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ABSTRACT
One way to relieve resources when executing a program on con-
strained devices is to migrate parts of it to other machines in a dis-
tributed system. Ideally, a system can automatically decide where
to place parts of a program to satisfy resource constrains (CPU,
memory bandwidth, battery power, etc.). We describe a compiler
and virtual machine infrastructure as the context for research in au-
tomatic program partitioning and optimization for distributed exe-
cution. We define program partitioning as the process of decom-
posing a program into multiple tasks. The main motivation for our
design is to enable experimenting with optimizing program execu-
tion on resource-constrained devices with respect to memory con-
sumption, CPU time, battery lifetime and communication.

With our approach, we represent a program as a graph of class in-
stances and their interactions (dependences). Then, we augment the
graph with weights that represent resource consumption. A general
graph partitioning algorithm assigns nodes to abstract processors
(partitions) according to the resource constraints. We then sched-
ule the partitions on available actual processors for execution. We
report results on the class instance graph construction. The sizes of
the graphs and the analysis times indicate that it is feasible to use
this representation for realistic applications. Moreover, the repre-
sentation is the key to a flexible distribution model for Java byte-
code.

1. INTRODUCTION
We present an experimental platform for research in compilation
and distributed virtual machine technologies. Our infrastructure
is a unifying framework that allows experimentation with various
partitioning strategies and scheduling techniques in order to un-
derstand how the multiple optimization targets interplay. The main
goal is to experiment with various (partitioning and mapping) strate-
gies that are known to optimize execution with respect to resource
consumption. Commonly employed optimizing (distributed) exe-
cution strategies include offloading parts of the computation to ad-
dress power consumption, offloading code that is not executed at
run-time to reduce code size, slowing down CPU to save power,
etc. These techniques are most of the time manually performed or
applied in isolation.

The main idea in our approach is to study how some of the tech-
niques affect the others and to come up with a strategy that best
exploits the available resources. For instance, off-loading compu-
tation may increase communication which, in turn, may lead to
increased activity to system buffers and thus, increased power con-
sumption. It is important to be able to model the program in terms
of its interacting entities and their resource consumption to under-

stand its run-time behavior. While static analysis can give a first
approximation of the run-time behavior, we rely on dynamic pro-
filing and adaptive repartitioning and mapping to reschedule tasks
to computational nodes based on actual execution information.

A benefit of such a unifying experimental infrastructure is that it
lets the compiler and the run-time system to perform partitioning
and mapping automatically. Our system is intended to be open and
general, so that it is easy to incorporate new strategies. Thus, we
can plug in any partitioning strategy to our partitioning interface,
without changing the system.

We build our infrastructure on an existing compiler, Joeq [34]. We
use Joeq front-end to transform the byte-code into an intermediate
representation suitable for our analyses and transformations. How-
ever, our approach is not limited to handling Java byte-code. Joeq
is designed to incorporate other inputs, such as ELF binaries and
SUIF files.

Our infrastructure depicted in Figure 1 consists of the following
components:

� A compiler analysis framework to statically approximate the
object1 dependence graph of a program.

� A strategy to statically approximate the resource consump-
tion for each object and for each object interaction.

� A general graph partitioning framework to uniquely assign a
node (object) to a partition and compute the cost of doing so
on the entire graph (taking into consideration multiple opti-
mization criteria).

� A code generator that takes into account the partitioning in-
formation and generates communication respecting consis-
tency and correctness constraints.

� A run-time system (or distributed virtual machine) that al-
lows adaptive partitioning as well as scheduling and migra-
tion of program partitions according to the available resources
with minimum impact on the observed output.

We will describe the infrastructure in Figure 1 in detail in Section�
.

�
We use the term object to denote a class instance. Throughout the

paper we use both, objects, and class instances interchangeably.
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Several distributed virtual machine infrastructures are based on the
Distributed Shared Memory paradigm. This clearly increases us-
ability. While achieving the same transparency effect, our infras-
tructure differs in goals and realization from DSM.

The program partitioning technique may be used to split a program
in smaller parts and schedule them for execution based on resource
availability. Throughout this paper we use the term subprogram
to denote a part of the program consisting of a subset of class in-
stances and the computation associated with them. We use the term
partition to denote an abstract processor holding only a subset of
class instances from the original class instance set of the original
program.

Conceptually, each object in an object-oriented program encapsu-
lates data and code. At run-time, this translates into memory usage,
CPU time, communication load or battery consumption. Each ob-
ject in a program consumes resources at run-time. In many situa-
tions it would be profitable to be able to play with various execution
strategies (interleaving, concurrency, etc.) for parts of the programs
to find optimization opportunities.

Object-oriented programs naturally lead to partitioning at object
granularity. That is, object-oriented programs provide natural en-
capsulation of the resource usage with an object. Also, since each
object denotes a program variable, it makes sense to partition ob-
jects, or program variables, rather than types, or object classes.
This choice of granularity also increases the flexibility of choos-
ing the grain of the partitioning strategy. That is, depending on the
actual environment characteristics, we can aggregate the objects in
a partition in coarse-grained or fine-grained collections as needed.

This paper makes the following contributions:

� Infrastructure: We describe a compiler and run-time infras-
tructure as the context for our research in program partition-
ing and scheduling to optimize execution with respect to re-
source consumption. Our infrastructure is a unifying frame-
work that allows experimentation with flexible distributed
execution strategies such as: concurrent processing, synchronous
and asynchronous client/server processing and loosely cou-
pled distributed execution (processes loosely synchronizing
via message exchange).

� Analysis: An improved implementation of an object depen-
dence graph construction algorithm by Andre Spiegel [27].
We improve the original analysis in the following aspects:

– We analyze programs at byte-code level instead of source-
code level.

– We use an intermediate representation and a reduced set
of methods to perform our analyses at method granu-
larity. The original implementation syntactically infers
the analysis objects (types, methods, class instances).

� Results: We present results of the comparison of three im-
plementations for the dependence analysis algorithm: the
original implementation and our improved implementation in
two versions, working on two internal representations (byte-
code instructions and a register-based representation). The
results provide useful insight in program analysis for dis-
tributed execution and underline directions for future improve-
ments.

The remainder of the paper is organized as follows. Section
�

gives
an overview of the system. Section � explains in detail the analysis
framework, the intermediate representation and the key structures
used to compute the object dependence graph. It also discusses
some challenges, our solution to overcome them and some future
improvements. Section � discusses implementation details. Section�

presents the results of the class instance graph construction. Sec-
tion � reviews related approaches. Section � concludes the paper
outlining the future steps to improve on our dependence analysis
framework.

2. SYSTEM OVERVIEW
Figure 1 describes the main building blocks of our system:

� Front-End. We use Joeq front-end to parse the byte-code
and transform the program in the intermediate representa-
tion. Any front-end can be added to transform programs from
other (binary) representations into the internal Joeq represen-
tation. For example, Joeq is designed to handle SUIF files
and binary object files (ELF). Our techniques can handle pro-
grams written in other languages than Java. However, for the
time being, we do not handle pointers (in the C/C++ sense).

� Compiler. Joeq provides us with two intermediate repre-
sentations: byte-code and quad. The latter is a quadruple
style IR which resembles register-based representations [3].
Joeq compiler offers a wealth of analyses and optimizations.
We have extended the compiler with our analysis framework
to statically approximate the object dependence graph and
resource consumption. This includes the partitioning trans-
formation which results in subsets of class instances and the
dependences across partitions.

� Back-End and Run-Time Support. The code generation
phase includes communication generation for object depen-
dences across different partitions. The run-time support phase
includes a scheduling module which performs the mapping
of partitions to computation units. The scheduler starts with
a static mapping of the partitions to abstract computation
nodes. Then, it uses the run-time profiling data to adjust the
static parameters (resource consumption) to their run-time
values. The adaptive repartitioning module applies the run-
time class instance access patterns and resource estimation to
the object dependence graph to dynamically repartition the
graph.

We can use any virtual machine (modified to support communica-
tion) to interpret and run the subprograms, or we can generate code
directly for specific platforms. For initial experimentation with ho-
mogeneous computation nodes, we plan to install virtual machines
on each node. On small, resource-constrained devices we plan to
experiment with custom minimalistic virtual machines or binaries
compiled directly for the given platform. The communication pro-
tocol takes care of the data format and protocol agreements across
platforms. We use point-to-point message exchange for efficient
communication (with MPI [26]).

The compiler and run-time infrastructure resides on a single, pow-
erful machine which will, in turn, control scheduling on other com-
putation nodes (master/workers model). The master node probes
the client machines for dynamic profiling and repartitioning. The
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client machines running the subprograms cooperate by exchang-
ing messages (streamed parts of object states) to carry out execu-
tion. The subprograms may be running on actual resource con-
strained devices, or can be off-loaded to other powerful worksta-
tions in the systems, etc., depending on the concrete execution
platform and scheduling strategy (i.e. ranging from one-to-one
client/server distributed computing model, to many-to-many multi-
ple clients/multiple servers models).

The hardest aspect of our infrastructure is the object dependence
graph construction. In previous work, we have experimented with
general graph partitioning and mapping and we have explored the
issues of communication generation, partial replication, distributed
consistency and synchronization [8]. Parting from general graph
representation and partitioning, these aspects are similar in our pre-
sent work. However, in our previous work, we only looked at data
parallel applications and specific constructs (large sets) for parti-
tioning. Constructing the dependence graph for specific structures
(e.g. linear arrays, nested sets) is easier than for user defined, heap
allocated structures. In the following sections we will focus on ob-
ject dependence graph construction from Java byte-code.

3. OBJECT DEPENDENCE GRAPH CON-
STRUCTION

Our graph construction algorithm builds on an existing object graph
analysis algorithm described in [27]. We preserve some of the se-
mantic of the original algorithm, while changing significantly the
algorithmic aspects. The most significant differences are:

� The original analysis targets one distribution paradigm: syn-
chronous remote method call. Our analysis targets a flexible
distributed model that includes exploiting concurrency and
asynchronous communication. Thus, the existing algorithm
it is not sufficient for our proposes. Nevertheless, it gave
us extremely useful insight into the problem of object graph
construction for program distribution.

� The original algorithm analyzes Java source code. Our al-
gorithm starts from Java byte-code, or other low-level binary
representations (SUIF files, ELF object files). Thus, we are
not tied with a specific language syntax or source code avail-
ability. Also, we can easily handle java library classes that
are always accessible in byte-code format.

� The original algorithm relies on syntactically identifying the
type closure of the program, as well as many of the anal-
ysis objects. That is, it infers the type set of the program
by adding types for each syntactic encounter of a reference
in the source code. We use state-of-the-art compiler analy-
ses and a full-fledged intermediate representation to account
for preciseness, generality and extendibility when comput-
ing the class and instance graphs. With our infrastructure we
can reuse most of the analyses (e.g. type analysis, call graph
construction, class relation construction, etc.) when experi-
menting with various object dependence graph construction
algorithms.

� The original approach is limited in handling libraries and
some dynamic aspects (e.g. exception handling).

3.1 An Example
Figure 2 shows an example of a Java program that we use through-
out the paper.

class Student �
String name;
double gpa;
public Student(String n, double gpa ) �
name = n;
this.gpa = gpa;�

double Gpa() � return gpa;
�

public String toString() �
return "Student " � name � " highest gpa " � gpa;�

�
public class StudentRegister �

Vector register = new Vector();
Student highestGpa;
void add(Student s) �
register.add(s);�

void maxGpa() �
...
highestGpa = ...;�

public Student highestGpa() �
return highestGpa;�

public static void main(String[] args) �
StudentRegister sr = new StudentRegister();
Student s1 = new Student ("Jens Dahl", 4.57);
sr.addStudent(s1);
Student s2 = new Student ("Paola Del Piero", 4.49);
sr.addStudent(s2);
Student s3 = new Student("Bogdan Popescu", 5.0);
sr.addStudent(s3);
sr.maxGpa();
System.out.println(sr.highestGpa().toString());�

�

Figure 2: The example program used throughout the paper.

In our example, there are two classes. A Student class describes
a student by his/her name and gpa. A StudentRegister class
uses a Vector structure (from java.util.*) to store student
elements. The add method receives a Student reference and
adds it to the vector structure. The maxGpa method computes
the maximum gpa between all the registered students. The main
method creates one instance of the StudentRegister class and
three instances of the Student class. Our analysis purpose is to
find these instances and their relations.

The appendix lists the quad internal representation for the Stu-
dent class.

We use rapid type analysis to compute the call graph and the pro-
gram types [12, 33]. Then, for each method in the graph we com-
pute the class relations by looking at field access and method call
statements. As in [27], a usage relation between two classes occurs
when one class calls methods or accesses fields of another class.
Export or import relations occur when new types may propagate
from one class to another through field accesses or method calls.

Figure 3 shows the class relation graph for our example. The types
are annotated with the ST or DT prefix to indicate static or in-
stance (dynamic) versions. The use relations tell that some classes
occur in the context of other classes and their occurrence is noted
by looking at the method calls, field accesses and allocation state-
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Created with aiSee V2.0 (ERP-Version) (c) 2000 AbsInt Angewandte Informatik GmbH. Commercial use prohibited!

Figure 3: The class relation graph structure visualized with aiSee tool for vcg format.

Created with aiSee V2.0 (ERP-Version) (c) 2000 AbsInt Angewandte Informatik GmbH. Commercial use prohibited!

Figure 4: The class instance relation graph structure visualized with aiSee tool for vcg format.
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ments. The export edge occurs due to the invocation of the addStu-
dent method on the dynamic StudentRegister class with
a Student class as parameter. The import edge occurs due to
the highestGpa() invocation that returns a result of Student
type.

Given the class relation graph, and the class instance set, we can
compute the relation between class instances (run-time objects).
For each allocation statement, we add reference relations between
the instance of the class where the allocation takes place and the
newly created instance. We then create new references by matching
the initial class instance references against the export and import re-
lations between the corresponding classes. We iterate through all
object triples and propagate references matching against the type
relations until the algorithm reaches a fix point.

Figure 4 shows the class instance graph for our example. The edges
are labeled by create, use, reference. The class instances are pre-
fixed by 1 indicating single instances (a * prefix indicates sum-
mary instances of zero or more – i.e. created inside a control struc-
ture). The reference relation is redundant and only used for inter-
mediate processing. We can safely abandon it. The create relation
means that an object creates another object. The creation relation
between object pairs is propagated to discover new usage relations
from the class relation graph. Therefore, after the propagation, only
the usage relation should matter for the partitioning: if an object a
on abstract processor Pa uses an object b on abstract processor
Pb, then communication may be generated. However, the relation
describes dependence too weakly for our purposes.

Figure 5 shows the read/write dependence relation for the same
example. This is a more useful dependence graph for a flexible dis-
tribution model. It is the key to exploiting concurrency, controlling
replication, consistency, and generating communication. Here, it
is obvious that the only dependences introduced are read via the
StudentRegister.addStudent(Student s) call. Thus,
the application can be partitioned in server/clients style, with clients
residing on different machines, or fully replicated at the server, de-
pending on the actual running environment.

3.2 Algorithm Overview
The algorithm consists of two main phases. The first phase of the
algorithm derives the class relations in a program based on field
access, method invocation and array access statements. These re-
lations are captured in a graph. A node exists for each class in the
program found by the RTA. An edge connects two classes accord-
ing to their relations (usage, import, export). The class instance
relations are also represented in a graph. A node in the graph repre-
sents a new class instance. An edge connects two nodes if one node
creates another node either explicitly, via an allocation statement,
or implicitly, through superclass relation, constructor invocation or
this pointer. The algorithm maps the class instance graph onto the
class graph to infer the usage relation between class instances.

The structure of the algorithm in our approach is:

1. Class hierarchy and type analysis to construct the call graph
and find the types of the program (enhanced RTA).

2. For each field access and method invocation:

(a) Let A be the context class (containing the statement).

(b) Let B be the declaring class for the field or method.

(c) Let C (flow) be one of the following:

i. The returned type of the method.
ii. The type of the parameters.

iii. The type of the field.

(d) Then add the following dependences:

i. Usage(A, B).
ii. Export(A, B, D) for field store and method param-

eters.
iii. Import(A, B, D) for field load and return type.

3. For each allocation statement:

(a) Create a class instance for the corresponding type.

i. Single instance for control independent statements.
ii. Summary instances for control dependent statements.

(b) Add recursively all super-type instances.

(c) Add recursively the (implicit and explicit) nested allo-
cations.

(d) Add a reference from the creating instance to the cre-
ated one.

4. Propagate (a,b), (a,d) class instance relations to (A, B, D)
class relations to find relations between class instances (b,
d).

In the first step, we construct the call graph of the application and
for each method we add the classes corresponding to alloca-
tion statements (new).

In the second step, the algorithm approximates the relation between
classes in a program. The intuition behind class relations
is to approximate relations that may exist between the cor-
responding class instances. For every class that appears in
the context of another class, a usage edge exists between the
two classes (the edge is created at the end of step

�
of the

algorithm). We say that the enclosing class uses the class
to which it refers. Then, we propagate references between
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classes by capturing data flow from fields to method bodies
and from method bodies to fields in the given context (class).
That is, an export edge between two classes indicates that a
new class is propagated from one class to another. There-
fore, at each point, our analysis keeps track of the current
method (method context) and the current class (class con-
text) in which a statement occurs.

In the third step, the algorithm approximates the set of class in-
stances existing in a program. Class instances are created by
allocation statements only. For each allocation we add recur-
sively the allocated super-type, as well as the types allocated
implicitly through explicit constructor invocations. For each
allocation we keep a pointer back to its enclosing allocation
and a pointer to the actual constructor which is called by the
creating allocation. For each class instance that creates an-
other class instance we add a reference edge.

In the fourth step, the algorithm propagates references between
class instances by matching the relations between class in-
stances against the type relations. The algorithm constructs
the usage edges between class instances based on their refer-
ence relation and the corresponding usage relation between
their types.

4. ALGORITHM IMPLEMENTATION
4.1 Implementation Details
We have implemented two versions of the algorithm: one that uses
the quad internal representation, another that works directly on Java
byte-code. Experimenting with both quad and byte-code internal
representations gives useful insight on how the internal representa-
tion helps with various analyses. A register-like representation is
more suitable for static analysis and optimizations of programs.

4.1.1 Call Graph Construction
Since we use Joeq’s front-end and quad representation along with
the control flow graph structure, our implementation is fairly small
(about 5000 lines of code for the quad version of the algorithm).

Our enhanced RTA is different from a standard RTA algorithm.
The standard algorithm concentrates on method invocations and
does not consider field accesses and methods that are not invoked
(main, <clinit>). Therefore, we process field accesses and
special methods as well and add new classes to the set of classes in
the original RTA.

4.1.2 Class Graph Construction
The implementation of the class relation computation is an itera-
tive, propagation-based style algorithm. We perform our analyses
on the call graph. We start with the main method and the corre-
sponding class. For each reachable method, we traverse the control
flow graph and detect the statements of interest : field accesses,
method calls, allocation statements and array accesses. We adopt
Joeq’s visitor pattern (see [11] for a detailed discussion of the vis-
itor pattern) to compute the relation between classes. Joeq offers
numerous visitor interfaces to visit byte-code, quads, types, meth-
ods, classes, basic blocks and so forth. A compiler developer only
needs to implement the visitor interfaces with the concrete actions
to be performed for the structure (byte-code or quad instructions,
types, etc.) of interest.

The control flow graph for a method consists of basic blocks and
each basic blocks is a list of quads. A quad is a quadruple con-

sisting of an operation and up to three operands. Almost all the
byte-code instructions have a correspondent in the quad format. A
pass computing the class relations traverses the quads for each basic
block in the control flow graph. The pass is both a type visitor and
a quad visitor and it receives a pointer to the currently analyzed
method. Thus, we are able to reconstruct high-level information
from the low-level quad representation. That is, we can precisely
infer all the information needed by the analysis when constructing
the type relation: the context class and the context method and the
type of elements in the statement. By context class we mean the ac-
tual class where the currently analyzed method occurs. By context
method we mean the actual method where the statement occurs.
Once we have computed all the type relations as in the second step
of the algorithm, we propagate the relations to all the subtypes.

4.1.3 Class Instance Graph Construction

4.1.3.1 Quad Implementation
We compute all the allocations in the program in the beginning of
the analysis. An allocation object contains the following informa-
tion: the calling context as the current method where the allocation
statements occurs, the class of the allocated object, the invoked
constructor, the quad location of the allocation within the calling
method, a pointer back to the enclosing allocation if the current
allocation is nested inside another allocation. We use hash-based
data structures to keep the lists of program classes and allocation
objects for the duration of the analysis.

The class instance graph is also a propagation style iterative algo-
rithm. We keep two separate instances for the static and dynamic
part of a class. A static class instance consists of all class variables
and methods. A dynamic class instance consists of all the instance
class variables and methods. The algorithm first adds all the static
class instances to the class instance set of the program. Then, for
each static class instance it adds all the class instances instantiated
in the corresponding class context (through the reachable methods).
We distinguish between class instances created by allocation state-
ments depending on the control flow:

� A single class instance is created for a control flow indepen-
dent allocation statement. A single class instance represents
exactly one instance of a class, since the corresponding allo-
cation statement executes precisely once.

� A summary class instance is created for a control flow de-
pendent allocation statement. A summary class instance rep-
resents zero or more instances of a class, depending on the
actual flow of control at run-time.

We uniquely identify program locations in our analysis. That is,
each statement in a program can be identified by a quad and a
method location. Each quad in a method has a unique identifier.
Each method in the call graph can be identified by the correspond-
ing invocation quad. Therefore, a statement in a program can be
uniquely identified by its corresponding quad and the context method
(the method where the statement occurs).

To account for control independence, we first compute the domina-
tors for each method. Then, for each program location consisting
of a quad and a method, we check if the quad is in a basic block
that dominates the exit. If so, then the quad is control flow indepen-
dent relatively to the method it belongs to (i.e. intra-procedurally).
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Then, for all the callers of the method, we check if the correspond-
ing program location is control independent by checking the quad
location and all the callers recursively (i.e. inter-procedurally).
Since we keep the actual calling context for allocation statements,
the control independence check is more precise for the allocation
statements. That is, we store the quad, the actual method and the ac-
tual constructor for each allocation statement in an initial traversal
of the call graph. Thus, the single and summary class instance ap-
proximations are more precise. This implementation leads to more
accurate results than both, the byte-code and original, Pangaea [28]
implementation. Both of the latter approaches fail to identify con-
trol independence inter-procedurally, leading to a larger set of sum-
mary class instances and a smaller set of single class instances (i.e.
more imprecise result).

Then, for each dynamic class instance we add single and summary
class instances depending on the corresponding allocation state-
ments.

For each newly added class instance we add a reference from the
creating to the created class instance. At the end of this step ( � ),
we obtain an initial class instance graph approximation consisting
of class instances and their references.

We first map this initial graph onto the corresponding class graph to
propagate references as in step � of the algorithm. We use the class
instance graph and the class graph to propagate usage relations.

4.1.3.2 Byte-code Implementation
In the byte-code analysis implementation, we start the class in-
stance graph construction by identifying the control flow indepen-
dence of allocations. An allocation is control independent if it
meets the following constraints:

1. The allocation appears in an initializing method that is guar-
anteed to execute exactly once when the type is instantiated.
We treat static types and instance types differently.

� Static type: The class initializer <clinit> is the ini-
tializing method for static types. <clinit> will exe-
cute exactly once when the class is loaded at runtime. A
special initializing method is the program’s entry point,
the main method.

� Instance type: The initializing methods for instance type
include the <init> constructors and the run()method
for a thread instance type. They both execute once
when a Java class is instantiated.

2. The allocation only executes exactly once when the enclos-
ing method is invoked.

The byte-code analysis uses a simple approach to check the control
flow independent region for each initializing method. As we have
noted before, this approach leads to a less precise result than the
quad implementation.

� Construct Control Flow Graph (CFG) for the method. Set the
initial independent attribute for each basic block to true.

� Traverse the method byte-code. Whenever a branch state-
ment appears, set the independent attribute to false for all

the basic blocks in between the current statement and the tar-
get. The byte-code branch statements include if<cond>,
if Xcmp<cond>, goto, tableswitch, and lookup-
switch.

The output is one independent attribute for each basic block with
true being the control flow independent code segment.

The byte-code implementation to locate allocations is not straight-
forward. That is, allocations appear in byte-code sequence pat-
tern new, dup, ..., invoke <init>2. We use a stack to
model a very simple Pushdown Automaton (PDA) to match this
pattern.

4.2 Implementation Issues
Generally, Java program analysis typically encounters the follow-
ing particularities:

Arrays. We model arrays as first class entities with elements of
the same type. Array access statements have direct corre-
spondents in the quad representation and therefore we can
identify the type of array elements. We treat array accesses
as instance field accesses (e.g. a[i] is treated as access to in-
stance field � with the same type as a[i] ). Then, it is straight-
forward to proceed with type propagation as for the load and
store instructions in step

�
of the algorithm. In the future,

we plan to treat arrays as collections of objects that can be
themselves partitioned.

Exception handling. We treat exceptions as regular class instances.
That is, we treat exceptions as return statements for the pur-
pose of class relation construction and propagation in step�

of the algorithm. For each basic block, there is a list of
thrown exceptions associated with it. In step � we treat ex-
ception class instances as regular class instances.

Class libraries. Our analysis separates between program and li-
brary classes. Libraries become a problem when propagating
relations through super-classes. All the parts of our analysis
can handle classes from the standard libraries and their in-
stances. We only include the library classes that are directly
referred in the code (first-level library classes) in the graph
representation. We do not include their super-classes. That
is because libraries increase the size of the call graph signif-
icantly and therefore, the sizes of the class relation and class
instance graphs. To reduce the size of these graphs we in-
tend to associate all classes and method calls from libraries
with external sets of classes and methods. Then, we treat
differently the propagation via method calls and superclass
relation to the program defined classes and external classes.

Reflection and Dynamic Loading. Handling reflection and dynamic
loading statically is difficult. Since our focus is to approxi-
mate the class instance relation graph statically, we do not
address these issues in our present implementation.

Specifically, we address some particular situations in our algorithm
implementation as follows:

�
The pattern new, ..., invoke <init> also exists. But

such an allocation does not give out a reference. So we do not
locate such allocations. Also, for simplicity, we assume new and
dup always go together.
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� We filter out java.lang.System,java.lang.String,
java.lang.StringBuffer, and java.io.Print-
Stream. (e.g. in our example in Figure 2 StringBuffer
and System would have been introduced by the call Sys-
tem.out.println).

� We do not add export and import edges to or from the library
classes, since they do not introduce new references during
propagation. We add export and import edges with library
classes as data flow, because they may introduce new refer-
ence propagations.

� We should not introduce any relation in the case of this
accesses. We can identify the this pointer from the quad
instructions (a special register stores it). However, in very
few situations, Joeq uses normal, temporary registers to hold
the this pointer. In such situations we cannot identify it.

� We do not add usage edges for the special <init> invo-
cation, since the invocation belongs to an allocation and we
treat them separately.

� We keep distinct instances of summary class instances cre-
ated by distinct allocation statements inside the loop (even
when they are of the same type). This treatment allows to ex-
ploit and handle concurrency correctly when distinguishing
between objects accessed in different instances of the loop.

5. RESULTS
We measure the following parameters for our graph construction
algorithms for each of the applications:

� The characterization of the application (#classes, #methods,
LOC, byte-code size).

� The time to construct the call graph.
� The number of nodes (classes) in the class relation graph.
� The number of edges (relations) in the class relation graph

(the number of use, export and import).
� The time to construct the class relation graph.
� The number of nodes (class instances) in the class instance

graph.
� The number of edges in the class instance graph (create, use,

reference).
� The time to construct the class instance graph.

5.1 Benchmarks
Table 1 describes the programs that we used to evaluate our al-
gorithm implementation. The first two programs are just simple
examples that we wrote, while the remaining applications belong
to the Java Grande benchmark [24]. Due to space constraints, we
only selected (randomly) two applications from each of the three
sections of the Java Grande applications set.

Table 1 shows, for each program, the number of classes it contains,
the number of methods, the number of lines of code and the actual
byte-code size. For the call graph, we show the number of classes
found by the RTA analysis and the number of reachable methods.
Our algorithm analyzes only the reachable methods and their actual
context classes. The original algorithm analyzes all the classes syn-
tactically referenced in the main program, along with their methods
and fields, irrespective of their actual use.

5.2 Graph Sizes
Table 2 shows the sizes for all the graphs in the program. We con-
struct the object dependence graph statically and therefore we can
perform an initial static partitioning of the program on this graph.
We use partitioning algorithms that can handle graphs of order of
million of nodes in seconds [1]. Thus, we expect the initial static
partitioning to be fast. However, the size of the graph is important
for both the dynamic profiling and adaptive repartitioning.

The results in Table 2 show the number of nodes and edges for
the class and class instance graphs in the three implementations:
Pangaea original implementation [28], and our implementations in
both quad and byte-code versions. The sizes of the class relation
graphs in Pangaea are sometimes bigger. This is because, in our
versions of the algorithm, we treat libraries differently. On the one
hand, Pangaea adds library classes super-classes or super-interfaces
to the class set of a program, while we do not. On the other hand,
Pangaea adds classes by symbolic analysis at the source code level,
while we only add classes that are reachable via method invocation
or field access.

Our class instance graphs are sometimes bigger than Pangaea. This
is partially due to the difference in the class relation graphs sizes.
Another reason is that Pangaea does not distinguish between class
instances allocated in different methods or in different statements
of a loop. Since we record the context method of an allocation,
we create separate class instances for different methods and hence,
the larger number of class instances. Pangaea also fails to identify
some single class instances due to its symbolic analysis. For in-
stance, Pangaea does not identify initializations like int[] data
=

�
1, 2, 3 � . Both Pangaea and the byte-code implementation

are limited in correctly identifying the control dependent and con-
trol independent statements. Thus, the quad implementation is the
most precise when finding the instances of the classes created just
once (single class instances).

The results we have presented so far show that the graph size is well
under the realistic sizes (order of millions of nodes) that graph par-
titioning algorithms can handle. This is an encouraging result. We
plan on improving on the algorithm so that it identifies or classifies
class instances more precisely (e.g we plan on treating arrays as
collections of objects that can be partitioned) and therefore we ex-
pect the graph sizes to increase. However, we believe that the sizes
of the graphs for realistic applications will stay within manageable
limits.

5.3 Graph Construction Times
Table 3 shows the times associated with the construction of each
graph for the analyzed program. These times only influence the
static partitioning process that can be performed ahead of time for
Java byte-code. As explained in the previous sections, these times
have a greater impact on the dynamic aspects of partitioning.

The results in Table 3 show that the time to construct the call graph
is the greatest of all (Pangaea does not construct a call graph). The
times for the class and class instance graph construction are smaller
and sometimes, a lot smaller than in the Pangaea implementation
(e.g. almost twice smaller in the quad implementation). This is
because, once the call graph constructed, we reduce significantly
the size of the analyzed sets. Furthermore, only the class instance

�

Pangaea does not use a call graph. Instead, it uses standard syn-
tactic type inference.
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Table 1: The benchmark characterization.
program #classes #methods LOC byte-code size

test 12 27 108 4,382B
StudentRegister 2 7 37 2,032B

Create 14 28 672 13,222B
Method 6 35 431 10,133B
FFT 5 40 321 11,833B

HeapSort 5 36 246 9,547B
MolDyn 7 42 503 16,555B

MonteCarlo 17 192 1043 41,891B

Average 8.5 51 420 13,699B

Table 2: The sizes for the graphs in the program.
version program Call Graph (methods) Class Relation Graph Class Instance Graph

Reachable Analyzed Nodes Use Imp Exp Nodes Create Use Ref

quad test 21 17 10 7 1 1 12 11 7 28
StudentRegister 438 8 5 4 1 1 6 5 8 13

Create 454 28 17 6 0 0 210 208 6 418
Method 452 30 12 10 0 0 9 6 10 16
FFT 471 28 17 11 0 0 14 9 10 24

HeapSort 467 27 13 13 0 0 11 8 7 18
MolDyn 550 33 12 15 0 0 9 7 9 16

MonteCarlo 697 103 40 53 2 7 110 106 43 225

bytecode test 21 17 13 12 2 1 13 10 12 19
StudentRegister 3243 8 7 5 1 1 6 5 8 8

Create 3261 29 22 6 0 0 291 289 6 291
Method 3263 33 14 13 0 0 11 6 13 13
FFT 3267 30 20 18 1 2 14 9 23 24

HeapSort 3261 28 13 15 0 0 9 7 9 9
MolDyn 3276 35 21 35 48 6 16 10 29 33

MonteCarlo 3468 112 55 130 5 9 128 114 238 289

pangaea test 16 15 3 3 13 10 12 19
StudentRegister 13 5 3 2 6 5 8 11

Create 28 6 1 1 22 20 6 24
Method 19 11 1 1 9 5 11 12
FFT 28 21 2 3 14 8 23 25

HeapSort 18 10 1 1 7 5 7 8
MolDyn 27 27 9 5 13 8 18 21

MonteCarlo 73 118 14 13 60 46 159 190

10



Table 3: The times (in milli-seconds) for the construction of the graphs.
version program Call Graph/Type Closure3 Class Relation Graph Class Instance Graph Total

quad test 440 24 52 516
StudentRegister 2147 26 25 2198

Create 2127 44 1829 4000
Method 2022 42 43 2107
FFT 2017 49 35 2101

HeapSort 2023 35 33 2091
MolDyn 2206 45 82 2333

MonteCarlo 2607 202 185 2994
Average 1948.6 58.3 285.5 2292.5

bytecode test 287 813 58 1158
StudentRegister 339 787 50 1176

Create 541 1307 319 2167
Method 432 993 55 1480
FFT 507 1026 59 1592

HeapSort 483 897 54 1434
MolDyn 940 1098 66 1774

MonteCarlo 940 1412 160 2512
Average 517 1041 103 1662

pangaea test 189 58 85 332
StudentRegister 278 54 79 411

Create 718 117 375 1210
Method 505 101 111 717
FFT 653 81 177 911

HeapSort 541 76 90 707
MolDyn 714 130 164 1008

MonteCarlo 1680 230 465 2375
Average 660 106 193 959

graph construction time will have impact on dynamic profiling and
repartitioning. The delay introduced should be small enough for
our purposes and definitely smaller than in a Pangaea like imple-
mentation. Also, byte-code analysis (for the byte-code version) is
more time consuming since it requires stack operation emulation
(e.g. to identify the actual parameter passing between caller and
callee).

In the quad implementation, there is an unusual large time asso-
ciated with the class instance graph construction for the Create
benchmark program. This is because both Pangaea and the byte-
code implementation fail to identify an inter-procedural control-
independent call site and thus, conservatively summarize instances
created through this site.

6. RELATED WORK
6.1 Program Partitioning for Scientific Appli-

cations
The problem of program partitioning has been explored by many
researchers with the hope that would significantly increase the op-
timization gain. Parallel compilation (automatic concurrency sup-
port) is one research area that has investigated the partitioning prob-
lem mainly for scientific programs typically targeting a significant
reduction in CPU or memory consumption [15, 19, 4, 13, 38, 18,
35, 30, 7, 16, 21, 9, 36, 2]. There are two main differences be-
tween partitioning for scientific applications and our work. Most
of the previous work focuses on array partitioning, or loop iteration
partitioning in scientific applications. We address general program
partitioning, where all the objects in a program are of interest. Sec-

ond, the main objective for partitioning in scientific application is
to speedup execution, either on distributed or on shared memory
machines. Our partitioning objective is to be able to come up with
execution strategies that can accommodate programs in resource-
constrained environments. This does not necessarily mean CPU,
but also battery, memory, storage space etc. Our general techniques
should however be applicable to special situation like partitioning
arrays or loop iterations in scientific applications.

Typical analyses for array-based languages are data and control de-
pendence for arrays accesses that are affine expressions of loop in-
dexes. Such analyses are able to infer the dependences between el-
ements of linear structures (i.e. multidimensional arrays) and stat-
ically compute the location of the elements on a processor. The
assignments of elements to processors is also linear (block, cyclic).
Therefore the compiler can statically generate communication based
on data dependences and elements location.

We also aim at being able to statically determine dependences be-
tween program variables. In our case, instead of arrays and affine
array accesses, we deal with heap allocated objects. We also assign
statically each object to a partition using multi-objective, general
graph partitioning algorithms [25]. Instead of computing the lo-
cation, we keep track of abstract locations based on processor and
object identifiers. Therefore, we can also generate communication
statically. However, this is only a best initial guess for partitioning
the given program. We intend to enhance Joeq run-time to moni-
tor the program and use both static and dynamic techniques to re-
compute the object dependence graph based on actual execution
knowledge and possibly repartition the application dynamically.
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6.2 Distributed Shared Memory
Another approach to transparently schedule applications onto mul-
tiple resources is the distributed shared memory approach [20, 17].
The main problem in this approach is to ensure consistency be-
tween address spaces. Since the approach is at the memory level,
each read or write to memory has to be synchronized. Our ap-
proach is closer to the application level, in that we keep track of a
finite number of objects and their interactions for a given program.
Then, we only need to consider consistency problems when dis-
tributing those objects. This paper did not address further analyses
to optimize communication or execution scheduling.

The Orca language [5, 6] is a pioneering effort on object-based
program execution in distributed environments. Hawk [14] run-
time system supports partitioned objects for distributed applica-
tions. Such efforts are very inspiring for work on program parti-
tioning, scheduling and execution consistency.

6.3 Java Program Partitioning
Several algorithms analyze source code to build the graph repre-
sentation for a partitioning framework. The graph representation
abstracts different program aspects. For instance, [29] uses the be-
havioral edges to represent dependence information and the inter-
actions of the communication and computation. The idea is to find
the dominant and sensitive program components and then apply an
iterative scheduling that tries to optimize their execution. Another
approach [37] is to find optimal schedules for special DAGs (fork,
join, coarse-grain trees, some fine-grain trees). In [32] the control
flow graph structure contains information on merge nodes, distri-
bution flow edges and relationship edges. The relationship edges
use reaching definition data flow information. The partitioning is
dynamic and targets array structures.

Recently, partitioning has gained interest for Java community as a
means to design distributed virtual machines for automatic program
distribution. JavaParty [23] extends Java with remote objects. The
idea is to provide location transparency in a distributed memory en-
vironment. We achieve the transparency effect without extending
Java syntax. However, we do not give the user any control over
distribution. This is because our research infrastructure is aimed at
system designers who want to experiment with various optimiza-
tion techniques and have all the control at the system level. In
our scenario, the user would only run an application on a (possi-
bly mobile) device (in a network) and would not be aware of how
the application is actually executed.

An approach closer in goals with ours is [22]. The idea is to trans-
parently off-load portions of service to relieve memory and pro-
cessing constraints on resource-constraint devices. The partitioning
is dynamic, based on application monitoring and class interaction.
The granularity is at class level. The main problem is the handling
of object references. In this approach each JVM maps all other
JVMs references, and thus it results in a replicate all approach. Our
approach is static, and it considers also class instance interaction.

An approach similar to the distributed shared memory paradigm
is to implement a distributed JVM as global object space [10].
This approach virtualizes a single Java object heap across machine
boundaries, implicitly ensuring location transparency. There are
two types of objects. Node local objects are reachable from a node,
while distributed objects are reachable from multiple nodes. Then,
reachability analysis is performed on an object connectivity graph
to detect the local and escaping objects. This approach assumes

that objects can reside anywhere and thus can escape the local ad-
dress space. We control the partitioning and analyze the depen-
dences and thus, we know exactly where each object resides.

J-orchestra [31] transforms Java byte-code into distributed Java ap-
plications. This is also an abstract shared memory implementation,
consisting of two steps. First, it classifies objects as anchored and
mobile. Second, it converts all references into indirect references.
The communication middleware is RMI and the approach is quite
expensive.

Pangaea [28] is a system that can distribute Java programs using
arbitrary middleware (Java RMI, CORBA) to invoke objects re-
motelly. The system is based on the original algorithm by Spiegel
that we also use. Pangaea’s input is a centralized Java source-code
program. The result is a distributed program underlining the syn-
chronous remote method invocation distributed computing paradigm.
Our approach starts from Java byte-code and targets a flexible dis-
tribution model (i.e. allows to exploit concurrency and asynchronous
communication) to distribute the program.

7. CONCLUSION AND FUTURE WORK
This paper has presented a dependence analysis in the context of a
compiler and run-time virtual machine infrastructure for automatic
distributed program execution. The goal of our analysis is to fa-
cilitate research in automatic program distribution by providing a
unifying framework for general program partitioning and schedul-
ing. The motivation of our work is flexibility to experiment with
various partitioning strategy to respond to various optimization tar-
gets in heterogeneous environments.

We have presented an improved implementation of an existing static
algorithm [27] to construct the object dependence graph for an ap-
plication. Our implementation of the algorithm constructs the ob-
ject dependence graph directly from Java byte-code. Also, we tar-
get a flexible distribution model that allows to exploit concurrency
and asynchronous communication between subprograms. The orig-
inal analysis is designed to handle Java source code and use the
synchronous remote method invocation distribution paradigm. Our
analysis implementation differs significantly from the original im-
plementation in the realization of the various phases of the algo-
rithm. We have shown that the preciseness of the algorithm is in-
creased in our implementation. Also, we have shown that the high
cost associated with the call graph construction time is a small price
to pay for the increased preciseness and reduced time for the later
phases of the algorithm.

We have also shown that for the partitioning and scheduling pur-
poses the relations between the class instance graph are too weak.
We are working on an improved version of the algorithm that elim-
inates some of the redundant relations and translates all the class
instance interactions into read and write interactions. Such classifi-
cation is the key to efficient communication generation and partial
replication.

So far, we have presented an all static approach to automatic pro-
gram distribution. However, the static partitioning is only an ini-
tial approximation. In the future, we plan to adaptively partition
the graph and reschedule the program for distribution based on dy-
namic profiling of actual flow of control, class instance access pat-
terns and resource consumption.
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APPENDIX
This section lists the Joeq quad representation for the Student
class in our example. The print pass inherits from three Joeq visi-
tors: a quad visitor, a basic block visitor and a control flow graph
visitor. That is, it first visits each method in the class, then it visits
its control flow graph, and for each basic block, it lists its quads.

In the listing, each method shows the basic blocks as well as the
entry and exit basic blocks. We do not show the associated excep-
tion handlers for readability reasons. Each basic block identifier
is unique, with zero and one designating the entry and exit basic
block. Each quad lists its identifier, the operator and its operands.
However, the quad identifiers hold no meaning.

For instance, the operator in quad
�

in method Student.<init>
is INVOKE SPECIAL operator, with return type void (the _V suf-
fix), which may need to be loaded dynamically (the % symbol).
Further, the java.lang.object.<init> ()V indicates that
the current invoke needs to invoke the initialization function for the
corresponding superclass (java.lang.object).

Each quad defines or uses a number of registers for its operands.
These are divided into temopary ( ��� ) and non-tempotray ( ��� ) reg-
isters. The special register ��� is used to hold the this pointer (in
this case a pointer to the current class instance).
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Student.<init> (Ljava/lang/String;D)V

BB0 (ENTRY) (in: [] out: [BB2] )
BB2 (in: [BB0 (ENTRY)] out: [BB1 (EXIT)] )
2 NULL_CHECK T-1 <g>,R0 Student
1 INVOKESPECIAL_V% java.lang.Object.<init> ()V,(R0 Student)
3 NULL_CHECK T-1 <g>,R0 Student
4 PUTFIELD_A R0 Student,.name,R1 String,T-1 <g>
5 NULL_CHECK T-1 <g>,R0 Student
6 PUTFIELD_D R0 Student,.gpa,R2 double,T-1 <g>
7 RETURN_V

BB1 (EXIT) (in: [BB2] out: [] )

Student.Gpa ()D

BB0 (ENTRY) (in: [] out: [BB2] )
BB2 (in: [BB0 (ENTRY)] out: [BB1 (EXIT)] )
1 NULL_CHECK T-1 <g>,R0 Student
2 GETFIELD_D T0 double,R0 Student,.gpa,T-1 <g>
3 RETURN_D T0 double

BB1 (EXIT) (in: [BB2] out: [] )

Student.toString ()Ljava/lang/String;

BB0 (ENTRY) (in: [] out: [BB2] )
BB2 (in: [BB0 (ENTRY)] out: [BB1 (EXIT)] )
1 NEW T0 StringBuffer,java.lang.StringBuffer
2 MOVE_A T1 StringBuffer,T0 StringBuffer
4 NULL_CHECK T-1 <g>,T1 StringBuffer
3 INVOKESPECIAL_V% java.lang.StringBuffer.<init> ()V,(T1 StringBuffer)
6 MOVE_A T1 String,AConst: "Student "
7 NULL_CHECK T-1 <g>,T0 StringBuffer
5 INVOKEVIRTUAL_A% T0 StringBuffer,java.lang.StringBuffer.append (Ljava/lang/String;)

Ljava/lang/StringBuffer;, (T0 StringBuffer, T1 String)
8 NULL_CHECK T-1 <g>,R0 Student
9 GETFIELD_A T1 String,R0 Student,.name,T-1 <g>
11 NULL_CHECK T-1 <g>,T0 StringBuffer
10 INVOKEVIRTUAL_A% T0 StringBuffer,java.lang.StringBuffer.append (Ljava/lang/String;)

Ljava/lang/StringBuffer;, (T0 StringBuffer, T1 String)
13 MOVE_A T1 String,AConst: " highest gpa "
14 NULL_CHECK T-1 <g>,T0 StringBuffer
12 INVOKEVIRTUAL_A% T0 StringBuffer,java.lang.StringBuffer.append (Ljava/lang/String;)

Ljava/lang/StringBuffer;,(T0 StringBuffer, T1 String)
15 NULL_CHECK T-1 <g>,R0 Student
16 GETFIELD_D T1 double,R0 Student,.gpa,T-1 <g>
18 NULL_CHECK T-1 <g>,T0 StringBuffer
17 INVOKEVIRTUAL_A% T0 StringBuffer,java.lang.StringBuffer.append

(D)Ljava/lang/StringBuffer;,
(T0 StringBuffer, T1 double)

20 MOVE_A T1 String,AConst: ""
21 NULL_CHECK T-1 <g>,T0 StringBuffer
19 INVOKEVIRTUAL_A% T0 StringBuffer,java.lang.StringBuffer.append (Ljava/lang/String;)

Ljava/lang/StringBuffer;,(T0 StringBuffer, T1 String)
23 NULL_CHECK T-1 <g>,T0 StringBuffer
22 INVOKEVIRTUAL_A% T0 String,java.lang.StringBuffer.toString ()Ljava/lang/String;,

(T0 StringBuffer)
24 RETURN_A T0 String

BB1 (EXIT) (in: [BB2] out: [] )
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