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Abstract

On-chip cache sizes are likely to continue to grow over the next
decade as working sets, available chip capacity, and memory la-
tencies all increase. Traditional cache architectures, with fixed
sizes and discrete latencies, lock one organization down at design
time, which will provide inferior performance across a range of
workloads. In addition, expected increases in on-chip communi-
cation delays will make the time to retrieve data in a cache a func-
tion of the data’s physical location. Consequently, cache access
times will become a continuum of latencies rather than a single
one. This non-uniformity will make static organizations partic-
ularly limited for single-chip servers, in which multiple proces-
sors will be different distances from the cache controller. In this
paper, we propose a set of adaptive, high-performance cache de-
sign, called Non-Uniform Cache Architectures (NUCAs). We ex-
tend these physical designs with logical policies that allow im-
portant data to migrate closer to the processor within the same
cache. We show that these adaptive level-two NUCA designs pro-
vide 1.6 times the performance of a Uniform Cache Architecture of
any size, and that the adaptive NUCA scheme outperforms static
NUCA schemes by 9% for multi-megabyte, on-chip server caches
with large numbers of banks.

1 Introduction

Long memory latencies and limited off-chip bandwidth
have driven steady, consistent increases in the sizes of on-
chip caches. Processors in late 1980s only included a small
level-1 cache (such as the 8KB cache on the first Intel
80486), and these structures grew to 64-128KB in the mid
1990’s [19]. Today’s high performance processors have
continued to increase cache capacities, such as the Alpha
21364 [10] with a 1.5MB L2 cache, and the HP PA-8700
with 2.25MB of combined on-chip cache capacity [12]. The
size of cache memories integrated on the processor dies are

expected to continue to increase as the bandwidth demands
on the package grow [14], as smaller technologies permit
more bits per ����� , and as larger workloads produce cor-
respondingly larger working sets. Demonstrating the likely
trend toward even larger on-chip memory systems is the de-
velopment of large off-chip level-3 caches in today’s com-
puters, such as those found in IBM’s POWER4 systems [8].

Current multi-level cache hierarchies are organized into
a few discrete levels. Typically, each level replicates
the contents of the smaller level above it (if inclusion is
obeyed), and accesses to the levels in the cache hierarchy
are serialized. An access to main memory requires misses in
all levels of the hierarchy, assuming that parallel lookups are
not used. Cache designers have typically sized the caches so
that each successively larger level of cache has an order of
magnitude greater capacity and access time. For many ap-
plications, the large increase in cache capacity at each level
greatly reduces number of misses there and compensates for
the added overheads of having the additional level.

In future technologies, large on-chip caches with a sin-
gle, discrete hit latency will be undesirable, due to increas-
ing global wire delays across the chip [23]. Data residing
in the part of a large cache close to the processor could be
accessed much faster than data that reside physically farther
from the processor. For example, according to our projec-
tions the closest bank in a 16-megabyte, on-chip level-two
cache built in a 50-nanometer process technology, could be
accessed in 5 cycles, while an access to the farthest bank
might take 25 cycles. A secondary problem with a mono-
lithic cache architecture is that it can force accesses to be
sequentialized, resulting in higher latencies when accesses
are pending. While this problem can be mitigated by adding
additional ports to the cache, the cost of these ports for a
large cache is prohibitive.

Allowing the banks within a cache to be accessed at
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Figure 1. Level-2 Cache Architectures.

their best individual speeds has the potential to improve
performance. In this paper, we evaluate physical and log-
ical designs for Non-Uniform Cache Access (NUCA) orga-
nizations and compare them to traditional Uniform Cache
Access (UCA) architectures. Figure 1 shows the range of
designs that we evaluate. We first examine an aggressive
UCA organization (a) with multiple independently accessi-
ble banks but equal access times to all banks. We then ex-
amine three NUCA architectures: (b) Static-NUCA-1: mul-
tiple independent banks with with different latencies and
each bank possessing a private channel to the processor; (c)
Static-NUCA-2: the same organization as S-NUCA-1 but
with a switched network to reduce the interconnect costs
and increase the scalability; and (d) Dynamic NUCA: which
employs a dynamic policy to migrate frequently used data
to the banks closer to the processor. To implement the mi-
gratory policy requires a consistent addressing scheme so
that the desired data can always be located within the cache.
For this, we propose “spread sets”, in which multiple banks
each hold one way of a set. The goal of our simple mi-
gratory policies of D-NUCA is to place the most-recently
used line in each set into the bank closest to the proces-
sor, while limiting the number of times that line must be
copied from bank to bank. Our polices gradually migrates
frequently used lines into banks progressively closer to the
processor. If a line is accessed infrequently, the migration
policies move it to the farthest bank before finally evicting
it to main memory.

Our results show that both latency and concurrent access
are critical to high performance level-2 caches. Increasing
the number of cache banks helps both the UCA and NUCA
architectures, but the switched networks of S-NUCA-2 and
D-NUCA provide sufficiently low link contention to differ-
ent banks without imposing the more substantial area (and
therefore speed) penalties from the dedicated bus schemes.
The migration of data in D-NUCA enables this scheme to
outperform the static NUCA architectures because key data
is automatically moved into closer banks, a strategy that
permits stable performance across applications. In the UCA

and static NUCA schemes, larger caches can actually per-
form worse than smaller caches if the reduction in miss rate
does not offset the increase in access time to critical data
that may be mapped to a distant region of the cache. The D-
NUCA scheme permits a single large cache to outperform
all smaller cache sizes, across all applications, resulting in
greatly increased performance stability for a given cache ca-
pacity.

The remainder of this paper is organized as followed.
Section 2 presents the basic methodology for evaluating
cache architectures, including our method of estimating
cache latencies and a description of the microprocessor tim-
ing simulator. Section 3 describes the baseline conven-
tional cache organization and quantifies how they are likely
to perform in emerging fast clock rate and wire-dominated
technologies. Section 4 details the architecture of a scal-
able non-uniform access cache including both cache banks
and network alternatives. Section 5 presents several data
mapping policies to migrate important data to nearer cache
banks to exploit the non-uniformity of the cache architec-
ture. Our results show that the best policy achieves an av-
erage hit time of 11.5 cycles compared to 69 cycles for a
uniform access cache 16MB cache, and 18 cycles for a stat-
ically mapped NUCA cache. This improvement in access
time results in a 9% performance (IPC) improvement over a
static NUCA cache. We discuss related work in Section 6,
and conclude in Section 7.

2 Experimental Methodology

To evaluate a spectrum of alternatives, we developed
simulators for the level-2 cache architecture and wedded
them to an existing microarchitecture simulator. To estimate
the cache bank delay, we used Cacti 3.0 which accounts
for capacity, organization, and fabrication technology [30].
Since Cacti produces timing estimates in nanoseconds, we
converted these cache delays to processor cycles by assum-
ing an aggressive clock of 8 FO4 inverter delays per cycle



Phase L2 load Phase L2 load
SPECINT2000 FFWD RUN acc/Minstr SPECFP2000 FFWD RUN acc/Minstr
176.gcc 2.367B 300M 25,900 172.mgrid 550M 1.06B 21,000
181.mcf 5.0B 200M 260,620 177.mesa 570M 200M 2,500
197.parser 3.709B 200M 14,400 173.applu 267M 650M 43,300
253.perlbmk 5.0B 200M 26,500 179.art 2.2B 200M 136,500
256.bzip2 744M 1.0B 9,300 178.galgel 4.0B 200M 44,600
300.twolf 511M 200M 22,500 183.equake 4.459B 200M 41,100

Speech NAS
sphinx 6.0B 200M 54,200 cg 600M 200M 113,900

bt 800M 650M 34,500
sp 2.5B 200M 67,200

Table 1. Benchmarks used for performance experiments

at each technology1. To model the interconnect between the
cache banks, we used existing wire delay models [1] and for
the switched networks, we incorporated simple delay esti-
mates for the switches obtained from circuit designs and
HSPICE simulations. For all L2 cache configurations we
simulate 64-byte lines and, unless otherwise stated, assume
a 4-way set-associative L2.

To model the effects of different cache organizations
on performance, we used the sim-alpha simulator [7],
which models an Alpha 21264 core in detail [19]. All mi-
croarchitectural parameters in the processing core match
those of the 21264, including issue width, fetch bandwidth,
and clustering. The L1 data cache of sim-alpha is sim-
ilar to those of the 21264: 3-cycle access to the 64KB L1
data cache (32-byte lines, 2-way associative), and single-
cycle access to the similarly configured L1 I-cache. As with
the cache memory system, we assumed (somewhat opti-
mistically) that the processor clock period is equal to 8 FO4
inverter delays. Finally, we assume an unloaded 132-cycle
access to main memory, obtained by scaling the memory
latency of an actual Alpha 21264 system by the more ag-
gressive clock rate.

Although our cache delay estimates in cycles are scaled
for future technologies, the 4-wide issue processor that we
simulate is likely to be significantly less powerful than the
processors that will be available in the studied timeframe.
However, we note that more powerful processors will place
a higher load on the L2 cache, particularly if L1 caches con-
tinue their recent decline in size. The results presented in
this paper are thus conservative, as we expect even better
relative performance for the NUCA strategies with a higher-
performing core and imposing more cache contention.

Table 1 shows the benchmarks used in the experiments
of this paper. The suite of 16 applications includes six

1One FO4 is delay of one inverter driving four copies of itself. Delays
measured in FO4 are independent of technology, and one FO4 roughly
corresponds to 360 pico-seconds times the transistor’s drawn gate length
in microns [13].

floating-point benchmarks from the SPEC2000 suite [32],
six SPEC2000 integer benchmarks, three scientific appli-
cations from the NAS suite [4], and one speech recogni-
tion benchmark called Sphinx [22]. For each benchmark
we simulated the sequence of instructions which capture
the core repetitive phase of the program. The phases were
determined empirically by plotting the L2 miss rates over
one execution of each benchmark, and choosing the small-
est subsequence that captured the recurrent behavior of the
benchmark. For each benchmark, Table 1 lists the number
of instructions skipped to reach the phase (FFWD) and the
number of instructions simulated (RUN). A more rigorous
method of choosing simulation phases will be used in fu-
ture work [29]. Finally, Table 1 shows the anticipated load
on the L2 cache by listing the number of L2 accesses per 1
million instructions given 64KB level-1 instruction and data
caches (this metric was proposed by Kessler et al. [20]).

3 Uniform Access Caches

Modern level-two caches no longer employ a single
monolithic data array, and instead are subdivided into mul-
tiple smaller sub-banks to minimize the access time. In ad-
dition, they are typically single ported as adding additional
physical ports to the SRAM cells incurs a tremendous area
penalty. Popular cache modeling tools, such as Cacti, en-
able fast exploration of the cache design spaces by auto-
matically optimizing for sub-bank count, size, and orienta-
tion [17, 35]. However, as cache capacities grow, existing
cache architectures and the tools used to model them break
down. First, large caches are much more sensitive to wire
delays and great care must be taken to optimize and accu-
rately model the communication paths. Second, our exper-
iments show that sequentialized access to large L2 caches
increases the average access time by a factor of 8-10 over
the access time of a single access to an idle cache, indicating
a greater demand for cache bandwidth.

An alternate and emerging cache architecture is shown in



Technology L2 Num. Num. Unloaded Loaded Miss
(nm) capacity banks sub-banks latency latency IPC rate
180 1MB 8 4 8 18.8 0.46 0.31
130 2MB 8 4 11 27.6 0.47 0.23
100 4MB 8 4 14 36.7 0.47 0.21
70 8MB 16 8 20 46.3 0.49 0.18
50 16MB 32 4 29 68.8 0.43 0.14

Table 2. Performance of UCA organizations
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Figure 2. Banked cache design

Figure 2. A large cache is first partitioned into banks, each
with its own dedicated address and data bus. Then each
bank is divided into sub-banks to minimize for local bank
access time. This architecture has two advantages over the
traditional monolithic design. First, contention can be re-
duced as multiple cache references can proceed simultane-
ously, as long as a bank conflict does not occur. Second,
the coarser grain partitioning enables the bus wires to each
bank to be engineered separate from a bank design, and thus
be made faster. We use as our baseline this more aggressive
cache architecture so as to not overemphasize the benefits of
the non-uniform architectures presented in Sections 4 and 5.
To model this uniform cache access (UCA) architecture, we
start with an updated version of Cacti 3.0 which enables the
user to optimize for both banking and sub-banking. How-
ever, to more realistically model large caches, we replace
the Rubenstein RC wire delay model [15] in Cacti 3.0 with
a more aggressive repeater and scaled wire model of Agar-
wal et al. [2] for the long address and data busses to the
banks. Our complete cache delay model includes the access
time of the banks, the transmission time on the wires, and
the contention for the banks and the wires.

Table 2, shows the results for the UCA organization us-
ing the delay modeling described above, the sim-alpha
simulator, and our custom L2 cache simulator. We vary the
technology generation, and assume the largest cache size
predicted by the SIA Roadmap [28], from 1MB of on-chip
L2 at 180 nanometer devices to 16MB at 50 nanometer
devices. The unloaded latency is the average access time
assuming a uniform bank access distribution and no con-
tention. The loaded latency is obtained by averaging the L2

cache access time, including contention, across all of the
benchmarks. The reported IPCs are the harmonic mean of
all IPC values across our benchmarks, and the cache config-
uration displayed for each capacity is the one that produced
the best IPC.

As the cache capacities increase, the average access la-
tencies increase by a factor of 2-3 to a maximum of nearly
69 cycles for a 16MB cache when contention is considered.
By contrast, modeling a more conventional cache with only
sub-banking and sequential access, as produced by Cacti
2.0, has a average loaded latency of nearly 600 cycles for
the same configuration. With the banked UCA cache, the
miss rate steadily drops from 0.31 to 0.14 as capacity is in-
creased. However, note that the best average performance
is achieved at a cache capacity of only 8MB because the
decrease in miss rate is counteracted by the increase in ac-
cess time. Some of the applications in our benchmark suite
have working sets smaller than 8MB; for these applications
increasing the cache capacity only increases latency with-
out helping the miss rate because the working set just gets
spread out over a larger and slower cache structure. Bet-
ter performance could be obtained for these benchmarks if
closer banks can be accessed as faster speeds than more dis-
tant banks. The next section presents and evaluates two de-
signs that permit non-uniformity in the bank access laten-
cies.

4 Static Non-Uniform Access Caches (S-
NUCA)

When the entire chip was reachable in one cycle, only
small fractions of a cycle would differentiate bank access
latencies within a cache. However, as global wire delays
grow, the opportunity for accessing close banks in a cache
faster than far banks will grow correspondingly. To ac-
cess banks with non-uniform latencies in a single cache,
the banks must be independently accessible, and the routing
topology to and from the banks must support non-uniform
accesses–one data bus shared among all the banks would
not permit non-uniform access.

In this section, we examine two NUCA designs that have
similar bank organizations but different interconnects: one
using per-bank private channels (S-NUCA-1), and one us-



Technology L2 Num. Num. Unloaded latency Loaded
(nm) size banks sub-banks bank min max avg. latency IPC
180 1MB 4 4 6 6 7 7 17.2 0.47
130 2MB 16 8 5 7 11 10 24.4 0.48
100 4MB 32 4 5 8 15 13 31.8 0.49
70 8MB 32 4 6 10 21 16 36.3 0.53
50 16MB 32 4 7 13 29 21 46.9 0.52

Table 3. S-NUCA-1 performance

ing a lightweight switched 2-D mesh network that connects
all the banks and the controller (S-NUCA-2). The S in
S-NUCA denotes static; cache lines are statically mapped
to a bank and cannot migrate to other banks. We explore
that migratory capability with dynamic NUCA (D-NUCA)
schemes in Section 5.

4.1 Channel implementations (S-NUCA-1)

We first evaluate a NUCA implementation that closely
resembles the UCA organization of the previous section (de-
picted in Figure 2), except that the controller can treat each
bank as an independently addressable unit with its own dis-
tinct latency. As with all implementations measured thus
far, each bank is 4-way set associative, and the organiza-
tions at each size (number of banks and sub-banks) are those
that maximize overall performance.

In a NUCA implementation, there are three contributors
to latency of each bank: the wire delay required to route
addresses and data to and from the bank, the bank access
time, and any contention incurred at the bank or channel. As
the number of banks for a given size increases, the routing
delay becomes a larger component of the access time and
the bank access delay becomes smaller. In our model of
the S-NUCA-1 organization, we assume that the wire delay
is included in bank contention; that the controller cannot
send a new request to a bank on its private channel until the
previous request has returned.

In Table 3, we show a breakdown of the access delays
as a function of technology: the raw bank access delay, the
minimum, average, and maximum access latency, and the
average latency seen at run-time (including channel con-
tention). We assume that the cache controller resides in the
middle of one side of the bank array, so the farthest distance
that must be traversed is half of one dimension and the en-
tire other dimension.

As technology advances, the access times of individual
banks remain roughly the same, but the worst-case routing
delay grows by 4 to 8 cycles each generation. At 180nm,
the routing delay is negligible (one cycle), but at 50nm, the
routing delay ranges from a best case of 6 cycles to a worst
case of 22 cycles. The S-NUCA-1 cache shows lower la-
tency than the UCA organization at all caches greater than
1MB. At 16MB, the S-NUCA-1 average latency is 47

cycles instead of 69 for UCA. At 8MB, the optimal S-
NUCA-1 organization has more banks than the optimal UCA
organization, since more banks permit lower latency in a
non-uniform cache. However, at 16MB, the area overhead
added by the private channels limits both organizations to
32 banks. The best cache size for the S-NUCA-1 cache is
8MB, since the static data mapping causes overly slow ac-
cess for some key blocks in the 16MB cache. Performance
for the simulated 16MB cache system is 12% worse, on av-
erage, than for the 8MB cache system.

Switch
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Sub-bank

Wordline driver
and decoder

Predecoder

Sense amplifier

Tag array

Data bus
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Figure 3. Switched NUCA design

4.2 Switched implementations (S-NUCA-2)

While the S-NUCA-1 organization shows improved per-
formance over the UCA cache, that organization doesn’t
scale to small technologies, simply due to the large num-
ber of wires that will be required to have private channels
to the increasing number of banks. Figure 3 shows an al-
ternative static NUCA design, called S-NUCA-2, that uses
a lightweight 2-D mesh, with point-to-point links, and sim-
ple routers at each bank intersection to route addresses, read
data, and writes. Each link has separate wires for bidirec-
tional routing. We modeled the switch logic in HSPICE to
obtain the FO4 delay for use in determining routing delay,
which is the sum of the wire delay between two banks and
switch delay, multiplied by the number of hops.

Since we assume that the network is synchronous, each
switch-to-switch delay must take an integer number of cy-
cles (the switches effectively function as latches). Thus, if
the wire delay along one bank was 2.3 cycles, the penalty



Technology L2 Num. Num. Unloaded latency Loaded
(nm) size banks sub-banks bank min max avg. latency IPC
180 1MB 8 4 5 5 9 7 10.7 0.48
130 2MB 8 8 6 7 11 9 12.4 0.53
100 4MB 16 4 6 6 16 11 14.9 0.57
70 8MB 32 4 6 7 19 13 15.8 0.65
50 16MB 64 4 6 6 26 16 17.7 0.70

Table 4. S-NUCA-2 performance

between switches would be 3 cycles. We make one opti-
mistic assumption, that requests can be buffered at banks in
the case of a bank conflict. This assumption is comparable
to assuming that an intelligent scheduler places a request on
the network so that it arrives immediately after the bank has
just become free.

Table 4 shows the performance of the S-NUCA-2 de-
sign, with the same set of experiments shown in Table 3.
For 4MB caches and up, the minimum, average, and maxi-
mum bank latencies are significantly reduced, for two rea-
sons. First, the switched network consumes much less area
than the private, per-bank channels, resulting in a smaller
array and faster access to all banks. Second, since the wire
overhead per bank is reduced, larger numbers of banks are
possible: the optimal performance point of S-NUCA-2 is at
64 banks, not 32 as in S-NUCA-1. Since the latencies are
lower, the queuing delay is less severe, resulting in signif-
icantly lower average access penalties. Finally, allowing a
scheduler to hide the latency of the routing delay by putting
requests on the switched network early prevents the com-
munication delay from causing bank contention. The S-
NUCA-2 cache is faster at every technology than S-NUCA-
1, and furthermore at 50nm with a 16MB cache, the average
loaded latency is a mere 18 cycles, as opposed to 47 cycles
for S-NUCA-1. That reduction causes a 35% average im-
provement in IPC across the benchmark suite.

5 Dynamic NUCA Implementations

To enhance the effectiveness of NUCA architectures,
more frequently accessed data should be placed in closer
banks while less important (yet still cached) data should be
placed in farther banks. In this section, we evaluate a num-
ber of policies that automatically migrate data among the
banks to reduce average L2 cache access time and improve
overall performance. With migration policies, we must an-
swer three fundamental questions about the management of
the data: (1) how the data are mapped to the banks–in which
banks and which cache bank lines can the data reside, (2)
how are the possible locations searched to find the data, and
(3) under what conditions should the data be migrated from
bank to bank.

5.1 Logical to Physical Mapping

At one extreme are the S-NUCA strategies, in which a
line of data can only be mapped to a single statically deter-
mined bank. At the other extreme, a line could be mapped
into any cache bank. While this maximizes the placement
flexibility, the overhead of locating the line may be too large
as each bank must be searched, either through a centralized
tag store or by broadcasting the tags to all of the banks. We
explore a solution called spread sets in which a the multi-
banked cache is treated as a set-associative structure, each
set is spread across multiple banks, and each bank holds one
“way” of the set. The collection of banks used to imple-
ment this associativity is called a bank set and the number
of banks in the set would correspond to the associativity. A
cache can be comprised of multiple bank sets. For example,
a cache array with 32 banks could be organized as a 4-way
set-associative cache, with eight bank sets, each consisting
of 4 cache banks. To check for a hit in a spread-set cache,
the pertinent tag in each of the 4 banks of the bank set must
be checked. Note that the primary distinction between this
organization and a traditional set-associative cache is that
the different associative ways have different access laten-
cies.

We propose three methods of allocating banks to bank
sets and ways: simple mapping, fair mapping, and fast
shared mapping. With the simple mapping, shown in Fig-
ure 4a, each column of banks in the cache becomes a bank
set, and all banks within that column comprise the set-
associative ways. Thus, the cache may be searched for a
line by first selecting the bank column, the selecting the set
within the column, and finally performing a tag match on
banks within that column of the cache. The two drawbacks
of this scheme are that the number of columns may not cor-
respond to the number of desired ways in each bank set,
and that latencies to access all bank sets are not the same;
columns (bank sets) farther from the L2 cache controller
will be slower to access than columns closer to it.

Figure 4b shows the fair mapping policy, which ad-
dresses both problems with the simple mapping policy at
the cost of some additional complexity. The mapping of sets
to the physical banks is indicated with the arrows and shad-
ing in the diagram. With this model, banks are allocated
to bank sets so that the average access time across all bank



(a) Simple Mapping (b) Fair Mapping (c) Fast Shared Mapping

Figure 4. Mapping bank sets to banks.

sets are equalized. Since bank sets no longer correspond
directly to a fixed physical topology (such as columns), the
number of bank sets can be chosen to provide the desired
number of ways per bank set. However, fair mapping does
not completely solve the problem of uneven latencies across
bank sets, as not all bank sets can have their most frequently
accessed bank located next to the L2 cache controller.

The fast shared mapping policy, shown in Figure 4c, at-
tempts to equalize all bank sets by allowing them to share
the banks closest to the cache controller. This policy re-
quires more complex per-bank and line migration control,
but has the potential to have the most important lines from
every bank set in the closest banks. The shading in the di-
agram indicates the intensity of contention for the banks in
the row nearest to the cache controller. We do not evaluate
this policy in this paper, leaving it for future work.

5.2 Locating Data

Searching for a line among a bank set can be done with
two distinct policies. The first is incremental search, in
which the banks are searched in order starting from the clos-
est bank until the data is found or a miss occurs in the last
bank. Since the closest banks ideally hold the needed data
the majority of the time, this policy minimizes the number
of messages in the cache network, and keeps energy con-
sumption low, since fewer banks are accessed while check-
ing for a hit.

The second policy is called multicast search, in which
the requested address is multicast to some or all of the banks
in the requested bank set. Lookups proceed roughly in par-
allel, but at different times due to routing delays through the
network. This scheme offers higher performance at the cost
of increased energy consumption and network contention,
since hits to banks far from the processor will be serviced
faster than in the incremental search policy. Miss signals
must still be propagated across the banks since off-chip
memory must be accessed only if the data is not found in
any bank.

These two policies are actually the two endpoints of a

continuum. Intermediate policies are limited multicast, in
which the first

�
of the � banks in a bank set are searched

in parallel, followed by an incremental search of the rest.
Most of the hits will thus be serviced by a fast lookup, but
the energy and network bandwidth consumed by accessing
all of the ways at once will be avoided. A second interme-
diate policy is limited search, in which the first few close
banks are searched incrementally, minimizing energy con-
sumed on hits, and the remaining banks are searched with a
multicast, bounding the worst-case hit delay. The last inter-
mediate policy we discuss is partitioned multicast, in which
the bank set is broken down into subsets of banks, each of
which is searched iteratively, but the members of the subset
are searched in parallel.

5.3 Migration of Data

Since the goal of the dynamic NUCA approach is to
maximize the number hits in the closest and fastest banks,
a natural policy is to use the replacement statistics of the
cache, such as the least-recently-used (LRU) bits, to dic-
tate the location of the lines within the spread set. Thus the
most-recently used line is moved to the closest bank, the
second most-recently used line moved to the second-closest
bank, and so on. However, this approach results in a tremen-
dous amount of traffic and data movement among the banks.
On every miss, an N-way bank set associative cache would
require N lines to be moved, as each line in the set would be
migrated to the next lower position in the LRU list and the
new line brought into the head of the line. On hits, the num-
ber of copies would also be substantial when the hit line was
located in less-recently-used block position and was then
promoted to the most-recently-used bank. Feasible policies
must consider the primary cost of contention in the network
when moving among the banks and the secondary cost of
power consumption that accompanies the bank accesses for
data movement.

We propose using generational promotion to reduce the
number of copies, while still approximating an LRU list
mapped onto the physical topology of a bank set. Gener-



ational replacement was recently proposed by Hallnor et al.
for making replacement decisions in a software-managed
UCA called the Indirect Index Cache [11]. In our scheme,
when a hit occurs to a cache line, it is swapped with the line
in the bank that is the next-closest to the controller from the
bank holding the accessed line. With that policy, heavily
used lines will migrate toward close banks, and infrequently
used lines will be swapped into the banks further from the
controller. We evaluate several heuristics for performing the
swap, varying the number of hits required to cause a line to
be promoted and the distance (measured in banks) a line
moves toward the controller on each promotion. These pa-
rameters affect the speed at which line migrate as well as
the traffic generated to perform the migration.

A second key question for data migration is the place-
ment of incoming block resulting from a cache miss. If
the incoming block is loaded into the set’s closest bank, it
may displace an important and frequently accessed block.
However, if it is placed at the most distant bank, subsequent
accesses to the new block will be slow until it has been ac-
cessed enough to be promoted. We evaluate two policies:
a zero-copy policy, in which the incoming line replaces the
victim in the chosen bank, and a one-copy policy, in which
the incoming line forces out a line, which then evicts an
even lower-priority line. The one-copy policy is useful for
moving misses quickly into the close banks without evicting
important lines from the cache altogether.

5.4 D-NUCA Policies

The policies we explore for D-NUCA consist of four
components:

� Mapping: simple or fair.

� Search: multicast, incremental, or combination. We
restrict the combined policies such that a block set is
partitioned into just two groups. Each group can vary
in size (number of blocks) and the method of access
(incremental or multicast).

� Promotion: described by promotion distance, mea-
sured in cache banks, and promotion trigger, measured
in number of hits to a bank before a promotion occurs.

� Eviction: identifies the location to place an incoming
block and where to put the block it replaces.

Our baseline configuration is the simplest policy in
which uses simple mapping, multicast search, one-bank
promotion on each hit, and a replacement policy that evicts
the least-recently-used block and inserts the incoming block
in its place. To examine how this policy compares to pure-
LRU, we measured the distribution of accesses across the

sets for an 8-way set associative cache and a correspond-
ing 16MB D-NUCA cache with the aforementioned param-
eters. Figure 5 shows the distribution of hits to the various
sets for each cache, averaged across the benchmark suite.
The graph shows that most hits are concentrated in the first
two ways of the set for both configurations. The concentra-
tion is less pronounced for the D-NUCA runs, simply be-
cause the generational promotion policy does not maintain
perfect LRU ordering.
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Figure 5. Way distribution of cache hits

5.5 Baseline Performance

Table 5 shows the performance of the baseline D-NUCA
configuration across the span of cache sizes and technolo-
gies. For each technology (and hence capacity) we chose
the bank organization that maximizes performance (IPC).
As the capacities and corresponding clock rates increase
with the smaller technologies, the average access latency
increases by only 20%. Unlike the UCA and bus-based
S-NUCA-1 architectures, this D-NUCA strategy achieves
larger capacities with only a small increase in average ac-
cess time, resulting in a monotonic increase in perfor-
mance across the technologies. For the smaller caches,
the D-NUCA organization provides a small ( �

�
%) perfor-

mance gain over the best of the S-NUCA or UCA organi-
zations. The disparity grows as the cache size increases,
with the base 16MB D-NUCA organization showing an av-
erage 10% performance boost over the best-performing S-
NUCA organization. For the 50nm, 16MB cache, the av-
erage loaded access latency is 12.4 cycles. The data mi-
gration enables such a low average latency, which, despite
the cache’s larger capacity and smaller device sizes, is less
than the average hit latency for the 180nm, 1MB UCA and
S-NUCA-1 cache organizations.

Table 5 also lists miss rates and the total number of ac-
cesses to individual cache banks. The number of bank ac-
cesses decreases as the cache size grows because the miss



Technology Bank org. Unloaded latency Loaded Miss Bank
(nm) L2 size (rows x sets) bank min max avg. avg. IPC rate accesses/set
180 1MB 4x4 3 4 12 8 10.0 0.50 0.30 124M
130 2MB 8x4 3 4 16 10 10.8 0.55 0.23 110M
100 4MB 4x4 5 5 13 9 11.1 0.62 0.20 95M
70 8MB 8x4 5 5 17 11 11.3 0.69 0.15 85M
50 16MB 8x8 5 5 25 15 12.4 0.77 0.11 147M

Table 5. D-NUCA base performance

Av. Miss Bank Av. Miss Bank
Policy lat. IPC rate access Policy lat. IPC rate access

Mapping Promotion
Fair 11.7 0.78 0.11 147M 1-bank/2-hit 12.5 0.76 0.12 145M

Search 2-bank/1-hit 12.0 0.77 0.11 147M
Incremental 17.9 0.70 0.11 77M 2-bank/2-hit 12.4 0.77 0.12 144M
2 mcast + 6 inc 15.2 0.73 0.11 84M Eviction
2 inc + 6 mcast 15.1 0.74 0.11 84M insert head, evict random 11.5 0.76 0.12 154M
2 mcast + 6 mcast 13.6 0.76 0.11 92M insert bank 3, evict random 11.6 0.76 0.12 154M

Baseline: simple map, multicast, 1-bank/1-hit, insert at tail 12.4 0.77 0.11 147M
Best: fair map, 2 mcast + 6 mcast, 2-bank/1-hit, insert at tail, evict random 11.5 0.76 0.11 90M

Table 6. D-NUCA policy space evaluation

rate decreases and fewer cache fills and evictions are re-
quired. However, at 16MB the number of accesses increases
suddenly because the multicast policy generates substan-
tially more cache bank accesses when the number of banks
in each bank set doubles from 4 to 8.

5.6 Policy Exploration

Table 6 shows the effect of adjusting the policies inde-
pendently on the performance of the baseline configuration.
Changing the mapping function from simple to fair results
in a 6% reduction in average access time, but only a small
(1.5%) improvement in overall performance. Shifting from
the baseline multicast to a purely incremental search pol-
icy substantially reduces the number of bank accesses (from
147 million to 77 million). However, even though most data
is found in one of the first two banks, the incremental pol-
icy increases the average access latency from 12.4 cycles to
17.9 cycles and reduces performance by 10%. However, the
hybrid policies gain back half of the loss in access latency
(15.1 cycles) and nearly all of the performance, while still
eliminating most of the extra bank accesses.

The data promotion policy (where to move data on hits)
minimizes average latency with fast (2-bank) promotions on
each hit. However, the number of bank accesses is lower by
2% if two hits are required before a datum is required, with
no noticeable drop in performance.

Finally, the best eviction policy is as shown in the base
case, replacing the block in the tail. By replacing the head or
3rd blocks, and copying those into a random, lower-priority

set, the average hit time is reduced from 11.5 to 10.8 and
11.2 cycles, respectively. However, the miss rate increases
from 11.2% to 12.0%, offsetting the gains from the reduced
hit latency. In addition, the number of bank accesses is in-
creased by 5.6% due to the extra copy required. If no copy is
performed, and one of the higher-priority blocks is evicted
directly upon a replacement, the miss rate increases by sev-
eral percent, causing performance to drop significantly.

The experiment labeled best policy at the bottom of the
table represents a policy using the best-performing options
from each of the four policy spaces, with the exception
of using the bank access-intensive (but high-performance)
pure multicast for lookups. This policy achieves close to
the lowest latency access (11.5 cycles) while showing the
lowest miss rate of all the policies. While this scheme has
2.5% lower performance than the baseline, the carefully
tuned policies permit a 39% reduction in bank accesses over
the base policy, from 147 million to 90 million. The “best”
policy thus strikes the best compromise between high per-
formance and low energy consumed.

5.7 Summary results

Figure 6 summarizes the performance of the best con-
figuration for each of the cache architectures described in
this paper: UCA, S-NUCA-1, S-NUCA-2, and D-NUCA,
for each cache size. The D-NUCA results correspond to the
“best” policy shown previously in this section. Figure 6a
shows how these cache organizations perform for a bench-
mark (art) that has a small working set. Figure 6b shows the
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Figure 6. Performance summary of major cache organizations

same information for a benchmark (mcf) with a large work-
ing set. Figure 6c shows the harmonic mean performance
across all benchmarks.

The results clearly show two major points. First, the D-
NUCA organization is by far the highest-performing of the
five for large (4MB and larger) caches. Its organization is
amenable to large caches and the architecture is scalable
across technologies and clock rates. The adaptive nature
of the D-NUCA architecture permits increased performance
with increased capacity, even in the face of longer wire and
on-chip communication delays. Second, the D-NUCA orga-
nization is stable, in that it makes the largest cache size the
best performer for 9 applications, within 1% of the best for
5 applications, and within 5% for 2 applications. Figure 6a
for art shows this disparity most clearly in that D-NUCA
is the only organization that continues to increase perfor-
mance as the cache grows beyond 4MB.

6 Related Work

Although this work is the first to evaluate novel de-
signs of large, on-chip caches in future wire-dominated
technologies, there has been an enormous volume of litera-
ture published on many related caching topics. Researchers
have previously studied issues associated with large caches.
Kessler examined designs for multi-megabyte caches built
with discrete components, and not in a wire-dominated
technology [18]. Hallnor and Reinhardt [11] studied a fully
associative software-managed design for large, on-chip L2
caches, but not did not consider non-uniform access times
in future technologies.

The concept of bank sets permits flexible management
of the cache by varying associativity. While our mecha-
nism is new, other work has examined dynamically varying
associativity to balance power and performance. Albonesi
examines turning off “ways” of each set to save power when
cache demand is low [3]. Powell et al. evaluate the balance
between incremental searches of the sets to balance power
and performance, as we do with our multicast versus incre-

mental policies [25], and as Kessler et al. did to optimize
for speed [21]. Our concept of bank sets does not lend itself
well to more creative set mappings to reduce conflicts, such
as skewed associativity [5].

Other researchers have examined using multiple banks
for high bandwidth, as we do to reduce contention. Sohi and
Franklin [31] proposed interleaving banks to create ports,
and also examined the need for L2 cache ports on less pow-
erful processors than today’s. Wilson and Olukotun [34]
performed an exhaustive study of the trade-offs involved
with port and bank replication and line buffers for level-one
caches.

Our work may permit a flattening of the cache hierar-
chy through the adaptive migration of data. Przybylski per-
formed an exhaustive study on tuning multiple levels of the
memory hierarchy to maximize performance in his disser-
tation [26]. With his colleagues [27], he also defined global
miss rates at a lower-level cache, which was a concept we
used in our studies.

Finally, many researchers have examined adaptive cache
policies, a concept which is inherent in the D-NUCA orga-
nization. Dahlgren et al. [6] studied creative ways to avoid
conflicts in direct-mapped on-chip caches by virtually bind-
ing regions of the address space to portions of the cache,
as well as adapting the block size to different workload
needs (as did Johnson and Hwu [16]). While the D-NUCA
scheme leaves data with low locality in banks far from the
processor, an alternative approach is not to cache those
lines at all. González, Aliagas, and Valero [9] examined
a cache organization that could adaptively avoid caching
data with low locality and a locality detection scheme to
split the cache into temporal and spatial caches. Tyson et
al. [33] also proposed a scheme to bypass the cache with
low-locality data.

7 Summary and Conclusions

Non-uniform accesses are just starting to appear in high-
performance cache designs [24]. In this paper, we pro-



posed several new organizations for large, on-chip caches,
that exploit non-uniform bank accesses, and that are well-
matched to future technology constraints. These designs
treat the cache as a network of banks and facilitates non-
uniform accesses to different physical regions. We have
shown that these non-uniform cache access (NUCA) archi-
tectures achieve the following three goals:

� Low latency access: the best 16MB D-NUCA configu-
ration, simulated with projected 50nm technology pa-
rameters, demonstrated an average access time of 12
cycles at a fast 8 FO4 clock. Conventional cache de-
signs produce much higher access latencies, even for
smaller caches. With the combination of low hit la-
tency and low miss rate, this cache organization pro-
vides significantly higher performance on memory-
intensive benchmarks than conventional cache archi-
tectures.

� Technology scalability: As CMOS devices sizes shrink
and global wire delays increase, the access times for
traditional cache designs will increase correspond-
ingly. The D-NUCA design scales much better with
technology than conventional caches, since most ac-
cesses will be to close banks, which can be kept nu-
merous and small due to the switched network. When
holding the area of the cache roughly constant and
scaling technology, the D-NUCA access times in-
crease only slowly, from 10 cycles at a 1MB, 180nm
cache to 12 cycles at a 16MB, 50nm cache.

� Performance stability: The ability of D-NUCA to
migrate data eliminates the trade-off between larger,
slower caches for applications with large working sets
and smaller, faster caches for applications that are less
memory intensive. Our results show that the 16MB D-
NUCA organization achieves the best performance on
9 of the benchmarks, and is within an average of 1.7%
on the remainder.

Further research challenges remain for the base NUCA
architecture. While our experiments have assumed suffi-
cient buffer space at each cache bank to hold pending re-
quests, we expect that the L2 cache controller can subsume
some of this role by efficiently scheduling bank accesses
to reduce contention in the cache bank network. A second
challenge is the design and analysis of the interface between
the cache banks and the off-chip DRAM. It is possible that
the inherent adaptivity and scalability of this class of de-
signs will serve to flatten the memory hierarchy by elimi-
nating cache levels beyond the L2. Future designs will have
a tiny, fast L1 cache and as much NUCA capacity as will
fit on a die. Communication delays will likely make off-
chip caches much less attractive and increase the likelihood

of dedicated DRAM channels distributed around the chip,
perhaps as logical terminal nodes in the cache network.

Emerging chip multiprocessors (CMP) architectures will
likely benefit from the flexibility and scalability of NUCA
memory systems. A natural organization places multiple
processors and an array of cache banks on a single die.
As the workload changes, NUCA cache banks can be dy-
namically partitioned and reallocated to different proces-
sors. Maintaining coherence among different logical caches
presents a different set of challenges for NUCA architec-
tures. A variant of the partial tag compare scheme of
Kessler et al. [21] may permit fast discovery of shared
blocks without necessitating slow, huge centralized tag
banks.
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