).
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9. The two steps are repeated again for the properties on
emit and publish connector, but this time the match is at-
tempted on the XML content of the magic property Cade-
naEIProperties on the component which has got the out-
going emit or invoke connection. Again, this is created if
needed.

To perform these steps, we used the GReAT (Graph Rewrit-
ing And Transformation) [39] tool. GReAT is a GME appli-
cation that can be used to graphically define graph transfor-
mation among networks of objects which are accessible with
UDM. GReAT shortens the development times significantly,
since it is much more readable and maintainable than a nor-
mal third-generation programming language, such as C++ or
Java. Both GME project files and XML files whose schema
can be defined with an UML diagram can be accessed with
UDM. This was the case, so GReAT appeared to be an opti-
mal choice.

A GReAT transformation can be run interpretatively dur-
ing the development and then it can be used to generate C++
(.cpp and .h) files which can be compiled for a release ver-
sion of the transformation. The current version of this im-
port export transformation counts more than 2,000 elements
(graph pattern nodes) and 13,500 lines of C++ code. Fig-
ure 13 illustrates the architecture of this transformation pro-
cess. A bidirectionalGReAT-based tool adapter and seman-

Figure 13:CoSMIC-Cadena Interoperability via OTIF and
GReAT

tic translator converts PICML assemblies to and from XML
files conforming to the adopted interchange schema, which
was chosen to be as near as possible to the semantics of Ca-
dena.scenario and.profile files. The schema, known
to the backplane, is used to read and validate the XML file
upon arrival on the backplane. At every upload of a new in-
terchange XML file onto the backplane, the Tool Adapters get
notified of the availability of such new component assembly
and are prompted for the download. On the Cadena side, a

simplerJava-based Cadena tool adapterconverts the XML to
.scenario and.profile files and vice versa. The graph
diff and merge algorithm is activated during the backplane-to-
PICML import and is implemented inside theGReAT-based
PICML tool adapter and semantic translator.

5 Related Work

Our work on mode-based software extends earlier work on
model-integrated computing (MIC) [40, 41, 42, 43] that fo-
cused on modeling and synthesizing embedded software. Ex-
amples of MIC technology used today include GME [20] and
Ptolemy [44] (used primarily in the real-time and embedded
domain) and MDA [2] based on UML [45] and XML [46]
(which have been used primarily in the business domain). Pre-
vious efforts using MIC technologies for QoS adaptation have
been applied to embedded systems comprising digital signal
processors or signal detection systems [25, 47], which have a
small number of fairly static QoS requirements. In contrast,
our research on integrating CoSMIC and Cadena focuses on
enhancing and applying MIC technologies at a much broader
level, i.e., modeling and controlling much larger scale DRE
systems with multi-dimensional simultaneous QoS require-
ments.

Other related work on model-driven analysis and develop-
ment is the Virginia Embedded System Toolkit (VEST) [48]
and Automatic Integration of Reusable Embedded Systems
(AIRES) [9]. VEST is an embedded system composition tool
based on GME [20] that (1) enables the composition of reliable
and configurable systems from COTS component libraries and
(2) checks whether certain real-time, memory, power, and cost
constraints of real-time and embedded applications are satis-
fied. AIRES provides the means to map design time models
of component composition with real-time requirements to run-
time models weaving timing and scheduling attributes within
the run-time models. Although VEST and AIRES provide
modeling and analysis tools for real-time scheduling and re-
source usage, they have not been applied to QoS-enabled com-
ponent middleware, which is characterized by complex inter-
actions between components, their containers and the provi-
sioned services, and across distributed components via real-
time event communication or request/response. Moreover, our
research on the integration of CoSMIC and Cadena involves
whole-system global analysis of large-scale DRE system for
end-to-end timing constraints, as well as configuration and de-
ployment.

Another project aimed at tool integration is the Open Tool
Integration Framework (OTIF) [11], which is being developed
at the Institute for Software Integrated Systems (ISIS). As op-
posed to our approach – where most features of Cadena and
CoSMIC were developed separately and with no initial idea
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of subsequent integration – OTIF explicitly provides a frame-
work for integrating tools developed as part of the DARPA
MoBIES project [36]. Their workflows are fairly complex and
allow interoperations in multiple directions among the tools.
These flows are not lossless in most cases, however, so they
were able to obtain a closed ring of communication in one
case only.

OTIF provides a communication framework with facilities
for storing various versions of the same set of data written in
different formats, subscription/notify mechanism, and auto-
matic triggering of application-specific translators when cer-
tain data format are submitted to the backplane (data repos-
itory). However, OTIF requires that the actual (application-
specific) semantic translators and the (application-specific)
tool adapters for actually performing the communication and
the translation be provided by the user. Our work represents an
improvement over the previous uses of OTIF since with a wise
choice of the interchange format and transformation semantics
we are able to accomplish a closed-ring round trip and lossless
communication between the two development environments
that differ widely.

6 Concluding Remarks

Large-scale, distributed real-time and embedded (DRE) sys-
tems are increasingly being used to control critical aspects
of global infrastructure. For instance, DRE systems are now
deployed in commercial air traffic control, military systems,
electrical power grid, industrial process control, and medi-
cal imaging domains. Some of the most challenging prob-
lems facing the DRE systems community are those associated
with producing software for real-time and embedded systems
in which computer processors may control physical, chemical,
or biological processes or devices. In most of these systems,
the right answer delivered too late becomes the wrong answer,
i.e., achieving end-to-end quality of service (QoS) in addition
to functional correctness is essential. It is imperative therefore
to validate and verify the DRE software for functional correct-
ness and QoS properties.

Model-driven development (MDD) of software engineering
processes is emerging as an effective paradigm for addressing
the challenges of DRE systems. MDD is a software devel-
opment paradigm that applies domain-specific modeling lan-
guages systematically to engineer computing systems. This
paper describes the challenges in integrating modeling envi-
ronments that have different foci, however, whose collective
strengths resolve the challenges of developing DRE systems
software. In this regard, we illustrate how we have inte-
grated our CoSMIC DRE systems configuration and deploy-
ment modeling environment with the Cadena model checking
tool using the OTIF tool integration environment.

The lessons learned using our integrated CoSMIC and Ca-
dena tool chain for a robot assembly case study illustrated that:

• Not every MDD tool will offer same capabilities, but a
collection of these is required to develop DRE systems,
which is why a grade of interoperability between the tools
is necessary.

• A partial and user-assisted interoperability, though eas-
ier to realize, would not guarantee against human mis-
takes during the exports from one tool and imports into
the other. So, all efforts should be made for automat-
ing the communication process as much as possible. In
particular, in order to guarantee consistency, the need for
manual replication of information has to be avoided at all
costs.

• A bidirectional communication among the tools is the
only way that allows the user to edit the model locally,
on whichever MDD tool is currently in use, while main-
taining the ability to transfer the changes back to the other
tools in an automatic manner, ensuring consistency.

• When achieving tool integration, the most important
issues to consider are interoperation communication
model, data interchange format, and solutions to achieve
lossless data transforms.

• Complex transformation algorithms become more man-
ageable when working at the meta-level. A couple of
hundred of well structured graphical transformation rules
are faster to write and easier to read and maintain than
13,500 lines of equivalent C++ code.

• To perform transformations at the meta level, the access
to a graph structure representing the meta-model is re-
quired. When not provided directly, an intermediate step
through an XML representation of the meta can be used
instead.

• Most of the message flow in our robot assembly case
study is asynchronous and most communication is per-
formed via events, though some callbacks are performed
via invocations on facet operations. This is hard to see
from the production sequence diagram in Figure 6, but a
MDD tool like PICML in CoSMIC and the Cadena’s Sce-
nario graphical view can show which communications
are performed through event emissions and which are in-
vocation on operations. This is shown with a MDD tool
more clearly and concisely than reading tons of CORBA
IDL3 interfaces raw. MDD tools also usually allow ef-
ficient browsing through the components and interfaces,
up to the data types being exchanged.
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