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Abstract – Category Theory is used to describe a category of
fusors. The category is formed from a model of a process begin-
ing with an event and leading to the final labeling of the event.
Although many techniques of fusing information have been de-
veloped the inherent relationships among different types of fusion
techniques (fusors) have not yet been fully explored. In this paper,
a foundation of fusion is presented, definitions developed, and a
method of measuring the performance of fusors is given. Func-
tionals on receiver operating characteristic (ROC) curves are de-
veloped to form a partial ordering of a set of classifier families.
The functional also induces a category of fusion rules. The treat-
ment includes a proof of how to find the Bayes optimal classifier
(or Bayes Optimal fusor, if available) from a ROC curve.

Keywords: information fusion, fusors, ROC, ROC curves, Bayes
Optimal.

1 Introduction
Information fusion is a rapidly advancing science. Re-
searchers are daily adding to the known repertoire of fusion
techniques (fusion rules). An agency that is building a fu-
sion system to detect or identify objects is bound to want to
get the best possible result for the money expended. It is
with this goal in mind that we need a way to compete var-
ious fusion rules for acquisition purposes. It appears that
the receiver operating characteristic curves (ROC curves)
that can be developed for such systems under test conditions
may serve well in this regard. We will demonstrate the de-
velopment of a functional on ROC curves which will allow
us, under certain assumptions and constraints, to compete
classifiers, fusors (fusion rules with a constraint), and fu-
sion systems in order to choose the best from among finitely
many competitors.

2 Category Theory Preliminaries
Category theory is a branch of mathematics useful for de-
termining universal properties of classes. The science of
information fusion does not yet know of all the relation-
ships involved between the classes of data and the mappings
from one type of data to another. It has been our goal to
try to engage the community to think in terms of generali-
ties when studying fusion processes in order to abstract the
processes and perhaps gain some clarity of thought, if not
genuine insight. I have drawn upon the work of various
authors [1, 2, 3, 4]to present the definitions.

Definition 1 (Category) A categoryC consists of the fol-
lowing:

A1. A collection of objects denotedOb(C).

A2. A collection of arrows (maps) denotedAr(C).

A3. Two mappings, called Domain (dom) and Codomain
(cod), which assign to an arrowf ∈ Ar(C) a domain
and codomain from the objects ofOb(C). Thus, for

arrowf , given by O1
f // O2 , dom(f) = O1 and

cod(f) = O2.

A4. A mapping assigning each objectO ∈ Ob(C) an
unique arrow1O called the identity arrow, such that

O
1O // O

and such that for any existing element,x, of O, we
have that

x � 1O // x.

A5. A map, ◦ , called composition,A×A
◦ // A .

Thus, givenf, g ∈ A with cod(f) = dom(g) there
exists an uniqueh ∈ A such thath = g ◦ f .

Axioms A3-A5 lead to the associative and identity rules:

• Associative Rule. Given appropriately defined ar-
rowsf, g, andh we have that

(f ◦ g) ◦ h = f ◦ (g ◦ h).

• Identity Rule . Given arrows A
f // B and

B
g // A , then there exists identity arrow1A such

that1A ◦ g = g andf ◦ 1A = f .

Definition 2 (Subcategory) A subcategoryB ofA is a cat-
egory whose objects are some of the objects ofA and whose
arrows are some of the arrows ofA, such that for each ar-
row f in B, dom(f) andcod(f) are inOb(B), along with
each composition of arrows, and an identity arrow for each
element ofOb(B).



A category of interest is the categorySet, which has as
objects sets and arrows all total functions, with composi-
tion of functions as the composition. Clearly this construct
has identity arrows and the associative rule applies, so it
is indeed a category. The subcategories of interest to us
are subcategories of particular types of data sets, denoted
D, with objects similar types of data sets and arrows only
the identity arrows, and subcategories of particular types of
feature sets, denotedF , with objects similar types of fea-
ture sets, and arrows only the identity arrows. The objects
and arrows of these categories shall correspond to a par-
ticular sensor system, so will represent all of the possible
data (or feature) sets that can be generated by the sensor-
processor system. For example, the data generated by a
particular sensor system may be2x2 real-valued matrices.
In this case,D = (R2x2, idD, idD, ◦) represents the cat-
egory with only the identities as arrows, and◦ being the
usual composition of functions.

A further categorical term that will be useful is that of a
functor .

Definition 3 (Functor) A functor F between two cate-
goriesA andB is a pair of maps(FOb,FAr)

Ob(A)
FOb // Ob(B)

Ar(A)
FAr // Ar(B)

such thatF mapsOb(A) to Ob(B) andAr(A) to Ar(B)
while preserving the associative property of the composi-
tion map and preserving identity maps.

Thus, given categoriesA,B and functorF : A // B , if
A ∈ Ob(A) andf, g, h, 1A ∈ Ar(A) such thatf ◦ g = h
is defined, then there existsB ∈ Ob(B) andf ′, g′, h′, 1B ∈
Ar(B) such that

i) F(A) = B.

ii ) F(f) = f ′, F(g) = g′.

iii ) h′ = F(h) = F(f ◦ g) = F(f) ◦ F(g) =
f ′ ◦ g′.

iv) F(1A) = 1F(A) = 1B .

Definition 4 (Natural Transformation) Given categories

A and B and functorsF and G with A
F // B and

A G // B , then aNatural Transformation is a family
of arrowsν = {νA|A ∈ A} such that for eachf ∈ Ar(A),

A
f // A′ , A′ ∈ A, the square

F(A)
νA //

F(f)

��

G(A)

G(f)

��
F(A′)

νA′ // G(A′)

commutes. We then say the arrowsνA are the components
of ν : F // G , and callν the natural transformation
of F to G.

Definition 5 (Functor CategoryAB) Given categoriesA
andB, the notationAB refers to the category of all functors

F, B
F // A . This category has all such functors as

objects and the natural transformations between them as
arrows.

Definition 6 (Product Category) Let{Di}n
i=1 represent a

finite collection of data set categories. Then
∏n

i=1Di is
the corresponding product category.

3 Modelling Fusion within the
Event-Decision Model

Let X be a set of states for some event, andT ⊂ R be
a bounded interval of time. IntervalT sortsX such that
we callE ⊆ X × T anevent-state. An event-state is then
comprised of event-state elements,e = (x, t), wherex ∈ X
andt ∈ T. Thuse denotes a statex at an instant of timet.
Let E = X × T, be the set of all event-states for an event
over time intervalT.

The following discussion can be expanded to a finite
number of sensors, but for now consider the simple model
of a multi-sensor process using two sensors in Figure 1.
The setsEi, for i ∈ {1, 2}, are sets of event-states. It

E1
s1 // D1

p1 // F1
c1 // L1

E2
s2 // D2

p1 // F2
c2 // L2

Fig. 1: Simple Model of a Dual-Sensor Process.

is useful to think ofEi as the set of all possible states of
an event (such as an aircraft flying) occurring within sen-
sor si’s field of view. GivenEi thus defined, now define
a sensor as a mapping from an event-state set to a data set,
Di. The mappingsi is then a sensor. A data set could
be a radar signature return of an object, multiple radar sig-
nature returns, a two-dimensional image, or even a video
stream over the time period of the event-state set, for ex-
ample. In any case we would like to extract recognizable
features from the data set. Hence, mappingpi represents
a processor which does just that. Processors are mappings
from data sets into feature sets,Fi. Finally, from the fea-
ture sets we want to determine a label or decision based
upon the sensed event-state. This is achieved through use
of the classifiersci which map the feature set into a label
set. The label setLi can be as simple as the two-class set
{target,non-target} or could have a more complex nature to
it, such as thetypesof targets and non-targets in order to de-
fine the battlefield more clearly for the warfighter. Now the
diagram in Figure 1 represents a simple sensor process pair
involving two sensors, two processors, and two classifiers,
but can easily be extended to any finite number. Now con-
sider two sensors not necessarily co-located. Hence they
may sense different event-state sets. Figure 1 models two
sensors with differing fields of view. Performing fusion
along any node or edge in this graph will result in an el-
evated level of fusion [5]–that of situation refinement or



threat refinement, since we are not fusing common infor-
mation about a particular object or objects. There are two
other possible scenarios than Figure 1 depicts. The sensors
can overlap in their field of view, either partially or fully, in
which case fusing the information regarding object event-
states within the intersection may be useful. Thus, a fusion
process may be used to increase the reliability and accuracy
of the system, above that which is possessed by either of the
sensors on its own. LetE represent that event-state set that
is common to both sensors, that is,E = E1 ∩ E2. Hence,
there are two basic challenges regarding fusion. The first
is how to fuse information from multiple sources regarding
common event-states (or targets, if preferred) for the pur-
pose of knowing the event-state (presumably for the pur-
poses of tracking, identifying, and estimating future event-
states). The second and much more challenging problem is
to fuse information from multiple sources regarding event-
states not common to all sensors, for the purpose of know-
ing the state of a situation (the situation-state), such as an
enemy situation or threat assessment. We label the two
types of fusion scenarios discussedevent-state fusionand
situation-state fusion. Therefore, Figure 2 represents the
Event-State-Decision model of a dual sensor process. The

D1
p1 // F1

c1 // L1

E

s1

>>}}}}}}}}

s2

  A
AA

AA
AA

A

D2
p2 // F2

c2 // L2

Fig. 2: Dual Sensor Process for Overlapping Field of View.

only restriction necessary for the usefulness of this model is
that a common field of view (the event-state) be used. For
example,D1 andD2 can actually be the same data set under
the model, whiles1 ands2 could be different sensors.

Definition 7 (Fusion Rule) Let
∏n

i=1Di be a product cat-
egory of data (or feature) set categories. Then a fusion rule

is a functorR ∈ D
Qn

i=1 Di

0 andD0 is the resulting data set
category.

The key to this definition is to realize that a fusion ruleR
(see Figure 3) simply combines the inputs from a product
category into a resultant data set (or feature set), which is an
element of a single data (or feature) set category. There is
no restriction on the output with regards to being a “better”
output than a system designed without a fusion rule.

We now desire to show how defining a fusor (see Defini-
tion 9) as a fusion rule with a constraint changes the sensor
process model into an Event-State Fusion model. Con-
tinuing to consider the dual sensor process in Figure 2, a
fusion rule can be applied to either the data sets or the
feature sets. Given a fusion ruleR for the two data
sets as in Figure 3, our model becomes that of Figure 5.
A new data set, processor, feature set, and classifier may
become necessary as a result of the fusion rule having a
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p // F
c // L

...

Dn

Fig. 3: Fusion Rule on Category of Data Sets.

different codomain than the previous systems. The la-
bel set may change also, but for the remainder of this pa-
per we are interested only in a two class label set, that of
L = L1 = L2 = {Target,Nontarget}. In a homogeneous

(D1,D2)
� �� � R +3 +3 D3

Fig. 4: Fusion Rule Applied to Data Sets.
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p // F
c // L

D2

Fig. 5: Fusion Rule Applied within a dual sensor process.

(or within) fusion scenario, the data sets (or feature sets)
are the same,D1 = D2 = D3. This is true in the case that
the sensors used are the same type (that is, they collect the
same measurements, but from possibly different locations
relative to the overlapping field of view. In the case where
the data sets (or feature sets) are truly different, a composite
data set (and/or feature set) which is different from the first
two (possibly even the product of the first two) is created as
the codomain of the fusion rule functor.

Now at this point we may consider, in what way is the
process modeled in Figure 5superior to the original pro-
cesses shown in Figure 2? One way of comparing perfor-
mance in such systems is to compare the processes’ receiver
operating characteristics (ROC curves).

3.1 Developing a ROC Curve
Setting aside the fusion process for a moment, we focus on
the classification process

F
c // L.

Assume that F is a probability space,F can be denoted
equivalently as(F,B,Pr) wherePr is a probability mea-
sure andB is the associatedσ-field. Recall thatL is a two-
class label set, T=target, N=non-target, and L= {T,N}.



Finally, consider the hypothetical “perfect” classifierc∗, the
classifier which always matches a feature element with the
correct label. Subjecting our processes to tests we can run
a collection of features through the classifier and produce a
corresponding label. Givenx ∈ F and using the inverse
image of the classifier we can calculate the hit rate,

Ptp =
Pr{x | x ∈ c−1(T) ∧ x ∈ c∗−1(T)}

Pr{x | x ∈ c∗−1(T)}
(1)

and the false alarm rate,

Pfp =
Pr{x | x ∈ c−1(T) ∧ x ∈ c∗−1(N)}

Pr{x | x ∈ c∗−1(N)}
. (2)

The ordered pair(Pfp,Ptp) ∈ [0, 1] × [0, 1] is the ROC
for the system. Now it is desirable for a classifying sys-
tem to have a parameter associated with the classifier, such
that changing the parameter (which is possibly multidi-
mensional) changes the ROC. In such a case, a parame-
ter setΘ would be chosen such that the associated clas-
sifier family {cθ}θ∈Θ continuously maps the feature set
into the label set in a bijection, and such that the curve
f = (Pfp(cθ),Ptp(cθ)) is the projection of the trajectory
f̂ = (θ, Pfp(cθ),Ptp(cθ)) into thePfp − Ptp plane. In
this case we have that

Ptp(θ) =
Pr{x | x ∈ c−1

θ (T) ∧ x ∈ c∗−1(T)}
Pr{x | x ∈ c∗−1(T)}

(3)

and

Pfp(θ) =
Pr{x | x ∈ c−1

θ (T) ∧ x ∈ c∗−1(N)}
Pr{x | x ∈ c∗−1(N)}

. (4)

Call such a parameter set an admissible parameter set. Note
the parameter need not necessarily be associated with the
classifier of the system, but could be associated instead with
the sensor(s), processor(s), or any combination of the three.
What is key is that the final parameter set must produce a
corresponding ROC curve as a continuous curve from(0, 0)
through(1, 1) in thePfp−Ptp plane as the example in Fig-
ure 6 shows. The parameterθ is the threshold of the ROC.
Is there a threshold among a particular family of classifiers
that performs best? It is well-known and accepted that the
threshold for which the probability of a misclassification
(or Bayes error) is minimized is considered best and de-
noted the Bayes optimal threshold (BOT). That is, ifθ∗ is
the solution to the problem

min
θ∈Θ

[Pr{x ∈ F : (x ∈ c−1
θ (T) ∧ x ∈ c∗−1(N))

∨(x ∈ c−1
θ (N) ∧ x ∈ c∗−1(T))}]

= min
θ∈Θ

[Pr{x ∈ F : (x ∈ c−1
θ (T) ∧ x ∈ c∗−1(N))}

+Pr{(x ∈ c−1
θ (N) ∧ x ∈ c∗−1(T))}]

= min
θ∈Θ

[Pfp(θ)Pr(N) + (1− Ptp(θ))Pr(T)] (5)

wherePr(T) andPr(N) are the prior probabilities of a tar-
get class and non-target class, respectively, thenθ∗ is the
BOT for the family of classifiers{cθ}θ∈Θ.

Fig. 6: A Typical ROC Curve

An obvious question at this point is given two families of
classifiers,{aθ}θ∈Θ and{bπ}π∈Π, which classifier is best?
This is not an easy problem as seen in [6]. It is tempting
to use some measure of the BOT, but notice that the BOT
is dependent upon the selection of prior probabilities. The
priors are generally not known, so selection of a better clas-
sifier based on ROC curves may not be possible, since ROC
curves for different families can overlap. Rather, we should
ask the question, given an operating threshold of prior prob-
abilities, such asPr(T) = 1

4 , can we choose among com-
peting classifier families one that is superior to the others?
One way to answer the question is derived in a very unex-
pected way.

3.2 A Variational Calculus Solution to
Determining the Bayes Optimal Threshold of
a Classifier Family

We will only consider ROC curves that are smooth (dif-
ferentiable) over the entire range, i.e., given a ROC curve
f , f ∈ C1([0, 1]). Given a diagram describing the fam-
ily of classifiers{cθ}θ∈Θ, Θ an admissible parameter set,
(F,B,Pr) being a probability space of feature vectors,
andΘ an admissible parameter set, there is then a graph
G = {(θ, Pfp(θ),Ptp(θ) : θ ∈ Θ} which we call the ROC
trajectory. The projection of the ROC trajectory onto the
Pfp − Ptp plane,f = {(Pfp(θ),Ptp(θ)) : θ ∈ Θ}, is the
ROC curve of the classifier family. Hence forh ∈ [0, 1]
such thath = Pfp(θ) for someθ ∈ Θ, we have that
[Pfp]−1(h) = θ. It is now clear that the BOT of the
classifier family{cθ}θ∈Θ, θ∗, corresponds to some point
h∗ = Pfp(θ∗) ∈ [0, 1]. So what can we learn abouth∗?
Consider the problem stated as follows:

Among all smooth curves whose endpoints lie on
the point(0, 1) and the ROC curvey = f(h), find
the curve for which the functional

J[y] =
∫ h

0

[α + β|y′(t)|]dt (6)



has a minimum subject to the constraints:

y(0) = 0
y(h) = Ptp(θ) (7)

whereh = Pfp(θ) for someθ ∈ Θ and β =
1 − α with α = Pr(N), the prior probability of
no target.

This functional is finding the curve with the smallest
weighted Manhattan distance from the point(0, 1) to the
ROC curve. The constraints show that the curve must be-
gin at(0, 1) and terminate on the ROC curve. Any solution
to Equation 6 must solve Euler’s equation [7]

Ty −
d

dt
Ty′ = 0. (8)

whereT = α + β|y′(t)|, so thatTy = 0 and Ty′ =
βsign(y′(t)). Hence we have that

− d

dt
sign(y′(t)) = 0 (9)

so thatsign(y′(t)) is constant for allt ∈ [0, 1]. Thus
sign(y′(t)) can be0 or −1 since the curve has the con-
straints of the endpoints(0, 1) and a point on the ROC curve
f . Now if sign(y′(t)) = 0 for all t, theny(0) = y(h) =
y(1) due to the smoothness of the ROC curve. Thus Equa-
tion 6 becomes

J[y] = αh = Pr(N)Pfp(θ), (10)

with Pfp(θ) = 1. ThusPr(N) = 1 and the weighted man-
hattan length of curvey is therefore1. On the other hand, if
sign(y′(t)) = −1, then solving Equation 6 directly yields

αt|t=h
t=0 + [β(sign(y′(t)))y(t)]t=h

t=0 (11)

which reduces to

Pfp(θ)Pr(N) + (1− Ptp(θ))Pr(T). (12)

Notice that Equation 12 is identical to the unminimized
Equation 5. Therefore,h = h∗ which minimizes Equa-
tion 12 corresponds to the BOT,θ∗, of the family of classi-
fiers! The transversality condition of the variation is

α + β|y′(t)|]t=h∗

+ [β(f ′(t)− y′(t))(signy′(t))]t=h∗ = 0 (13)

so that
f ′(t)t=h∗ =

α

β

which is

f ′(t)t=h∗ =
Pr(N)
Pr(T)

. (14)

So the transversality condition tells us that the BOT of a
family of classifiers corresponds to a point on the ROC
curve which has as a derivative the prior ratioPr(N)

Pr(T) !
Therefore, if one presumes a prior ratio of1, then the point
on the curve corresponding to the BOT will have a tangent
to the ROC curve with slope 1. For many problems this will

make the BOT very easy to find given the graphing capabil-
ities of today’s computers, especially when the parameter
set,Θ, is multidimensional. This gives us an idea of what
would make a good functional for determining which clas-
sifier families are more desirable than others. An imme-
diate approach would be to choose a preferred prior ratio
and locate the BOTs for each competing classifier family.
Since all the BOTs will have the same slope for lines tan-
gent to their ROC curves at that point, the BOT with the
tangent line closest to the point (0,1) would be considered
the best choice. However, it is still possible that many ROC
curves could be constructed so that the BOT for each one
has the same tangent line. This would set up a rather large
equivalence class of classifier families. This is the same
problem faced when using area under the curve (AUC) of
a ROC curve as a functional. In both cases the underlying
posterior conditional probabilities are unknown and there
are just too many possible combinations of posterior distri-
butions that can produce ROC curves with the same AUC
(or BOT tangent lines).

3.3 A Functional for Comparing Classifier
Families

So, what criteria is best in selecting from among compet-
ing classifiers? We submit that first of all, among all ROC
curves representing the competing classifier families, iden-
tifying the the BOT for each ROC is most important, since it
is this threshold which minimizes the corresponding Bayes
error. We can easily identify this point on a ROC curve
presupposing only the prior probabilitiesPr(N) andPr(T),
as demonstrated earlier. Furthermore, our decision objec-
tive is, in addition to minimizing Bayes error, to minimize
Pfp while simultaneously maximizingPtp. The supremum
BOT among all ROC curves would be the point(0, 1), so
we can codify the decision objective mathematically.

Definition 8 (ROC Functional) Let {cθ}θ∈Θ be a classi-
fier family with an admissible parameter setΘ. Let f be
the corresponding ROC curve. Given dataΓ = (α0, β0, γ),
whereα0, β0 are acceptable levels forPfp(θ),Ptp(θ) re-
spectively andPr(N) = γ, determine the point on the
ROC curve,(Pfp(θ∗),Ptp(θ∗)), as the right endpoint of
the smooth curvey = ŷ which minimizes the functional:

J[y] =
∫ h

0

(α + β|y′|)dt

subject to the constraintsy(0) = 1 andy(h) = f(h) where
h = Pfp(θ) for someθ ∈ Θ. Call the minimized right
endpoint(h∗, f(h∗)) = (Pfp(θ∗),Ptp(θ∗)). Let

F (f) =
{

0 if Pfp > α0 or Ptp < β0

1-k otherwise

where

k =
√

Pfp(θ∗)2 + (1− Ptp(θ∗))2dt.

Call the functionalF ( · ;α0, β0, γ) theROC functional.



The ROC functional satisfies the requirements we set forth
in our decision objectives. Taking the Euclidean distance
between the point(0, 1) to the point on the ROC corre-
sponding to its system’s BOT also allows us to make a bet-
ter preference from among ROC curves, when more than
one curve contains a BOT with the smallest weighted Man-
hattan distance from the point(0, 1).

Now given a finite collection of competing classifier fam-
ilies

B = {b1 = {bθ}θ∈Θ1 , b2 = {bθ}θ∈Θ2 , . . . , bn = {bθ}θ∈Θn
}

where{Θ1,Θ2, . . . ,Θn} is a collection of admissible pa-
rameter spaces, we say that for fixed data(0, β0, γ0),

bi � bj ⇐⇒ F (fbi
; 0, β0, γ0) ≥ F (fbj

; 0, β0, γ0). (15)

In this way we have established a partial order on the setB
of competing classifiers. Similarly, since there is a ROC
curve associated with each classifier family, we say that

fbi �ROC fbj ⇐⇒ F (fbi ; 0, β0, γ0) ≥ F (fbj ; 0, β0, γ0).
(16)

4 Fusors

We are now in a position to define a system in which we
can compete fusion rules. Suppose we have a system such
as that in Figure 2. Each branch has a ROC curve that can
be associated with the classifier family, and we now have
a viable means of competing each branch. If we can only
choose among the two event-decision systems, take the one
whose associated ROC functional is greater. Therefore, we
can also compete these two event-decision systems with a
system that fuses the two data sets (or the feature sets for
that matter) by fixing a third classifier family and finding the
ROC functional of the event-decision system corresponding
to the fused data (features). If the fused system’s ROC
functional is greater than either of the original two, then the
fusion rule is in fact a fusor. Repeating this process on a
finite number of fusion rules, we discover a finite collection
of fusors with associated ROC functional values. The fusor
that is the best choice is then selected by finding the fusor
corresponding to the largest ROC functional value.

Do you want to change your a priori probabilities? Sim-
ply adjustγ in the ROC functional’s data and recalculate
the BOTs for each system. Then calculate the ROC func-
tional for each corresponding ROC and choose the largest
value. The corresponding fusor is then the best fusor to
select under your criteria. We have for each set of ROC
functional data and each finite collection of fusion rules, a
partial ordering of fusors.

Definition 9 (fusor) A fusor is a fusion rule of an event-
decision process which performs by means of a functional
on its corresponding ROC curve better than any branch of
the graph of the original processes before applying a fusion
rule.

By way of example, suppose we start with the system
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p1 // F1

c1 // L1
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D2
p2 // F2

c2 // L2

and consider a functionalF on the ROC curvesfc1 and
fc2 (F being created under the assumptions and data of the
researcher’s choice). Then given fusion rulesR andT such
that
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c // L
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let fR and fT refer to the corresponding ROC curves to
each of the fusion rule’s systems (as a possible example
of ROC curves of competing fusion rules see Figure 7 ).
Then we have that ifF (fR) ≥ F (fci

) for i = 1, 2 and if
F (fT) ≥ F (fci) for i = 1, 2 then we say thatR, T are
fusors. Furthermore, supposeF (fR) ≥ F (fT). Then we

Fig. 7: ROC curves of Competing Fusion Rules

have thatR �ROC T. Thus,R is the fusor a researcher
would select under the given assumptions and data.



5 Conclusion

A fusion researcher should have a viable method of com-
paring fusion rules. It is required to define fusion correctly,
and to demonstrate to the scientific community improve-
ments over existing methods. We have shown in this pa-
per that every fusion system can generate a corresponding
ROC curve, and under a mild assumption of smoothness of
the ROC curve, a Bayes Optimal Threshold (BOT) can be
found for each classifier family. Given additional assump-
tions on the a priori probabilities of a target or non-target,
along with given thresholds forPfp andPtp, a functional
can be generated which will yield a real value for each ROC
curve. This functional called the ROC functional will gen-
erate a partial order of classifier families, fusion rules, and
ultimately fusors, which can then be used to select the best
fusor from among a finite collection.

Future research in this area will include looking for dif-
ferent functionals which may be of interest to researchers,
considering fusion systems with greater than two-class la-
bel sets as the end result, and robustness of classifiers and
fusors. Also, more research must be done in lessening the
assumption of smoothness in the ROC curve since many
ROC curves can only be approximated.
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