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ABSTRACT

Current interest in ad hoc and peer-to-peer networking technologies
prompts a re-examination of models for configuration management,
within these frameworks. In the future, network management methods
may have to scale to millions of nodes within a single organization,
with complex social constraints. In this paper, we discuss whether it
is possible to manage the configuration of large numbers of network
devices using well-known and no-so-well-known configuration models,
and we discuss how the special characteristics of ad hoc and
peer-to-peer networks are reflected in this problem.
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1 Introduction

Configuration management is about ensuring that the
operational state of a device or host conforms to spec-
ifications lain down by a site policy. The configura-
tion of a host ensures its efficiency, correctness and
security in performing its function. System config-
uration is usually a specification of file or database
contents, attributes, and process or service character-
istics, including access rights, software customization
and so on. A number of approaches has been devised
for configuration management. For instance, the IETF
model of configuration management revolves tradition-
ally around the Simple Network Management Protocol
(SNMP)[1]. This is read/write state based protocol for
altering values in a management information database
(MIB), and is used by a number of commercial soft-
ware products. The ‘Telecommunications Management
Network’ or TMN[2] is an alternative scheme designed
for telecommunications networks and has a strong rela-
tionship with the OSI management model. These sys-
tems use an abstraction based on the concept of ‘man-
aged objects’. An different approach is used by systems

like cfengine[3] and PIKT[4], which use descriptive lan-
guages to describe the attributes of many objects at the
same time, and agents to enforce the rules.

The ability to send or receive messages is cru-
cial to configuration management of network devices
and hosts. Indeed, maintaining the configuration of
hosts over time has many features in common with
the problem of information transmission over a noisy
channel[5]. The probability ��� that a receiver will be
correctly configured at time � is proportional to the prob-
ability of error-free transmission from source to receiver
�	��
� ��� ,

����������� ��
���� �! �"$#��&% ��
	� ����' (1)

at the same time. In other words, it depends on the mu-
tual information in the policy, transmitted from source
to node.

Today, distributed systems sport a global geography,
and are linked, both conceptually and physically, by a
network infra-structure. Passing messages from one part
of a system to another is subject to a plethora of uncer-
tainties. For example, SNMP uses an unreliable trans-
port protocol UDP for communication; any configura-
tion scheme that relies on the availability of a resource
or component at a specific moment has only a limited
chance of being carried out. Systems can be unavail-
able due to power failures, physical breakages, absence
of dependencies and so on. There is thus an ad hoc ele-
ment to network connectivity even in an ostensibly per-
manent infra-structure. The additional complication of
mobile services, with partial or intermittent connectivity
adds to this problem.

An ‘ad hoc’ network (AHN) is defined to be a net-
worked collection of mobile hosts, each of which has
the possibility to route information. The union of those
hosts forms an arbitrary graph that changes with time.
The nodes are free to move randomly thus the net-
work topology may change rapidly and unpredictably.
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Clearly ad hoc networks are important in a mobile com-
puting environment, where hosts are partially or inter-
mittently connected to other hosts. While there has
been some discussion of de-centralized network man-
agement using mobile agents [6], the problem of mo-
bile nodes (and so strongly time-varying topology) has
received little attention. However, we will argue be-
low that ad-hoc networks provide a useful framework
for discussing the problems surrounding configuration
management in all network types, both fixed and mo-
bile. This should not be confused with the notion of ‘ad
hoc management’[7], which concerns randomly moti-
vated and scheduled checks of the hosts.

Our aim in this paper is to evaluate a number of strate-
gies for configuration management, for their depend-
ability, using the framework of ad hoc networks as a
tool. For each strategy, we estimate how the uncertainty
in policy conformance varies in proportion to the num-
ber of hosts in the total system. This has implications for
network growth. We begin by defining the main con-
cepts and by showing that the ad hoc network frame-
work provides a dual description of configuration man-
agement, for a given policy.

2 Availability of peers in a network

From our main assumption, the probability that a host
will be correctly configured is related to reliability of
its communication with a policy source. In some cases,
policy will be cached locally but updates will still re-
quire hosts to communicate with trusted sources located
elsewhere on the network. As long as this involves net-
worked communication, we need to characterize the re-
liability of the network in order to discuss configuration
management.

As a simplest case, we assume that the reliability of
each node and each link is independent of all others, so
that the probabilities of availability are all independent
random variables. In general this is not true, since some
hosts/nodes depend on others for crucial services (e.g.
the domain name service (DNS)), but this should suffice
to gauge orders of magnitude.

Definition 1 A set of nodes or hosts is defined by a col-
umn vector of probabilities

����
����
�

���
�
	
...���
����
� (2)

where �
� ��� ����������� � is the probability that node � is
available. If the probabilities are 1, the hosts are said to
be reliable, otherwise they are partially reliable.

The nodes themselves may have any geographical loca-
tion, and may be connected by any means. The connec-
tivity between the nodes is represented by a matrix.

Definition 2 A network is defined by its adjacency ma-
trix. By convention, the adjacency matrix of a network
or graph is a symmetric matrix with zero leading diago-
nal, e.g. for four nodes in a line,

� � � � �
���
�
� � ���� � � �� � � ���� � �

 ��
� (3)

Zeroes denote no connectivity, while a 1 means a con-
nection. The notation

� � � � distinguishes this (instan-
taneous) matrix, whose entries are binary-valued, from
the time-averaged matrix discussed below. Owing to ac-
cess and routing controls, this matrix need not be sym-
metrical in practice, but we shall not address that issue
here.

The properties of networks can be discussed in detail,
using the adjacency matrix representation (see for in-
stance, ref. [8]). It is not our intention to go into exces-
sive detail here, but rather to distill a way of estimating
the properties of networks. For this, we choose to look
at the average properties of the networks.

We define a simple measure of the availability of a
service, transmitted within a closed network, by an in-
variant scalar value � :

Definition 3 The connectivity, � , of a network � , is
the probability (averaged over all pairs of nodes) that a
message can be passed directly between any two nodes.� may be written as

� � �� � �! "� � ��$# � ��%� (4)

� has a maximum value of 1, when every node is con-
nected to every other, and a minimum value of zero when
all nodes are disconnected.

For a fixed topology and time-independent node
availabilities, � is a constant characterizing the net-
work. In general � is time-dependent; one then obtains
a static figure for the network by taking the long-time
average: &

�(' �*),+.-/1032 �4 /5 �.67� � ��� � � � (5)

The utility of this measure is that it enables us to gauge
and compare different network configurations on equal
terms. It is also the vehicle by which we can map the
problem of unreliable hosts in a fixed network onto a
corresponding problem of reliable hosts in an ad hoc
network.
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3 Ad hoc networks

Ad hoc networks are networks whose adjacency matri-
ces are subject to a strong, apparently random time vari-
ation. If we look at the average adjacency matrices, over
time, then we can represent the probability of connectiv-
ity in the network as an adjacency matrix of probabili-
ties.

In a general ad hoc network, with a fixed number of
nodes, the links are not independent variables. They are
constrained both by the physical geography in which
the nodes move (only nearby nodes are candidates for
links), and by interference effects among the set of
nodes near to a given node. Any given node thus may or
may not establish a working link with a near node, de-
pending on interference from other near nodes. For our
purposes here, these dependencies are not important; the
important property of the ad-hoc net is the intermittency
of the links, due to the nodes’ mobility.

Definition 4 An ad hoc network is represented by a
symmetric matrix of probabilities for adjacency. Thus
the time average of the adjacency matrix (for, e.g., four
nodes) may be written as&

� ' �
���
�

� � � 	 � ��� � ���
�
	 � � �
	 � �
	 �
� � � � � 	 � � ���
��� � ��� 	 ����� �

���
� (6)

An ad hoc network is therefore a partially reliable net-
work.

To motivate our discussion further, we note that:

Theorem 1 A fixed network of partially-reliable nodes,� � , is equivalent to an ad hoc network of reliable nodes,
on average.

Proof 1 This is easily seen from the definition of the
connectivity, using a matrix component form:� � �! � �

&
� ' � �� � ��� � #

&
� � � ��' �� � � �� �� � � � #
&
� � � ��� ��' �� � � �� 5 �
	 � � � � � �
&
� ��	 � � � ' � 	 � � 	 �

� 5 �
	 � � � � �
&
� �
	 � �
� ��	 � ' � 	 � � � �

(7)

The proof demonstrates the fact that one can move
the probabilities (uncertainties) for availability from the
host vectors to the connectivity matrix and vice versa;

for example�� � �
� 	
���

� # �� � ���� � �� � �
� �� ���

� 	
���

� �
�� ���

� # �� � � � ��	 � � � �
��	 � � � �
	 � �
� � � � � � ��	 �

� �� ���
� �

(8)

Thus an array of hosts with reliability probabilities � � ,
is equivalent to an array of reliable hosts in an unreli-
able network, where the probability of communication
between them is the product of probabilities (assumed
independent) from the reliability vector.

Superposed onto the routing problem is another prob-
lem of conceptual dependence. One is not merely de-
pendent on connectivity to provide a route for messages,
but one depends on trusted sources of information. Thus
the arrows from source to receiver are not merely bytes
exchanged but authorized policy instructions. We shall
consider this issue below.

4 Peer to peer

The emergence of network file sharing applications such
as Napster, Gnutella, has focused attention on an ar-
chitecture known as peer-to-peer, whose aim is to pro-
vide worldwide access to information via a highly de-
centralized network of ’peers’. An important challenge
to providing a fully distributed information sharing sys-
tem is the design of scalable algorithmic solutions. Al-
gorithms such as those for routing and searching peer-
to-peer networks are typically implemented in a form of
an application-level protocol.

Definition 5 A peer to peer network service is one in
which each node, at its own option, participates in or
abstains from exchanging data with other nodes, over a
communications channel.

Peer to peer has a deeper significance. It is about the
demotion of a central authority, in response to the polit-
ical wishes of those participating in the network. This is
clearly an issue directly analogous to the policies used
for configuration management. In large organizations,
i.e. large networks, we see a frequent dichotomy of in-
terest:

 At the high level, one has specialized individu-
als who can paint policy in broad strokes, dealing
with global issues such as software versions, com-
mon security issues, organizational resource man-
agement, and so on. Such issues can be made by
software producers, system managers and network
managers.
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 At the local level, users are more specialized and
have particular needs, which large scale managers
cannot address. Centralized control is therefore
only a partial strategy for success. It must be sup-
plemented by local know-how, in response to lo-
cal environmental issues. Managers at the level of
centralized control have no knowledge of the needs
of specialized groups, such as the physics depart-
ment of a university, or the research department
of a company. In terms of configuration policy,
what is needed is the ability to accept the advice
of higher authorities, but to disregard it where it
fails to meet the needs of the local environment.
This kind of authority delegation is not catered for
by SNMP-like models. Policy based management
attempts to rectify some of these issues[9].

What we find then is that there is another kind of net-
working going on: a social network, superimposed onto
the technological one. The needs of small clusters of
users override the broader strokes painted by wide area
management.

This is the need for a scaled approach to system
management[10].

5 Configuration management in
ad hoc networks

Configuration management deals with the problem of
establishing and maintaining a policy conformant con-
figuration on workstations and other hosts distributed
around a network. Policy is usually a set of rules and
specifications about the software and resources of each
host, defined by a central authority and disseminated to
the individual hosts either on demand, or by common
update.

Configuration management relies on two main things:
i) the availability of trusted resources to each networked
host, including a policy � , and ii) the consistency of
the configuration specified by that policy. In an unpre-
dictable environment one has potentially several prob-
lems: Critical dependencies, including the policy it-
self, can become unavailable or out of date; trust re-
lationships are less certain if hosts cannot verify one
another’s’ identity, location or integrity. Thus security
and verifiable control, within specified time limits, are
at stake.

Even in a fixed infrastructure network, with only par-
tial connectivity, the availability of the resources is open
to uncertainty. This means that the ability to correctly
disseminate policy configuration is open to uncertainty.
The framework of ad hoc networks thus encompasses
a number of issues and offers a framework for dis-

cussing configuration strategies in general. In recent
times, there has been a move towards self-configuring
networks. Discovery protocols like JINI have to deal
with the ad hoc nature of networks, and the protocols
themselves will need to take the uncertainties in topol-
ogy into account. Today, most protocols assume a fixed
infra-structure.

One question that has been posed in this connection is
whether a peer to peer strategy, for disseminating con-
figuration policy, could provide a way of spreading in-
formation quickly about the network. If that were the
case, then the temporary unavailability of a node to a
central resource would not necessarily imply its isola-
tion from fresh, critical data. This kind of data distribu-
tion has been discussed before[11] in connection with
the scalability of software distribution. On the down
side, peer to peer reliance is clearly an open invitation
to engage in denial of service activity.

6 Predictability and scaling

At the lowest level, configuration management amounts
to little more than file distribution and message pass-
ing; however, there are significant differences in the
efficiency of strategies used in different contexts. As
networks grow, some of these strategies do not scale
well. They continue to be used, however, by force of
habit. We are therefore interested in examining the scal-
ing properties of different configuration management
schemes, especially in the context of network models
that look to the future of configuration management.

We consider a number of cases, in order of decreasing
centralization, or increasing delegation. (This ordering
also corresponds, roughly, to decreasing predictability.
However this interpretation may be misleading, since
centralized control schemes are also prone to noise, and
local or even catastrophic system-wide failures.) The
various cases that we consider are presented in Table 1
below.

Our basic ‘constitutive’ assumption is that there is
a simple linear relationship between the probability of
successful configuration and the rate(s) of communica-
tion with the policy- and enforcement-source(s). We
look only at the coarsest averages over time, in order
to determine the long-term behaviours of the models.
We consider a change of configuration (“charge”) ���
to be proportional to an average rate of information flow
(current) � , over a time � � ; that is

��� � ��� � � (9)

This equation is valid when � represents the time-
averaged flow over the interval. Since we are interested
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in the limiting behaviour for long times, this is sufficient
for our needs.

Now we apply this simple picture to configuration
management for dynamic networks. We take the point
of view of a ‘typical’ or ‘average’ host. It generates er-
ror in its configuration at the (average) rate ��� "$" , and re-
ceives corrections at the rate � " ��� #�� " . Hence the rate of
increase of error for the average node is:

��� #�� � � � � � "$"  � " ��� #�� " � 	 � � � "$"  � " ��� #�� " � � (10)

The Heaviside step-function is defined by

	 ��
 � �� � 
�� �� 
�� � � (11)

and signifies the fact that, if the repair rate exceeds the
error rate, then (on average, over long times) nothing re-
mains outstanding and there is no net rise in configura-
tion error. Thus this averaged quantity is never negative.

If random errors and changes to configuration occur
at a rate � � "$" and the configuration agent is unavailable
to correct them, then ��� #�� � � � � "$" . If this holds during a
time � � , the configuration falls behind by an amount:���������- + ��� +����

� ��� �
� � ������� �!�"��#

� ��� "$" � $
���%#'& �)( �* �)+-,.+ +.)/+ � ) �
� � � �

�
In the following we will use � to denote the average
(over time, and over all nodes) probability that configu-
ration management information flow (repair current) is
not available to a node. This unavailability may come
from either link or node unreliability. We can lump all
the unreliability into the links (see above) and so write

� � � �  
&
� ��	 ' � ' (12)

where

&
� �
	 ' denotes both time and node-pair average.

Each node then can only receive repair current during
the fraction � �  � � of the total elapsed time.

The repair current is generated by two possible
sources in our models: i) a remote source, and ii) a lo-
cal source. In each case, the policy can be transmitted
and/or enforced at a maximum rate given by the channel
capacity of the source. We shall denote the channel ca-
pacities by 021 and 0�3 for remote and local sources for
clarity, but we assume that 021546073 , since source and
target machines are often comparable, if not identical.
If the communication by network acts as a throttle on
these rates, then one can further assume that 0 1 �80 3 .
In any case, the weakest link determines the effective
channel capacity. Note that in the case of a confluence
of traffic, as in the star models below, the channel ca-
pacity will have to be shared by the incoming branches.

We now have a criterion for eventual failure of a con-
figuration strategy. If

� � #�� � � ���
� � � � ' (13)

the average configuration error will grow monotonically
for all time, and the system will eventually fail in contin-
uous operation. Our strategy is then to look at the scal-
ing behaviour of ��� #�� � as the number of nodes

�
grows

large.

6.1 Star model

The traditional (idealized) model of host configuration
is based on the idea of remote management (e.g. using
SNMP). Here one has a central manager who decides
and implements policy from a single location, and all
networks and hosts are considered to be completely re-
liable. The manager must monitor the whole network,
using bi-directional communication. This leads to an�:9 �

ratio of clients to manager (see fig 1). This first

Controller

Figure 1: Model 1: the star network. A central manager
maintains bi-directional communication with all clients. The
links are perfectly reliable, and all enforcement responsibility
lies with the central controller.

model is an idealized case in which there is no unreli-
ability in any component of the system. It serves as a
point of reference.

The topology on the left hand side of fig 1 is equiva-
lent to that on the right hand side. We can assume a flow
conservation of messages on average, since any dropped
packets can be absorbed into the probabilities for suc-
cess that we attribute to the adjacency matrix. Thus the
currents must obey Kirchoff’s law:

� ��� �  �"���� � � " � � �<; � 	 ; ����� � � � (14)

The controller current cannot exceed its capacity, which
we denote by 02= . We assume that the controller puts
out repair current at its full capacity (since the Heaviside
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Model Application Enforcement Policy Policy Control
Topology Freedom Exchange Structure

1 Star Transmitted No No Radial push
2 Star Transmitted No No Radial push
3 Mesh Local No No Radial pull
4 Mesh Local Yes No Radial pull
5 Mesh Local Yes Yes Hierarchical pull
6 Mesh Local Yes Yes P2P pull

Table 1: Comparison of models from the viewpoint of the different dimensions: policy dissemination, enforcement, freedom
of choice, whether hosts can exchange chosen policy ideas with peers and how political control flows. A ‘push’ model implies
a forcible control policy, whereas ‘pull’ signifies the possibility to choose. Model 3 lies between these two, in having the
possibility but not the inclination to choose.

function corrects for lower demand), and that all nodes
are average nodes. This gives that

� " ��� #�� " � 0 =� �
(15)

The total current is limited only by the bottleneck of
queued messages at the controller, thus the throughput
per node is only

� � �
of the total capacity. We can now

write down the failure rate in a straightforward manner:

� � #�� � ��� �'� "$"  0 =��� 	 � ��� "$"  0 =��� � (16)

As
�����

, � � #�� � � �'� "$" —that is, the controller con-
tributes a vanishing repair current per node. The system
fails however at a finite

� � �  	� " � %
� � 0 = � � � "$" . This
highlights the clear disadvantage of centralized control,
namely the bottleneck in communication with the con-
troller.

6.2 Star model in intermittently connected
environment

The previous model was an idealization, and was mainly
of interest for its simplicity. Realistic centralized man-
agement must take into account the unreliability of the
environment.

In an environment with partially reliable links, a re-
mote communication model bears the risk of not reach-
ing every host. If hosts hear policy, they must accept and
comply, if not, they fall behind in the schedule of con-
figuration. Monitoring in distributed systems has been
discussed in ref. [12].

The capacity of the central manager 0 = is now shared
between the average number of hosts

&
� ' that is avail-

able, thus

� " ��� #�� " � 0 =�
&
� ��	 '�� 0& � ' � (17)

Controller

Figure 2: Model 2: a star model, with built-in unreliability.
Enforcement is central as in Model 1.

This repair current can reach the host, and serve to de-
crease its policy error � � , during the fraction of time
� �  � � that the typical host is reachable. Hence we look
at the net deficit ��� accrued over one “cycle” of time
� � , with no repair current for � � � , and a maximal cur-
rent 0 = �

&
� ' for a time � �  � � � � . This deficit is then

���	� � � � � ��� "�" � � �; � � � "$"  0 =& � ' � � �  � � � �
(18)

(here it is implicit that a negative ��� will be set to zero).
Thus, the average failure rate is

��� #�� � � � � "$" � ; � � � "�"  0 =& � ' � � �  � �
� � � "$"  0 =� �

(19)
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(Again there is an implicit
	

function to keep the long-
time average failure current positive.) This result is the
same as for Model 1, the completely reliable star. This
is because we assumed the controller was clever enough
to find (with negligible overhead) those hosts that are
available at any given time, and so to only attempt to
communicate with them.

This model then fails (perhaps surprisingly), on aver-
age, at the same threshold value for

�
as does Model 1.

If the hunt for available nodes places a non-negligible
burden on the controller capacity, then it fails at a lower
threshold.

6.3 Mesh topology with centralized policy
and local enforcement

The serialization of tasks in the previous models forces
configuration ‘requests’ to queue up on the central con-
troller. Rather than enforcing policy by issuing every
instruction from the central source, it makes sense to
download a summary of the policy to each host and em-
power the host itself to enforce it.

There is still a centrally determined policy for every
host, but now each host carries the responsibility of con-
figuring itself. There are thus two issues: i) the update
of the policy and ii) the enforcement of the policy. A
pull model for updating policy is advantageous here, be-
cause every host then has the option to obtain updates
at a time convenient to itself, avoiding confluence con-
tentions; moreover, if it fails to obtain the update, it can
retry until it succeeds. We ask policy to contain a self-
referential rule for updating itself.

The distinction made here between communication
and enforcement is important, because it implies dis-
tinct types of failure, and two distinct failure metrics:
i) distance of the locally understood policy from the lat-
est version, and ii) distance of host configuration from
the ideal policy configuration. In other words: i) com-
munication failure, and ii) enforcement failure.

The host no longer has to share any bandwidth with
its peers, unless it is updating its copy of the policy, and
perhaps not even then, since policy is enforced locally
and updates can be scheduled to avoid contention.

Let ������� #  � be the rate at which policy must be up-
dated. This current is usually quite small compared to
��� "$" , and was neglected in the previous models. Based
on the two failure mechanisms present here, we break
up the failure current into two pieces:

� � #�� � � � � #�� � ��� � ; � � #�� � � � � � � (20)

The former term is

��� #�� � � � � � � � � "$"  073 � 	 � � � "$"  0�3 ��� (21)

Controller

Figure 3: Model 3. Mesh topology. Nodes can learn the
centrally-mandated policy from other nodes as well as from
the controller. Since the mesh topology does not assure direct
connection to the controller, each node is responsible for its
own policy enforcement.

this term is independent of
�

and may be made zero
by design. � � #�� � � � � � is still determined by the ability of
the controller to convey policy information to the hosts.
However, the load on the controller is much smaller
since � �%��� #  ��� � � "$" . Also, the topology is a mesh
topology. In this case the nodes can cooperate in dif-
fusing policy updates, via flooding1.

The worst case—in which the hosts compete for
bandwidth, and do not use flooding over the mesh—
is that, for large

�
, ��� #�� � � � �%��� #  � . This is a

great improvement over the two previous models, since
� �%��� #  �	� � � "$" . However note that this can be further
improved upon by allowing flooding of updates: the au-
thorized policy instruction can be available from any
number of redundant sources, even though the copies
originate from a central location. In this case, the model
truly scales without limit, i.e. � � #�� � � � .

There is one caveat to this encouraging result. If the
(meshed) network of hosts is truly an ad-hoc network of
mobile nodes, employing wireless links, then connec-
tions are not feasible beyond a given physical range 
 .
In other words, there are no long-range links: no links
whose range can grow with the size of the network. As a
result of this, if the AHN grows large (at fixed node den-
sity), the path length (in hops) between any node and the
controller scales as a constant times

� �
. This growth

in path length limits the effective throughput capacity
between node and controller, in a way analogous to the

1Note, flooding in the low-level sense of a datagram multicast is
not necessarily required, but the effective dissemination of the policy
around the network is an application layer flood.
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internode capacity. The latter scales as
� � � �

[13, 14].
Hence, for sufficiently large

�
, the controller and AHN

will fail collectively to convey updates to the net. This
failure will occur at a threshold value defined by

� � #�� � � � � � � � �%��� #  �  02=� � �  	� " � %
� � � ' (22)

where � is a constant. The maximal network size�  �&" � %
� is in this case proportional to
��������
	��
������ 	 —still

considerably larger than for Models 1 and 2.

6.4 Mesh topology with partial host auton-
omy and local enforcement

As a variation on the previous model, we can begin to
take seriously the idea of distance from a political cen-
tre. In this model, hosts can choose not to receive policy
from a central authority, if it conflicts with local inter-
ests. Hosts can make their own policy, which could be
in conflict or in concert with neighbours.

Communication thus takes the role of conveying ‘sug-
gestions’ from the central authority, in the form of the
latest version of the policy. For instance, the central au-
thority might suggest a new version of widely-used soft-
ware, but the the local authority might delay the upgrade
due to compatibility problems with local hardware. Lo-
cal enforcement is now employed by each node to hold
to its chosen policy � � . Thus communication and en-
forcement use distinct channels (as with Model 3); the
difference is that each node has its own target policy � �
which it must enforce.

Controller

?
?

?

?

?

?

?

?

?

?

?

?

Figure 4: Model 4. As in Model 3, except the hosts can
choose to disregard or replace aspects of policy at their option.
Question marks indicate a freedom of hosts to choose.

Thus the communications and enforcement chal-

lenges faced by Model 4 are the same (in terms of scal-
ing properties) as for Model 3:

� � #�� � � � + - � + ��� & ( � )�� �
(23)

Hence this model can in principle work to arbitrarily
large

�
.

Model 4 is the model used by cfengine[3, 15]. The
largest current clusters sharing a common policy are
known to be of order

� � �
hosts, but this could soon be

of order
� ���

, with the proliferation of mobile and em-
bedded devices.

6.5 Mesh, with partial autonomy and hier-
archical coalition

An embellishment of Model 4 is to allow local groups of
hosts to form policy coalitions, that serve to their advan-
tage. Such groups of hosts might belong to one depart-
ment of an organization, or to a project team, of even to
a group of friends in a mobile network.

Once groups form, it is natural to allow sub-groups
and thence a generalized hierarchy of policy refinement
through specialized social groups.

Controller

?

?

?

?

Figure 5: Model 5. Communication over a mesh topology,
with policy choice made hierarchically. Sub-controllers (dark
nodes) edit policy as received from the central controller, and
pass the result to members of the local group (as indicated by
dashed boxes). Question marks indicate the freedom of the
controllers to edit policy from above.

If policies are public then the scaling argument of
Model 3 still applies since any host could cache any pol-
icy; but now a complete policy must be assembled from
several sources. Once can thus imagine using this model
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to distribute policy so as to avoid contention in bottle-
necks, since load is automatically spread over multiple
servers. In effect, by delegating local policy (and keep-
ing a minimal central policy) the central source is pro-
tected from maximal loading. Specifically, if there are
� sub-controllers (and a single-layer hierarchy), then the
effective update capacity is multiplied by � . Hence the
threshold

�  	� " � %
� is multiplied (with respect to that for
Model 3) by the same factor.

This model could be implemented using cfengine,
with some creative scripting.

6.6 Mesh, with partial autonomy and
inter-peer policy exchange

Figure 6: Model 6. Free exchange of policies in a peer-to-
peer fashion; all nodes have choice (dark). Nodes can form
spontaneous, transient coalitions, as indicated by the dashed
cells. All nodes can choose; question marks are suppressed.

The final step in increasing autonomy is the free ex-
change of information between arbitrary hosts. Hosts
can now offer one another information, policy or source
materials in accordance with an appropriate trust model.
In doing so, impromptu coalitions and collaborations
wax and wane, driven by both human interests and pos-
sibly machine learning. A peer-to-peer policy mech-
anism of this type invites trepidation amongst those
versed in control mechanisms, but it is really no more
than a distributed genetic algorithm. With appropriate
constraints it could be made to lead to sensible con-
vergent behaviour, or to catastrophically unstable be-
haviour.

One example of such a collaborative network that has
led to positive results is the Open Source Community.
The lesson of Open Source Software is that it leads to

a rapid evolution. A similar rapid evolution of policy
could also be the result from such exchanges. Probably
policies would need to be weighted according to an ap-
propriate fitness landscape. They could include things
like shared security fixes, best practices, code revisions,
new software, and so on.

Until this exchange nears a suitable stationary point,
policy updates could be much more rapid than for the
previous models. This could potentially dominate con-
figuration management behaviour.

Note that this model has no centre. Hence it is, by
design, scale-free: all significant interactions are local.
Therefore, in principle, if the model can be made to
work at small system size, then it will also work at any
larger size.

In practice, this model is subject to potentially large
transients, even when it is on its way to stable, conver-
gent behaviour. These transients would likely grow with
the size of the network. Here we have confined our-
selves to long-time behaviour for large

�
—hence we

assume that the system can get beyond such transients,
and so find the stable regime.

Finally we note that we have only assessed the good-
ness of a given model according to its success in com-
municating and enforcing policy. When policy is cen-
trally determined, this is an adequate measure of good-
ness. However, for those cases in which nodes can
choose policy, one would also like to evaluate goodness
of the resulting choices. We do not address this impor-
tant issue here. We note however that Model 6, of all the
models presented here, has the greatest freedom to ex-
plore the space of possible policies. Hence an outstand-
ing, and extremely nontrivial, question for this peer-to-
peer model of configuration management is: can such a
system find ‘better’ policies than centralized systems?

In short: this model has no scaling problems with re-
spect to communication and enforcement. Open ques-
tions include the scaling behaviour of transients, and the
ability of this completely de-centralized model to find
good policy.

7 Summary and conclusion

We have presented several models for configuration
management on networks. Our Models 3–6 depart from
mainstream practice in various ways. The motivation for
considering these models is the perception that highly
centralized systems are not well adapted to networks
that are too large, too heterogeneous, or too dynamic.
Since current and future networks are taking on more
and more of these three qualities, it is of interest to
examine alternative models for configuration manage-
ment.
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In this paper we have held ourselves to a limited set
of goals. The first of these is the definition of the mod-
els themselves. These models offer broad avenues for
future research in configuration management; variants
of one (or several) of them are likely to be important in
future systems. An important dimension along which
our models vary is the degree of centralization: of pol-
icy determination, of policy communication, and of pol-
icy enforcement. For the reasons given in the previous
paragraph, it is of significant interest to explore possible
forms of network management with varying degrees and
types of de-centralization. We offer a small step in this
direction here.

Our second goal has been to assess the scaling be-
haviour of these models with respect to two criteria:
communication of the current policy to the hosts, and
enforcement of the communicated policy. We have con-
sidered the various models’ ability to meet these cri-
teria, as the number of hosts

�
in the network grows

large. We find, not surprisingly, that the highly central-
ized systems suffer from a communications bottleneck
that limits the size at which they can function effectively.
De-centralizing one or both of the two functions gives
much better scaling behaviour—to the point that all of
the Models 3–6 can, in principle (with some qualifica-
tions), implement policy communication and enforce-
ment for very large systems. All of these relieve the
bottleneck, which is inevitably present in the fully cen-
tralized system.

Of course, de-centralization brings with it new prob-
lems, not addressed by the centralized system: problems
of trust, of the quality of chosen policies, and of con-
vergence to a stable regime. These new problems offer
attractive issues for further research, due both to their
intrinsic interest, and to their relevance to the future im-
plementation of de-centralized network systems.
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