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Abstract— A common traffic engineering design principle is to
select a small set of flows, that account for a large fraction of the
overall traffic, to be differentially treated inside the network so
as to achieve a specific performance objective. In this paper we
illustrate that one needs to be careful in implementing such an ap-
proach because there are tradeoffs to be addressed that arise due
to traffic dynamics. We demonstrate that Internet flows are very
volatile in terms of volume, and may substantially change the vol-
ume of traffic they transmit as time evolves. Currently proposed
schemes for flow classification, although attractive due to their
simplicity, face challenges due to this property of flows. Band-
width volatility impacts the amount of load captured in a set of
flows, which usually drops both significantly and quickly after flow
classification is performed. Thus if the goal is to capture a large
fraction of traffic consistently over time, flows will need to be rese-
lected often. Our first contribution is in understanding the impact
of flow volatility on the classification schemes employed in a traf-
fic engineering context. Our second contribution is to propose a
classification scheme that is capable of addressing the issues iden-
tified above by incorporating historical flow information. Using
actual Internet data we demonstrate that our scheme outperforms
previously proposed schemes, and reduces both the impact of flow
volatility on the load captured by the selected set of flows and the
required frequency for its reselection.

I. INTRODUCTION

Aggregation of traffic according to source/destination net-
work prefixes [10] has been proposed as an attractive network
level abstraction useful in the engineering of large-scale IP net-
works [4]. At this level of abstraction, it has been shown that
a small subset of the “flows” contributes to a large fraction of
the volume [4]. Depending upon the context, these flows are
sometimes referred to as heavy hitters or elephants.

Based on this initial observation there have been several pro-
posals for the exploitation of this subset of the flows within a
traffic engineering context that operates at the time scale of min-
utes or hours. The idea behind this traffic engineering principle
is that if these large flows can somehow be identified, or picked
out from among all flows traversing a given point, then they
could be treated differently. One obvious application is load
balancing [7] in which one could load balance a large portion
of the traffic while only handling a small number of flows, and
thus keeping only a small amount of state. There are other ap-
plications that could capitalize on this property of Internet traf-
fic. For instance, the complexity of optimization algorithms for
multipath routing (that tries to select equal cost multipaths for
prefix-level flows) or route pinning through MPLS tunnels can
be reduced if one only needs to do this for a limited set of flows
[1], [8], [9], [11].

There have been several approaches proposed in the litera-
ture for the identification of heavy-hitter flows. For the benefit
of simplicity, these approaches usually classify flows based on
their behavior during a single time interval. The specific crite-
rion used for the separation of the heavy-hitter flows out of the
set of active flows is usually set in an arbitrary fashion. Typical
examples include the identification of heavy-hitter flows as the
top- � flows in the set, the flows that exceed a predefined band-
width value � , or the heaviest flows that account for some fixed
percentage � of the overall load.

By examining packet-level traces from an IP backbone, we
show that destination network prefixes are volatile in terms
of volume and this poses problems for such straightforward
schemes when employed in a traffic engineering context. The
set of flows that meet the specific flow classification criterion
(e.g. account for 80% of the overall traffic or are the 100 high-
est bandwidth flows on the link) is changing frequently across
time. Thus, if one wants to consistently achieve the flow clas-
sification target, flows would need to be often reselected. The
difficulty with these approaches is that they focus on a flow’s
bandwidth at a single instant of time, and rely on ad hoc selec-
tion criteria. It is the volatility, or bandwidth fluctuations, that
lead to frequent reclassification of flows over time. These fluc-
tuations can come from two behaviors: i) short-lived bursts or
drops in flow bandwidth, or ii) long-lived changes in the flow
nature (e.g, long lasting shift from elephant to mouse, or termi-
nation of a flow).

This behavior makes it hard to identify flows that are both
heavy and remain so for longer periods of time. It is preferable,
however, in traffic engineering applications for flows classified
as heavy flows to exhibit persistence in time so that frequent re-
classification can be avoided. Reclassification can involve up-
dating state information and can become a burdensome over-
head if performed too frequently. In addition, it may affect the
performance received by a flow if this flow is treated differently
across distinct time intervals that are relatively close to one an-
other.

To avoid reclassification of flows due to short-lived bursts
or drops in their bandwidth we propose a new classification
scheme that remains simple enough to be practical. Our scheme
automatically detects a separation threshold that changes itself
over time as a function of the flow statistics. It incorporates
historical flow information and makes its decision based on
a new per-flow metric that we call “latent heat”. The latent
heat scheme smooths historical flow bandwidth measurements,



as well as the identified separation threshold, to minimize the
number of reclassifications across time. We show that this new
approach leads to a significantly more stable set of flows.

The flows selected as heavy-hitters at one point in time, how-
ever, may undergo significant changes later on that could man-
ifest themselves as lower bandwidth values or even complete
inactivity. We thus also need to determine how frequently flows
need to be reselected so that they capture the targeted load. We
show that if the desired goal is to capture a large volume of
traffic (e.g., 80 or 90%) in the heavy-hitter class then the set
of flows will need to be reselected at frequent intervals. Long-
lived changes in the nature of heavy-hitter flows may result in
significant fluctuations in the captured load. At the time of clas-
sification the carried load may meet the desired criterion but this
load significantly drops as time evolves. We illustrate that if
network designers could contend with capturing less load (e.g.,
30% or 40%), then they would not need to reclassify as of-
ten because they are more likely to be able to detect persistent
heavy hitters under such conditions.

In summary, in this work we illustrate that the notion of ex-
tracting heavy hitters is easier said than done. Our lessons
learned indicate that network designers planning a traffic en-
gineering application need to address two points: (i) how much
load they really want or need to capture, and (ii) how often they
are willing or able to reclassify. Our work highlights the trade-
off between these two requirements.

The remainder of the paper is structured as follows. In Sec-
tion II, we present the data set used to validate our heavy-hitter
detection algorithm. Evidence on the bandwidth volatility of
destination network prefix flows is presented in Section III. In
Section IV we describe three different classification schemes
that could be selected for the identification of heavy-hitters.
In Section V, we demonstrate that single-instant classification
schemes cannot identify a set of heavy-hitter flows that persists
in time. Historical information is incorporated in our classifi-
cation scheme in Section VI and evidence on the performance
improvement is presented in Section VII. Limitations and rec-
ommendations for traffic engineering applications are also pre-
sented in Section VII. We conclude in Section VIII.

II. EXPERIMENTAL ENVIRONMENT

A. Definition of a Flow

A destination network prefix flow captures the traffic toward
a specific set of IP addresses, as defined in the BGP routing ta-
ble. A network prefix is the smallest routable entity in the Inter-
net, and thus is an attractive network level abstraction for traffic
engineering applications. At this traffic aggregation level, flows
are limited in number and can be handled by changes in their
next-hop IP address in the routing table [10].

Depending on the traffic observation point inside the net-
work, we may see more or less traffic flowing toward any partic-
ular network prefix. For example, links inside a Point of Pres-
ence (PoP) that are close to the core of the network aggregate
traffic from multiple routers. Therefore, they are likely to see
more traffic toward specific destination prefixes than an access
link inside the same PoP.

For the analysis presented throughout the paper, we have se-
lected links that connect access routers to core routers inside

the same PoP (OC-12 links). In this case, traffic is captured
on its way to the core of the network. Our analysis has also
been applied on OC-48 packet traces collected on links that in-
terconnect core routers in different PoPs (OC-48 links), leading
to findings similar to the ones presented throughout the paper.
Given that the OC-48 traces never exceed 6 hours in duration,
we will not use them in this paper.

For each flow, we measure its volume at fixed time intervals,
and compute its bandwidth as the fraction of its volume over the
duration of the interval. The measurement interval duration is
set to 5 minutes. This choice is driven by operational practices:
SNMP statistics are usually collected from routers every 5 min-
utes. At a 5 minute time scale, observations are also insensitive
to protocol specific behavior that would impact flow bandwidth
at timescales of seconds and milliseconds. In addition, traffic
engineering applications that operate in large-scale IP backbone
networks may not need to react at a finer time granularity. Even
though our default time granularity is 5 minutes, we have also
performed our analysis on flow measurements collected every
1 and 30 minutes. The results obtained were similar in nature
to those presented.

B. Measurement Data

The data sets used in this paper come from packet traces col-
lected inside Sprint’s IP backbone network [5]. Optical split-
ters are used in conjunction with passive monitoring equipment
to collect 44-byte headers from every IP packet traversing the
monitored links. Monitoring equipment is deployed in four
PoPs in the continental USA. Our algorithm has been system-
atically validated on 20 traces collected on OC-12 and OC-48
links, yielding similar results. To improve the readability of this
paper, we present results from two OC-12 links (Table I). The
utilization levels of the corresponding links are given in Fig-
ure 1 (the time displayed in the figures is always in PDT, i.e.
UTC-8). We have chosen these two particular links because
they correspond to the two longest packet traces at our disposal
and thus allow for thorough analysis of the temporal behavior
of network prefix flows. The two links are labeled according to
their location within the continental U.S.

Trace west coast east coast
Start (PDT) Jul 24 05:00:35 2001 Jul 24 05:00:34 2001
End (PDT) Jul 28 23:42:55 2001 Jul 25 10:21:55 2001
#packets 1,677,983,111 1,678,055,791

Link Speed OC-12 (622 Mbps) OC-12 (622 Mbps)

TABLE I
DESCRIPTION OF COLLECTED TRACES.

In parallel with the packet trace collection, we collect the
BGP routing tables from route reflectors at the corresponding
PoPs. The BGP tables are default-free and contain approxi-
mately 120K network prefixes. For each packet in a trace we
perform a longest prefix match on the destination IP address.
We then define the volume of the destination prefix as the sum
of the payload of each packet destined to that particular network
prefix.
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Fig. 1. Link utilization.

In our analysis we use a single BGP routing table that is col-
lected at the beginning of the packet trace. Consequently, we
cannot take into account changes in the BGP table that will oc-
cur during the trace. This simplification is not likely to affect
our results since recent work has shown that the destination net-
work prefixes that account for the majority of the load on a link
rarely get affected by routing instabilities [6].

C. Initial Observations

We define a flow1 to be active if it receives at least one packet
during a measurement interval. Figure 2 shows the number of
active prefixes in each measurement interval over a two day
period. We find that in any given measurement interval, traf-
fic travels toward approximately 10% of the network prefixes
present in the BGP routing table.
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Fig. 2. Number of active network prefixes.

The cumulative distribution function (cdf) of the flow band-
widths is presented in Figure 3. Each curve corresponds to a
different 5 minute interval within the first hour of the trace. The
maximum number of active flows in each 5 minute interval for
our two traces is in the order of a few thousands. Out of those
the top 100 flows in each time interval systematically account
for 50% to 70% of the total traffic, while the top 400 flows ac-
count for 75%-85% of the total traffic. Thus, we confirm that
a small number of flows does account for the majority of the
traffic in our trace.

�

Throughout the paper we will use the terms “flow” and “prefix” interchange-
ably.
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Fig. 3. Cumulative Distribution Function of flow bandwidths for the first 12
5-minute intervals of the west coast trace.

III. INDICATIONS OF VOLATILITY

Examining the set of flows in our data we found (not surpris-
ingly) that all types of flows - in terms of volatility - exist. There
are both heavy and light flows that are not volatile; i.e., heavy
flows that exhibit steady behavior in that they remain heavy,
and light flows that remain light for long periods of time. There
are many flows (either heavy or light) that are prone to short-
lived or transient bursts, and there are also flows that experience
long-term changes. In this paper we do not address the reasons
behind this volatility (addressed for 5-tuple flows in [12]) but
rather its impact on traffic engineering.

In order to understand the prevalence of each type of flows
and the extent of their volatility, we now look at our data from
four different points of view. These perspectives serve as hints
at the level of volatility of network prefix flows. First we com-
pare the top 100 flows for all pairs of sequential intervals during
the first day of both traces. We observe that the set of flows con-
stituting the top 100 changes significantly from one time inter-
val to the next. The minimum number of flows that change be-
tween two consecutive intervals is 23 and the maximum reaches
55 (i.e. half of the flows in the top 100 flows at one interval are
replaced by new flows in the next interval).

To identify the reason behind this phenomenon, we collect
flow measurements for the first hour of the west-coast trace.
For each flow we measure its average bandwidth across the first
hour of the trace as well as its coefficient of variation (e.g. the
fraction of the standard deviation of the flow bandwidth divided
by its average). In Figure 4 we present the relationship between
the two metrics for all the active flows.
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Fig. 4. Relation between the coefficient of variation of flow bandwidth against
average bandwidth for the 1st hour of the west coast trace.



Figure 4 shows that there is no clear correlation between
the mean and the coefficient of variation of the bandwidth of
a network prefix flow. Flows of any size (in terms of aver-
age throughput) can have either a small or a large coefficient
of variation. Since the center and top portion of the graph are
darker, it means that most flows do experience variation. Any
(not “all”) flow may experience fluctuations around their aver-
age bandwidth that reach up to three times its value. Conse-
quently, small-volume flows may experience bursts that raise
their throughput to significant levels while large-volume flows
may experience drops that significantly reduce their overall vol-
ume. Since there are many flows in the intermediate throughput
range and they too have a very large variance, it means any of
them could become a heavy hitter at some point or could be-
come an insignificant flow at some other point.

We next ask the following question. Suppose we were to
select the set of flows constituting 80% of the load at some point
in time. If we track those flows without changing the set of
flows, what fraction of the total load would they constitute a few
hours later? As an example, we select the highest bandwidth
flows that account for 80% of the traffic at 9:00 am on the west
coast trace. We then track the volume accounted for by these
flows for the remainder of the day. As can be seen from Figure
5 when heavy flows are initially selected their corresponding
cumulative load is indeed 80%. After one hour has elapsed,
however, their overall load has dropped to 60%, and it reaches
45% at 11am. Similar results hold when the classification of
the flows takes place at other times during the day.
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Fig. 5. Evolution of fraction of overall traffic in heavy-hitters initially selected
to account for 80% of the load.

This phenomenon may be due to flows reducing their over-
all bandwidth or simply disappearing from inside the network,
while flows that have increased their bandwidth are not taken
into account since the set of heavy-hitters is static. To evaluate
the effect of flows becoming inactive with time we measure the
lifetime of a flow as the number of intervals that a flow is active
between periods of inactivity. We present our results in Figure
6. We notice that even though there is a significant number of
flows that last longer than 3 hours, 40% of the flows will end
within 1 hour.

From these views, we can draw the following two main con-
clusions. First, there are many flows that span a large range of
volume values and can become candidate heavy flows at some
point in time. Furthermore, heavy flows may not be heavy for
long periods of time and thus reassessment of which flows be-
long in the heavy class may be needed frequently. Second, this
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Fig. 6. Lifetime of a flow for the west and east coast trace.

can make the job of identifying a set of heavy hitters challeng-
ing if the goal is to consistently capture a large portion of the
load but simultaneously avoid reclassifying traffic often.

In the next section, we evaluate three simple classification
schemes for the identification of heavy-hitter flows in Internet
traffic. We show that simple schemes that base such a decision
on the instantaneous properties of Internet flows are not likely to
produce a good set of flows that traffic engineering applications
could use.

IV. SINGLE-INSTANT CLASSIFICATION SCHEMES

Classification schemes proposed in the literature usually
classify flows according to their “instantaneous” behavior, e.g.
their properties during a single time interval. We call these
schemes “single-instant classification schemes”.

Let
�

denote the index of a network prefix flow in a BGP
routing table. Let � denote the length of the time interval over
which measurements are taken2. Time is discretized into these
intervals, and � is the index of time intervals. We define �������	�
to be the average bandwidth of the traffic destined to a particular
network prefix

�
during the ��
� time slot of length � . Whenever

flows are separated into two classes according to a threshold
value, this value is denoted as �����	� (bps). We use �������	� to
represent the set of flows contributing to the higher fraction of
traffic at interval � (we call these flows the “heavy-hitters”) and
�������	� for all other flows. That is

��� � � ���	���������	��� ��� ������	���! #"%$& �'� ����(
Notice that the set of flows identified as “heavy-hitters” de-

pends on the time interval � and the respective value of �)��	� .
Therefore, sets � � and � � are functions of � .

A. Existing Schemes

In this section we describe two previously proposed classifi-
cation schemes. Both these schemes require the setting of an
input parameter that guides the selection of heavy hitter flows.
We call the first scheme the “constant load” scheme. Given a
fraction " , this scheme selects heavy hitters to be the highest
bandwidth flows that account for a fraction " of the overall load
on the link. The second scheme does not target a specific load
*
In this work + is set to 5 minutes but could take on different values depend-

ing on the requirements of the traffic engineering application.



in the heavy-hitter class, but rather a specific number of flows
in it. We call this scheme the “top- � ” scheme, which isolates
as heavy-hitters the � highest bandwidth flows on the link. A
third scheme that is frequently suggested in the literature se-
lects heavy-hitters to be these flows that exceed a pre-specified
bandwidth value � [3]. We do not evaluate this approach since
it assumes pre-existing knowledge for the range of bandwidth
values achieved by flows.

Notice that the first two schemes suffer from two obvious
weaknesses: 1) they require the setting of parameters " and � ,
and 2) they are sensitive to outliers. For the “constant load”
scheme there is always the danger that a flow that bursts at high
bandwidths may account for a large fraction of the total vol-
ume and thus mask out multiple other high-bandwidth flows
that may exhibit greater persistence in time. For the “top- � ”
scheme, flows bursting for brief periods of time to high values
of bandwidths can easily displace other flows from the top �
despite their being more persistent in time.

To address the above two weaknesses we propose a new
scheme which we call the aest scheme. This scheme does not
require any input parameter and features properties that make it
less sensitive to outliers.

B. Automatic Detection Scheme: aest

The method we propose relies on our observation that the
flow bandwidth distribution is heavy tailed. We analyze the
flow bandwidth distributions collected for each 5 minute in-
terval in our traces and use the aest test [2], formally defined
later in this section, to evaluate whether they have heavy-tail
properties. Our results reveal that all collected distributions are
characterized by a scaling exponent � between 1.03 and 1.2.
Consequently, we can capitalize on this property and isolate the
flows that fall in the tail of the bandwidth distribution as the
heavy-hitters during a time interval. According to this method
we can set �����	� as the cutoff point in the distribution after which
power law properties can be witnessed. This approach has sev-
eral interesting properties. First, �����	� is not a constant value.
Instead, it follows the dynamics of the traffic and adapts to its
changes due to time of day behavior, for example. Second, �)��	�
can be automatically computed. Third, �)��	� is not sensitive to
outliers. One high-bandwidth flow is not likely to mask another
high-bandwidth flow, since they will both fall at the tail of the
flow bandwidth distribution.

The aest method identifies the portion of a distribution that
exhibits power-law behavior. The key idea is that the shape of
the tail determines the scaling properties of the dataset when
it is aggregated. The aggregation of a dataset of � observa-
tion � � � ����� ������� � � , is defined as the process of summing
non-overlapping blocks of observations of size � : �

	�
�
� �

� � 
��� 	 ��� � ��
� � � � ( By observing the distributional properties of

� 	�
��
one can infer where in the tail power-law behavior be-

gins. We use this method to identify the first point in the flow
bandwidth distribution after which power law properties can be
witnessed.

We present the graphical output of the aest tool in Figure
7. This figure presents the complementary cumulative density
function (CCDF) for the aggregates of the flow bandwidth dis-
tribution collected in a single time interval � . The segment of
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Fig. 7. Graphical output of the aest tool. Presents the complementary cumu-
lative density function of the number of bytes sent by flows during the first 5
minute interval of the west coast trace.

the tail over which heavy-tailed behavior appears to be present
is denoted with “plus” signs. We select the minimum value of
bandwidth after which heavy-tailedness is confirmed as the cut-
off point in the original flow bandwidth distribution. This value
in Figure 7 is 5.35, that corresponds to

������� ���
bytes sent over

that 5 minute interval. We use this particular bandwidth value
as the threshold value �)��	� . If we define � ��!�� as the com-
plementary cumulative distribution function of the flow band-
widths � � ���	� at interval � , i.e. � ��!)� = 1 - F(x) = P[X " x], then

�)��	� �$#&%�' ��!)(
*,+�-/. � ��!)�*,+�-/. ! 021 � �

The aest methodology has the advantages of being fast, non-
parametric and easy to apply. It has been shown to be relatively
accurate on synthetic datasets [2]. More importantly, there has
been evidence that the scaling estimator � , as calculated by
aest, appears to increase in accuracy as the size of the dataset
grows. Given that our datasets feature at least two thousand
measurements (i.e. active flows per time interval), aest will
provide us with reasonably accurate values for the cutoff points
in the heavy tail flow bandwidth distribution measured in each
time interval.

V. RESULTS ON SINGLE INSTANT CLASSIFICATION

SCHEMES

In most applications of classification each data object inher-
ently belongs to some particular class. Our situation is different
in that the flows do not naturally belong to a particular class.
Consequently, traditional evaluation techniques based on mis-
classification errors cannot be used. Given that we are address-
ing the traffic engineering principle of isolating heavy hitters
and the feasibility issues of doing so consistently over time, we
focus on temporal persistence. We, thus, evaluate the alterna-
tive schemes with respect to their capability of providing a set
of flows that does not significantly differ from one interval to
the next.

The length of time that a flow in � � will remain in � � is
both a function of the flow itself and of the classification. It is a



function of the classification in the sense that a particular high-
bandwidth flow will remain in � � as long as the continually
adjusting threshold stays lower that its average bandwidth. The
classification scheme that produces a set of flows that maintain
their classification for longer periods of time is more attractive
for our purposes.

To define a performance metric to capture the persistence
of the classification in time, we proceed as follows. The pro-
posed classification scheme induces the following underlying
two-state process on each flow. Let � � ���	� � �

if
� � ��� ���	� ,

and � � ���	� � �
if
� � �������	� . At each classification time inter-

val, the process either transitions to the other state or stays in
the same state. To capture the persistence of the classification
in time, for each flow

�
, 1) we count how many times it transi-

tions to � � , and 2) we measure the number of sequential time
intervals the flow spends in � � for each stay. We then compute
the average holding time of a flow in class � � as the average
number of sequential intervals a flow has been in � � .

To compute the average holding time of a flow according to
the above description we need to select the time interval when
we start accounting for flow transitions (denoted as �!� ) and for
how long ( �	� 1 � � , where ��� denotes the end of the period). If
the period over which we compute the average holding time of a
flow is greater than 12 hours, then the flow behavior is sensitive
to the diurnal cycle of the traffic (as shown in Figure 1). In this
case, small holding times are not due to the inefficiency of the
classification scheme to produce a persistent set of flows in � � ,
but due to the significant decrease of � �����	� due to time of day
fluctuations. To be able to evaluate the classification scheme
in terms of time persistence we thus need to identify a period
of time when flows are less likely to be affected by the diurnal
cycle and dramatic transitions in their behavior like before and
after the working hours. The 5-hour peak period between 9
am and 2 pm is characterized by a stable number of flows and
stable link utilization for both traces. In addition, it features
the largest number of flows that contribute the greatest amount
of load across the entire day. Therefore it lends itself as the
most appropriate period when classification persistence can be
tested. Consequently, we set � � and � � to the time intervals that
correspond to 9 am and 2 pm respectively.

We present statistics on the average holding time in � � in Ta-
ble II for both traces under the three alternative single-instant
classification schemes3. Under the two previously proposed
schemes average holding times in � � are between 15 and 20
minutes. More than 80% of the flows experience an average
holding time in ��� of less than 20 minutes for both traces.
Using the aest classification scheme the holding time in ���
slightly improves but is still limited to less than 1 hour for 80%
of the flows for the west coast trace, while it appears insignifi-
cant for the east coast trace. Therefore, the aest scheme is not
capable of achieving persistence on its own. In the next sec-
tion, we introduce a new scheme that is capable of addressing
the limitations of aest to achieve a higher degree of persistence
in the set of the heavy-hitter flows.

�
In this table we report on the performance of the constant load scheme when

it targets 70% of the total load in class � � . Our results across different constant
load schemes showed that the average holding time in � � never exceeds 40
minutes, achieved by the 0.9-constant load scheme for the west coast trace.

West Coast
top-100 0.7-constant load aest

min. 1 1 1
20% 1 1 1
50% 1.2 1.6 2
avg. 3.47 4.7 8.63
80% 2.75 4 12
max. 60 60 60

East Coast
top-100 0.7-constant load aest

min. 1 1 1
20% 1 1 1
50% 1 1.5 1.5
avg. 3.52 3.7 3.72
80% 3 3 3.5
max. 60 60 60

TABLE II
STATISTICS FOR THE HOLDING TIMES IN � � (IN 5-MINUTE SLOTS) UNDER

3 SINGLE-INSTANT CLASSIFICATION SCHEMES.

Frequent changes in a flow’s class may be due to two reasons.
Firstly, short-lived bursts or drops in the flow’s bandwidth. In
Figure 4 we showed that flows may significantly deviate from
their average bandwidth value throughout time. Secondly, a
flow may get reclassified because of genuine long-lived changes
in its nature. To differentiate between these two phenomena, it
would be advantageous if our scheme could incorporate his-
torical flow behavior in the classification process. Smoothing
operations on the flow bandwidth measurements as well as the
computed separation threshold �)��	� could limit the effect of
short-lived bursts or drops in the flow bandwidth and lead to
higher levels of persistence for set � � .

VI. LATENT HEAT CLASSIFICATION SCHEME

We introduce the notion of the “latent heat” to allow a flow to
maintain its heavy-hitter classification despite brief transitions
across the threshold �����	� . With the latent heat we allow large
flows to experience short transient periods in which their vol-
ume drops. Similarly, flows in � � are not allowed into � � due
to transient bursts above �����	� .

A. Methodology

In order to detect the points in time when flows transition
from one class to the other, we introduce a new per flow metric,
namely the “latent heat”4. A flow is assumed to accumulate
energy when it is above �)��	� and to lose energy when it is below
�)��	� . We define ���� ���	� to be the set of flows whose latent heat
exceeds a threshold value ���	�� �$ . Transition of a flow

�
from

���� ���	� to ���� ����
 � � is triggered when the latent heat of a flow
falls below ������ �$ . Transition of a flow

�
from ��� ���	� to ���� ����
� � is triggered when the latent heat of a flow increases beyond

������ �$ .
�
The term “latent heat” comes from thermodynamics and defines the heat

energy required to change a substance from one state to another.



The latent heat scheme can be conceived as a three-step
scheme. Firstly, we compute the value for �����	� using the aest
approach presented in Section IV. Then, we measure the “heat”
of each flow as the difference between the flow’s through-
put � �����	� and �����	� , which we denote by

* � ��	� . Lastly, we
apply an exponential weighted moving average (EWMA) fil-
ter on the difference5 * � ��	� and compare it to a prespecified
threshold value ���	�# �$ . The smoothing constant is denoted as� � ��� ��� �

. We present the formulation of the scheme in the
following equations. ���	��
�������	��
��������
�

(1)

��� ����
����� ��� �"!#� ��� ����
$�%�&�#'(!�������
$�%�&�
if

*)+�,

if

-�.�

(2)/10 ��� � ��
�2)%3�4658789;: /=<->@?
�
��
�A:�7&B�9C7 /�<">@?* ��
�AD (3)

In essence, the latent heat could be any function of the dif-
ference between bandwidth and �����	� over a number of inter-
vals. We chose to use an EWMA filter because it requires mini-
mal historical flow measurements. Our formulation of the latent
heat metric assigns equal weight to a flow’s drop and burst. In
case a network engineering application values a flow’s rate drop
more than a flow’s burst, then Eq. 2 can be adjusted accordingly
to reflect this requirement.

Notice that the set of flows in � �� ��	� is not the same as the
set of flows in � � ���	� . The first set contains all the flows that
exceed �����	� , while set � �� ���	� contains all the flows that have a
latent heat greater than ���	�� #$ . In terms of their properties, class
� � ���	� contains all the high-volume flows during a single time
interval, while ���� ���	� contains all the flows that have acted as
a high-volume flow in the past and are more likely to continue
being high-volume in the future. We call the flows in � � heavy-
hitters and the flows in � �� persistent heavy-hitters.

We illustrate the notion of the “latent heat” in Figure 8. We
show the bandwidth measured for one particular destination
network prefix on the west coast trace along with the computed
threshold �����	� (automatically detected with the aest approach),
the flow’s latent heat and ������ �$ (equal to zero in this example).
Until 8 am the flow’s bandwidth is below �����	� , causing its la-
tent heat to slowly decrease. At approximately 8 am the flow’s
rate increases significantly. It starts accumulating energy and at
8:30 am the flow’s latent heat becomes positive. Since ������ �$ is
equal to 0 this is the first point in time when this flow is placed
in ���� . Until 11 am this flow achieves significantly high band-
width rates, and therefore its latent heat continues to increase.
At 11 am the flow’s bandwidth falls below �����	� and its latent
heat starts to decrease rapidly (the slope of decrease is much
steeper than during the period between 5 am and 8 am due to
the significant change in bandwidth). At 12 am when the latent
heat of the flow has approached zero, the flow resumes its high
rates increasing its energy. After 2 pm the flow’s bandwidth ap-
proximates zero, and then its latent heat falls below zero until
at least 9 pm.E

Note that smoothing the difference between F ��GIH�J and K GIH�J is equivalent to
the difference between the smoothed flow bandwidth F ��GIH�J and the smoothed
separation threshold K GLHMJ .
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Fig. 8. Illustration of the idea behind the “latent heat” metric.

If the classification methodology does not take into account
transient changes in state then this flow would be placed in
the low class for the drop after 11am. In fact, under the aest
scheme, the flow would have been reclassified 6 times between
5 am and 2 pm. With the latent heat metric reclassification oc-
curs only twice, once at approximately 9 am and once at 2 pm.
This behavior is beneficial in a traffic engineering context since
the application would have to be consistently treated as a high-
rate flow for the period between 8am and 2pm.

B. Impact of � and ���	�� �$
Parameter � in Eq. (2) determines the weight of the current

flow behavior on the value of the EWMA and the number of
historical measurements taken into account. Lower values of� assign less weight on current flow measurements and more
weight on historical behavior. The average number of past in-
tervals N that are accounted for in the EWMA relates to the
value of � according to the following equation (see Appendix
for proof). � � ON 
 � (4)

If a flow has historically been performing as a heavy-hitter, then
under small values of � this flow is likely to continue being
classified as a heavy-hitter despite brief changes in its behav-
ior. Similarly, under large values of � , it will take longer for a
flow to be admitted to � �� . Parameter ������ �$ can further limit
the number of flows in � �� targeting those flows that have accu-
mulated larger amounts of latent heat. Setting ������ �$ equal to 0
allows any flow that experiences brief periods of positive latent
heat to be placed into � �� .

To investigate the combined impact of the two parameters on
the set of flows classified as persistent heavy-hitters we present
the way they relate to the time persistence of class ���� . Results
are presented in Figure 9. An increase in the value of parame-
ter ������ �$ is accompanied by a decrease in the average holding
time of flows in ���� . Flows need to possess much greater val-
ues of latent heat to continue being classified in ��� , and thus
stay in that class for smaller periods of time. Similarly, an in-
crease in the value of � leads to smaller average holding times
in ���� . Greater values of � incorporate less past flow behav-
ior and therefore short-lived changes in a flow’s bandwidth are
more likely to lead to a flow’s reclassification.
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Fig. 9. Average of flow average holding times vs. � and ��������� (west coast).

For the remainder of this section, and due to space limita-
tions, we focus our attention to two latent heat schemes alone.
They represent two configurations that could be selected in a
traffic engineering context. The first scheme (Profile A) is char-
acterized by � � � ( O and ������ �$ � �

Kbps and the second
scheme (Profile B) by � � � ( �
	 and ������ �$ � ��� �

Kbps. Both
schemes account for historical flow behavior and thus lead to
more persistent sets of heavy-hitter flows. The first scheme ac-
counts for approximately 9 intervals (e.g. 45 minutes) of his-
torical information and accepts in ��� any flow with a latent
heat greater than 0. On the other hand, the second scheme ac-
counts for 39 intervals, on average, of historical information
(e.g. approximately 3 hours) and restricts the set of heavy-hitter
flows to only those flows that have a latent heat greater than 100
Kbps. Thus profile B will accept fewer flows into the heavy hit-
ter class, will capture less overall load, but will select flows with
greater persistence than profile A.

VII. RESULTS

A. Flow classification time persistence

In order to demonstrate the benefits of our proposed approach
we compare the persistence of set � � , produced by aest, with
the persistence of set � �� , produced with the latent heat schemes,
in Table III. For the latent heat scenario we use configurations A
and B. We show that single-instant classification schemes, like
the aest approach, lead to an average lifetime in ���� for 15 to 40
minutes (Table III). The average holding time achieved by the
latent heat scheme under profiles A and B is greater than 1 hour.
In Figure 10 we present the CDF for the average holding time in
���� for the aest and the latent heat schemes. Figure 10 provides
clear evidence on the performance improvement, in terms of
time persistence for set � �� , achieved by the latent-heat scheme.
Under the aest approach more than 90% of the flows experience
an average holding time in � �� of less than 1 hour. Under the
latent heat scheme, in three out of the four cases, less than 50%
of the flows experience similar average holding times. The one
exception applies to the east coast trace for profile A, which still
succeds to increase the number of flows experiencing average
holding times more than 1 hour from 5% up to 25%.

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average holding time in C
1
 or C

1
 (in 5−minute slots)

F
(x

)

Empirical CDF

west coast (aest)
west coast (prof. A)
west coast (prof. B)
east coast (aest)
east coast (prof. A)
east coast (prof. B)

Fig. 10. Comparison of the aest approach with the latent heat under ������ � ,
������������ (Prof. A), and ������ �� , �������������������! "� (Prof. B).

West Coast East Coast
aest Pr. A Pr. B aest Pr. A Pr. B

min. 1 1 1 1 1 1
20% 1 4 3 1 2 3
50% 2 12 19 1.5 5 22
avg. 8.63 20 17.3 3.72 12 16.2
80% 12 36 28.5 3.5 15 24.5
max. 60 60 60 60 60 60

TABLE III
STATISTICS FOR THE HOLDING TIMES IN � ?� UNDER THE aest AND THE

LATENT HEAT APPROACH (PROF. A: ���#�� � , �����������# , PROF. B:

���#�� �� , �������������������! "� ) (IN 5-MINUTE SLOTS).

B. Frequency of Reclassification

In the previous section we evaluated the capabilities of three
different classification schemes with respect to the persistence
of the set of the heavy-hitter flows they produce. For the evalu-
ation of the time persistence of the produced flow classification
we compared the set of flows classified as heavy-hitters across
multiple time intervals. Therefore, the obtained results reflect
how the flow classification would behave if one were to reselect
the heavy-hitter flows at every time interval. In this section, we
look into the impact of selecting the heavy-hitters at one point
in time and treating them as heavy-hitters for a greater period
of time. To evaluate this effect we classify flows at one instant
in time and look into the amount of traffic they account for as
time elapses.

Given that results may differ depending on the time of day
when the classification takes place, we evaluate the persistence
of the heavy-hitter load as follows. We apply our classification
schemes at the beginning of each hour in our packet traces and
track the fraction of total traffic that the selected flows carry
through the next hour.

1) Constant load schemes: Under the constant load
schemes the classification process attempts to capture a spe-
cific fraction of the load in the heavy-hitters. In Figure 11 we
present how much the achieved captured load diverts from the
targeted load up to one hour after the selection of the heavy-
hitters for different " -constant load schemes. Typical loss of
load for schemes targeting more than 60% of the traffic is ap-
proximately 25%, i.e. the scheme targets 60% and it usually
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Fig. 11. Hourly loss in captured load under constant load schemes.
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Fig. 12. Hourly loss in captured load under top- � schemes.

reaches 35% if the heavy-hitters are not reselected for one hour.
When the targeted load is greater than 30% losses in load are
typically on the order of 10-20%. Lastly, when the targeted load
is below 30% then the fluctuations in load are more contained.

2) Top- � schemes: To further investigate this phenomenon,
we perform the same analysis on the top- � schemes, whose
goal is to capture the � highest bandwidth flows on the link.
We select these flows at the top of each hour and track their
overall load for the remainder of each hour. Our results are
presented in Figure 12.

We see the same kind of behavior as before, namely that the
fraction of load captured drops significantly within the hour and
quickly (within the first portion of the hour). This is true for
all three values of N we considered (and has been tested for
values of � up to 1000). We also observe in Figure 12 that
the greater the number of top flows one selects as heavy-hitters
the larger the fluctuations in the heavy-hitter load with respect
to the overall link throughput. Selection of the heavy-hitters
as the 10 highest bandwidth flows on the link leads to smaller
fluctuation in the overall load during the peak hours but signifi-
cantly increases after 6pm. Average fluctuations for the top-10
scheme are on the order of 10% while for the top-100 scheme
they reach up to 50%. This implies that the more flows one
selects as heavy-hitters the more frequently they should be re-
selected. Hence network designers would do better in terms
of isolating a consistent amount of load if they shift their goal
from “capturing the majority of the load” to capturing smaller
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Fig. 13. Hourly loss in captured load under latent heat schemes.

fractions of it.
3) Latent heat schemes: Lastly, we look into the perfor-

mance of the latent heat scheme. Figure 13 shows that fluctu-
ations in the load of class � �� are significantly smoother under
the latent heat schemes if reselection of flows were to take place
once an hour. The first profile LH(0,0.2) is capable of cap-
turing approximately 80% of the traffic during the peak hours
with fluctuations of less than 10% (within approximately 1000
flows). On the other hand, the second profile LH(100,0.05) al-
most consistently succeeds in placing 20% of the overall traffic
in less than 50 heavy-hitter flows. Given the limited fluctua-
tions of the load under the second profile reselection of flows
could be performed less frequently (e.g. every 2 hours). This
scenario reiterates the point that by capturing less load (20%
in this case), network designers can reclassify less often while
simultaneously maintaining a more consistent fraction of the
load.
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Fig. 14. Hourly loss in captured load for 0.8-constant load and LH(0,0.2)
schemes across the busy period.

We notice that despite the fact that the LH(0,0.2) scheme
does not target a specific load in � �� it succeds in capturing ap-
proximately 80% of the total traffic for the peak hours of the
trace. Nevertheless, it does so in a way that the fluctuations in
the captured load are much smoother and using a more persis-
tent set of flows across time. To better illustrate the first point
we present a detail of Figure 13 focusing on the peak hours of
the trace in Figure 14. The fluctuations in the captured load un-
der the latent heat scheme are much smoother and less abrupt
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Fig. 15. Maximum loss in captured load for 0.8-constant load and LH(0,0.2)
schemes across time.

than under the 0.8-constant load scheme. This load is offered by
approximately 1000 flows. Given that these flows have an av-
erage holding time in � �� greater than 1.5 hours (Table III) the
set of flows selected across time will also be more consistent
across time. To better quantify the loss in the captured load be-
tween flow reselections for the 0.8-constant load and LH(0,0.2)
schemes we compute the difference between the maximum and
minimum captured load across each hour in the trace. We
present our results in Figure 15. The latent heat scheme al-
ways leads to smaller loss in the captured load thus smoothing
out the effect of flow volatility on the accounted traffic load.
Therefore, the latent heat schemes are beneficial both in terms
of consistency in the captured load as well as persistence in the
set of flows classified as heavy-hitters.

In summary, traffic engineering decisions applied to flows
defined at the traffic aggregation of a destination network prefix
should anticipate changes in the nature of the flows selected as
heavy-hitters. If the goal is to capture a large (e.g., 70 or 80%)
fraction of the traffic load, then flows will have to be reselected
frequently, since they are unlikely to maintain the same load
as time evolves. In essence, to affect a large amount of traffic
one needs to select a large number of flows. Given that these
flows have different features with respect to their lifetime and
bandwidth volatility, the more flows one accounts for, the more
likely it is that the observed behavior will significantly change
in the future.

We have shown that application of single instant classifi-
cation schemes for the selection of a small set of flows that
will be exploited in a traffic engineering context is not suffi-
cient. Significant changes in the load of the selected flows in-
troduces large fluctuations in the amount of the captured traffic
and flows need to be frequently reselected to lead to the desir-
able goal. Accounting for historical information is capable of
filtering out short-lived changes in the bandwidth of the selected
heavy-hitter flows producing a more stable set of flows to be ex-
ploited in a traffic engineering context. In addition, the latent
heat scheme leads to less volatility in the overall load accounted
by heavy-hitters. Nevertheless, long-term changes in the nature
of heavy-hitters will still require flows to be reselected across
time.

C. Time of Day Influence

From the previous section we saw that fluctuations in the
load captured by heavy-hitters are usually more contained dur-
ing the peak hours of the day. Thus, there is an indication that
the persistence of heavy-hitters may be related to the time of
day when they are selected. In fact, traffic in the Internet is
known to follow a diurnal cycle, as also shown in Figure 1. In
this section, we address the relation between the persistence of
a heavy-hitter in time against the time of day when flows are
classified.

To address this issue we make use of the first two days in
the packet trace for the west coast link, i.e. Jul 24, 2001 05:00
until Jul 26, 2001 05:00. For each hour � after the beginning
of the trace we collect the set of flows in � �� , according to LH
profile A ( � � � ( O , ������ �$ � � N ��� $ ). For each flow

� � � �� ���	�
we count the number of sequential intervals in the future that
this flow remains in ���� , which we call the future lifetime of
flow

�
in ���� . We report the latent heat of every flow

�
along

with its future lifetime in � �� . We then look into the median and
average value of the future lifetime of a flow in ��� according to
its latent heat at time interval � for the period between 12 am
on July 25, 2001 and 12 am on July 26, 2001. Notice, that the
future lifetime of each flow in � �� will be upper bounded by the
ending time 05:00 on Jul 26, 2001.

Figure 16 presents the relation between the average future
lifetime of a heavy-hitter at time � when its latent heat exceeds
different values as presented on the x-axis. Results for the me-
dian value of the future lifetime of a persistent heavy-hitter are
shown in Figure 17. There are a few interesting observations
one can make on Figure 16 and Figure 17. First, if a flow at
time interval � has a large latent heat ��� � ���	� then this flow is
likely to remain in � �� for longer periods of time than a flow
with a small latent heat. This statement holds for any � and re-
sults start to deteriorate when ���	�# �$ "�� � Kbps. Therefore, the
latent heat of a flow is a good predictor of its capacity to remain
in ���� in the future. Second, flows are more likely to stay in ����
during the night rather than during the day. Flows in ��� at 8
am with a positive latent heat have an average future lifetime in
���� of 4 hours (Figure 16). Flows in � �� at 6 pm with a positive
latent heat have an average future lifetime in � �� of 16 hours.

During the working hours active flows are large in num-
ber. They usually correspond to the traffic attracted by different
users inside the network. During the night, traffic destined to-
ward specific network prefixes is likely to be due to automated
computer processes that transfer data across the network. This
kind of processes is likely to be more persistent in time, since
it is not affected by user demand, which is volatile. Therefore,
flows detected as persistent heavy-hitters during the night could
be expected to behave more persistently across time under such
an assumption.

Very long-lived and very short-lived flows in � �� are likely to
skew the average value of a flow’s future lifetime in ��� . There-
fore, we also look into the median value of the collected distri-
bution in Figure 17. We notice that the median future lifetime of
a flow with a latent heat greater than 60 Kbps at 8 am is 8 hours.
This finding is a confirmation of the capability of our scheme
to correctly detect persistent heavy-hitters, since these flows are
likely to correspond to businesses attracting traffic over the net-
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Fig. 16. Average future lifetime of a flow in � ?� at different times throughout
the day ( ������ � , �����������# ).
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Fig. 17. Median future lifetime of a flow in � ?� at different times throughout
the day ( ������ � , �����������# ).

work during the 8 working hours of the day. The median future
lifetime of a flow in ���� also peaks at 6 pm and 5 am. The former
corresponds to the end of the working hours and the beginning
of the night where flows have been shown to be more persistent.
The latter corresponds to the beginning of the working hours on
the east coast of the United States.

VIII. CONCLUSIONS

In this work we addressed the design principles of traffic en-
gineering applications. For scalability reasons, traffic engineer-
ing applications typically select a small set of high-bandwidth
flows that they treat differently inside the network in order to
achieve a specific performance objective by affecting the ma-
jority of the traffic. Throughout the literature these flows are
implicitly assumed to perform in a persistent fashion and thus
are selected so that they capture the majority of the load at one
point in time and treated as such for the timeframe at which the
application operates [1], [8], [9], [11].

Based on data collected from an operational tier-1 IP back-
bone network we showed that flows defined at the level of a
destination network prefix are very volatile in terms of volume.
This volatility is manifested through short-lived changes in the

flows’ bandwidth and long-term changes that may reduce their
bandwidth significantly or even lead to inactivity. As a direct
result, the load captured by a specific set of flows at one point
in time may significantly drop over time.

We showed that simple classification schemes that select
heavy-hitter flows based on their behavior during a single time
interval fail to capture the majority of the traffic through time.
In addition the set of flows that they would select across time
intervals would differ greatly from one interval to the next.

We proposed a novel classification scheme that incorporates
historical flow behavior in the selection of heavy-hitter flows
for traffic engineering purposes. We showed that our scheme
is less sensitive to outliers, and leads to a more consistent set
of flows selected across time intervals. More importantly, we
demonstrated that heavy-hitter selection in the context of traffic
engineering presents a tradeoff between the captured amount of
traffic and the required frequency of the flow reselection across
time. One cannot capture the majority of the load across time
in the same set of flows. Thus, flows need to be reselected at
frequent intervals to lead to the desirable end result. On the
other hand, if the selected flows are chosen such that they ac-
count for a smaller amount of traffic (say one third of the overall
load) then reselection can be performed less frequently (on the
order of hours). Under both scenarios, our latent heat scheme
was shown to outperform previously proposed schemes. Our
concluding remark is that traffic engineering applications need
to take flow volatility into account and be ready to sustain the
overhead of frequent flow reselection if they intend to affect a
large amount of traffic.
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APPENDIX

In time series analysis and forecasting, we use a Moving Av-
erage model to estimate the current value of the mean based
on past measurements. The moving average is often called a
“smoothed” version of the original series, since short-term aver-
aging has the effect of smoothing out the bumps in the original
series.

At any instant � , the average of the latest � samples of a data
sequence !)� is given by

!�� �
�

�
� � ��
� � � ���

! � (

Hence, the forecast equals the simple average of the last �
observations. This average is “centered” at period

� � ��� 
 � ����O
which implies that the estimate of the local mean will tend to
lag behind the true value of the local mean by about ��� 
 � ��� O
periods. Thus, we say that the average age of the data in the
simple moving average is ��� 
 � ��� O relative to the period for
which the metric is computed.

The simple moving average model has the undesirable prop-
erty that it treats the last � observations equally and completely
ignores all preceding observations. Intuitively, past data should
be discounted in a more gradual fashion. The simple exponen-
tial smoothing (SES) model accomplishes this. If � denotes the
“smoothing constant”, with

� � � � �
, and $ 
 denotes the

value of the smoothed series at period � , the following formula
can be used recursively to update the smoothed series as new
observations are recorded:

$ 

� � ! 
 � � 
 � � 1 � � $ 
 � ���

��� � � � �	� � * ����
 (5)

Thus, the current smoothed value is an interpolation be-
tween the previous smoothed value and the previous observa-
tion, where � controls the closeness of the interpolated value
to the most recent observation. If we expand Equation (5) by
substituting for $ ��� � we have:

$ 

� � ! 
 � � 
 � � 1 � �� � ! 
 � � 
 � � 1 � � $ 
 � ���
� � ! 
 � � 
 � � � 1 � � ! 
 � � 
 � � 1 �!� � $ 
 � �

By recursively substituting for $ 
 � � , then for $ 
 � � and so
forth until we reach $ � which is equal to ! � , it can be shown
that the expanding equation can be written as:

$ 

� �


 � ��
� � �

� � 1 �!�
��� � ! 
 ��� 
 �

�
1 �!� 


� � $ � �	� ��
�� � * ��� � � �

The above equation shows the exponential behaviour. We
further can see from the summation term that the contribution
of each value !)� � � � � to the smoothed value $ 
 becomes less

at each consecutive time interval. The speed at which old re-
sponses are dampened is a function of the value � . When � is
close to 1, dampening is quick and when � is close to 0, damp-
ening is slow.

The weights � � � 1 �!��
 decrease geometrically. Given that
the mean of the geometric distribution of the weights is equal
to
� � � , the “average age” of the data in the simple exponential

smoothing forecast is
� � � relative to the period for which the

forecast is computed. We showed that the “average age” of
the data in a simple moving average estimate for a period of
� intervals is ��� 
 � ����O . Consequently, the rule of thumb for
the setting of the “smoothing constant” � in order to exhibit an
average age of � periods can be described as:

�

���
� 
 �

O �	� � � �
O

� 
 � (6)


